

Global coherence induced by noise or diversity in excitable systems

C.J. Tessone, A. Scirè, R. Toral, P. Colet

FisEs'05 Madrid, June 27th 2005

http://www.imedea.uib.es/PhysDept

tessonec@imedea.uib.es

Introduction

Definition of excitable system

Introduction

Examples of excitable systems

Physical systems: Josephson junctions, lasers

Biological systems: infection propagation, neurons, pancreatic and

cardiac cells...

Chemical systems: Belousov-Zhabotinsky reaction

Introduction

Examples of excitable systems

Physical systems: Josephson junctions, lasers

Biological systems: infection propagation, neurons, pancreatic and

cardiac cells...

Chemical systems: Belousov-Zhabotinsky reaction

Globally coupled active rotators

The dynamic of a single unit is given by:

$$\dot{\phi} = \omega - \sin(\phi) + \sqrt{D}\xi$$

This system is useful to model systems like:

Neuron dynamic

Cardiac tissues (when coupled)

Josephson junctions

Laser dynamics

Globally coupled active rotators

The dynamic of a single unit is given by:

$$\dot{\phi} = \omega - \sin(\phi) + \sqrt{D}\xi$$

D is the noise intensity

 ω natural frequency

$$\omega < 1$$
 the system is excitable

$$\omega \geq 1$$
 is oscillatory

Globally coupled active rotators

$$\dot{\phi_j} = \omega_j - \sin\phi_j + \frac{C}{N} \sum_{k=1}^N \sin(\phi_k - \phi_j) + \sqrt{D}\xi_j$$

- *N*: size of the system
- D: noise intensity $\langle \xi_j(t)\xi_k(t)\rangle = \delta(t-t')\delta_{jk}$
- C: coupling strength
- ω_j : natural frequency of j-th oscillator distributed according to a function $g(\omega_j)$, with mean value ω and standard deviation σ^2

increasing D

Studied system

Globally coupled active rotators

$$\dot{\phi_j} = \omega_j - \sin\phi_j + \frac{C}{N} \sum_{k=1}^N \sin(\phi_k - \phi_j) + \sqrt{D}\xi_j$$

Global coherence induced by noise or diversity in excitable systems. C.J. Tessone

Order Parameters

i) Kuramoto

Given the expression
$$\ \rho(t)e^{i\Psi(t)}=\frac{1}{N}\sum_{k=1}^N e^{i\phi_k(t)}$$

is computed the time-average $\; \rho \equiv \langle \rho(t) \rangle \;$

- $\rho=1$ when, during the time evolution of the system *all* the units have the same phase: $\phi_i(t)=\phi_k(t), \, \forall j,k$
- When all the oscillators are uniformily distributed in the circle,

$$\rho \to 0$$

Order Parameters

ii) Shinomoto-Kuramoto

$$\zeta = \left\langle \left| \rho(t)e^{i\Psi(t)} - \left\langle \rho(t)e^{i\Psi(t)} \right\rangle \right| \right\rangle$$

- In the case in which all the oscillators are at rest, it is equal to 0.
- When the oscillators pulse unsynchronously, it is equal to 0.
- In case of total synchronization with uniform velocity (different from zero), it is equal to 1.
- In the case of coherent pulsations, it takes non-zero values.

- Order Parameters
 - iii) Current

$$J = \frac{1}{N} \sum_{k=1}^{N} \left\langle \dot{\phi}_k(t) \right\rangle$$

• Being equal to 0 in this system, means that the units are at rest

Numerical results

- Regime I: the oscillators fluctuate around the fixed point
- Regime III: the oscillators pulse in an incoherent fashion.
- Regime II: the oscillators pulse coherently.

In egimes **I** and **III** have a steady probability distribution $P(\phi)$.

But the current is different in both cases

Numerical results

Dependence with respect to parameters

...the same behaviors are present...

Numerical results

Dependence with respect to parameters

...the same behaviors are present...

Macroscopic equation

$$\dot{\phi_j} = \omega_j - \sin\phi_j + \frac{C}{N} \sum_{k=1}^{N} \sin(\phi_k - \phi_j) + \sqrt{D}\xi_j$$

Averaging the dynamic equation over the whole population

$$\frac{1}{N} \sum_{k=1}^{N} \dot{\phi_j} = \omega - \rho(t) \sin \Psi(t) + \sqrt{\frac{D}{N}} \xi(t) \qquad \langle \xi(t)\xi(t') \rangle = \delta(t - t')$$

... and computing the time derivative of the Kuramoto order parameter, we obtain...

$$\dot{\rho}(t) + i\,\rho(t)\dot{\Psi}(t) = \frac{i}{N}\sum_{k=1}^N\dot{\phi}_k e^{i\delta_k(t)} \quad \text{where,} \quad \dot{\delta_j}(t) = \dot{\phi_j}(t) - \Psi(t)$$

...what we get is an expression for the dynamics of the global quantities...

$$\dot{\Psi}(t) = \frac{\omega}{\rho} - \sin \Psi(t).$$
 $\dot{\rho}(t) = \mathcal{O}(\delta_k^2)$

Macroscopic equation

$$\dot{\Psi}(t) = \frac{\omega}{\rho} - \sin \Psi(t).$$

- The dynamics of the global phase are also excitable, but The natural frequency is also rescaled by $\, \rho \,$
- ullet The excitability threshold is given by the relation $\quad
 ho \ = \ \omega$
- *Disorder in position* of the oscillators is responsible of the appearance of global pulsations

• Computation of ρ

$$\rho = \int d\omega g(\omega) \int_0^{2\pi} d\Psi P(\Psi; \rho) \int_0^{2\pi} d\phi P_{\rm st}(\phi; \Psi, \rho, \omega) \cos(\phi - \Psi)$$

- \rightarrow over the probability distribution $g(\omega)$
- → over the distribution of global phases

$$P(\Psi; \rho) = \begin{cases} (1/2\pi)\sqrt{\omega^2 - \rho^2}/(\omega - \rho \sin \Psi) & \rho < \omega \\ \delta(\Psi - \arcsin(\omega/\rho)) & \rho \ge \omega \end{cases}$$

→ over the distribution of the units

$$P_{\rm st}(\phi; \Psi, \rho, \omega) = Z^{-1} e^{-2V(\phi)/D} \int_0^{2\pi} d\phi' \, e^{2V(\phi' + \phi)/D}$$

where...
$$V(\phi; \Psi, \rho, \omega) = -\omega\phi - \cos(\phi) - C\rho\cos(\Psi - \phi)$$

Computation of order parameters

In this approximation the Shinomoto-Kuramoto order parameter can be directly computed...

$$\zeta = \frac{2}{\pi} \sqrt{2(\omega - \sqrt{\omega^2 - \rho^2})(\omega + \rho)} K\left(\frac{2\rho}{\rho - \omega}\right)$$

And also the current...

$$J = \frac{\omega^2 - \rho^2}{T} \int_0^T \frac{dt}{\omega - \rho \cos \Omega t} = \sqrt{\omega^2 - \rho^2}.$$

where
$$\Omega = \sqrt{(\omega/\rho)^2 - 1}$$

Comparison with numerical results

Conclusions

- We have studied the effect that noise, coupling and diversity have in the emergence of collective oscillations in a set of globally coupled active rotators
- In this system appear three different dynamical regimes: fluctuations around the fixed point, coherent pulsations and incoherent pulsations
- We developed a simple, yet insightful, theory that shows these regimes and allows to compute theoretically the relevant order parameters
- It has been demonstrated that increasing the disorder in the position of the units has the counterintuitive effect of generating coherent pulsations
- This disorder in positions can be produced by increasing noise, or diversity in natural frequencies, or decreasing the coupling strength

http://www.imedea.uib.es/~tessonec