IFISCPublication details

Publications

Universal functions and exactly solvable chaotic systems

García-Nustes, M.A.; Hernández-García, E.; González, J.A.
Sao Paulo Journal of Mathematical Sciences 2, 203-221 (2008)

A universal differential equation is a nontrivial differential equation the solutions of which approximate to arbitrary accuracy any continuous function on any interval of the real line. On the other hand, there has been much interest in exactly solvable chaotic maps. An important problem is to generalize these results to continuous systems. Theoretical analysis would allow us to prove theorems about these systems and predict new phenomena. In the present paper we discuss the concept of universal functions and their relevance to the theory of universal differential equations. We present a connection between universal functions and solutions to chaotic systems. We will show the statistical independence between X(t) and X(t + tau) (when tau is not equal to zero) and X(t) is a solution to some chaotic systems. We will construct universal functions that behave as delta-correlated noise. We will construct universal dynamical systems with truly noisy solutions. We will discuss physically realizable dynamical systems with universal-like properties.

Proceedings 1st Meeting IST-IME

Journal ISSN: 1982-6907

ArXiv Number 0811.1179 
Files UnivEqsSaoPaulo.pdf (2471042 Bytes)
Back to the list of publications

Talks & Presentations

Search in the IFISC Database our seminars & presentations

Change Language

Search

Intranet

Bottom Page

Spanish National Research Council Universitat de les Illes Balears