IFISCPublication details

Publications

Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots

Sierra, M. A.; Sánchez, D.
Physical Review B 90, 115313 (1-6) (2014)

We investigate the nonlinear regime of charge and energy transport through Coulomb-blockaded quantum dots. We discuss crossed effects that arise when electrons move in response to thermal gradients (Seebeck effect) or energy flows in reaction to voltage differences (Peltier effect). We find that the differential thermoelectric conductance shows a characteristic Coulomb butterfly structure due to charging effects. Importantly, we show that experimentally observed thermovoltage zeros are caused by the activation of Coulomb resonances at large thermal shifts. Furthermore, the power dissipation asymmetry between the two attached electrodes can be manipulated with the applied voltage, which has implications for the efficient design of nanoscale coolers.

DOI 10.1103/PhysRevB.90.115313 
ArXiv Number 1408.0181 
Files PhysRevB.90.115313.pdf (1519684 Bytes)
Back to the list of publications

Talks & Presentations

Search in the IFISC Database our seminars & presentations

Change Language

Search

Intranet

Bottom Page

Spanish National Research Council Universitat de les Illes Balears