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We introduce a scheme that integrates a digital key in a phase-chaos electro-optical delay system
for optical chaos communications. A pseudo-random binary sequence (PRBS) is mixed within the
chaotic dynamics in a way that a mutual concealment is performed, e.g. the time delay is hidden by
the binary sequence, and the PRBS is also masked by the chaos. Besides bridging the gap between
algorithmic symmetric key cryptography and chaos-based analog encoding, the proposed approach is
intended to benefit from the complex algebra mixing between a (pseudo-random) boolean variable,
and another continuous time (chaotic) variable. The scheme also provides a large flexibility allowing
for easy reconfigurations to communicate securely at high bit rate between different systems.

PACS numbers:

Since the emergence of experimental chaos encryption
dating back to the seminal work of Cuomo et al. in the
earlier 90’s [1], proofs of principles have been extensively
reported ranging from electronic, optical [2] to opto-
electronic [3] systems. These last years, field demon-
strations have been conducted over installed optical fiber
network, involving high bit rate message, and using stan-
dard telecommunications components [4, 5]. Typically,
the chaos is generated using analog systems subject to ei-
ther optical or electro-optical delayed feedback. In chaos
encryption there is no rigorous counterpart to the digi-
tal key of algorithmic cryptography. Confidentiality re-
lies essentially on the hardware parameters that should
be kept secret. Unfortunately, the time delay in itself,
though being a very sensitive key parameter for a proper
decoding, has been found to be vulnerable since it can be
identified from the chaotic time series using methods such
as autocorrelation function, delayed mutual information
(DMI), extrema statistics and filling factor [6] even in
systems with multiple delays [7]. Out of those, autocor-
relation and DMI are robust to noise perturbations and
therefore are suitable to crack the time delay. Still worse,
under the assumption of noise-free or even of small noise,
it has been shown that the underlying chaotic dynam-
ics of some systems can be reconstructed, once the time
delay is identified, using appropriate techniques such as
artificial neural networks [8]. Another limit of hardware
cryptography relies on the fact that its parameter space
dimension (a sort of equivalent to the digital key size) is
relatively low compared to algorithmic cryptography.

To circumvent these drawbacks, we propose in this Let-
ter to implement a currently suggested principle in al-
gorithmic cryptography, which consists in mixing differ-
ent algebra when constructing the encryption algorithm
[9]. The idea is to combine a pseudo-random binary se-
quence (PRBS) typically used in symmetric key encryp-
tion, together with an analog physical chaos, in order

to provide an enhanced cryptographic security through
the reciprocal concealment between the boolean pseudo-
random sequence and the high dimensional continuous
time chaotic motion. At this point we notice that while
public-key encryption schemes have won popularity, they
have drawbacks such as limited speed and non-absolute
security. Thus symmetric-key algorithms are still actively
pursued, including new stream cyphers [10] and crypto-
graphic hash functions [11]. Besides, hybrid algorithms
such as PGP (Pretty Good Privacy) combine public key
encryption to define a private key used for fast symmetric
encryption [12].

In general chaotic communications mix the digital mes-
sage and the chaotic carrier, however this mixing is quite
weak and the statistical properties of the message cannot
be controlled beforehand, thus the masking of the chaotic
carrier statistical properties is quite limited. Through
the introduction of an amplitude-balanced entropy mix-
ing between a PRBS and a chaotic generation process,
we perform an efficient entropy amplification for the re-
sulting carrier even in absence of any message. As a con-
sequence, this approach proposes a solution both for the
problem of the introduction of an efficient digital key in
chaos communications, as well as for the problem of time
delay concealment. There have been indeed recently a
few attempts to address separately these issues. In semi-
conductor lasers with optical feedback, the optical feed-
back phase plays an important role in the synchronization
[13] thus a digital key implemented by modulating that
phase was suggested [14]. In the same context, it has
been also suggested [15] that time delay can be masked
if chosen to be close to the laser relaxation time, however
chaos complexity is weak in that regime. Systems with
time delay modulation [16] proposed as alternatives to
get around the time-delay extraction, are however very
difficult to implement practically.

Here we propose a configuration based on a double
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electro-optic delayed feedback dynamics. The scheme al-
lows on one hand to integrate a digital key required for
successful decryption which can be implemented as a long
PRBS generated by an appropriate algorithm or as a rel-
atively short sequence generated from a natural random
process used repetitively. On the other hand, under con-
ditions described later, the digital key conceals the delay
time so that it cannot be identified using known meth-
ods. Besides the scheme, our proposal is based physically
on high speed phase chaos [17] which has been recently
successfully tested in a chaos communication field exper-
iment up to 10 Gb/s [5]. Though the proposed system is
inspired by the principles reported in [5], structural archi-
tecture modifications have been necessary in order to en-
sure the efficient achievement of our initial goal: security
enhancement of chaos communication through the use of
a digital key. The proposed setup is illustrated in Fig. 1.
Both emitter and receiver are consisting of two similar
nonlinear delayed differential processing chains, serially
connected. The sub-indices i = 1, 2 refer a given chain.
Each chain has an electro-optic phase modulator (PM)
with a half-wave voltage Vπ seeded by a continuous-wave
(CW) telecom semiconductor laser (SL), which is phase
modulated by an external signal (whether the PRBS, R,
or the message m). The electrical input of the PM of a
chain, is driven by the electrical output of the other chain.
The PM optical output of one chain thus consists of two
superimposed phase modulations, the PRBS or the mes-
sage, and the nonlinear delayed differential processing
performed by the other chain. The phase modulated light
beam is then processed according to the delayed nonlin-
ear dynamics of its chain. The time delay Ti is performed
by a length of fiber. The nonlinear transformation is per-
formed non locally in time [17], between the input phase
and the output intensity of a Mach-Zehnder interferome-
ter (MZI) with imbalancing δTi which is longer than the
typical time scale of the phase modulation. The inten-
sity fluctuations are detected by an amplified broadband
telecom photodiode (PD). The output electrical signal is
further amplified by an RF driver, which gives the out-
put of the processing chain serving as the electrical input
for the other chain. The transmitted light beam is the

FIG. 1: (Color on line) Setup (see text).

FIG. 2: (Color on line) C(s) (a) and DMI (b) without PRBS
(grey, red on line), and with a 3 Gb/s PRBS of amplitude π/2
(black). A 10 µs time series with 107 data points was used.

output of PM2, which contains the linearly superimposed
message in DPSK (differential phase shift keying) format.

The dynamical modeling can be described as follows.
The electronic bandwidth of the loop is assumed to result
from two cascaded linear first-order low-pass and high-
pass filters. Considering the filter output voltages V1(t)
and V2(t) and proceeding as in [17, 18], the emitter dy-
namics can be described by the dimensionless variables
x1(t) = πV1(t)/(2Vπ,1) and y2(t) = πV2(t)/(2Vπ,2):

x1 + τ1
dx1

dt
+

1
θ1

u1 = β1 cos2 [∆(y2 + R)T1 + φ1] , (1)

y2 + τ2
dy2

dt
+

1
θ2

u2 = β2 cos2 [∆(x1 + m)T2 + φ2] , (2)

where du1/dt = x1, du2/dt = y2 and ∆(F )t0 = F (t−t0)−
F (t−t0−δt0). The key physical parameters are arbitrary
chosen, within the range of experimentally accessible val-
ues [17], as follows: the feedback strengths β1 = β2 = 5,
the delay times T1 = 15 ns and T2 = 17 ns, the fast
(slow) filter characteristic response times τ1 = 20 ps
(θ1 = 1.6 µs) and τ2 = 12.2 ps (θ2 = 1.6 µs), the MZI
imbalanced delays δT1 = 510 ps and δT2 = 400 ps, and
the MZI static phases φ1 = π/4 and φ2 = π/8.

We first consider that no message is transmitted
(m(t) = 0) to show the role of the PRBS in the sta-
tistical properties of the carrier x1(t). As stated before,
the most robust methods to extract the time delay are
the autocorrelation C(s) and the DMI between the value
of the variable and its time-lagged version [6]. We focus
on these two methods since extrema statistics and filling
factor methods are so sensitive to noise that even just
a 1% noise added to the carrier prevent them to work
properly. Figure 2 displays C(s) and the DMI computed
from the transmitted phase proportional to x1(t), with-
out PRBS (grey line, red on line) and with a PRBS of
amplitude π/2 at 3 Gb/s (black line). In the first case
both functions show peaks at T = T1 + T2, T + δT1,
T + δT2 and T + δT1 + δT2, so that all relevant time de-
lays can be readily identified. The delay time signature
vanishes completely when the PRBS is included.

Figures 3 a) and b) show the size of peaks found in
C(s) and DMI at the relevant delay times as a function
of the PRBS bit rate considering an amplitude of π/2.
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FIG. 3: (Color on line) Absolute value of the peaks in C(s)
(a,c), and DMI (b,d), at T (•), T + δT2 (¤), T + δT1 (+) and
T + δT1 + δT2 (H). In a) and b) the PRBS amplitude is π/2
while in c) and d) the PRBS bit rate is 3Gb/s. Solid line and
bars correspond to the background mean value and standard
deviation [19]. A series of length 267 times T was used.

The peaks are clearly distinguishable for zero bit rate
(no PRBS). Increasing the bit rate, the peak size de-
creases. For low bit rates R(t) and R(t − δT1) take the
same value most of the time, so ∆(R)T1 usually vanishes
and the effect is small (see the concept of temporal non
locality as introduced in [17]). Therefore the peaks both
in the DMI and in C(s) can still be distinguished from
the background standard deviation, shown with bars in
the figure [19]. When the bit rate reaches a value corre-
sponding to the inverse of δT1 (∼ 1.97 Gb/s), ∆(R)T1 is
typically non zero, and the PRBS plays a key role in the
dynamics, concealing the time delay peaks. The size of
the peaks as function of the PRBS modulation amplitude
[Figs. 3 c) and d)] is a π-periodic function associated to
the periodicity of cos2 in Eq. (1). A PRBS of amplitude
π has no effect since ∆(R)T1 only takes values 0 or π
and both are equivalent in the cos2 term. Efficient con-
cealment occurs for amplitudes between π/3 and 2π/3
approximately. This range increases increasing β.

Remarkably enough, while the PRBS conceals the de-
lay time in the chaotic carrier x1(t), the cross-correlation
between x1(t) and R(t) is of the order of 10−3, meaning
that the digital key itself is also concealed in the chaotic
carrier. This is explained by the fact that the interplay
between balanced amplitudes of the chaos and a PRBS
is optimizing the mutual nonlinear mixing, resulting in
an efficient mutual masking of each signal by the other.

At the receiver side, decoding is performed as follows.
The input phase-modulated beam is split into two paths.
The long path replicates the two serial processing chains
used for the encoding at the emitter, in which a synchro-
nized PRBS is involved, thanks to the knowledge of the
digital secret key. The analog secret key consists in the

hardware parameters determining the devices and their
exact operating conditions. The output of the two pro-
cessing chains, after being inverted, serves as the electri-
cal input of PM′

2, which is intended to cancel the carrier.
The dynamics at the receiver is given by:

z1 + τ ′
1

dz1

dt
+

1
θ′1

v1 = β′
1 cos2

[
∆(w2 + R′)T ′

1
+ φ′

1

]
, (3)

w2 + τ ′
2

dw2

dt
+

1
θ′2

v2 = β′
2 cos2

[
∆(x1 + m)T ′

2
+ φ′

2

]
, (4)

where dv1/dt = z1, dv2/dt = w2, and primes refer to the
receiver parameters. The output of PM′

2 is then expected
to be the phase modulation issued by the message only.
It can be demodulated using a standard DPSK demodu-
lator, consisting in an MZI with an imbalance delay time
δTm and a photodetector. The detected power is

P (t) ∝ cos2 [∆(x1 + m)δTm − ∆(z1)δTm ] . (5)

where in this specific case ∆(F )δTm
= F (t)−F (t−δTm).

The decoded message m′(t) is obtained from P (t). For
perfect synchronization, z1(t) is equal to x1(t), and m′(t)
reproduces m(t). While hardware mismatch is unavoid-
able in practice, several field experiments [4, 5] have
demonstrated that the resulting synchronization error is
still acceptable. Moreover, the electro-optic phase dy-
namics we consider as our basis has led to the best ex-
perimental chaos synchronization quality reported so far
over more than 10GHz bandwidth. The correct decod-
ing, however, depends strongly on the matching of all
the parameters, in the same way as it was already in-
vestigated in the literature [20]. The sensitivity of the
decoding with respect to physical parameter mismatch is
thus not revisited here. To check that the precise knowl-
edge of the PRBS indeed brings significant additional
security we consider in the following that the receiver pa-
rameters are identical to the transmitter. The differences
δ1(t) = z1(t) − x1(t) and δ2(t) = w2(t) − y2(t) follow:

δ1 + τ1
dδ1

dt
+

1
θ1

ε1 = −β1 sin
[
∆(δ2)T1

+ ∆(R′ − R)T1

]
× sin

[
2∆(y2)T1 + ∆(δ2)T1

+ ∆(R′ + R)T1 + 2φ1

]
(6)

δ2 + τ2
dδ2

dt
+

1
θ2

ε2 = 0 (7)

where dε1/dt = δ1 and dε2/dt = δ2. From Eq. (7) it turns
out that δ2 decays to zero after a time of order θ2. For
R′

T1
= RT1 , once δ2 decayed to zero, the RHS of Eq. (6)

vanishes so that δ1 also decays to zero after a time of
order θ1. Therefore the receiver synchronizes perfectly to
the emitter after a transient of order θ1 + θ2. However,
for a mismatched PRBS the RHS of Eq. (6) does not
vanish and therefore δ1 is finite, resulting in a degraded
synchronization. Actually, for identical parameters, δ2

decays to zero despite any eventual PRBS mismatch, thus
the internal variable does synchronize. Synchronization
degradation takes place on the transmitted variable.
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FIG. 4: Influence of PRBS-mismatch on σ (a) and on BER
for a 10 Gb/s message (b). We use PRBSs of amplitude π/2
and length 215 (•) and 29 (∇) bits generated at 3 Gb/s.

Figure 4(a) displays the root-mean square synchroniza-
tion error σ =

√
〈δ1(t)2〉 / 〈x1(t)2〉 as a function of the

percentage of wrong bits η in the receiver PRBS, where
〈〉 stands for time average. σ grows fast from zero when
the PRBSs differ. Even for a 1% difference in the PRBS
key σ is close to 25% indicating a very poor synchroniza-
tion. When synchronization is degraded, z1(t) does not
replicate x1(t), and the quality of the recovered message
decreases. The most relevant way to characterize this is
by measuring the Bit Error Rate (BER) of the recovered
message (Fig. 4(b)). The BER increases linearly with η.
For a pseudorandom message of amplitude π/2 (≈ 30% of
the carrier amplitude) transmitted at 10Gb/s a 1% mis-
match in the PRBS leads to a BER of 0.01. Results are
similar for keys of different length as shown in Fig. 4(b).

In conclusion we have shown that a digital key can be
integrated with a chaos-based communication system in a
way that it conceals the delay time and it is necessary for
decoding. Besides bridging the gap between symmetric-
key algorithmic cryptography and chaos-based encoding,
the concealment of the time delay is particularly relevant
to prevent from eventual eavesdropper attacks. In our
phase-chaos electro-optical delay system the chaotic dy-
namics does not reveal the digital key so it is possible to
use it in a repetitive way while concealing it. The inter-
ference generated by the two similar time delays present
in our system plays a critical role in the mutual conceal-
ment. We have found that in a similar electro-optical set-
up for intensity chaos generation with a single delay time
no concealment takes place. In our system, the effective
key-space of the encryption can be defined as the product
of the analog key size and the digital one. From another
viewpoint, the mixing of a digital source of entropy, and
an analogue one, can be viewed as an entropy amplifi-
cation procedure, which is strongly relevant in terms of
cryptographic security. Furthermore, the setup can be
easily modified or reconfigured, both from the digital or
analogue source of entropy.

On a broad perspective, as for PGP, chaotic symmet-
ric encryption schemes as proposed here may be typi-
cally dedicated to high speed secure data transmission.
Asymmetric encryption (based on algorithmic cryptog-
raphy, mutually coupled optical chaos [21] or quantum
key distribution [22]) could bring the complementary so-

lution for efficient and secure (perhaps slower) secret key
exchange.
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