IFISCPublication details

Publicacions

Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs

Parra-Rivas, P.; Gomila, D.; Matias, M.A.; Coen, S.; Gelens, L.
Physical Review A 89, 043813 (1-12) (2014)

It has been recently uncovered that coherent structures in microresonators such as cavity solitons and patterns are intimately related to Kerr frequency combs. In this work, we present a general analysis of the regions of existence and stability of cavity solitons and patterns in the Lugiato-Lefever equation, a mean-field model that finds applications in many different nonlinear optical cavities. We demonstrate that the rich dynamics and coexistence of multiple solutions in the Lugiato-Lefever equation are of key importance to understanding frequency comb generation. A detailed map of how and where to target stable Kerr frequency combs in the parameter space defined by the frequency detuning and the pump power is provided. Moreover, the work presented also includes the organization of various dynamical regimes in terms of bifurcation points of higher co-dimension in regions of parameter space that were previously unexplored in the Lugiato-Lefever equation. We discuss different dynamical instabilities such as oscillations and chaotic regimes.

DOI 10.1103/PhysRevA.89.043813 
Identificador ArXiv 1401.6059 
Fitxers PhysRevA.89.043813.pdf (2182271 Bytes)
1401.6059v1.pdf (5691313 Bytes)
Tornar a la llista de publicacions

Xerrades i Presentacions

Cercar a les bases de dades IFISC els seminaris i les presentacions

Canviar Idioma

Cerca

Intranet

Peu de pàgina

Consell Superior d'Investigacions Científiques Universitat de les Illes Balears