IFISCPublication details

Publications

Electrocardiogram Classification using Reservoir Computing with Logistic Regression

Escalona-Moran, M. A.; Soriano, M. C.; Fischer, I.; Mirasso, C. R.
IEEE Journal of Biomedical and Health Informatics 19, 892-898 (2015)

An adapted state-of-the-art method of processing information known as Reservoir Computing is used to show its utility on the open and time-consuming problem of heartbeat classification. The MIT-BIH arrhythmia database is used following the guidelines of the Association for the Advancement of Medical Instrumentation. Our approach requires a computationally inexpensive preprocessing of the electrocardiographic signal leading to a fast algorithm and approaching a real-time classification solution. Our multiclass classification results indicate an average specificity of 97.75% with an average accuracy of 98.43%. Sensitivity and positive predicted value show an average of 84.83% and 88.75%, respectively, what makes our approach significant for its use in a clinical context.

DOI 10.1109/JBHI.2014.2332001 
Files ESCALONA_accepted_v1.pdf (532934 Bytes)
Back to the list of publications

Talks & Presentations

Search in the IFISC Database our seminars & presentations

Change Language

Search

Intranet

Bottom Page

Spanish National Research Council Universitat de les Illes Balears