Sánchez, Alejandro D.; López, Juan M.; Rodríguez, Miguel A.; Matías, Manuel A.
Physical Review Letters 92, 204101 (1-4) (2004)
We study the dynamics of perturbations in time delayed dynamical systems. Using a suitable space-time coordinate transformation, we find that the time evolution of the linearized perturbations (Lyapunov vector) can be mapped to the linear Zhang surface growth model [Y.-C. Zhang, J. Phys. France 51, 5129 (1990)], which is known to describe surface roughening driven by power-law distributed noise. As a consequence, Lyapunov vector dynamics is dominated by rare random events that lead to non-Gaussian fluctuations and multiscaling properties.
DOI | 10.1103/PhysRevLett.92.204101 |
---|---|
ArXiv Number | cond-mat/0307057 |
Files | PRL04101.pdf (146809 Bytes) 0307057.pdf (189118 Bytes) |
Search in the IFISC Database our seminars & presentations