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Resumen

Una de las cualidades más notables de la Física es su capacidad para estudiar la Natu-

raleza en un enorme rango de dimensiones y energías, que se amplía constantemente a

medida que se acumulan conocimientos y progresa la tecnología. Sin embargo, todas las

teorías físicas ideadas hasta el momento tienen un alcance limitado, perdiendo su sentido

o todopoder predictivomás allá de determinados límites, en algunos casosmuy estrechos

en comparación con el vasto dominio de lo observable. En consecuencia, la aplicabilidad

de las distintas teorías físicas establece dominios parciales de escala, con solapamientos

más omenos amplios denominados fronteras que constituyen ámbitos particularmente in-

teresantes para el estudio científico. Es decir, el avance científico y técnico no sólo permite

ampliar los extremos del rango total de dimensiones y velocidades accesibles a nuestro

afán de comprensión, sino que también conlleva el estudio de nuevos fenómenos físicos

en las fronteras entre distintos dominios típicos definidos por teorías bien establecidas.

Salvo en excepcionales casos paradigmáticos, la “nueva física” que surgede los estudios

en fronteras se ajusta a las teorías propias de los correspondientes dominios en contacto.

Sin embargo, como es comprensible, lo más frecuente es que tales teorías se desarrollaran

inicialmente para modelar sistemas bajo condiciones bastante alejadas de las que se dan

en la frontera. Es precisamente el cambio de escala en las dimensiones y velocidades

características del sistema lo que puede permitir la observación de nuevos fenómenos, al

cambiar con ellas la jerarquía de las interacciones relevantes. Por otra parte, es frecuente

que los estudios en la frontera requieran, más allá de las leyes fundamentales que resulten

aplicables, el desarrollo denuevas técnicas y aproximacionespara la obtencióndemodelos

específicos con una adecuada capacidad predictiva. Este tipo demodelos para fenómenos

propios de una frontera entre distintos dominios o escalas recibe la denominación genérica

de modelos de mesoescala.

Una de las fronteras que ha recibido gran atención en las últimas décadas en el ámbito

de la Física de la Materia Condensada ha sido la de los sistemas mesoscópicos. El adjeti-

vo hace referencia a la frontera entre los sistemas microscópicos, compuestos típicamente

por una pequeña cantidad de átomos, y los sistemas macroscópicos, constituidos por una
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gran cantidad. Se trata por tanto de la frontera entre los que habitualmente se consideran

dominios típicos de la Mecánica Cuántica y de la Mecánica Clásica, con dimensiones ca-

racterísticas comprendidas aproximadamente entre 10 nm y 1 mm. Los estudios en esta

frontera han experimentado un crecimiento que puede calificarse como vertiginoso gra-

cias a uno de sus principales atractivos: ofrecer un enorme potencial de desarrollo de

nuevas tecnologías de alto impacto. Esta expectativa ha propiciado una gran inversión

de recursos para la investigación básica y aplicada de sistemas mesoscópicos, especial-

mente en la escala más pequeña (típicamente nanométrica) bajo las etiquetas genéricas

de nanociencia y nanotecnología. El impacto económico y social de las tecnologías que ya se

han beneficiado de tales estudios, como la microelectrónica, es evidente y considerable. El

de futuras tecnologías como las máquinas nanométricas, la medicina a nivel celular o en

general la síntesis de materiales modelados a escala molecular puede resultar, previsible-

mente, mucho más profundo. Sin embargo, el aspecto tecnológico no es el único atractivo

de los sistemas mesoscópicos: tanto el hecho de ser un campo de estudio relativamente

joven, con escasas áreas verdaderamente maduras, como los grandes y novedosos retos

científicos que plantea hacen de esta frontera una de las más interesantes desde un punto

de vista puramente intelectual y académico.

El desarrollo de modelos mesoscópicos presenta una serie de complicaciones muy es-

pecíficas, dada la especial naturaleza de esta frontera, que obliga a usar estrategias y

aproximaciones muy diversas dependiendo del tipo de sistema y de las propiedades que

se pretendan modelar. En cualquier caso el objetivo principal es obtener una representa-

ciónmás omenos abstracta que recoja lo esencial de las propiedades y el comportamiento

del sistema, evitando en la medida de lo posible tratar directamente los detalles micros-

cópicos ya que, salvo en los sistemasmás pequeños, éstos tienden a convertir los modelos

en problemas demasiado complejos e intratables. Entre las principales estrategias se en-

cuentran la aplicación de los métodos de la Mecánica Estadística y las aproximaciones

estocásticas, la determinación de interacciones mesoscópicas efectivas generalizadas a

partir de las interacciones microscópicas estudiadas en sistemas más simples a pequeña

escala o, como estrategia particularmente atractiva, la búsqueda de propiedades universa-

les, que son aquellas esencialmente independientes de los detalles microscópicos y que

idealmente pueden presentarse en diferentes escalas. Como ejemplo paradigmático de

propiedades universales cabe destacar la formación de patrones o morfologías caracte-

rísticas en multitud de sistemas físicos, tanto en condiciones de equilibrio como lejos del

equilibrio, cuyas propiedades se ajustan a la geometría fractal o poseen relaciones de
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escala bien definidas.

El objeto central de esta tesis es el estudio teórico de morfologías características y

propiedades universales de dos sistemas mesoscópicos distintos mediante el desarrollo

de modelos computacionales sencillos de tipo atomístico y su aplicación a la realización

intensiva de simulaciones.

En primer lugar se estudian las morfologías surgidas de procesos de crecimiento fuera

del equilibrio de materiales en lámina delgada, sintetizados a partir de técnicas de depo-

sición de vapor, en el contexto de los modelos cualitativos que clasifican las distintas

morfologías mesoscópicas de estos materiales, en buena medida independientes de sus

propiedades microscópicas, llamados Modelos de Zonas de Estructura. El estudio se ha

realizado mediante el desarrollo de un modelo estocástico que incorpora por primera

vez la definición de distintas simetrías de enlace a los mecanismos fundamentales del

proceso de crecimiento, permitiendo determinar los efectos de la limitación del número

de coordinación máximo en las morfologías resultantes y la simulación de la imposición

de determinadas simetrías por parte de la microestructura del sustrato. Los materiales

en lámina delgada constituyen uno de los sistemas con propiedades mesoscópicas de

gran interés tecnológico estudiados durante más tiempo y con mayor intensidad, con

numerosas aplicaciones en múltiples campos de la ingeniería de materiales.

Por otra parte se caracterizan por primera vez las morfologías de equilibrio propias

de un sistema mesoscópico apenas estudiado hasta el momento: los llamados filamentos

magnéticos. Éstos consisten en ensamblajes supramoleculares formados por cadenas uni-

dimensionales de partículas nanométricas con un momento magnético neto permanente,

unidas mediante un enlace semiflexible formado por macromoléculas. Este novedoso ti-

po de sistemas posee un gran potencial inexplorado de aplicaciones nanotecnológicas

en campos como la biofísica o la microfluídica, ya que su dinámica y sus conformacio-

nes pueden ser controladas mediante campos magnéticos externos, presumiblemente con

gran precisión, sin que éstos afecten directamente a cualquier otra sustancia nomagnética

presente en el sistema. En concreto, se ha definido un modelo de simulación sencillo con

el que se han estudiado, mediante simulaciones de dinámica molecular, las morfologías

de equilibrio y la criticalidad que presentaría un filamentomagnético en las proximidades

de una superficie plana adsorbente.
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Abstract

One of the most striking features of Physics studying the behavior of Nature is that it

covers an impressively wide range of sizes and energy scales. These ranges are contin-

uously expanding as new knowledge is acquired and new technologies are developed.

However, all the physical theories devised so far have a limited coverage, losing all its

meaning or predictive power beyond certain limits which are in some cases quite narrow

in front of the vast realm of the known and observable phenomena. The applicability

of the different physical theories establishes partial scale domains which may overlap to

different extents. The overlap regions between domains, called frontiers, are particularly

interesting areas for scientific study. Therefore, the scientific and technical progress not

only broadens the full range of lengths and speeds of physical phenomena under study,

but also involves research of new physical phenomena at the frontiers between different

domains defined by well-established theories.

Except for uncommon paradigmatic cases, the “new physics” arising from a frontier

research can be described by the models which apply to the eventually overlapping

domains. However, by definition physical theories are originally developed to model

systems under conditions far from those found at the frontiers. In fact, the change in

lengths and speed scales is the leading factor in the emergence of new phenomena in the

frontiers, since a change in the scales may lead to a change in the hierarchy of relevant

physical interactions. Moreover, frontier research frequently requires the development

of new techniques and approaches in order to obtain specific models with a reasonable

predictive power. Specific models for phenomena found at the frontier of different scale

domains are generically called mesoscale models.

One of the frontiers which has attracted a wide interest in the last decades within the

field of Condensed Matter Physics has been that of the mesoscopic systems. The adjective

mesoscopic refers to the boundary between microscopic systems, typically composed by

a small number of atoms, and macroscopic systems, consisting of a large amount. There-

fore, it is the frontier between the typical domains of Quantum Mechanics and Classical

Mechanics, with characteristic dimensions ranging from approximately 10 nm to 1 mm.
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Studies in this frontier have experienced a considerable growth thanks to one of its most

attractive features: it is a field with a great potential for development of new technolo-

gies with a presumably high impact. This expectation has led to a significant investment

of resources in basic and applied research on mesoscopic systems, especially at the nano-

metric scale under the generic labels of nanoscience and nanotechnology. The economic and

social impact of the first technologies which have benefited from such studies, such as

microelectronics, is obvious and considerable. Potential future applications such as dif-

ferent types of engineered nano-machines, medicine at the cellular level or, in general,

the synthesis of materials modeled at the molecular scale might produce a much deeper

impact. However, the technological aspect is not the only appeal of mesoscopic systems:

the fact of being a relatively new and unexplored field, with few mature studies, and the

scientific challenges imposed by the specific characteristics of this frontier makes it one of

themost interesting research fields from a purely intellectual and academic point of view.

The development ofmesoscopicmodels presents specific challengeswhich require very

different strategies and approaches depending on the considered system and the particu-

lar properties to be modeled. In practice, the main objective of any approach is to obtain

a more or less abstract model able to reproduce the main properties of the system by

avoiding, as far as possible, to address directly the microscopic details which tend to con-

vert the models in too complex and intractable problems. The leading strategies include

the application of Statistical Mechanics methods and different stochastic approaches, the

determination of generalized effective mesoscopic interactions from microscopic inter-

actions studied at smaller scales and, as a particularly attractive strategy, the search for

universal properties in the system. Universal properties are defined as essentially indepen-

dent of themicroscopic details and observedpersistently at different scales. For instance, a

paradigmatic example of universal properties is the formation of patterns or morphologi-

cal characteristics inmany physical systems, either at equilibrium or far from equilibrium,

whose properties are consistent with the fractal geometry or have well-defined scaling

relations.

The main purpose of this thesis is the theoretical study of morphological characteris-

tics and universal properties of two different mesoscopic systems by developing simple

discrete computational models and performing extensive numerical simulations.

The first result to be presented is a study of the mesoscopic structures of thin solid

films synthetized from non-equilibrium growth processes of physical vapor deposition.

The study has been performed within the context of the qualitative models, known as
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Structure Zone models, which classify the different mesoscopic morphologies of these

materials. Structure Zone models are coarse classifications based on the phenomenolog-

ical universality of these morphologies, which are found to be largely independent of

the microscopic details. A minimal stochastic computational model has been developed

for this study using a discrete —or atomistic— approach. This model, for the first time

incorporates to the fundamental growth mechanisms usually found in this type of com-

putational representations, well defined bonding symmetries for the deposited species in

order to determine the effect of a limited maximum coordination on the resulting mor-

phologies, as well as to reproduce the imposition of specific bonding symmetries by the

substrate microstructure. Thin solid films are one of the systems with relevant meso-

scopic properties studied for a longer time and with a greater intensity, as corresponds to

a mature technology with a wide range of applications in many fields of materials engi-

neering. However, until recent years these studies have been mainly biased toward the

properties of metallic and semiconductor materials. The increasing interest for novel ap-

plications of thin films grown from very different material types has led to newmodeling

challenges to address.

The second part of the thesis is devoted to the first theoretical characterization of the

equilibrium morphologies of a novel mesoscopic system barely studied: the so-called

magnetic filaments. These are supramolecular assemblies consisting of one-dimensional

chains of nanometric particleswith a permanentmagneticmoment, linked by semiflexible

bonds of macromolecules. This new type of system has a great prospective potential for

nanotechnology applications in fields such as biophysics and microfluidics, since its

dynamics and conformations can be controlled by external magnetic fields, presumably

with high accuracy, without directly affecting any other non-magnetic substance in the

system. In particular, the equilibrium morphologies and the critical behavior of a single

filament near an adsorbent flat surface havebeen studiedby extensiveLangevinmolecular

dynamics simulations with a novel minimal model.
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1 Physics at the mesoscale

An obliged starting reference in every talk or modern textbook devoted to nanoscience

or nanotechnology is the dissertation that Richard Feynman gave at the California In-

stitute of Technology on December 29th 1959, entitled “There is plenty of room at the

bottom” [1]. In his talk, Feynman postulated the possibility of a more powerful technol-

ogy for materials synthesis which could be achieved by a progressive development of

techniques and control processes at increasingly smaller scales, down to the observation

and manipulation of individual atoms and molecules. The manipulation at the atomic

scale would open a wide range of new applications, including the assembly of custom

microscopic machines which would work analogously to biosynthetic systems, such as

ribosomes, for the synthesis of new materials and compounds. In particular, this tech-

nology would allow the development of medicine at the cellular or molecular scale by

means of surgical and biosynthetic artificial micromachines.

Feynman’s ideas were too advanced for his time and had a very limited diffusion,

remaining generally ignored for the next two decades. However, the validity of his

foresights began to be confirmedduring those years, when the necessary key technologies

were developed independently. In 1974, the still prospective processing andmanipulation

of individual atoms and molecules received for the first time the attractive name of

nanotechnology [2]. The new technology became a reality and attracted a fast-growing

interest after the invention of the scanning tunneling microscope (STM) in 1981 and the

subsequent expansion of research on the properties of atomic clusters as a basis for the

understanding of collective phenomena in bulk materials. In the early 1990s Feynman’s

dissertationwas rediscovered and hewas recognized, probably supported to some extent

by his great prestige, as the intellectual forerunner of nanotechnology and its associated

theoretical research field, generically called nanoscience.

The main Feynman’s foresights were the proposed research methodology, which cur-

rently is known as the top-down approach, and the raise of the main challenge which any

approach for studying micrometric and nanometric systems must address: as the scale

of interest is reduced, the system properties may exhibit a significant variation as a con-
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1 Physics at the mesoscale

sequence of a change in the hierarchy of the relevant physical interactions. At submicro-

metric scales, some of the physical mechanisms which drive the behavior of macroscopic

systems are replaced by otherswhich usually are negligible within themacroscopic scope.

Therefore, the knowledge of the general and particular leading physical mechanisms and

dynamics at submicrometric scales is essential for the accurate modeling of such systems.

A distinctively noteworthy case of submicrometric systems are those with an interme-

diate, non-microscopic size, knownasmesoscopic systems. Themesoscopic scale represents

the frontier between the domains of Quantum and Classical Mechanics and leads to char-

acteristic physical properties which require specific modeling approaches.

The next sections introduce a brief review on the physical properties observed generally

in mesoscopic systems, as well as the basic theoretical concepts and the computer simu-

lation methods used for the study of the mesoscopic morphological transitions presented

in subsequent chapters.

1.1 New physics from a distinct hierarchy

The range of length scales characteristic of mesoscopic systems is quite wide: between

10 nm and 1 mm according to the widest definition or between 100 nm and 1 µm for

the most restrictive one. The latter definition excludes the smallest systems, which are

mainly dominated by quantum effects, and the largest systems, which essentialy show

macroscopic properties. The leading physical properties of these systems, in general

derived from their small characteristic sizes, can be summarized as follows [3]:

• Mesoscopic systems are usually formed by many atoms or molecules, although not

as many as in macroscopic systems. Consequently, most of their properties can

be described by Statistical Mechanics, although significant finite size effects may

appear frequently in statistical descriptions. Classical Mechanics is also applicable

in many mesoscopic systems. However, the statistical fluctuations tend to be more

relevant and the frequencies of themechanical oscillations are higher in mesoscopic

systems than the corresponding to the macroscopic scale.

• The ratio between surface and volume is higher for mesoscopic bodies than for

macroscopic ones. As a consequence, surface effects such as surface tension in

liquids and surface stresses in solids tend to be very relevant inmesoscopic systems.

Under equilibrium conditions, there is a significant contribution from the surface
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1.1 New physics from a distinct hierarchy

to the system free energy. In non-equilibrium systems the surface usually has an

important role in the system dynamics.

• The relevance of surface energy determines the existence of significant surface in-

teractions, such as adsorption and adhesion forces. In some systems, the anisotropy

of these sticky interactions leads to the spontaneous arrangement of the system

components in defined structures, a process known as self-assembling.

• Due to the relatively wider surface area present in mesoscopic systems, the heat

transfer is quite faster than in macroscopic systems. Moreover, temperature differ-

ences within the system tend to be smaller.

• In fluids, brownian forces driven by thermal fluctuations and viscous friction forces

are highly significant. However, in some cases the system symmetries may cancel

the friction forces.

• Unlike in the macroscopic case, gravity and inertial effects are essentially negligible

in front of the previous effects and interactions in mesoscopic systems.

The distinctive hierarchy of classical interactions found at the mesosocopic scale leads

to a very different behavior fromwhat is observed inmacroscopic systems. Of course, un-

derlying these classical interactions, there exist the quantum properties of the system, but

they are rarely treated explicitely in mesoscopic models: except in the smallest systems,

formed by a small quantity of atoms, the quantum description is prohibitively complex

either for direct analytical or numerical calculations of the mesoscopic properties.

The top-down approach for the study and control of increasingly smaller systems

comes from a Materials Science perspective. Obviously, the mere knowledge of the

general leading physical interactions at the mesoscopic scale is not enough for an ad-

equate undestanding of certain mesoscopic features. The properties of the particular

constituent materials, including the nature of the species and the type and strength of

chemical bonds, might be taken into account somehow depending on the features to be

studied. For instance, these properties that determine the structural phase diagram and

the transition conditions in the system, which are very relevant characteristics for many

technological applications [4]. This suggest an alternative modeling and control strategy,

the bottom-up approach, in which simple molecular constituents are combined to form

more complex structures with specific desirable properties. This process may continue

up to the supramolecular level, with the help of eventual self-assembling effects [5]. The
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bottom-up approach to supramolecular chemistry of complex nanostructures is suposed

to be the best way to the assembling of nanoengineered machines and biochemical cat-

alyzers to the extent allowed by the nanophysics, which is one of the more interesting

long-term technological objectives of nanoscience [3].

However, as occurs with the top-down approach, in many cases the mesoscopic prop-

erties are very difficult to predict from a purely molecular perspective, namely, from just

the atomic or molecular system constituents. This difficulty may stand even when all

the microscopic physical mechanisms in the system are well known, since their interplay

may be very complex. Therefore, physical or numerical experiments at the actual scale of

interest are needed in order to achieve an accurate knowledge of the system properties.

Two of the most interesting system types with relevant mesoscopic properties of tech-

nological interest are the solid structures formed by microscopic non-equilibrium growth

processes [6] and the systemswhich include biochemical componentes or some typeof soft

matter, i.e., any solid material which is easily deformed by mechanical stresses or thermal

fluctuations at the temperature of interest. In particular, softmatter systems show remark-

ably interestingmesoscopic behaviors, with complexmorphologies frequently formed by

self-assembling or self-organization processes, rich dynamics with large ranges of length

and time scales and complex phase diagrams [7].

1.2 Structural transitions at the mesoscale: basic theoretical

concepts

The different characteristic structures present in mesoscopic systems, the thermodynamic

conditions for which there exists a transition between some of these structural phases

and the system behavior near to the transition conditions are essential properties with a

great theoretical and technological relevance. In particular, the phase transitions found

in small non-equilibrium systems [8] and in equilibrium and non-equilibrium soft matter

systems [9] are remarkably interesting.

The theoretical modeling of phase behavior is a mature topic within the context of

Thermodynamics and Statistical Mechanics. Since the early studies of the 19th century,

the number and types of characterized phase transitions have grown considerably. In the

late 1960s, a qualitative jump in the modeling of some particularly interesting types of

phase transitions was achieved with the discovery of significant relations and properties

met by certain system parameters near to the transition point and independently of the
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specific details of the system. These ubiquitous features had become well established

theories used as a paradigmatic approach for modeling structural equilibrium and non-

equilibrium transition in mesoscopic systems. The essential theoretical concepts related

to the contents of the remaining chapters are briefly reviewed in the next two sections, in

which the equilibrium and non-equilibrium cases have been distinguished.

1.2.1 Equilibrium phase transitions

According to the Statistical Mechanics formalism, the equilibrium configuration of a

many-particle system is fully defined by the probability distribution of the different ac-

cessible microscopic configurations. If the system is perfectly isolated, it forms a micro-

canonical ensemble and all the configurations have the same probability. If the system

is coupled with a thermal bath in order to keep its temperature constant, it is considered

a canonical ensemble and, assuming that there are no long-range particle interactions

in the system, the probability of the distinct accesible configurations follows a Maxwell-

Boltzmann distribution [10]. Under these conditions, the system entropy is assumed to

be maximized. For systems with significant long range interactions, however, it has been

argued that the entropy may show a different behavior [11].

The canonical description fully defines the system equilibrium properties from the set

of accessible configurations, {C1, C2, . . . }, and their corresponding energies, {E1, E2, . . . }.
However, since very different dynamical mechanisms may lead to the same equilibrium

conditions, the actual system dynamics is not determined by this modeling approach.

This fact allows the determination of the system equilibrium properties from a stochastic

simulation without using realistic dynamics, as long as the detailed balance condition

prevails during the simulation: this condition imposes that the probability for a transition

between two given configurations must be the same than the probability of the reversal

transition, P(Ci → C j) = P(C j → Ci).

Among the different types of phase transitions found under equilibrium conditions,

continuous phase transitions are particularly relevant in mesoscopic systems. These transi-

tions have no associated latent heat at the transition point but show instead an associated

divergence in some thermodynamic response functions, such as the specific heat, in the

macroscopic size limit, i.e., when the system size tends to be infinitely large. However,

in a mesoscopic system finite-size effects are likely to be significant. Whenever that is the

case, the response functions show just a finite and system-size dependent maximum at

the transition point.
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Usually, a continuous transition also implies a change in the systemmorphology, i.e., in

the structural arrangement of the constituent particles. In many cases, the two structural

phases involved in the transition have a different degree of internal order, hence the

transition can be characterized in the first place by defining a representative parameter

of the microscopic ordering in the system, which is called order parameter, and therefore

by studying how it evolves with the change of an adequate control parameter, whose

variation may lead to the transition. The concept of order parameter was introduced by

L. D. Landau in the late 1930s in his theory of continuous order-disorder transitions [10],

but its meaning was later generalized to be some physical quantity, not neccessarily

unique, which is able to distinguish between the two phases involved in the transition.

The value of the control parameter associated to the transition point, also known as

critical point in continuous transitions, depends on the thermodynamic conditions and

the specific properties of the system. In many cases, including the two systems studied in

this work, the transitions are induced by thermal energy variations. Using the previously

introduced terms, the system temperature T, is the control parameter of these transitions.

Consequently, the term critical temperature Tc, will be used in following chapters to refer

the critical point of a structural continuous transition led by thermal energy variations.

Since the order parameter in a structural transition is usually related to the system

configurational energy, their statistical fluctuations can be taken as an estimation of the

associated specific heat. Therefore, the critical temperature of the transition can be iden-

tified from a divergence in the statistical fluctuations of the order parameter, or can be

calculated from the asymptotic behavior of the finite maxima found in the fluctuations of

small, non-macroscopic systems.

Besides the relation between the transition point and the fluctuations of the order

parameter, the processes and properties related to the behavior of a system near to a

critical point are known in general as critical phenomena [12,13]. Among such phenomena,

there exist remarkable properties which do not depend on the system details, including

power-law divergences and scaling relations. A power-law function, f (x) = A xα, has by

definition the propertyof scale invariance: any rescaling of the argument simply introduces

a proportional factor in the original function, f (k x) = Akα f (x) ∝ f (x). Therefore, any

power-law function is essentially defined by its exponent. Moreover, power-law functions

with the same exponent have a mathematical equivalence relation, belonging to the same

equivalence class.

In equilibrium critical phenomena, the exponents of the power-law relations shown
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by different quantities of interest near to the critical point are called critical exponents. In

fact, strict power-law functions only apply ideally at the critical point, whereas correction

terms become significant as the control parameter moves apart from the critical point.

Hence, parameters with a critical behavior are represented by a function like

f (ǫ) = A ǫx (1+ B ǫy + . . . ), (1.1)

where all the exponents are positive and, taking the temperature as the control parameter

and ǫ = (T − Tc)/Tc the relative distance of the control parameter value to its critical

value. Just in the limit T→ Tc, the function becomes a simple power-law f (ǫ→ 0) ∼ ǫx.
Power-law scale invariance is related to different physical properties found at the

critical point. For instance, the spatial correlation length of the order parameter tends

to the value of the system size, since continuous phase transition occur without phase

coexistence. Scale invariance is also associated to spatial structures with a fractal or self-

affine geometry. But undoubtedly the most striking property of critical scale invariance

is that it only depends on the system dimensionality and symmetries, and not on its

microscopic details. This feature leads to the same critical behavior, represented by

their critical exponents, in very different and apparently unrelated physical systems, a

phenomenon known as universality. Moreover, the critical exponents found for different

parameters in a system are not independent but satisfy certain mathematical relations

and can only take a limited number of distinct values. Thus they define a limited number

of distinct equivalence classes, or universality classes, found in critical phenomena. The

experimental observation of these features inspired L. Kadanoff to introduce the concept

of universality in the 1960s. Ever since, the searching for universal behavior is a paradigm

of Statistical Mechanics.

1.2.2 Non-equilibrium phase transitions

Any system open to external currents, for instance of energy or matter, does not meet the

detailed balance condition and is by definition out of equilibrium, even if it exhibits a

stationary state.

Most systems in Nature are subjected to non-equilibrium conditions. However, non-

equilibrium thermodynamics is quite more complex than its equilibrium counterpart:

for instance, in non-equilibrium systems some relevant thermodynamic quantities, such

as the entropy, are difficult to define whereas an extra degree of freedom, the time,

is generally relevant [14]. Whenever the system is not too far from the equilibrium
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conditions, equilibrium thermodynamics is applied as an approximation. Otherwise, far

from equilibrium conditions require alternative approaches which, for many cases, are

not yet fully understood or successfully developed, especially in non-stationary regimes.

Far-from-equilibrium phase transitions are a type of non-equilibrium phenomena

which remains poorly understood despite the existence of many systems with such be-

havior, as for example the morphology transitions found in non-equilibrium growing

surfaces [15]. The properties of scaling and universality, studied originally in equilibrium

critical phenomena, are found also in non-equilibrium phase transitions and are applied

as a leading characterization approach. However, non-equilibrium critical phenomena

is generally expected to exhibit a higher diversity of universality classes due to the role

of time and the symmetries of the evolution dynamics. Besides the non-equilibrium

growth of surfaces, most experimental studies on these systems have been limited to

phenomenological observations, in contrast with the many and exhaustive experimental

studies performed on equilibrium criticality. In practice, controlled empirical observa-

tions of non-equilibrium phase transitions are much more difficult to perform. The main

differencewith respect to the equilibrium case is that the non-equilibriumphases involved

in the transition are a result of distinct dynamical processes. Sometimes these processesmay

need an asymptotically infinite time to manifest their true nature, especially in systems

with very different time scales in their dynamics. Moreover, in some cases there do not

exists physical mechanisms for obtain a direct transition from one phase to the other

by simply changing a control parameter. Some paradigmatic theoretical models show-

ing well defined non-equilibrium phase transitions have been developed and extensively

studied by analytical approaches and computer simulations [16, 17]. However, experi-

mental realizations of some of thesemodels are still very scarce or even inexistent [17,18].

1.3 Computer simulation methods

Nowadays, computer simulationmethods are an essential tool for the study of condensed

matter systems in general and particularly of mesoscopic systems. Undoubtedly, no

other tool of Science has been experienced a faster and most awesome expansion than

computers, considered as generically programmable machines able to perform different

intensive calculations, and their application to scientific theoretical modeling. The fact

is particularly impressive by noting that the first programmable computers were created

less than a century ago, in the 1930s, as a war effort, and only became widely available
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for scientific research in the 1950s.

Initially, computers were used by the allied armies during the World War II in crypto-

analytical tasks. At the end of the war, the first computer simulations of a physical

model of neutron penetration in materials were performed using a stochastic method to

support the development of the first nuclear weapons. In the 1950s, the first non-military

applications consisted on the simulation of physical properties of liquids [19] and crystals

[20]. The current two main types of simulation methods for multi-particle systems,

known generically as Molecular Dynamics and Monte Carlo methods, were developed in

those early studies.

Progressively, computer simulations have become one of the three pillars of scien-

tific research, togetherwith mathematical modeling and experimentation. Inmany cases,

computer simulations connect the idealizations and simplifications adopted inmathemat-

ical models, for the shake of obtaining closed-form andmathematically elegant solutions,

with the instrinsic inaccuracies and the often complex results of experimental observa-

tions. Thus, computer simulations support the physical interpretationof the experimental

data and the refutation of theoretical models by avoiding some of the simplifications in-

troduced in the mathematical modeling without including all the complexity underlying

an experimental system. Moreover, computer simulations are not limited to the fast and

efficient performance of intensive numerical calculations, in fact they are intended to

be a virtual realization of an actual physical experiment, i.e., they try to reproduce the

properties of the physical system within an adequate range of accuracy.

Another characteristic contributing to the expansion of scientific computer simulations

is their affordable cost and low consumption of time and resources, especially when com-

pared to the requeriments of many physical experimental approaches. This is favored by

the continuously increasing ratio of computing power over costs. For this reason, com-

puter simulations are used for the forecasting of physical properties under experimental

conditions difficult to achieve or even for exploring the behavior of not yet synthesized

materials.

Computer experiments also favor the studyof the fundamentalmechanisms involved in

newphysical phenomena,whichmay be neither easily derived from the systemproperties

nor accesible to direct experimental observation. These difficulties are especially likely to

be found in mesoscopic systems. The development of minimal computational models for

the exploration of the essential mechanisms needed to reproduce the studied phenomena

has become an invaluable tool for the development and testing of mesoscopic theoretical
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models.

A wide variety of simulation techniques have been developed along the years to be

applied to systems with very different time and length scales of interest. Figure 1.1

provides a simple perspective of the distinct simulation methods and their scales of

application. Within the ranges corresponding to mesoscopic systems, the most widely

used simulation techniques are classical coarse-grained varieties of Molecular Dynamics

and Monte Carlo methods.

1.3.1 Molecular dynamics for mesoscopic systems

MolecularDynamics (MD)wasdeveloped at the endof the 1950s as a simulation technique

for classical multi-particle systems [21–25]. It consists on a simulation during a period

of time of the actual dynamics of the system constituents, typically atoms or molecules,

when subjected to approximations of known classical physics interactions [26]. MD deals

with atomistic positions and velocities by applying Classical Mechanics according to

some atomistic two-body or many-body interaction potential. The applied potentials

may be defined from quantum approximations and simulations or from experimental

measures. Simple molecular interaction models, such as the well known Lennard-Jones

Figure 1.1: Main modeling approaches used at different time and length scales.
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potential [27], are widely used in mesoscopic systems and coarse-grained approaches in

general.

Inmany casesMDsimulations are performed in the canonical ensemble, with fixed values

for the number of particles N, the volume V, and the system temperature T [28]. In such

cases, since the temperature is defined from the average of the kinetic energies of all

system particles,
〈

mv2/2
〉

= kBT/2, equations of motionmust be modified according to a

given thermostat in order to ensure that the dynamics remains compatible with the fixed

system temperature. Different thermostats —such as the Nosé-Hoover, Berendsen and

Langevin thermostats [28, 29]— are available to approximate the canonical ensemble.

The determination fromMD simulations of equilibrium properties led by the statistical

behavior of the system, such as energy, heat capacity, etc., requires long simulation

times and/or many independent realizations with distinct initial conditions in order to

obtain enough statistics for an accurate time and/or realization averaging. In practice,

average equilibrium properties are more easily obtained from multiple well equilibrated

realizations than from long-run time averages, since the system can exhibit some kind of

ergodicity breaking due to very slow dynamics.

Another characteristic which must be taken into account when studying mesoscopic

systems is that MD simulations tend to be very demanding in computational power,

leading to practical limitations in the accessible time intervals and the quantities of atoms

simulated in the system. This limitation is especially important in soft-mattermesoscopic

systems which, in many cases, include a solvent —typically water— as a background

medium for the constituents of interest.

Non-explicit simulation of a solvent: Langevin dynamics

In order to avoid an explicit simulation of the individual atoms of a background medium

with an assumed statistically homogeneous behavior, such as a chemically inert liquid

solvent, the Langevin dynamics approximation, based on the Langevin thermostat [29],

is widely used. This approximation is based on the stochastic representation of certain

dynamical degrees of freedom in the system, specifically the corresponding to the move-

ments of the solvent particles [29,30]. The Langevin equation for the dynamics of a point

particle of mass M in a viscous solvent at temperature T is:

M
d2r

dt2
= −∇U(r)− γMdr

dt
+ R(t), (1.2)

11



1 Physics at the mesoscale

where U(r) is the interaction potential acting over the particle, γ is the viscous coeffi-

cient and R(t) is a stochastic factor, a delta-correlated stationary Gaussian process with

zero mean 〈R(t)〉 = 0. That expression is deduced from classic theories of Brownian

motion, which established that molecular random collisions produce a systematic effect

on average, leading to fluctuations at thermal equilibrium. As a consequence, the en-

ergy of the system particles is reduced by the viscuous friction with the background

fluid and increased by the background thermal fluctuations. The friction and the ran-

dom forces are related according to the fluctuation–dissipation theorem [31]: the covariance

of the random force depends on the viscuous coefficient —or collision frequency— as

〈R(t)R(t′)〉 = 2γkBTM δ(t − t′).
Therefore, Langevin dynamics includes viscosity and brownian effects but no other

interactions with solvent such as electrostatic effects or hydrophobicity. When needed,

such absent interactions may be included as additional terms or taken into account in the

potential. For non-point bodies, an analogous additional equation must be introduced to

take into account the rotational degrees of freedom.

1.3.2 Monte Carlo methods

TheMonteCarlomethod (MC)was the first computer simulation technique everdesigned

for a programmable computer. It was created by J. von Neumann, S. Ulam and N.

Metropolis to support, as noted previously, the calculations in the development of nuclear

weapons at the end of World War II [32].

MCsimulations are based on the iterative randomsampling of someprobabilisticmodel

which acts as a stochastic representation of the system to be studied. Therefore, MC

simulations require at each step the generation of random or pseudo-randomnumbers, a

characteristic which inspired its name to Ulam and Metropolis1 [33].

The random sampling of a probabilistic model has proven to be a useful generic ap-

proach to solve many types of problems, including integration and equation solving,

global optimization or queuing theory. It has been applied in disciplines as disparate as

Biology, Economics, High-energy Physics or Materials Science.

MC experiments are extensively used in the field of Condensed Matter Physics to cal-

culate equilibrium properties. In such cases, the method works as a global optimizer for

the minimization of the system free energy. The minimization is achieved by following

a random walk through the system phase space, changing randomly the system config-

1As a joke, they took the name “Monte Carlo” from the famous casino located in Monaco.
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uration. Since the objective of the simulation is to obtain the equilibrium configuration

of the system, the phase space trajectories have not necessarily physical meaning. There-

fore, equilibriumMC simulations usually do not provide any actual dynamic property of

the system unless it has reached the equilibrium.

Since dynamics is a leading factor in non-equilibrium systems, the usual equilibrium

MC methods are not adequate for the simulation of such systems. However, there

exists a specific Monte Carlo method which can reproduce the actual dynamics of a

non-equilibrium system under certain conditions.

Non-equilibrium Monte Carlo: the kinetic Monte Carlo method

The kinetic Monte Carlo (kMC) method is a type of Monte Carlo computer simulation

algorithm. Unlike other well known Monte Carlo variants, such as the Metropolis al-

gorithm [19], the kMC method is intended to simulate the actual time evolution of the

system. It was independently developed with slight variations by distinct authors from

different disciplines in the 1960–1970s [34–37]. The method received many names be-

fore its current widely accepted denomination2: residence-time algorithm, “n”-fold way,

Bortz-Kalos-Liebowitz (BKL) algorithm, dynamic Monte Carlo method or Gillespie algo-

rithm.

The method requires as a starting point a list with the rates of all the relevant dynamic

processes which potentially may occur in the initial configuration of the system. The

determination of these relevant dynamic processes and their rates is not provided by the

kMCmethod, it must be performedby independentmeans. At each iteration, one process

is randomly selected from the list to be actually carried out, according to a probability

distribution over all the processes given by their relative rates. The dynamic time is then

increased in a stochastic time step given by the total sum of process rates. Schematically,

the algorithm is as follows:

1. Determine the list of the N dynamical events which are relevant to the current

system configuration and calculate their rates: {R1, . . . ,RN}.

2. Assign at each event in the list a probability to be selected, {P1, . . . ,PN}, given by its

relative rate with respect to the total sum of event rates:

Pi =
Ri

∑N
i=1 Ri

. (1.3)

2The name kinetic Monte Carlo has been persistently and widely used among physicists since the 1990s.
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Accordingly to that assignation, select randomly one of the events. The probability

assignation and the consequent selection can be performed by simply generating a

flat random number r ∈ (0, 1] and taking the event kwhich satisfies

∑k−1
i=1 Ri
∑N

i=1 Ri

< r ≤
∑k

i=1 Ri
∑N

i=1 Ri

. (1.4)

3. Increase the dynamic time in an interval given by the total sum of event rates:

δt ∼ 1/
∑N

i=1 Ri. In order to stress the stochastic nature of the transition, the usual

procedure is to calculate another flat random number r′ ∈ (0, 1] and take

δt = − ln r′
∑N

i=1 Ri

. (1.5)

4. Carry out the selected event and determine the new system configuration.

5. Return to the first step.

The main advantage of the kMC method is that it gives the actual time scale and

dynamical evolution of the system provided that the dynamical processes are Poisson

type, i.e., they are independent and continuous in time. Even it can be used to simulate

systems under thermodynamic equilibrium by imposing the detailed balance condition,

which implies that eachdynamical process has the sameprobability as its reverse, the kMC

method is mainly applied to the simulation of systems out of equilibrium. The method

is particularly efficient for simulating the evolution of systems driven by processes with

very different time scales [38]. Its main disadvantage is that real systems do not always

fit the necessary conditions to apply the method: for instance, in some cases the rates of

the dynamical processes are not well-defined or can be difficult to calculate with enough

accuracy.

Compared to other Monte Carlo methods, the kMC algorithm guarantees an effective

transition at each iteration, but it presents particular implementation issues. For instance,

it is essentially a sequential method which gets little or no benefit from parallelization.

More importantly, an optimized kMC algorithm can be very hard to implement for sys-

tems with a long list of events: in such cases, the process selection at every iteration and

the events list update after carrying out the selected process become the main compu-

tational bottlenecks. In fact, the calculations associated to these particular steps can be

reduced to a problem of computational search. Twomethods commonly used to optimize
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the search and update of events are the simple binning of the events list by grouping the

processes with the same rate [39], assuming that at any time there is a small number of

different rate values [38,40], and the grouping of events in more complex data structures

designed for fast searches, such as binary trees [41].

The method has been extensively applied to simulate the characteristic structures aris-

ing from non-equilibrium growth processes. In particular, it is the current method of

choice for the simulation with minimal atomistic models of themesoscopicmorphologies

of thin solid films.

15



1 Physics at the mesoscale

16



2 Thin solid films

Thin solid films are layers ofmaterial with a thickness ranging from fractions of a nanome-

ter to several micrometres, created by individual deposition of atoms, molecules or ions

on a substrate. They exhibit unique properties that cannot be observed in bulk materials,

such as characteristic morphologies controlled at the nanometric scale and quantum size

effects, characterized by the thickness, crystalline orientation andmultilayer aspects. The

fabrication of thin solid films is currently a well-established materials technology, with

more than 50 years of application in industrial fabrication of electronic devices.

From a general perspective, the main current research efforts are focused on the chal-

lenging task of incorporating theory and modelling techniques as standard approaches

to the study and control of thin film growth. These efforts have driven thin film science

to grow into a major research field, requiring knowledge in areas of physics, chemistry,

engineering and, in some cases, biology. The study of thin films is by nature highly

interdisciplinary and has been one of the unifying themes in the development of the

materials science and an essential field in new research areas like surface science and

engineering [42].

Thin film processing technologies have gone through a thorough development and in-

novation during many years, allowing an increasing control over thin film structures and

properties.The idea of coating a bulk material with a thin layer of another solid substance

in order to improve some of its properties has been used as an empirical technology since

the ancient metal ages, when the Egyptians developed for the first time the art of gold

beating and gilding [43]. The exceptional malleability of this metal, its chemical resis-

tance to corrosion and its aesthetic attractiveness resulted in the development of physical

methods to process it in extremely thin leaves for gilding objects with protective and dec-

orative purposes. Ancient cultures also developed gold coating methods involving not

just a physical process but also chemical reactions. Formany centuries craftmen explored

by experimentation how the processing conditions are related to the optical, mechanical

and chemical properties of film coatings.

At the end of the 19th century, scientists became interested in the unexpected deposits
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with unusual properties found on the walls of glass discharge tubes [44], developed after

the pioneering experiments of William R. Grove [45] and Michael Faraday [46]. This ob-

servation was the origin of subsequent new thin film fabrication techniques based on the

growth of films by deposition ofmaterials from the vapor phase, with application to fabri-

cation of mirrors and protective coatings. The study of thin films became a formal science

field within the context of the Surface Science and Technologies [42] in the 20th century,

with the development and increasing availability of the vacuum technology, which pro-

vides a highly controlled environment for the growth process, and the high resolution

transmission electron microscopy (TEM), which allowed the first direct observations of

film structures and its characterization at the nanometric scale [47].

The expansion of the field and its applications have been quite spectacular in the last

decades: the techniques of deposition fromvapor phases producedbyphysicalmeans in a

vacuum environment, known as physical vapor deposition methods (PVD), experienced

a significant developement in the 1940s and the same happened with the techniques

of epitaxial growth, the formation of films with the same crystalline structure than the

substrate, in the next decade.

In the 1960s appeared the ultrahigh vacuum technique and different surface analytical

methods were widely available, such as the low energy electron diffraction (LEED), the

scanning electron microscopy (SEM) or the Auger electron spectroscopy (AES). In these

years thin film technology began to be applied to the fabrication of high speed switching

transistors, leading to the microelectronics revolution, and the first Structure ZoneModel

fromMovchan and Demchishin [48] summarized qualitatively the ubiquitous morpholo-

gies found in thin films grown by physical vapor deposition regardless of the material

used.

In the 1970s the first well developed vapor deposition techniques involving chemical

reactions, called chemical vapor deposition methods (CVD), and the method of fabrica-

tion of very perfect monocrystals by deposition at very low rates, known as molecular

beam epitaxy (MBE), were introduced. On the theoretical level, Thornton [49,50] general-

ized the Movchan-Demchishin model to the new morphology zones produced by recent

deposition techniques and the first atomistic computer simulation models for thin film

growth were developed [51–53].

Since the 1980s, there has been a continuous expansion of industrial applications of

thin film technology beyond the revolutionary field of microelectronics and their tra-

ditional protective and decorative uses, especially for the fabrication of many types
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of devices which benefit from the structural control to the nanometric scale: for in-

stance, optic andoptoelectronicdevices,magnetic recording systems andantennas,micro-

electromechanical devices, biomaterials, batteries and solar cells [43, 54–57].

Technological advances have led to the creation of more and better characterization

and measurement techniques, with a resolution up to atomic scale, such as the scanning

tunneling microscopy (STM) or the atomic force microscopy (AFM). In addition, further

refinements to the previous structure zone models have been introduced [58–61] and

the non-equilibrium critical behavior shown by their growing surface has attracted an

enormous academic interest, with literally thousands of publications about the topic,

since this is one of the few known experimental systems that exhibits phase transitions

far from equilibrium [6, 62].

The improvements in thin film technology are also leading to the introduction of new

thin film materials and applications. For many years, the main technological interest

has been focused on the microelectronics industry, which requires the processing of very

perfect crystalline thin films of metallic or semiconductor materials. However, in re-

cent years the interest for applications of non-crystalline and/or non-metallic materials

has grown quickly. For instance, there is a great interest in the development of amor-

phous solar cells as a cheaper alternative to the former crystalline designs. Processing

of porous polymer thin films is currently being developed for many industrial applica-

tions, such as tissue engineering and drug delivery, novel integrated circuit designs or

catalysis systems [63]. These novel thin film materials require new processing and mea-

surement techniques, as well as new theoretical models which do not rely on the simpler

properties of crystalline metallic films. With this purpose, new X-ray analytical tools for

the measurement of thin films porosity, such as the small-angle X-ray scattering method

with granzing-incidence geometry (GISAXS), were introduced [64]. In the field of theo-

retical modeling, however, there has been little progress towards the incorporation of the

necessary ingredients required by these new andmore complex systems, especially in the

case of mesoscopic minimal models. In particular, discrete minimal models are an exten-

sively applied tool for studying the fundamental mechanisms producing the properties

of technological interest, such as the distinct surface and inner thin film mesoscopic mor-

phologies. Consequently, a thorough study of these models is an obvious approach to

the discovery and understanding of novel leading mechanisms in thin film growth.

The next sections in this Chapter review the current main preparation methods, the

physical mechanisms involved, the universal properties and the modeling approaches

19



2 Thin solid films

applied to thin solid films growth. They are intended to provide a general perspective on

the current knowledge on thin films growth, including the main concepts related to the

study presented in Chapter 3.

2.1 Preparation methods

Modern thin film deposition processes involve three common basic steps: the production

of the appropriate individual atomic, molecular or ionic species from a material source,

the transport of these species to the substrate through a medium and its condensation on

the substrate, either directly or via a chemical and/or electrochemical reaction, in order to

form a solid deposit. The way these steps are implemented distinguises the wide variety

of existent deposition processes and technologies.

The most elementary classification of thin film deposition techniques is based on the

different methods used to produce the isolated particles from the source material. These

methods can be purely physical, like the thermal evaporation of the source material or

its irradiation with energetic species or photons in order to obtain the vapor phase, in

which case themethod is classified as a physical vapor deposition (PVD), or purely chem-

ical, such as the reaction and/or decomposition of volatile precursors on the substrate,

which corresponds to chemical vapor deposition methods (CVD). In order to achieve a

more accurate control and tailoring of the microstructure and properties of thin films, a

considerable effort is currently devoted to the development of novel hybrid experimen-

tal methods based on a combination of different pure processes and advanced deposition

techniques.

In order to provide a fundamental background on thin film experimental growth pro-

cesses, the following sections introduce the essential characteristics of the most basic

preparation methods, with a focus on physical vapor deposition and a brief review of

other methods.

2.1.1 Physical vapor deposition methods

Physical vapor deposition is a technique whereby a physical processes, such as thermal

evaporation or sublimation, ionic impingement, arc-based emission or photonic ablation

of a target of source material, produces a gas of atoms or molecules which is transferred

onto a substrate for its condensation to form a solid film [65]. The vaporization of the

source material and its deposition onto the substrate is achieved inside a deposition
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2.1 Preparation methods

chamber with a controlled atmosphere. Usually high or ultra-high vacuum conditions

are required. The chamber medium can be also a low pressure inert gas, or a reactive gas

when films of compound substances, like oxides or nitrides, are desired.

Another important deposition condition which must be accurately controlled during

growth is the film temperature, since it strongly affects the resulting film properties.

Experimentally, the film temperature is usually controlled by setting the temperature

of the deposition substrate: if the thickness of the film is very much smaller than the

substrate dimensions, it can be assumed that the latter acts as a heath bath on the former

and both have practically the same temperature at all time.

The two most widely used PVD processes are the thermal evaporation and the high

energy ion bombardment of the source material, a technique also known as sputtering.

These vaporization techniques of the source material provide the basis for many different

advanced deposition methods.

Thermal evaporation: molecular beam epitaxy

In evaporation PVD processes, thermal energy is supplied to a source material inside a

deposition chamber. The evaporated atoms or molecules travel through the medium of

the chamber and condense on the surface of a solid substrate which is typically a few

centimeters in size and is thermally stabilized.

An important example of an evaporative method is the film growth technique known

as molecular beam epitaxy (MBE) [54,57]. MBE is essentially a two-step process carried out

under ultra-high vacuum conditions. In the first step, atoms or molecules are thermally

evaporated from solid sources, collimated into beams and directed toward a crystalline

substrate. The transport within these beams is a molecular flow without physical or

chemical interactions between the traveling particles, which follow straight trajectories

to the substrate. This deposition regime is known as ballistic deposition. The second step

of MBE is the spontaneous migration of the deposited particles, or adatoms, over the

substrate and the film surface prior to their final incorporation to a stable position within

the growing structure1. Under a MBE growth regime, deposition rates are kept very

low in order to maintain the ballistic deposition regime and led to the epitaxial growth

of the film. The term epitaxy refers to the imposition of a structural orientation on the

particle arrangements in each layer of the growing film by the crystalline structure of the

underlying substrate, which acts as a seed crystal. This concept will be further reviewed

1Adatom mobility mechanisms will be reviewed in detail in Section 2.2.2.
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2 Thin solid films

in Section 2.2.4. MBE is conceptually the simplest epitaxial process from an atomistic

point of view: in principle, the ballistic deposition process leads to a spatially disordered

incorporation of newadatoms onto the film surface,butmobility processes tend to dispose

it into layers which are parallel and have the same crystallographic configuration as the

substrate surface plane. This method is extensively used by the semiconductor device

industry for the fabrication of highly perfect monocrystalline films.

Excluding the fabrication of microelectronic devices, most applications of thin films do

not require perfect monocrystalline structures. For instance, porous, polycrystalline or

amorphous films are acceptable or even preferable for optical, protective or decorative

applications. In general, these types ofmorphologies are obtained under low ormoderate

adatom mobility conditions.

Sputtering

Sputter-based deposition processes [56,65] differ fundamentally from other physical and

chemical processes in the kinetics of the particle emission from the source material. In

thermal evaporation, for example, energy is supplied to the source material to increase its

temperature beyond the melting point under conditions of thermodynamic equilibrium.

The sputtering process instead consists on the extraction of atoms or molecules from the

surface of the source material by the impact of high energetic particles, usually ions of

an inert gas but neutral atoms, molecules or high energy photons are also used. When

the bombarding energy exceeds a critical value, known as sputtering threshold, which

depends on the system conditions, some particles of the target may receive enough

energy from the impacts to overcome the surface binding energy and may be emitted,

becoming sputtered particles which travel to the deposition substrate to condense and

form the film. Sputtered particles have also more energy than particles obtained from

thermal evaporation or chemical processes. Hence, sputtering deposition is a quenched,

or high energy, non-equilibrium process which allows the growth of films under unique

deposition conditions. The sputtering process, for instance, achieves the deposition of

a variety of species without heating the source materials. Moreover, the high energy of

sputtered particles allows the synthesis of exotic materials and reduces the formation

temperature of common materials. A typical example is the fabrication of synthetic

diamonds at room temperature.

Sputtering deposition has become a common manufacturing process for a wide vari-

ety of industries. First and foremost is the electronics industry, which uses sputtering
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technology to produce integrated circuits and magneto-optical recording media.

2.1.2 Other methods

Physical methods

The pulsed laser deposition (PLD) [66] is a method based on the photonic ablation of the

source material. In this technique, a high power laser beam is focused to strike the source

material and convert it to plasma. Usually, the plasma reverts to a gas before it reaches

the substrate to condense on it. While other source vaporization methods are very well

understood, the complex photonic ablation process is not yet completely characterized.

Anyway, the great development of the laser technology experimented in the last two

decades has made PLD a very competitive method for the fabrication of high quality

crystalline films with very complex compositions.

The cathodic arc deposition (Arc-PVD) [67] is a kind of ion beam depositionwhere vapor-

ization of the source material is achieved by means of an electrical arc. The arc literally

blasts ions from a small area of the source material, known as cathode spot, providing

an extremely high power density on it. The localized temperature at the cathode spot

becomes very high and the emission of vaporized material results in a high velocity jet

of multiply charged ions, neutral particles, clusters and macro-particles or droplets. The

performance of the film deposition is reduced by these droplets since they are in gen-

eral poorly adhered, hencemacro-particle filters are commonly used for the enhancement

of film quality. After its emission and filtering, ions are focused to the substrate using

electric fields and, in some cases, decelerated on arriving at the substrate in order to se-

lect well-defined deposition energies, gradually reaching the regime of ion implantation.

Arc-PVD is used for coating of mainly metallic substrates but can be used to coat other

materials such as glass or ceramics. Its main application is the fabrication of extremely

hard protective coatings.

Chemical vapor deposition methods

In CVD methods [43, 68] the film particles are originated from volatile substances, or

precursors, which are decomposed into atoms or molecules thermally and/or by chemical

reaction with other gases, vapors or liquids. The decomposition of the precursors yields

to the deposition of the non volatile reaction products on the substrate. In particular,

the steps involved in CVD processes are the transport of reactants to the reaction zone,

its chemical reactions to produce new reactive species and by-products, the transport of
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the initial reactants and their products to the substrate surface, the chemical and physical

adsorption and diffusion of these species on the substrate surface, the heterogeneous

reactions catalyzed by the surface leading to film formation, and the desorption and

transport of the volatile reaction by-products away from the reaction zone.

Originally, simple CVDprocesseswhich donot require vacuumor high levels of electric

power were developed and practiced commercially prior to PVD. Nowadays, many vari-

ants ofCVDprocessing have been researched anddeveloped, including atmospheric pres-

sure (APCVD), low-pressure (LPCVD), plasma-enhanced (PECVD), and laser-enhanced

(LECVD) chemical vapor deposition, giving to CVD the ability to produce a large variety

of films and coatings of metals, semiconductors, and inorganic or organic compounds in

either a monocrystalline, polycrystalline or vitreous forms, including the creation of films

with a widely varying stoichiometry. These techniques have found applications in such

diverse technologies as the fabrication of solid-state electronic devices, the manufacture

of ball bearings and cutting tools, and the production of rocket engine and nuclear reactor

components.

2.2 Mechanisms and kinetics in thin films grown by physical vapor

deposition

The structure of thin films formed by different vapor deposition techniques is determined

by a wide variety of physical mechanisms which generally can be grouped into twomain

steps. The first step consists of particle deposition and adsorption on the substrate and

the growing film surfaces. The second step involves different mechanisms controlled by

adatom transport processes and physical constrains, including nucleation, cluster growth

and coalescence, interlayer migrations or lattice selection and frustration. Growth mech-

anisms strongly depend not just on the nature of the substrate and film materials but

also on the deposition conditions, such as substrate temperature, energy of the impinging

particles and deposition rates. Moreover, some physical mechanisms are competitive or

become relevant for just certain stages of the growth process or under specific conditions.

Distinct growth regimes emerge from this complexity, leading to very different character-

istic film morphologies. In the next sections, the main physical mechanisms involved in

the growth of thin films from physical vapor deposition methods are reviewed.
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2.2 Mechanisms and kinetics in thin films grown by physical vapor deposition

2.2.1 Adsorption and surface self-shadowing

The deposition process and the corresponding experimental conditions are extremely sig-

nificant for the properties of thin films grown by physical vapor deposition. In particular,

under ballistic depostion and limited adatom mobility conditions, the adsorption mech-

anisms of the impinging particles and their interplay with the surface structure are the

most determining factors for the resultant film morphology.

Adsorption mechanisms

During the deposition process, vapor particles which come into contact with the substrate

or the film surface can form chemical bonds with the underlying atoms or be physically

adsorbed by the surface close to the contact point2. By assuming ideal deposition condi-

tions3, the film free surface can be considered an abrupt atomic interface between vapor

and solid phases, with a surface potential determined by the electronic distribution of the

underlying solid atomic structure.

Metallic crystals are also themost simple case of surface potential profiles and one of the

most technologically relevant. Since bonding electrons in these materials are delocalized

over the atomic lattice, the electronic distribution over the surface has the periodicity of

the crystal lattice and leads to a potential with a well at every unoccupied lattice site over

the surface, as shown in the example depicted in Figure 2.1. For materials with a highly

directional bonding or non-crystalline solid structures the surface potential landscape

would be more complex, for instance with a non-periodic distribution of dissimilar wells

which eventually may depend on the adatom orientation.

In any case, equilibrium positions over the surface are represented by potential wells

on which newcoming particles are eventually adsorbed and remain localized most of the

time. Obviously, after adsorption, the local profile of the surface potentialwill bemodified

by the presence of the new adatom. This classical picture of the adsorption mechanism

of individual atoms or molecules on a surface is a consequence of the quantum effect of

decoherence [70]: the quantum state of the newcoming adatom experiments a continuous

decoherence due to complex interactions and entanglementswith the underlying surface.

2These processes are called chemisorption and physisorption, respectively.
3Particularly, in the absence of surface impurities.
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Figure 2.1: Self-consistent local-orbital calculation of the electronic charge density of a Nickel
crystal surface in the (100) plane, after [69].

Deposition trajectories and surface self-shadowing

A key effect in thin films growth related to the deposition and adsorption mechanisms is

the surface self-shadowing effect. In particular, this is a dominant effect on filmmorphologies

obtained under ballistic deposition and limited adatom mobility conditions, i.e., when

the impinging particles reach the growing film by following straight trajectories and are

permanently adsorbed without straying far from the first contact point with the surface.

Since the first contact points are randomly distributed over the surface, the incorporation

of new particles tends to be spatially inhomogeneous and a film with a rough surface is

naturally obtainedwith highprobability. The surface self-shadowing effect arises from the

interplay between the straight deposition trajectories and themorphology of the growing

rough surface: the existence of prominent film structures could block, or shadow, certain

deposition trajectories to lower surface positions, as illustrated in Figure 2.2, leading to

different growth rates for shadowed and non-shadowed regions. In general, when no

other mechanisms compensate this effect, the inhomogeneous growth produced by the

surface self-shadowing prevents the formation of fully compact and homogeneous film

structures, giving rise to the growth of porousmorphologies formedby nanometric grains
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2.2 Mechanisms and kinetics in thin films grown by physical vapor deposition

Figure 2.2: Illustrationof the surface self-shadowing effect: blockingof lower regions (grey area) by
prominent film structures (light disks) for a ballistic deposition processwith deposition
trajectories (arrows) normal to the substrate (dark disks).

separated by interstitial voids.

The global effect of surface self-shadowing strongly depends on the angle of the de-

position trajectories with respect to the surface plane [71]. This is particularly evident in

film processing methods where the flux of impinging particles is collimated, such as in

MBE. In fact, the accurate control of the deposition angle has allowed the development

of a set of processing techniques, such as the rotating substrate method or the glancing

angle deposition [72], for the fabrication of films with very peculiar nanometric grain mor-

phologies, known as sculptured thin films [72–74]. The most representative morphologies

of sculptured thin films are formed by isolated columns engineered into different shapes,

including helices, posts or chevrons [75]. Figure 2.3 shows some experimental examples

of these distinctive structures.

Figure 2.3: SEM micrographs with examples of different nanostructured thin solid films obtained
by fixed and variable flux deposition angles. After [72].
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2.2.2 Thermally activated processes: surface diffusion

As in any other solid, the atoms or molecules of a thin solid film experience oscillations

around their equilibrium positions whose frequency and amplitude increases with the

temperature. Added to this effect, in vapor deposition processes the impinging particles

tend to have an energy excess with respect to the surface4 and therefore adatoms would

not be initially in thermal equilibrium with it. In any case, if the thermal fluctuations are

large enough, a given film particle could eventually overcome the energy barrier of the

equilibrium position in which resides and migrate to another unoccupied equilibrium

position or even be permanently desorbed [76,77]. Depending on the growth conditions,

many different particle migration mechanisms can be observed. However, the rate of

these thermally activated processes is verymuch lower than the frequency of themicroscopic

oscillations and it can be assumed that film particles reside most of the time within an

equilibrium energy well. Non-equilibrium metastable positions also can be occupied

temporarily.

Whereas the localized adsorption of adatoms is explained by the decoherence of the

adatom quantum state, migration processes are a consequence of the opposing quantum

effect of recoherence [70]. The eventual recoherence of the adatom state leads to occa-

sional migrations to neighboring energy wells by tunneling through the intermediate

energy barriers. After the migration is achieved, decoherence again localizes the adatom

destroying all information of the previous state. Provided that the time between migra-

tion events is much larger than the typical decoherence time, successive migrations are

efectively uncorrelated and can be considered as classical randommoves to neighboring

unoccupied sites with a given probability rate.

Kinetics of thermally activated processes

In general, thermally activated processes are determinant for the experimental growth

regime and the resultant film morphologies. For example, the eventual desorption of

adatoms makes necessary the existence of a minimum concentration or vapor pressure

of particles at the growing surface to allow a net physical or chemical adsorption and

the subsequent effective growth of the film. In turn, the migration of particles between

different points of the material is in fact a thermally activated diffusion process. It is well

known that, according to Fick’s Law [78], diffusion mechanisms in solids may produce

4As noted previously, this energy excess is usually larger for sputtering deposition than for thermal evapo-
ration methods.
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2.2 Mechanisms and kinetics in thin films grown by physical vapor deposition

the migration of impurities from high to low concentration regions until the whole sam-

ple becomes homogeneous. Besides migration of impurities, diffusion processes of the

leading material species tend to produce more ordered and compact film structures than

the obtained with restricted diffusion conditions, as for example under very low temper-

atures. Consequently, the relationship between thermally activated processes and film

temperature, or equivalently substrate temperature, makes the latter one of the main

experimental growth parameters.

Figure 2.4: Surface energywells led by the underlying atomic structure and corresponding energy
barriers for thermally activated diffusion processes of surface adatoms.

There are very different mechanisms and activation energies associated to the wide

variety of possible diffusionprocesses observed in thin filmgrowth. Since the nature of the

thermal fluctuations is essentially stochastic, the activation energyof a particular diffusion

process represents its relative probability of actually occur during growth. Therefore, the

rate of diffusion processeswith a low activation energy is higher than the rate of processes

with a high activation energy for any given substrate temperature. The expected rate Rd

of a given processwith activation energyEd is related to the temperature by the Arrhenius

expression:

Rd = ν e−Ed/kBT, (2.1)

where ν is an attempt frequency and e−Ed/kBT is the Boltzmann thermodynamic factor.

The attempt frequency νmust also depend on the temperature. For crystalline materials

at low or moderate temperatures, compared to the melting point of the film material,

ν is estimated to be the frequency of the microscopic oscillations. For instance, typical

values of ν are of the order of 1013 Hz at room temperature. The activation energy of a
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given diffusion process depends on the bonding strength at the origin and destination

positions of the particle. This strength depends, in turn, on the nature of the material

and on the coordination number, or number or nearest neighbors bonded to the particle

at its residence position: a higher coordination number corresponds to a deeper energy

well, hence to a higher barrier to overcome and a more stable position. Consequently,

the net effect of diffusion processes is to favor the increase of the mean coordination

number of the particles, and therefore the global compactment of the material by means

of a microscopic ordering of the atomic or molecular arrangements. If the microscopic

ordering led by diffusion is high enough, a fully crystalline structure is obtained. The

same kinetic principles apply for diffusion in amorphous materials, but in this case the

dependence with temperature of the exponential and pre-exponential factors is found to

be quite more complex [79]. The activation energies are usually calculated from quantum

approximations, such as the Density-Functional Theory [80]. They can also be deduced

from experimental observations provided not many different types of activated processes

are accesible at the same time in the system.

Surface diffusion

At low and moderate substrate temperatures the most probable diffusion processes are

those corresponding to the surface diffusion of adatoms: the migration over the film sur-

face is in general more likely than the bulk diffusion because surface adatoms have a

lower mean coordination number than bulk particles, hence the energy barriers between

equilibrium positions in the surface tend to be smaller than the ones found within the

bulk region. Moreover, the eventual excess of thermal energy of the surface adatomswith

respect to the bulk particles can additionally contribute to the overcoming of the migra-

tion barriers. For both reasons, the lower coordination and the eventual excess of thermal

energy, surface particles have a higher mean total energy than those found in bulk.

From a thermodynamic point of view, surface diffusion is the kinetic mechanismwhich

tends to minimize the surface energy, considering this quantity as the total energy excess

of the surface adatoms with respect to the bulk particles. Since the surface energy is

measured as a energy per unit of area, it is often identified as a surface tension which

causes mechanical stresses on the solid surface [57].

Among the different mechanisms of surface diffusion, the most simple and probable

under limited mobility conditions involves the migration of adatoms by means of succe-

sive short-ranged jumps, or diffusion hops, typically between nearest neighbor positions.
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In this diffusion regime, it is assumed that adatoms follow a randomwalk over the surface

until the temperature drops or its coordination number increases too much to allowmore

diffusion hops. Acconding to randomwalk statistics, the root mean square displacement

of surface adatoms, or diffusion length, is

√

〈∆δ2〉 = a
√

Rdτ , (2.2)

where a is the space between nearest neighbor positions and τ is the mean time a given

adatom is allowed to diffuse. For a constant substrate temperature, τ essentially depends

on the deposition rate.

At relatively high substrate temperatures, more complex surface diffusionmechanisms

become accessible. For instance, long range hops or diffusion processes which involve

the exchange of positions of two adatoms can be observed [81, 82], as well as different

diffusion processes of adatom aggregates or clusters [81]. Under these conditions bulk

diffusion also becomes significant and, for substrate temperatures well above one half of

the material melting point, the regime of transport of individual adatoms and clusters is

replaced by the migration of vacancies [83].

Finally, among other less common diffusion mechanisms, there exists a unique type

of atomic transport which not relies on thermally activated processes but on the quan-

tum tunneling effect: the tunneling diffusion involves the transport of very light atomic

species, such as hidrogen atoms, through small energy barriers in a mechanism almost

independent of the temperature [84].

At this point, the most basic processes and mechanisms involved in thin film growth

have been introduced. Next sections are devoted to more complex mechanisms derived

from them.

2.2.3 Mechanisms at the early stages of thin film growth

The incorporation of new adatoms and its eventual migration over the surface of the

substrate and of the first layers of deposited material determines the early stages of thin

film growth, giving rise to different mechanisms of increasing range.

Nucleation

Nucleation is the first stage of formation of the film structure and involves the aggregation

of individual adatoms in clusters of a size large enough to be thermodynamically stable.

At the beginning of the film growth process, the impinging particles are adsorbed by
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the substrate surface and, if the thermal energy is high enough, they diffuse over the

surface. Eventually, diffusing adatoms can get in contact with other diffusing, impinging

or stably adsorbed adatoms and establish a bond, forming a cluster. These small clusters,

called nuclei, are themodynamically unstable but can also diffuse over the surface. When

the deposition parameters are such that nuclei tend to collide with other adatoms before

getting disagregated or desorbed, they can incorporate these adatoms and grow in size.

If a growing nucleus reaches a certain critical size it becomes thermodynamically stable

[85, 86].

A nucleus can grow horizontally and vertically, i.e., in parallel and perpendicular

directions with respect to the substrate. The most evident mechanisms for horizontal and

vertical growth are the lateral incorporation of adatoms found over the same surface layer

on which the nucleus resides and the adsorption of impinging particles deposited over

the nucleus surface, respectively. Depending on the materials and the growth conditions,

diffusing adatoms also can climb or descend the steps formed by the lateral edges of the

nucleus, contributing respectively to its perpendicular and vertical growth.

Critical nuclei can grow in number and size until a saturation nucleation density is

reached, at which the mean lateral size of nuclei becomes comparable to the distance

between them. The nucleation density and the average nucleus lateral size depend on

different parameters such as the energy of the impinging species, the deposition rate, the

activation energies of adsorption, desorption and diffusion, and the temperature, local

morphology and chemical nature of the substrate. In some cases, these conditions may

prevent the nuclei from reaching the necessary density to obtain a complete covering

of the substrate, and may even hinder the interactions between nuclei. This growth

regime, in which the substrate surface is never completely covered by the deposit, is

called submonolayer deposition. In general, it requires the adatom surface diffusion rate,

Rd, to be lower than the deposition rate, R, as well the adatom diffusion rate for escaping

from the nuclei, Rn, to be insignificant in front of the latter (Rd > R, R ≫ Rn) [87]. The

relation between these parameters providing different film morphologies, the dynamical

scaling of the nuclei mean sizes at different covering levels and its relation with the nuclei

density have been the subject of numerous studies [88, 89].

Isolated stable nuclei are usually called islands. When nuclei remain isolated, growing

without significant interactions between them, the growth regime is known as island

growth. Islands can have porous or dense structures, with mainly flat horizontal or

non-flat three-dimensional adatom arrangements. Three-dimensional islands, formed by
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vertical multilayer stacks of two-dimensional islands, are frequently referred as mounds.

Examples of film morphologies obtained under island growth regimes are shown in

Figure 2.5.

Figure 2.5: Island growth under homoepitaxial deposition of platinum at different substrate tem-
peratures and deposition rates. After [90].

Coalescence and coarsening

If the small islands or mounds come into contact during its growth, they can form larger

clusters. This general agglomeration process corresponds to the coalescence stage of film

growth. Coalescence of nuclei reduces the surface area, hence the surface energy of the

deposit, as well as the nuclei density.

Continued deposition and coalescence results in the development of a connected net-

work of film structures with unfilled channels in between which eventually percolates

across the entire substrate. With further deposition and proper adatom mobility condi-

tions, the channels can fill in and shrink leaving isolated voids behind. Finally, even the

voids can fill in completely to form a continuous film structure.

The previous sequence of growth stages occurs during the early steps of deposition,

typically accounting for the first few hundred angstroms of film thickness. However, the

growth can continue with a further development of the film structures formed at those

early stages. For example, if the film surface is continuous, it tends to coarse with the

increasing film thickness, reducing the surface energy. Non-continuous morphologies,

such as columnar grained structures, can also evolve depending on growth conditions,

as will be discussed in Section 2.2.5.
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2.2.4 Interlayer barriers and epitaxy

Besides the processes found at the early stages of thin film formation, more advanced

growth stages in some systems exhibit other complexmechanismswhichmay prevent the

formation of a perfect crystalline and compact multilayer film even for growth regimes

with a high diffusion mobility. These mechanisms include the existence of increased

diffusion barriers at the edges of the flat layers forming crystalline film structures and the

mismatch between the crystal structure of the substrate and the natural crystal lattice of

the film material.

Schwoebel-Ehrlich barriers

Diffusion over flat, layered crystalline surfaces may be limited at interlayer steps by po-

tential barriers of increased depth known as Schwoebel-Ehrlich (S-E) barriers [91,92]. These

barriers can hinder adatommigration to a different layer at the edges of islands, either by

passing upward or downward from one layer to another. Figure 2.6 shows a scheme of

a simple microscopic interpretation of S-E barriers in a compact lattice of adatoms with

non-directional bonds: diffusion over the step of a one-adatom thick layer implies for

Figure 2.6: Representation of an interlayer step and the associated Schwoebel-Ehrlich barriers for
interlayer diffusion processes.

the migrating particle to overpass a position wherein its coordination is minimized and

its absolute distance to second nearest neighbors maximized, hence its surface energy is
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2.2 Mechanisms and kinetics in thin films grown by physical vapor deposition

higher at that transitory position than in any other stable or transitory position at the flat

surface of the upper or lower layers. Remarkably, upward migration also leads to a per-

manent reduction of the adatom coordination with respect to the corresponding to the

lower edge position. With this conditions, interlayer diffusion of adatoms at the upper or

lower edges of the step is less probable than resting at the same layer by being reflected

in the corresponding opposite direction.

Schwoebel-Ehrlich barriers have a strong dependence on the film material and general

statements about such processes are difficult to make. In some cases, surface steps are

relatively transparent to migrating adatoms, which can pass over the step in either up or

down directions without attaching or being reflected at the step edge. For other materi-

als, virtually every encounter of an adatom with the step edge results in attachment or

reflection. In other cases, adatoms easily overpass the steps upwards but not downwards

(Schwoebel barriers) or, conversely, only downward displacements are easily allowed

(Ehrlich barriers). In any case, the presence of a significant Schwoebel-Ehrlich barrier will

affect to the effective growth mode and the subsequent film morphology, leading to the

appearance of instabilities on the growing surface.

Epitaxy and texture

Epitaxy is the growth of a film with the same crystalline structure than the substrate,

which is usually amonocrystal [89,93,94]. There exists twomain types of epitaxial growth,

depending on the relation between the substrate and the depositedmaterials. Homoepitaxy

refers to the growth of a over a crystalline substrate of the same material, a technique

used to produce highly pure monocrystals and films with precise variations of desired

impurities, such as dopants in semiconductor films. On the other hand, heteroepitaxy is the

epitaxial growth of a film over a substrate of a different material. Heteroepitaxy is used

when no monocrystalline substrates of the same material of the film can be obtained as

well as when a film with alternate layers of different materials is desired. However, film

structures grown with heteroepitaxial methods can produce structures with mechanical

strains, speciallly when themismatch between the substrate and the film natural lattices is

high. Mechanical strains tend to relax by creating crystallographic defects or dislocations

[57]. Usually these effects are highly undesired for practical applications. In order

to minimize strains and defects, substrate materials with the minimum possible lattice

mismatch with respect to the film material are used.

Another relevant aspect related to the crystallographic structure of thin films is the

35



2 Thin solid films

(a) (b)

Figure 2.7: Main types of heteroepitaxy. (a) Heteroepitaxy with a strained lattice structure. (b)
Heteroepitaxy with a defect relaxed structure.

formation of polycrystals and the mechanisms of texture selection during growth [43]. In

general, the distribution of crystallographic orientations of themonocrystalline grains, or

crystallites, forming apolycrystallinematerial is called texture. Except for epitaxial growth

under low deposition rates and high diffusion regimes, thin films exhibit a polycrystalline

or amorphous structure. The polycrystalline case involves the formation of islands at the

early stages of thin film growth with different crystallographic orientations. During

coalescence, these crystallographic facets and orientations are frequently preserved in the

growing islands and at the interfaces between initially disoriented, coalesced particles.

Finally, islands become the crystallites forming the film, often with a columnar shape.

Crytallites may have a preferred orientation, forming an anisotropic texture, or have an

uniform distribution of orientations corresponding to an isotropic texture. Deposition

conditions are determinant for the resultant film texture, selecting different levels of

anisotropy. In some cases, different growthmechanisms, including epitaxy and activated

processes, lead to a competing selection of textures which may also depend on the stage

of the growth process. In general, grain growth processes in thin films are quite more

complex than in bulk materials.

2.2.5 Growth modes

In a previous section themost relevant physical mechanisms involved in thin film growth

have been reviewed. Under the influence of such mechanisms, different growth regimes

can be observed to produce diverse microscopic and mesoscopic film morphologies.

A very common categorization of microscopic growth modes for the early stages of

film formation is based on general considerations on surface energy [95]. In particular,
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(a) (b) (c)

Figure 2.8: Early growth regimes of vapor-deposited thin solid films and mesoscopic structures
developed at advanced growth stages. (a) The three growth regimes at the early stages
of thin film formation: Volmer-Weber (VW), Frank-Van der Merwe (FM) and Stranski-
Krastanov (SK). (b) Competitive columns developed under low and very low diffusion
regimes. (c) Non-competitive columns obtained under high surface diffusion regimes.

it compares the propensity of deposited particles to bond to the substrate or to other

surface film adatoms when a complete covering of the substrate has not been reached.

Obviuously, the preference for the substrate or surface of the deposit depends on themean

surface energy of the particle at each position. When the surface energy of adatoms is

lower at the substrate surface, the film grows under a flat layer-by-layer regime, called the

Frank–van derMerwe (FM) growth mode, which is the desired regime when an epitaxial

monocrystalline film is expected. Conversely, when the most energetically favorable

bonding is made with other film surface adatoms, three-dimensional well defined islands

grow until coalescence. This type of growth is commonly called the Volmer–Weber (VW)

growth mode. A combination of both FM and VW modes, called Stranski–Krastanov

(SK) mode, is also possible. In this case, the film material follows initially the layer-by-

layer growth regime. However, after a few crystalline flat monolayers of film material

are formed, subsequent deposited adatoms tend to gather into well-separated clusters

instead of keeping a planar growth. The occurrence of this mode is most likely observed

when the first few layers of film material are strongly strained by heteroepitaxial effects

from the substrate. This regime transition and its experimental control has attracted great

interest as a fabrication method of nanostructures [96]. The three early growthmodes are

schematized in Figure 2.8(a).

For long enough deposition processes, the growth regimes of the early stages and their

governing mechanisms give way to the development of structures with characteristic

morphologies at mesoscopic length scales. The selection of mesoscopic growth modes in
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physical vapor deposition is mainly controlled by means of the most influential exper-

imental deposition parameters: the substrate temperature, the deposition rate and the

deposition trajectories [97]. In particular, the substrate temperature is the main experi-

mental parameter influencing the mobility conditions of the deposited particles. At very

low substrate temperatures the mesoscopic morphology is formed by amorphous com-

peting grains with a nanometric conical shape and a rough growing surface. Figure 2.8(b)

shows a schemematic representation of this type of “growth-death” structures. At mod-

erate substrate temperatures instead, a structure of non-competing columnar grains is

obtained, as shown in Figure 2.8(c). For higher substrate temperatures films are formed

by more compact structures, with equiaxed crystallites or even with a fully compact

structure with a smooth surface. Remarkably, each growth mode produces a character-

istic morphology of the film surface. In the context of surface science, it is frequent to

distinguish between stable growth regimes, where the shape of the surface remains es-

sentially unchanged during growth, and unstable growth regimes, for which the surface

experiences a significant evolution. According to this criterion, growth regimes with low

and moderate diffusion lengths correspond to the unstable growth of rough or columnar

surfaces [98], the latter being strongly affected by the existence and nature of Schwoebel-

Ehrlich barriers. On the other hand, the high diffusion regimes which give way to smooth

surfaces correspond to a stable growth.

Probably the most surprising characteristic of thin film mesoscopic morphologies

grown by vapor deposition is the universality of their structural properties. Next sec-

tion provides a more detailed review of the typical mesoscopic morphologies and a brief

insight into their universal properties.

2.3 Universal properties: mesoscopic morphologies and surface

scaling

The basic properties of thin films, such as composition, crystal phase and orientation, film

thickness and, in general, film morphologies at different length scales, are determined by

the deposited materials and the conditions of deposition. Consequently, the same occurs

with derived characteristics of high technological interest like the optical, electrical or

mechanical properties of thefilm. Inparticular, there is an enormousvariety ofmesoscopic

morphologies of films formed by deposition from vapors. The final structures can be

highly perfect monocrystals with a flat surface, polycrystalline films with equiaxed or
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columnar grains or largely amorphous films with an increasingly rough surface.

The early studies of the 1960s on mesoscopic structures of thin films grown from vapor

deposition showed that the same characteristic morphologies appear in most experimen-

tal cases with a main dependence on reduced deposition parameters rather than on the

particularities of the film materials. The universality of these morphologies has proven

to be quite robust: for instance, the columnar morphology obtained under limited dif-

fusion conditions is persistent over six orders of magnitude in film thickness [99]. This

observation inspired the development of a qualitative classification of film morphologies

in what is known as a Structure Zone model (SZM).

A specific aspect of thin films structure, themorphology of their surface, has been inten-

sively studiedwithin the context of interface growth processes, using the dynamic scaling

framework to characterize the kinetic roughening of the surface and a non-equilibrium

phase transition between rough and columnar interfaces. In this context, the universal-

ity of the dynamical behavior of the growing film surfaces has been for many years a

permanent central topic, in spite of which it still lack a fully satisfactory explanation.

2.3.1 Universal mesoscopic morphologies: Structure Zone Models

In 1969, Movchan and Demchishin combined the previous partial studies on thin film

morphologies and gave rise to the first qualitative Structure Zone model [48]. The model

identifies different characteristic filmmorphologies as a function of the substrate temper-

ature, T, expressed as a fraction of the melting temperature of the film material, Tm. This

reduced temperature, T/Tm, has a weak dependence on the nature of the film material.

Themodel distinguished three structure zones, corresponding to the growth of filmswith

a rough surface (Zone I), with a columnar structure (Zone II) and with a smooth surface

(Zone III). In the 1970s, Thornton introduced another structure zone between Zones I and

II, called transition zone or Zone T, which is observed in sputtering processes [49,50,100].

A graphical scheme of the extended SZM fromThornton is shown in Figure 2.9. In the fol-

lowing years, more structure zones were added to the orginal model to take into account

diverse deposition parameters, and their relationships to the underlying growth mech-

anisms were studied: for instance, Messier identified an additional transition zone, the

Zone M, in sputtering processes with low-energy bombardement and studied the mor-

phology and growth mechanisms of the competing columns of Zone I [58, 101]. Other

authors studied the effects of parameters such as the presence of impurities [59], the ion

irradiation during deposition [102] or the biaxial deposition [61]. The current knowl-
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Figure 2.9: Thornton’s Structure Zone Model of thin solid films growth. After [100].

edge of the three main structure zones, defined in the original and simplest model from

Movchan and Demchishin, can be summarized as follows:

• Zone I: for low substrate temperatures (typically T/Tm < 0.2–0.3), the diffusion

length is lower than the natural lattice spacing, hence practically has insignificant

effects. Under these conditions the growth is dominated by the deposition mech-

anisms. As a result, a porous and often amorphous film structure of competing

cone-shaped grains with 10–20 nm in diameter and fractal properties is obtained.

The surface is rough, with a “cauliflower-like” aspect. The surface roughness in-

creaseswith the film thickness, leading to a self-simmilarity observed for up to three

orders of magnitude in magnification [99,101]. Surface roughness is a consequence

of the disordered growth lead by the experimental fluctuations in deposition rates

and distribution of trajectories, in the absence of the opposite ordering effect of

diffusion.

• Zone II: at moderate substrate temperatures (0.2–0.3 < T/Tm < 0.4–0.5) surface

diffusion is significant and leads to the formation of compact clusters or islands at the

early stages of growth. The characteristic size of the clusters is of the same order of

the diffusion length. Two-dimensional islands grow on top of other islands to form

vertical columnar grains, usually crystalline, separated by tight boundaries. The

characteristic diameter of these columns increases with the reduced temperature as
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a result of the competing interplay between the random deposition and the surface

diffusion. The top of crystalline columns may be faceted.

• Zone III: at high substrate temperatures (T/Tm > 0.5) the bulk diffusion becomes

significant and leads to the formation of equiaxed crystallites with a size of the same

order of the film thickness. The surface is smooth except for the grain insterstitial

grooves. Depending on the deposition conditions, epitaxial effects and texture

selection may be significant.

The specified temperature limits may increase with the deposition rate, R, and may be

lower when the surface diffusion is favored by sputtering or other kinetic enhancement

methods.

The technological relevance of SZM is evident, since every specific application for thin

films will have a particular optimum morphology. For instance, the Zone I structures

are appropiate for applications which benefit from film porosity, such as gas detectors,

catalytic or light absorbing systems. On the other hand, they are inappropiate whenever

a high electrical resistance, optical scatterings or electrical leakages are undesired.

As many of the modeling approaches developed for the characterization of thin films

growth, the different SZM and their essentially universal nature have been mostly estab-

lished from studies of metallic and metallic compound films. However, recent experi-

mental studies suggest that this universal behavior can be found also in thin films grown

from non metallic materials [103, 104], enhancing the interest of SZM as an ubiquitous

description tool.

Unfortunately, the accurate application of the different SZM to experimental processes

is limited by some practical difficulties. In particular, the actual zones are sometimes hard

to identify experimentally because most observations are limited to the surface morphol-

ogy and, from a theoretical point of view, there is not yet a defined structural parameter

unambiguously used among authors to characterize the non-equilibrium transitions be-

tween zones, which tend to be quite smooth, when the properties of the whole film

structure—and not just the surface— are considered. However, SZM are tools frequently

referenced in theoretical and experimental studies and the universal properties they de-

scribe are relevant for most modeling approaches, particularly as a way to link models

and universal experimental properties.
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2.3.2 Surface roughening and dynamic scaling

The preferred approach to study the increasing roughness experienced by thin film sur-

faces during their growth by vapor deposition under low diffusion regimes is, since its

introduction in 1985 by Family and Vicsek [105], the dynamic scaling framework. This

approach assumes the existence of simple scaling relations between certain characteris-

tic parameters of the surface that exhibit a limited set of distinct power law dependences

with the system size. As pointed in Section 1.2.1, the value of a power law exponent

defines a universality class to which all the power law functions with such exponent be-

long. In this case, the power law behavior is suposed to be determined by the dynamical

mechanisms of growth. Hence, different growth processes governed by the same dynam-

ical mechanisms are expected to show the same power law dependencewith system size,

belonging to a unique universality class of growth. Conversely, similar growth systems

with different underlying dynamical mechanisms are expected to show strong differences

in their scaling behavior. Moreover, when the approach was introduced, the number of

distinct universality classes found in nature was expected to be small.

The most usual parameter for the scaling analysis of the dynamical evolution of thin

film surfaces is some measure of the interface thickness, also called surface width or surface

roughness. By definition, such parameter would characterize the distance between the

highest and the lowest point in the surface and, eventually, the heights distribution. In

general, surface heights are measured with respect to a plane perpendicular to the direc-

tion of growth —usually the substrate plane. Often, the interface roughness parameter,

W(L, t), is taken as the root mean squared deviation of the surface heights with respect

to their mean value:

W(L, t) =
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where h(ri , t) is the height of the surface at the point ri of the reference plane in a given

time t and L is the characteristic film width, i.e., the characteristic lateral size of the film.

During the initial stages of film growth, W(L, t) shows a power law dependence with

time:

W(L, t) ∼ tβ (t≪ tx), (2.4)

where β is the growth exponent, which characterizes the time evolution of the surface

roughness, and tx is the crossover time or saturation time. After tx, W(L, t) reaches a
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saturation value, W(L), which depends on the system size as

W(L, t) ∼W(L) ∼ Lα (t≫ tx), (2.5)

where α is the roughness exponent. It characterizes the spatial correlations of the surface

profile before saturation. The saturation time shows a dependence with the film width

too:

tx ∼ Lz (2.6)

where z is the dynamic exponent. This dependence relations with the sistem size identify

the saturation of the interface thickness as a finite size effect.

According to the Family–Vicsek hypothesis, the exponents α, β and z are not indepen-

dent. Since the following scaling relation is assumed

W(L, t) ∼ Lα f
(

t

Lz

)

, (2.7)

the exponents are related according to

z =
α

β
. (2.8)

This scaling relation allows the collapse of theW(L, t) curves obtained for different system

sizes when rescaled with their respective saturation values. Such collapse evidences the

essential equivalence of the curves.

The finite size saturation of the surface thickness is a consequence of the existence

of correlations of surface heights at different points. In particular, under low surface

diffusion regimes, the height of a given adatom of the film surface tends to be similar to

the heights of their close neighbors in the surface. Estimations of the lateral correlation

length —parallel to the reference plane— for surface height pairs, ξ||, obtained from

height-height correlation functions provide a measure of such similarity. This parameter

shows a defined time evolution analogous to the surface thickness: before the saturation

time is reached, ξ|| grows as

ξ|| ∼ t1/z (t≪ tx). (2.9)

Therefore, thedynamic exponent characterizes the coarseningprocess of the rough surface

morphology before saturation. The saturation time corresponds to the instant at which

ξ|| reaches the system size and, consequently, can not grow further:

ξ|| ∼ L (t≫ tx). (2.10)
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The scaling exponents α, β and z can also be obtained from height-height correlation

functions [6, 15].

The scaling analysis and the identificationof a limited set ofdifferent universality classes

has been successfully applied to many non-equilibrium theoretical models of growth

[16, 106–108]. Its application has included the characterization as non-equilibrium phase

transitions of the different growth regimes and film morphologies obtained by varying

the adatom mobility conditions [109–111]. However, there are some serious issues in the

application of this approach to experimental systems. First, accurate experimtalmeasures

of the surface profile are hard to obtain since most observation techniques only provide

a single-valued profile of the exposed interface, ignoring surface regions shadowed by

overhangs [43]. On the other hand, in many experimental systems various transient

regimes can be observed, with associated crossovers between different scaling behaviors.

As a consequence, it can be difficult to identify the actual growth regime at a given

instant. In addition, some technological applications may require film thicknesses below

those needed to reach the final transient or saturation regimes predicted by theoretical

models, whereas realistic numerical simulations of growth up to actual experimental film

dimensions are in most cases computationally very expensive. This type of finite time

issues are ubiquitous in studies of non-equilibrium systems. Finally, there is a growing

opinion among authors which suggests that the assumptions implied by the current

scaling analysis framework, including the existence of a reduced number of universality

classes, are too simplistic and further insights into the leadingmechanisms for the interface

behavior are required in order to develop a more accurate framework [112, 113].

2.4 Simulation methods and models

In general, growth modeling is a challenging topic present in many science fields [6, 15].

Whenever possible, growth problems are reduced to studying the stable patterns and the

dynamical evolution of the interface which defines the boundaries of each growing entity.

This abstraction simplifies the modeling task, allowing the use of approaches and tools

from surface science to problems as diverse as the fire-front propagation in a forest, the

growth of a cancer tumour or the growth of a thin solid film. However, the understanding

of thewide variety ofmechanisms and scales involved in thin film growthprocesses, from

the microscopic mechanisms and the early stages of growth to the formation of defined

mesoscopic structures, requires many different modeling approaches.
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The first studies on growth of crystalline thin films adopted different approaches for

the modeling of systems with stable [114] and unstable [115] surfaces. Using strong sim-

plifications for the underlying physical mechanisms, stable growth was initially studied

using very simple discrete or atomistic simulation models. On the other hand, the limited

knowledge of the physical mechanisms which lead to the instabilities of rough film sur-

faces forced the adoption of analyticalmodels of unstable interface growth. The increasing

understanding of the physical mechanisms involved, led by the progress in experimental

methods and the subsequent refinements of the theoreticalmodels, has provided in recent

years an accurate picture of both stable and unstable thin film growth modes, bridging

the initial gap between the atomistic and the analitycal modeling approaches.

In next sections some keymodels for thin film growth by physical vapor depositionwill

be briefly reviewed, with a special attention to those more closely related to the approach

used in the study presented in Chapter 3.

2.4.1 Atomistic simulation approaches

Atomistic simulations are often associated to the application of realistic molecular dy-

namics to atomic and molecular systems. However, coarse-grained atomistic models

based on simple dynamics or stochastic approximations are also useful or even required

in many cases to overcome the limitations imposed by the computational costs of realistic

dynamics, as occurs for the study of thin films growth at mesoscopic scales.

Simulations based on first principles or realistic classical dynamics within studies on

thin films growth are restricted to the calculation of pseudo-empirical potentials or the

determination of the relevant microscopic mechanisms involved in the growth process

and their statistical rates, which can be incorporated to coarse-grained models [116, 117].

Common ingredients of stochastic atomistic models

Most coarse-grained atomistic models assume very crude approximations to the dy-

namics and growth mechanisms. For instance, molecular dynamics has been applied to

coarse-grained growthmodels based on simple interaction potentials and, frequently, low

dimensional systems [118–121]. But probably the most common approaches to study the

advanced stages of growth and their corresponding mesoscopic morphologies are based

on the stochastic treatment of growth dynamics, originally via equilibrium Monte Carlo

techniques or through non-equilibrium Kinetic Monte Carlo methods in recent years. Of-

ten, stochastic models also include other crude approximations, such as the simulation
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of film growth in (1+1) dimensions5, i.e., a low dimensional representation of the film

structure, or the space discretization in simple fixed lattices as a simple representation

of the crystalline structure of deposited materials. On top of these geometry simplifi-

cations, more or less simple growth rules can be defined, including the selection of the

succesive locations for the discrete growth process led by adsorption of new adatoms

—or for the converse process of adatom desorption— and the rules for the thermally ac-

tivated adatom diffusion processes. Remarkably, the term “rule” indicates the discrete

nature of the stochastic representation of growth dynamics. Indeed, in many cases only

a limited set of the suposedly most significant dynamic processes are represented in the

model. In somemodels for unstable growth, a further simplification is adopted by replac-

ing any explicit representation of adatom diffusion processes after adsorption by different

relaxation rules during the adsorption process itself.

Some key models

The origin of the basic ideas applied in stochastic simulation models for thin films growth

is found in the lattice gas model [122] —a extremely simple atomistic representation of

densityfluctuations and nucleation for gas-solid phase transitions—and their subsequent

development can be placedwithin the context of elementary paradigmatic growthmodels

from Surface Science, such as the Eden model —originally, a two-dimensional model for

the growth of bacterial colonies [123]— or the Diffusion Limited Aggregation (DLA)

model —a representation of growth from aggregation of particles which follow random

walk trajectories [124].

Among the simplest models for growth from processes of particle deposition over a

substratewithout diffusion there is theRandomDeposition (RD)model—an independent

growth of vertical columns which leads to a fully uncorrelated surface [15, 114]— and its

variations, including models with modified geometries [15, 125] and the broad family of

solid-on-solid (SOS) models, which introduce surface correlations in the RD scheme by

imposing adsorption restrictions and may include relaxation mechanisms [15, 108, 126,

127]. The main interest of these models resides on the scaling behavior of the surface,

which in some cases can be exactly determined through analytical calculations.

5Within the context of thin films studies, the dimensionality of the system is usually indicated by specifying
separately the lateral dimensions—typically, the dimensionality of the substrate—and the vertical dimen-
sion, which essentially represents the direction of growth. Therefore, a two-dimensional film structure
has a one-dimensional substrate and is noted as a (1+1)-dimensional system,whereas a three-dimensional
film structure grows on top of a two-dimensinal substrate and is referred as a (2+1)-dimensional system.

46



2.4 Simulation methods and models

Ballistic Deposition (BD) is a slightly more complex atomistic model of growth and

one of the most widely used in thin film modelling. It was originally introduced in

1959 for the study of porous structures formed by colloidal aggregates [128, 129]. The

model consists on the deposition of particles onto the surface of the aggregate by following

straight trajectories fromdistant randompositions. Once theparticle reaches the surface, it

adsorbs into the contact point or, if the space has been discretized, into a close unoccupied

lattice site. Consequently, the model is able to simulate porous structures and surface

self-shadowing effects, displaying characteristic surface scaling properties.

In the 1970s, the interesting surface behavior displayed by BD—arguably associated to

a mechanism also present in thin films growth: the surface self-shadowing— attracted

the interest for its application to the study of such experimental systems. The pioneering

off-lattice hard-sphere model of Henderson and co-workers, presented in 1974 for the

modelling of amorphous thin films [52], led to the extensive application of BD simulations

in thin film growth studies.

Soon afterHenderson’swork,simple BDmodelswithout adatomdiffusionmechanisms

began to be widely used for the modeling of the kinetic roughening and fractal-like

structures shown by the surfaces of the Zone I thin film morpholgies, corresponding to

the growth from PVDprocesses under low adatommobility conditions [101,105,130,131],

aswell as for the study of the effects ledby the incidence angle of thedeposition trajectories

[53, 71, 132].

More interestingly, BD can be combinedwith surface diffusionmodels in order to study

the interplay between the randomdeposition, the surface self-shadowing and the adatom

mobility mechanisms, which determines the emergence of Zone II growth regimes and

the characteristics of their corresponding morphologies.

In general, elementary surface diffusion mechanisms can be introduced in simpler

growth schemes, such as in SOSmodels [114], for the simulation of layer-by-layer growth

of crystalline films. However, BD models allow both elementary and more refined ap-

proaches to diffusionmechanisms if needed. In 1983, Outlaw and Heinbockel introduced

the realistic approach of rescaling the diffusion barriers according to the local micro-

scopic configuration [133]. Most current simple approximations for surface diffusion in

BD models include Arrhenius-like diffusion rates, such as Equation (2.1), with energy

barriers depending on the coordination number of the migrating particle. In 1985 Müller

refined the Outlaw–Heinbockel scheme by incorporating an empirical estimation for the

diffusion rates of a specificmaterial which implicitely takes into account not only the local
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microstructure but the enhancement of diffusion mechanisms with the increasing sub-

strate temperature. This scheme successfully represented the evolution from Zone I to

Zone II morphologies led by temperature, in very good agreement with the experimental

observations which led to the first SZM.

Amorphous films are usually simulated through the ballistic deposition of hard discs or

spheres without any bonding symmetry in a fully off-lattice scheme, whereas monocrys-

talline films are easily represented by simple lattice schemes. The simulation of poly-

crystalline films, texture competition and complex epitaxial effects requires instead more

sophisticated techniques and so far there exists very few approaches to this issue. Gilmer,

Huang and co-workers developed a BD multilattice scheme which seems the most suc-

cessful technique to date [134,135]. Anothermodel based on a local definition of bonding

symmetries with variable orientation has been applied, due to its complexity, just to a

SOS scheme [136].

Altogether, current development of atomistic simple models based on stochastic dy-

namics can be considered rather successful in the theoretical study of surface scaling

behavior [15,16], themechanisms at the early stages of growth [137,138] and the character-

ization of themesoscopicmorphologies formed under extreme growth regimes [122,139],

either for the relatively high diffusion rates which lead to the growth of monocrystalline

films as well as for rough approximations to amorpous films formed under very low

adatom mobility conditions. In fact, extreme conditions facilitate an adequate tradeoff

between accuracy and simplifications of the different ingredients needed in this type of

simulation models.

On the other hand, the incorporation of some aspects of film growth, including those

needed for the adequate representation of intermediate growth conditions andmore com-

plex bonding symmetries associated to novel filmmaterials, have been so far disregarded

due to presumably difficulties in its efficient implementation or by the limited availabil-

ity of related experimental studies led by their novelty as interesting topics with potential

technologial applications.

2.4.2 Scaling behavior and analytical approaches

Parallel to the development of atomistic simulation models, great efforts have been de-

voted to obtain analytical models for the characterization of the surface behavior during

growth and its connection to atomistic simulation models and experimental observa-

tions. In particular the dynamic scaling hypothesis, with their assumedly limited number
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of distinct universality classes, represented a great stimulus to establish a representative

analytical model for each known universality class determined from experiments and/or

atomistic simulation models.

Most analytical models of surface growth are based on stochastic differential equations,

or Langevin equations, for the single-valued surface heights, h(r, t). For instance, the

surface behavior of the RDmodel can be easily described by a simple Langevin equation:

∂h(r, t)/∂t = R + η. Their only two terms correspond to the constant mean deposition

rate, R, and to a noise term, η, which represents the random distribution of deposition

trajectories.

Anothermore complex, but still linear equation is the Edwards–Wilkinson (EW)model

[140], which reproduces the surface scaling behavior of the RD with a steepest descent

relaxation of the newcoming particles. The EW equation replaces the constant mean

deposition rate with a relaxation term, ν ∇2h, acting as the effect of a surface tension, ν,

which tends to smooth the surface profile.

But probably the most widely applied and studied analytical model in the context of

thin solid films is the Kardar–Parisi–Zhang (KPZ) equation [141]. The KPZ is obtained

from the EW equation by adding a non-linear term, (λ/2)(∇h)2, which represents the

lateral growth of the interface. Consequently, the KPZ equation reads:

∂h(r, t)
∂t

= ν ∇2h+
λ

2
(∇h)2 + η(r, t). (2.11)

The main success of the KPZ equation is to reproduce the scaling behavior of the BD

model, including different SOS deposition models [130, 142, 143]. Atomistic simulations

in (1+1)-dimensions with suchmodel provided accurate values for the scaling exponents:

α = 0.47± 0.02 and β = 0.33 ± 0.01 [130, 131]. An elaborated scaling analysis for the KPZ

equation leads to α = 1/2, β = 1/3 [15], evidencing the correspondence between both

types of models.

The effects of surface diffusion can also be modeled by the derivation of Langevin

equations from a master equation for the dynamics [6, 144, 145].

However, as already pointed in Section 2.3.2, the increasingly available experimental

evidences on thin films surface behavior have proven to be more complex than the

predictions of the atomistic and analytic models, showing the existence of many different

“anomalous” scalings which do not fit to the theoretical models. For this reason, there is

an increasing adoption of phenomenological approaches based on refined fittings of the

equations to the experimental parameters, dropping the search for universal properties
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to a latter step [113].
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3 Mesoscopic morpholgy transitions in thin
solid films: effects of microstructure

coordination

After several decades of intensive experimental and theoretical research on thin solid

films growth and its applications, there exists a deep understanding on many of the

leading mechanisms and related properties of such systems. But the picture is far from

being complete: each improvement on experimental processingmethods ormeasurement

techniques opens new perpectives and theoretical challenges.

For many years the main research efforts have been focused on the accurate modeling

and processing of highly crystalline metal and semiconductor films due to the enormous

expansion and economic weight of the microelectronics industry. The microstructural

properties inherent to metallic crystals allowed the use of modeling approaches with

strong simplifications and assumptions which are unlikely for other systems, even under

coarse-grained qualitative approaches. The increasing interest in new and very different

technological applications based on thin films made from metallic oxides, rare-earths or

organic compounds is pushing theoretical modeling towards a revision of past assump-

tions in order to adapt the current modeling tools to such new systems. Moreover, the

tremendous increase in available computing power experienced since the early theoreti-

cal studies on thin film growth brings an opportunity to incorporate new necessary and

eventually more complex ingredients into the old simpler simulation models.

In particular, the traditional approaches used in minimal atomistic simulation models

for the studyof filmmorphologies atmesoscopic scales include non-directional bonds and

in-lattice or randomly disordered particle arrangements for crystalline and amorphous

film structures, respectively, which are approximately correct assumptions for materi-

als with microstructures mainly formed by metalic or ionic bonds. These simplifications

allow the use of simple lattices or fully off-lattice schemes in the computer implementa-

tions of such models. However, covalent or intermolecular bonding based materials are

expected to exhibit distinct structural behaviors due to the directionality and eventually
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limited maximum coordination of these bonding types.

Having the main research efforts focused on metalic crystals, there has been also a

certain disregard for the studyof thin filmbulk properties1. The theoretical studies onfilm

morphologies have been performed mainly from the perspective of the surface structure

and its dynamical evolution during growth. However, important film properties such as

the mechanical resistance and the thermal or the electrical conductivities are determined

not only by the film surface but also by the underlying structure. Therefore, different

theoretical studies on film bulk properties, including those based on minimal simulation

models, are becoming more frequent in recent years [146–148].

This chapter presents a theoretical study intended to address some basic questions on

the minimal modeling of non-metallic amorphous and polycrystalline thin films grown

by physical vapor deposition under simple experimental conditions. The study has been

performed from a modeling approach that establishes a tradeoff between a perspective

as much generic as possible and the capability to reproduce the essential experimental

properties summarized by the simplest Structure Zone model. Specifically, two main

points have been addressed in the study:

i) The first point concerns how to efficiently incorporate more complex bonding sym-

metries and coordination constrains into a mesoscopic simulation model, as a first

step towards the adequate simulation of the surface and bulk properties of crys-

talline and non-crystalline films formed by diverse metallic and non-metallic mate-

rials with mesoscopic dimensions, which is the case of many thin films processed

for different technological applications.

ii) The second point addresses how these new type of modeling constrains would

affect to the different mesoscopic morphologies led by distinct adatom mobility

conditions, as described by the simplest Structure Zone Model, from the novel

perspective of their bulk properties.

The presentation of the study begins in the next Section with the introduction of the

chosen mesoscopic growth model, the new generic approach for definition of arbitrary

bonding symmetries and the details of the corresponding computational implementation,

1In the context of thin solid films, the term “bulk” should be understood as the region below the growing
surface. Under limited adatom mobility growth regimes, this region is usually considered as a “frozen”
structure. Since the structures of thin films grown by physical vapor deposition are the result of particular
non-equilibrium growth processes, the bulk properties of a thin film have not necessarily to be the same
than the corresponding to the true macroscopic bulk material.
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specially developed for this study. Section 3.2 introduces the specific conditions used in

the simulations and presents the results obtained for (1+1)-dimensional systems,whereas

the results corresponding to the (2+1)-dimensional cases are described in Section 3.3.

Finally, Section 3.4 is devoted to summarize the main conclusions of the study.

3.1 A generic mesoscopic model of thin solid films grown by

physical vapor deposition

The simulation model developed in this study includes many of the common character-

istics of previous atomistic minimal models for the growth of thin films from physical

vapor deposition under limited adatom mobility conditions: it includes explicit ballistic

deposition trajectories and surface self-shadowing, off-lattice particle locations and ther-

mally activated surface diffusion of adatoms. However, it includes a novel scheme for

the definition of the bonding symmetries which provides, at the cost of an increased com-

plexity of its computational implementation, the combined features of previous simpler

models without losing the ability to simulate mesoscopic scale structures in reasonable

computing times. The main advantage of the scheme consists of its flexibility, either

to easily simulate different (1+1) and (2+1)-dimensional bonding symmetries within the

same framework and to reproduce related complex effects, such as texture competition

and epitaxy. Even (1+1)-dimensional microstructures have an evident computational ad-

vantage over the more costly (2+1)-dimensional ones, the simulation of both types of

microstuctures is justified by the abstract perspective of the study: a growth model with

such characteristics is not only interesting for being applied to thin films growth but has

also an intrinsic interest as a generic non-equilibrium growth model for which its de-

pendence with the dimensionality should be understood. A detailed description of the

model is provided in the following sections.

3.1.1 Particle deposition and microstructure definition

In themodel the growth units or adatoms are represented as hard disks of radius awhose

centersmay be located at anyposition in the continuous space. Theseunits are ballistically

deposited on a substrate with lateral periodic boundary conditions at a mean rate R. The

ballistic trajectories are taken to be normal to the substrate, which is initially configured as

a flat monolayer of fixed adatoms with given arrangement. Bonds between adatoms are

restricted to nearest neighbors. On making the first contact, either with the adatoms on
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the film surface or directly with the substrate, the incoming particles are instantaneously

relocated to the closest available site defined in the microstructure considered.

In order to define different bonding symmetries a set of relative positions, the so-

called active positions, is defined locally around each particle of the film as the possible

locations at which other film particles can bond, instead of locating the adatoms on a

fixed lattice or completely off-lattice, with no local microstructure restrictions, as is usual

in previous models. In other words, bonding sites for first nearest neighbors are not

fixed with respect to the substrate frame but are localized around the exposed adatoms.

This local definition of the microstructure provides a simple representation of some non-

crystalline structural featureswhich can not be reproduced in simple lattice schemes, such

as substrate latticemismatches anddislocations. Moreover, it is possible todefine complex

microstructures formed by a superpositionof diverse and evenmutually exclusive simple

symmetries. For instance, it is possible to define combined microstructures composed by

different rotations of the same simple symmetry. This composition can be understood as

an extremely simplified discrete representation of the orientational degree of freedom of

adatomswith a significant bonding directionality. Such type of combinedmicrostructures

constitute also an alternative approach, arguablymore realistic, to themultilattice scheme

introduced by Huang and Gilmer for the simulation of texture competition during thin

film growth [134,135,149,150]. Less realistic combinations of distinct simple symmetries

with different maximum coordination numbers can also be defined in order to study from

an abstract perspective the behavior of such microstructural parameter.

Figures 3.1 and 3.2 show respectively the different (1+1) and (2+1)-dimensional mi-

crostructures used in this study. For the (1+1)-dimensional case four different microstruc-

ture combinations have been used: the purely square (sq) and the purely hexagonal (hex)

lattices, with respectively a maximum coordination number of 4 and 6, the hexagonal-

square (hex-sq) microstructure –formed by the superposition of the previous ones as a

two-dimensional projection of the three-dimensional face-centered cubic lattice– and the

square-square (sq-sq) microstructure obtained by the superposition of two purely square

lattices, one horizontal as the substrate and the other one tilted 45°. As shown in Figure 3.1,

both compositemicrostructures, hex-sq and sq-sq, havemutually exclusive active positions

that lead to a maximum coordination number of 6 and 4, respectively, and can produce

nonregular arrangements of particles with interesting features such as shadowing of ac-

tive positions by close off-site adatoms and lattice frustration. For the (2+1)-dimensional

case, two microstructures were considered: a close-packed hexagonal lattice (3d-hex),
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having a maximum coordination number of 12, and a superposition of three pure sim-

ple cubic lattices (3d-cs), one following the x-y-z axis plus another two rotated 45° around

the x axis and y axis, respectively. The latter combined microstructure has also mutually

exclusive positions and a maximum coordination number of 6.

In both the (1+1) and (2+1)-dimensional cases, the available sites to accomodate the

incoming particles from their first contact position with the film surface are the active

positions of the surrounding surface adatoms which are unoccupied and non-shadowed

—neither by neighbors bonded to the owner of the active position nor by close non-

bonded particles. After a new surface adatom is accommodated, bondswith their nearest

neighbours are established according to the definedmicrostructure and the corresponding

new unoccupied active positions are created around it.

3.1.2 Surface diffusion

In order to simulate the thermally activated diffusion of the surface adatoms during the

film growth the kinetic Monte Carlo method (kMC), introduced in Section 1.3.2, has

been applied. This method evaluates the transition probabilities between states of a

system governed by a set of stochastic events with a given mean rate. In the case of

thin film growth, at each kMC step the events are composed of the deposition of a new

particle with a constant mean rate R, and all the possible diffusive hops of the surface

(a) (b) (c) (d)

Figure 3.1: The four (1+1)-dimensional microstructures used in this study, with their active posi-
tions labeled. (a) Simple square lattice (sq); the adatom is buried when active position
2 is occupied. (b) Simple hexagonal lattice (hex); the particle is buried when positions 2
and/or 3 are occupied. (c) Double square lattice (sq-sq), with mutually exclusive active
positions; the particle is buried when positions 2, 3 and/or 4 are occupied. (d) Combi-
nation of the square and hexagonal lattices (hex-sq)—a two-dimensional projection of a
three-dimensional fcc lattice— also with mutually exclusive active positions; a particle
is buried when positions 2, 3 and/or 4 are occupied.
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(a) (b)

Figure 3.2: The two (2+1)-dimensional chosen microstructures, with their active positions drawn
as small conected spheres. (a) Superposition of three cubic simple latticeswith different
orientations; its maximum coordination number is 6. (b) A close packed hexagonal
lattice, with a maximum coordination number 12.

particles, whosemean rates themselves obey an Arrhenius-type generic relation given by

Eq. (2.1). In particular, the activation energy Ed for a diffusion hop between two given

positions labeled as i and j would depend on the local surface configuration. A very

rough estimation of Ed consists on simply taking the coordination number of the adatom

at its origin position, ni, multiplied by the single bond potential, φ:

Ri→ j = ν e−ni φ/kB T. (3.1)

Moreover, the coarsest estimations take the frequency of the thermal fluctuations, ν, as

a constant independent from the temperature. When applied to the simple diffusion

rules commonly used in mesoscopic simulation models, however, these estimations are

known to be incorrect, especially for relatively high temperatures, i.e., for temperatures

approaching to one half of the material melting point, Tm. As already pointed in Sec-

tion 2.2.2, accesible diffusion mechanisms become more numerous and complex as the

temperature increases. In particular, an estimation such as Eq. (3.1) for the rates of sim-

ple diffusion mechanisms tends to produce unrealistically smooth transitions between

the Zone I and Zone II mesoscopic morphologies. On the other hand, a direct atomistic

representation of the many diffusion mechanisms activated at high temperatures would

make any computational model impractical for mesoscopic simulations. An affordable

solution to these issues consists on keeping the simple diffusion rules whereas empirical

estimations of the dependence with temperature of the activation energies and the ther-
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mal fluctuations are applied. Obviously, this empirical approach applies at the cost of

losing almost any generality in the model parameters, i.e., it forces to select very specific

system conditions in order to obtain accurate results.

According to the previous considerations, a model with a known accurate empirical

estimation of the surface diffusion rates has been selected as a comparative reference for

this study: the estimates of K.-H. Müller for Nickel vapor deposited thin films [151, 152].

Müller’smodelwas found to reproduceparticularlywell the experimental transitionpoint

between Zone I and Zone II morphologies [151] and has been used since its introduction

by different authors [109, 153–156].

Müller’s model assumes temperature-dependent thermal fluctuations with frequency

ν = 2 kBT/h, (3.2)

where h is the Planck’s constant. Therefore, the characteristic mean rate for each possible

hop between two given surface positions i and j is:

Ri→ j = ν e−Ei→ j/kBT, (3.3)

where Ei→ j is the activation energy barrier for that particular hop. Müller estimated

these barriers heights in terms of the number of bonded neighbours at the origin and

destination positions (respectively Ni and N j) as

Ei→ j =















Q, Ni ≤ N j

Q+ (N j −Ni)φ, Ni > N j

(3.4)

whereφ is the bonding potential andQ is the surface diffusion activation energy, which is

given as a function of the substrate temperature, T, and the melting point of the material,

Tm, by the empirical expression of Neumann and Hirchswald [157]:

Q =
(

5+
20
3

T

Tm

)

kBTm, (T < 0.5Tm). (3.5)

At each simulation step the list of the rates for the M possible dynamical events of the

system —the mean rates of the M− 1 possible diffusion hops given by Eq. (3.3) and the

mean deposition rate R— is composed. The diffusion events are restricted to the displace-

ment of surface adatoms to neither occupied nor shadowed active positions foundwithin

a given distance range from the current position of the migrating adatom. For all the cho-

sen microstructures, except the sq, that single-event diffusion range has been limited to a
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distance of one adatomdiameter, i.e., to first nearest neighbors positions. Despite this lim-

itation, the density of active positions in the hex, sq-sq and hex-sqmicrostructures provides

enough diffusion trajectories to allow the formation at high temperatures of crystalline

structures from a random deposition process. However, in the case of the sq microstruc-

ture the hop range must be increased to second nearest neighbors positions in order to

obtain the same behavior. Adatoms are considered to belong to the surface when they are

not “buried” by the presence of bonded neighbors in their top active positions, as indi-

cated in Figure 3.1 for the (1+1)-dimensional microstructures. In this general scheme for a

very simplified representation of surface diffusion no explicit Schwoebel-Ehrlich barriers

have been considered.

Once the list with all the event rates is composed the kMC algorithm, represented by

Equations (1.3) to (1.5), is applied using some appropiate optimization techniques.

3.1.3 Algorithm optimizations

The kMC algorithm can be considered a very efficient stochastic method since it does not

requires unsuccessful attempts in any step. It is also an essentially sequential algorithm

which hardly obtains any significant benefit from computing parallelization, despite the

diverse efforts made with that purpose [158–160]. In most pratical cases, kMC optimiza-

tions are focused instead on the searching through the collection of event rates and its

update after every featured event.

Due to the complexity introduced by the local definition of bonding symmetries and the

simulation of ballistic trajectories in the model developed for this study, optimizations

for searching and updating of event rates must be combined with an efficient spatial

searching of adatoms which may be close to any given trajectory or active position, in

order to determine shadowing effects. The chosen optimization method is based on

a fast indexing of spatial locations in the simulation cell through a multi-level spatial

partitioning. This strategy, frequently used in kMC simulations [41], can be efficiently

implemented using advanced data structures such as n-trees. In particular, a quad-tree

structure [161], whose (1+1)-dimensional scheme is shown in Figure 3.3, was chosen for

the present model.

The lowest partition level is used directly for the fast spatial location of adatoms and

active positions, whereas in combination with the upper partition levels it is also used

for the fast searching of diffusion events. It is formed by boxes with edges of around

four adatom diameters in length. Every box indexes the positions of the adatoms located
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Figure 3.3: Fast search scheme for spatial location and selection of adatomsand activatedprocesses
based on a quad-tree structure. Only the three higher levels of the quad-tree are shown.
At every level, eachpartition stores the sumof the rates corresponding to all thepossible
activated processes that can be experienced by the adatoms located therein. Partitions
at the lowest level store also the positions of the adatoms.

within their limits, whereas adatoms themselves carry all the information of their active

positions and the diffusion events which are accessible for them accordingly to their

current neighborhoods. Boxes from the lowest level also store the rates sums of all the

diffusion events of their adatoms.

In the first upper level the diffusion rates stored in lowest boxes are summed up in

groups of 2x2 boxes for the (1+1)-dimensional case and 2x2x2 in the (2+1)-dimensional

one. This grouping process continues through upper levels until obtaining a single box

with the sum of all the diffusion events rates of the system. The searching for the specific

diffusion event which accomplishes the criterium given by Eq. (1.4) in every kMC step

is quickly performed by descending levels through every specific box which matches the

criterium. As the worst case, in every level it will be necessary to check all the boxes

grouped together in the box selected in the upper level.

Altogether, the implementation requirements led by the chosen scheme are probably

more complex than the corresponding to any previous similar simulation model, espe-

cially for the needed data structures. In order to deal efficiently with this complexity,

the model was implemented from scratch with the C++ programming language, using

object-oriented techniques and dynamic data structures from its standard library [162].
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3.2 Simulations in (1+1) dimensions

For the sake of comparison with the Müller’s original simpler model, the computer

experiments from which the following results have been obtained were performed using

the corresponding physical parameters of Nickel:

Tm = 1720 K, φ = −0.74 eV, a = 0.352 nm. (3.6)

Deposition rates, R, will be measured in units of monolayers per second (ML/s), i.e.,

in terms of the minimum possible vertical speed of growth, obtained just when a fully

compact structure develops. Substrate widths, L, as well as any other measure of length,

will be espressed in adatom radius units, a.

3.2.1 Mesoscopic morphologies and epitaxy

As the substrate temperature is changed, the development of different characteristic

mesoscopic film morphologies is observed. Figure 3.4 shows the some examples of

filmmorphologies that emerged for each microscopic symmetry combination considered

at the same sequence of different substrate temperatures and obtained after depositing

15000 particles onto a horizontal flat substrate of 160 adatoms wide with a close-packed

arrangement. That amount of deposited particles guarantees a physical vertical thickness

of more than 20 nm for the represented films, i.e., a mesoscopic thickness. In the next

section it will be proved that for such film thicknesses the growth process has reached

practically a stationary regime.

In each case, the obtainedmesoscopic structures show that there exists a substrate tem-

perature below which low-density morphologies formed by competing dendritic struc-

tures are always observed. These structures are characterized by the self-affine surface

geometry typically observed in purely ballistic deposition models without surface diffu-

sion. As the substrate temperature increases, surface diffusion becomes significant and

dendritic morphologies give way to more compact fibrous structures growing along a

preferential axis parallel to the deposition trajectories. With even greater surface diffu-

sion, the former fibrous structures become compact giving rise to densely packed grains

that grow vertically as non-competing columns whose thickness increases with the dif-

fusion. This behavior is qualitatively independent of the underlying microstructure and

characterizes the transition from the typical morphologies of the Zone I, which are porous

and fractal-like, to those of the Zone II, where pronounced faceting develops until the ap-
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pearance of structures limited by smooth surfaces described in the context of the SZM.

Figure 3.4: Film structures obtained for each given microstructure at different substrate tempera-
tures. Every sample corresponds to the deposition of 15000 particles at a fixed rate of 1
monolayer per second (ML/s) onto a horizontal flat substrate formed by 160 adatoms
disposed in a close packed arrangement. To aid the eye, the color of particles is changed
every 10 deposited monolayers.

However, although the qualitatively universal character of the Zone I and Zone II mor-

phologies is reproduced, the sequence of emergentmesoscopic structures as the substrate

temperature is varied seems to be significantly influenced by the underlying microstruc-
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ture. In particular, the width of the non-competing compact columns in the microstruc-

tures with a maximum coordination number of 4 —the sq and the sq-sqmicrostructures—

increases considerably more with the substrate temperature than the corresponding to

themicrostructures with a maximum coordination number of 6—the hex and hex-sq ones.

This behavior can be better illustrated by a quantitative calculation of themean horizontal

width of the compact columns for each microstructure, lc. Figure 3.5 shows the result of

calculating such parameter by sampling the horizontal lengths of compact regions, iden-

tified by having a local packing density above 0.75 of the maximum value allowed by the

microstructure2, at the central regions of the films introduced in Figure 3.4. It is remark-

able the difference between the hexagonal and square composite microstructures: at high

temperatures, the characteristic widths for hex and hex-sqmicrostructures are very similar

and obviously lower than those observed for the sq and sq-sq ones.

Figure 3.5: Mean horizontal width of the compact columns, lc, defined as having a packing density
above 0.75 of the maximum possible value, divided by the total substrate width,
L, as a function of the reduced substrate temperature for every (1+1)-dimensional
microstructure.

The compact columns of the hex and hex-sq microstructures not only increase more

their horizontal width with temperature but have also wider interstitial voids at high

temperatures, for which an epitexial growth regime is assumed. The emergence of such

morphological instabilities during epitaxial growth is generally associated to the existence

of Schwoebel-Ehrlich barriers hindering the interlayer migration of surface particles, as

2This is π/2
√
3 for a (1+1)-dimensional hexagonal lattice and π/4 for the square lattice with the same

dimensions.
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noted in Section 2.2.5. However, since there are no explicit S-E barriers in this model, one

should conclude that distinct implicit interlayer barriers are emerging directly from the

dynamic interplay between microstructure symmetries and epitaxy. Specifically, the key

factor leading to this behavior is waht are the particular locations of the active positions

found in the upper corners for every microstructure and their compatibility with the

substrate arrangement during epitaxial growth. Under this growth regime, only the

lattices from the microstructure which match the substrate arrangement are selected. In

the sq and sq-sq microstructures, the upper corners have active positions incompatible

with the horizontal close-packed substrate arrangement (sq-sq) or do not have any active

position at all (sq). Conversely, the hexagonal lattices in the hex and hex-sqmicrostructures

have active positions in the upper corners which match perfectly with the substrate. This

means that the upper corner positions of the hexagonal lattices are stable positions during

epitaxial growth: if one of such active positions from an adatom placed in the edge of a

layer is ocuppied, it will difficult the interlayer migrations between the upper layer and

the former. The unstability under epitaxial growth of the upper corner positions in the sq-

sqmicrostructure makes unlikely for an adatom to remain enough time in such positions

for leading to an effective hindering of interlayer migrations. Since no upper corner

positions exists and direct migrations to second-nearest neighbors have been allowed in

the sq microstructure, no implicit S-E barriers are possible in such case.

An experimental evidence of similar implicit interlayer barriers emerging from purely

dynamical effects has been published almost simultaneously to these results by R. Gana-

pathy an co-workers [163]. In their experimental system, intended to study the epitaxial

growth of colloidal crystal films, adatoms are replaced by spherical colloidswith just a de-

pletion interaction, i.e., a short-range attractive interaction, and deposited on a substrate

with a hexagonal lattice arrangement which leads to a film crystalline phase consisting

on a hexagonal close-packed structure. Their results show the existence of step-edge and

corner barriers that are responsible for a columnar filmmorphology and have necessarily

a diffusive origin, in full agreement with the present simulations.

The previous finding and its interpretation can hardly be understood without taking

into account the net effect of surface diffusion and epitaxy. Surface diffusion tends to

increase as much as possible the coordination of adatoms in the film structure, whereas

epitaxy determines the particular crystalline lattice selected for the film and hence the

maximum coordination number allowed. This behavior can be illustrated by studying

epitaxy and, particularly, the texture competition effects which should emerge in the
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Figure 3.6: Competition between the two bonding symmetries with different maximum coordi-
nation numbers coexisting in the hex-sq microstructure: ratio of the square and the
hexagonal bonding positions, nsq and nhex, as a function of the substrate temperature.
Results for 15000 deposited particles and a substrate size of 160 adatoms, averaged
over 10 realizations.

combined microstructures, sq-sq and hex-sq. Such effects are analized by computing

the mean number of bonds corresponding to each bonding symmetry present in the

microstructure at different substrate temperatures and substrate arrangements.

Coexistent symmetries with different maximum coordination number: the hex-sq

microstructure

When coexistent lattice symmetries have a different maximum coordination number, as

is the case for the composite hex-sq microstructure, the deposited particles in the film

growing under high substrate temperatures tend to accommodate according to the lattice

symmetry with the higher maximum coordination number, in this case, the hexagonal

lattice, since the positions with a higher coordination are found to be more stable ener-

getically when visited by the diffusing particles.

This behavior is illustrated in Figure 3.6, where the fraction of bonds in the square and

hexagonal lattice symmetries as a function of the substrate temperature is plotted. At

low temperatures, when surface diffusion is negligible and growth is purely determined

by ballistic deposition, the fraction of bonds belonging to the hexagonal lattice is higher

than the one corresponding to the square lattice due to the wider effective adsorption

window with respect to the vertical deposition trajectories of the upper hexagonal active
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Figure 3.7: Detail of the clusters of horizontal and diagonal square lattice domains formed by
texture competition at intermediate temperatures in the sq-sq microstructure (T/Tm =
0.29 K, horizontal substrate symmetry).

positions. As expected, the fraction of hexagonal lattice bonds tends to increase with the

susbtrate temperature, until becoming the only type of bonds allowed by the epitaxial

growth regime at high temperatures.

Coexistent symmetries with the same maximum coordination number: the sq-sq

microstructure

(a) (b)

Figure 3.8: (a) Mean ratio of bonds for the horizontal and the diagonal square bonding symmetry
orientations as a function of the substrate temperature with a horizontal substrate; (b)
same results with a diagonal square substrate. The sampling of the bond type fractions
is the same than the corresponding to Figure 3.6.
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In the sq-sqmicrostructure, there is no energetically selectivemechanism todiscriminate

between the two compact configurations allowed by the underlying composite bonding

symmetries atmoderate temperatures. As a result, apolycrystallinefilmmaydevelop as is

illustrated in Figure 3.7. However, as the surface diffusion strengthenswith the increasing

substrate temperature and epitaxial effects become significant, competing homogeneous

growth takes place with the final extinction of the symmetry incompatible with the

substrate arrangement. Figures 3.8(a) and 3.8(b) show the bond fractions of each lattice

obtained with a horizontal and a diagonal square substrate arragements, respectively.

Again, at low temperatures there is a slight preference for one of the lattices, in this

case the diagonal square, led by the same type of geometrical property of the adsorption

process pointed for the hex-sq microstructure. As the substrate temperature increases,

the fraction of the initially preferred lattice also increases due to the ordering effect of

the surface diffusion, until a temperature of approximately T/Tm ∼ 0.24 K is reached.

Above such temperature, epitaxy becomes significant and the lattice compatible with

the substrate tends to be selected independently from which lattice is preferred at lower

temperatures.

3.2.2 Surface properties

In spite of the fact that the central topic in this work is the study of the bulk properties

of thin films grown up to a mesoscopic thickness and their eventual dependence with

the microstructure coordination, it is interesting to test the expected surface roughening

under low adatom mobility conditions. The highlighted bands of the low-temperature

morphologies drawn in Figure 3.4, which for T/Tm . 0.12 represent the effective time

evolution of the surface due to the negligible migration of deposited adatoms in such

conditions, show qualitatively how the surface is relatively smooth during the deposition

of the first layers and becomes more rough soon after.

A more detailed analysis of the surface roughening at low temperatures has been

performed, using the scaling formalism introduced in Section 2.3.2, as a test for the

validity of the simulation model. Figure 3.9(a) shows the time evolution of the surface

width parameter, W(L, t), defined in Equation (2.3), for the hex-sq microstructure and

three different substrate sizes (L=80, 160, 320) measured in adatom radius units. W(L, t)

grows initially by following a power law, as predicted by Equation (2.4), with a growth

exponent β. At a given crossover time, tx, the interface width reaches a steady saturation

value, W(L). According to Equations (2.5) and (2.6), these latter parameters also have a
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(a) (b)

Figure 3.9: (a) Time evolution of the root mean squared deviation of the surface height, W(L, t),
averaged over 100 realizations for the hex-sq microstructure, a reduced substrate tem-
perature T/Tm = 0.12 and three different substrate sizes. (b) Rescaling of the different
W(L, t) curves with their corresponding crossover times, tx(L), and saturation values,
W(L). The inset shows the calculation of the roughness exponents, α and β, in the limit
of an infinite substrate size, L→∞.

power law dependence with the substrate size determined respectively by the roughness

exponent, α, and the dynamic exponent, z. The dependence of theW(L, t) curves with the

substrate size allows their collapse when rescaled with their corresponding parameters

tx(L) and W(L), as shown in Figure 3.9(b). The inset corresponds to the estimation of

the associated scaling exponents α and β in the limit of an infinite substrate width. This

calculation of the asymptotic values of the scaling exponents is required since the values

obtained directly from the relations (2.5) and (2.6) show a dependence with L:

α(L) =
log(W(L))

log(L)
, z(L) =

log(tx(L))

log(L)
, β(L) =

α(L)

z(L)
. (3.7)

However, this dependence tends to defined asymptotic values as L increases. Therefore,

the asymptotic exponents can be obtained by fitting a dependence model to the values

calculated from simulation data and extrapolating the fitting to the limit L → ∞. Here

a three parameters dependence model given by f (L) = a + bL−φ, as in other previous

studies [130], has been assumed. The results of this calculation for the case of the hex-sq are

α = 0.53±0.06 and β = 0.30±0.08. Simulations with the other microstructures provide

similar results. Thus, according to the known values for the scaling exponents reviewed

in Section 2.4.2, this result confirms that the simulation model reproduces consistently
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the asymptotic behavior of the ballistic deposition universality class for every studied

microstructure. Moreover, besides serving as a test for the simulation model, this result

indicates that the different bonding symmetries have little impact on the asymptotic

scaling behavior of the surface morphology during growth under low adatom mobility

conditions.

3.2.3 Steady growth bulk properties

Besides its main purpose—checking the potential effects of microstructure on the surface

dynamic scaling— the previous result illustrates a well known property of thin film

growth under low adatom mobility conditions: after an initial transient regime in which

the surface properties vary significantly in time, a persistent steady evolution regime is

reached. In order to study consistently the mesoscopic bulk properties of films grown

under a wide range of adatom mobility conditions and distinct bonding symmetries,

one may be interested in determining if something similar occurs for the evolution of

the bulk properties within the corresponding range of substrate temperatures and, if

so, under which conditions one can compare different morphologies by assuming that

they are obtained under a steady growth regime. The advantage of studying the bulk

properties at different temperatures by comparing the results from steady regimes instead

of from transients is evident in terms of simplicity. Moreover, this point is particularly

relevant when simulating the growth of film structures with a mesoscopic thickness,

which requires a careful choice of the systemdimensions: the simulation of an excessively

large system may lead to impractical time consuming computations, especially at high

temperatures, i.e., when many surface diffusion processes are accessible while the film

grows up to a mesoscopic thickness. Therefore, before starting any intensive simulation

study, it is very convenient to determine what is the minimal mesoscopic system size

which represents, at any temperature of interest, the same growth regime —preferably

steady— in all cases.

The determination of the minimal conditions for a steady bulk growth regime at any

given substrate temperature can be achieved through a preliminary observation of an

adequate structural parameter for the bulk, such as some estimation of the film bulk

density or of its complement, the porosity. Here the following rough estimation of the

bulk density, similar to other definitions of bulk density or porosity proposed in recent
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studies [147, 148], is used to characterize the time evolution of the bulk structures:

ρ(L, t) =
N(t)

L hmax(t)
, (3.8)

where L is once again the size of the substrate, N(t) is the number of deposited particles

and hmax(t) the film thickness, i.e., the maximum height of the structure with respect to

the substrate, at time t. Figure 3.10 shows the time evolution of this parameter during

the initial phase of growth for different substrate sizes, substrate temperatures and every

given microstructure for a fixed mean deposition rate of R=1 ML/s. From this results

one can conclude that after approximately 100 seconds the growth process is very close

to a steady regime for every microstructure, substrate width and temperature. Figure

3.10(a) also shows that a susbtrate width of L/a = 160, i.e., with 80 adatoms in a flat

compact arrangement, leads to structureswith a density very similar to the corresponding

to wider substrates. Other more sophisticated bulk density estimations, such as the

accurate calculation of the occupied volume fraction under the single-valued film surface,

yields to an equivalent asymptotic behavior. Consequently, results shown in Section

3.2.1, corresponding to the deposition of 15000 adatoms on a substrate with a size of

L/a=320 during approximately 94 seconds, can be considered as representative of a

steady growth regime as previously announced. Moreover, the comparison between the

different transients and steady values of density led by every microstructure observed

in Figure 3.10 also provides an illustration alternative to the Figure 3.5 of the distinctive

effects of the bonding symmetries on the bulk structure at different temperatures.

Once determined theminimal conditions for reaching a steady growth process in all the

cases of interest, the practical conditions for the intensive simulation of mesoscopic bulk

morphologies with (1+1)-dimensional microstructures can be selected: in general, the

rest of results presented in this section have been obtained with conditions slightly above

the minimal required for the steady regime. For instance, for a substrate of L/a=320 and

a deposition rate of R=1ML/s, structures with up to 20000 adatoms have been simulated.

The rough estimation of the bulk density provided by Eq. (3.8) is enough for identify-

ing transients and steady growth regimes. More interestingly, the evolution of such type

of simple structural parameter with the susbtrate temperature has proven to roughly ex-

hibit a sigmoidal shape in previous studies [148,151,154], presumably related to the bulk

transition between Zone I and Zone II morphologies. However, no accurate characteri-

zation of such evolution has been performed to date. On the other hand, Figures 3.6 and
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Figure 3.10: Meanvalues of the bulk density
〈

ρ
〉

at the early stages of the growthprocess, for a fixed
deposition rate of R=1 ML/s, as a function of time: (a) For the hex-sq microstructure,
a reduced substrate temperature T/Tm = 0.12 and different substrate sizes. (b)
For every type of microstructure with T/Tm = 0.12 and a reduced substrate size
L/a = 320. (c) For the hex-sq microstructure with L/a = 320 and different substrate
temperatures. (d) The same for the sq-sqmicrostructure.

3.8 also show an interesting behavior of the bond fractions with the substrate tempera-

ture which points to this type of parameters as good candidates for the characterization

of the bulk structural transition. According to these observations, two bulk structural

paramaters have been chosen in this study to characterize, by means of refined measures

and statistics, the bulk transition between Zone I and Zone II mesoscopic morphologies

as different substrate temperatures are selected: the mean packing density and the mean

coordination number.
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Mean packing density

The most recent computational studies on bulk properties of thin films and their connec-

tion with the surface properties are based on rough estimations of the bulk densities or

porosities as the main characterization parameters [146–148,154]. As pointed previously,

the value of these rough parameters in simple atomistic simulations tends to increase

with the surface diffusion by following a sigmoidal law. Moreover, this sigmoidal behav-

ior can be used to determine the limits between the Zone I and Zone II morphologies, in

good agreementwith the leading experimental results [48,151]. For this reason, amore re-

fined estimation of the density is expected to be a good statistical parameter for studying

the novel and presumably subtle effects introduced by the different bonding symmetries

with respect to Müller’s well proven and structurally simpler minimal model.

The refined calculation of themorphologydensities of films grownat different substrate

temperatures and deposition rates has been obtained from a local sampling of the bulk

structures. This parameter is called here packing density and noted as P in order to clearly

distinguish it from the pointed more common and simple estimations of film density

as a global volume fraction obtained from some approximation to the geometry of the

film free surface. The sampling has been performed by calculating the local volume

fraction within a circle of radius r/a=5 centered at a randomly selected adatom of the

bulk region, i.e., from a central area of the film structure that excludes the lower and

upper regions in heights of 0.15 of the total film thickness. In order to perform a detailed

statistical examination its behavior, 500 samples of the packing density obtained with this

procedure were taken from 10 film structures simulated for every given temperature and

deposition rate.

The main Figure 3.11(a) shows the variation in the mean packing density with the

deposition parameters, the substrate temperature and the deposition rate, in the (1+1)-

dimensional system for three differentmicrostructures and at two different representative

deposition rates, R=1 and R=100 ML/s, whereas the inset shows the corresponding statis-

tical fluctuations of the parameter. The sq microstructure has been excluded just for the

sake of clarity. As expected, the packing density has in all the cases a minimum value for

low substrate temperatures which identifies the dendritic, purely ballistic structures of

films grown under very low adatommobility regimes corresponding to the Zone I. As the

selected temperature is increased, the packing density experiences a marked growth until

it reaches the saturation value of a locally compact structure, as corresponds either to the
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morphologies of compact columns of the Zone II or to a fully monocrystalline structure3.

By increasing the deposition rate, the sigmoid-shaped curve moves consistently towards

higher temperatures. More remarkably, in all the cases there exists a maximum in the sta-

tistical fluctuations of the mean packing density within the transition region between the

Zone I and Zone II morphologies. This behavior is notably analogous to the observed for

the order parameter in a continuous equilibrium phase transition. According to this anal-

ogy, one can use the fluctuations maxima to identify the transition points or characteristic

temperatures, Tc, which in this system represent the limits between the morphologies of

Zones I and II. This criterium for identifying the limit between two structure zones from

simulation data is more consistent than the proposed in previous studies [151, 154].

(a) (b)

Figure 3.11: (a) Plot of the bulk mean packing density 〈P〉 versus the substrate temperature T,
obtained for different microstructures and at deposition rates, R=1 and R=100 ML/s.
The maxima of their statistical fluctuations (inset figure) determine the charecteristic
transition temperature of each curve. (b) Collapse of the mean packing density
curves onto a master curve when rescaled according to the characteristic transition
temperature Tc.

Despite the described parametrization neither corresponds physically to a true equi-

librium phase transition nor is an adequate characterization of a non-equilibrium phase

transition, the analogy between the behavior of the steadymesoscopic morphologies and

a continuous equilibrium phase transition is clearly useful and will be assumed as the

approach to analyze the remaining results to be presented in this section. For instance,

3To understand this point it must be noted that the calculation of the packing density based on a local
sampling centered in occupied adatom positions tends to ignore the instertitial voids between compact
structures in the film.
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the previous treatment of the mean packing density as a true order parameter can be ex-

tended even further and provide additional insights: the transition curves of the mean

packing density can be rescaled with their corresponding transition temperatures, Tc,

in order to obtain their collapse. However, such collapse leads to two different mas-

ter curves depending on the maximum coordination number of the underlying bonding

symmetries, as shown in Figure 3.11(b). This result confirms a distinctive evolution of the

film morphologies in the vicinity of the limits between structure zones depending on the

maximum coordination number, as anticipated by the qualitative observation of the film

samples shown in Figure 3.4. This is the first clear indication of a significant effect from

the material microstructure on the evolution with the main deposition parameters of the

mesoscopic bulk morphologies of thin films.

These numerical experiments allow the construction of an approximate phase diagram

for the deposition parameters corresponding to Zone I and Zone II (1+1)-dimensional

morphologies from the characteristic transition temperatures. This diagram is shown in

figure 3.12. One can observe that the limits betweenZone I andZone II are very similar for

every givenmicrostructure, except for the case of the purely square one, the sq. This result

can be attributed to the effect of the transparent hops to second-nearest neighbor positions

allowed just for this case, resulting in a drastic reduction in the transition temperature.

In summary, the effect of the maximum coordination number of the different bonding

symmetries is shown to be significant when one considers how the film morphology
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Figure 3.12: Phase diagram for the structure zone I and structure zone II growth regimes obtained
for each given microstructure.
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changes with the deposition parameters close to the limit between structure zones, but

not for determining the position of such limit in the space of the deposition parameters.

Mean coordination number

The other quantity used in this study to characterize the evolution of the film morpholo-

gies with the deposition parameters is themean coordination number, cn. This parameter

can be easily obtained from computer experiments by simply averaging the number of

bonds, i.e., the number of occupied active positions, of each adatom from 10 different film

samples simulated for every given temperature and deposition rate. The numerical data

also allow to compute separately such statistics for the bulk and the surface adatoms,

which are identified respectivelywith the “buried” and “non-buried” adatoms as defined

by the criterium introduced in Section 3.1.1.

Figure 3.13 shows the results of these measurements as a function of the substrate tem-

perature for a deposition rate of R=1 ML/s. In the figure the mean coordination number

obtained for just the bulk adatoms (bulk) has been distinguished from the one obtained

for all the adatoms in the sample (total). For the sake of clarity, the results for the mi-

crostructuctures with a maximum coordination number 4 and the corresponding to a

maximum coordination number 6 have been plotted separately. Qualitatively, these pa-

rameters exhibit a behavior very similar to the mean packing density: both the total and

(a) (b)

Figure 3.13: Total and bulk mean coordination number as a function of the substrate temperature
for a deposition rate R= 1 monolayer/s, and their statistical fluctuations (inset): (a) sq
and sq–sq microstructures; (b) hex and hex–sqmicrostructures.
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the bulk mean coordination numbers change from relatively small values at low sub-

strate temperatures to the maximum value allowed by each underlying microstructure at

high temperatures. More precisely, for the sq and sq-sqmicrostructures, for which the film

eventually forms a fully compact monocrystal at high temperatures, the mean coordina-

tion number reaches its maximum value of 4 (Fig. 3.13(a)), whereas for the hex and hex-sq

microstructures the maximum value achieved is slightly below its maximum theoretical

value of 6 (Fig. 3.13(b)) since this parameter detects the reduced coordination led by the

interstitial voids present in the columnar morphologies. The resultant evolution curves

have a rather more complex shape and are more sensitive to the different microstructures

than the analogous curves obtained for themean packing density. The existence of a small

range of temperatures below the characteristic transitional temperature where the mean

coordination number seems to increase linearly is particularly remarkable. The location

of the maximum of the corresponding statistical fluctuations (shown in the insets) is sim-

ilar for the bulk and total values. The characteristic temperatures corresponding to the

fluctuations maxima for the different microstructures considered are slightly lower than

the characteristic temperatures derived from the analysis of the mean packing densities:

whereas the characteristic temperatures obtained from the mean coordination number

are found within a range from T/Tm= 0.19 to 0.24, the corresponding to the mean pack-

ing density were found between T/Tm= 0.23 and 0.25. As one might expect, the bulk

values of the mean coordination number are higher than the total values for every sub-

strate temperature, but it is noticeable that the differences are considerably larger at low

temperatures where the surface diffusion is weak or negligible.

The complex behavior observed in the mean coordination number can be better un-

derstood by further analysis of this parameter restricted to only the surface adatoms.

The results for a deposition rate of R=1 ML/ s are plotted in Figure 3.14. One can ob-

serve that the mean coordination number of a surface adatom grows with the substrate

temperature in a rather different way in comparison to what happens in the bulk and

with the total mean coordination numbers: in this case the parameter exhibits a stronger

dependence on the microstructure and a more complex behavior of its fluctuations. In

particular, there are two maxima in the fluctuations associated to the two combined mi-

crostructures, i.e., the sq-sq and the hex-sq microstructures. These double peaks are found

at T/Tm=0.19 and T/Tm=0.28 for the sq-sq case and at T/Tm=0.19 and T/Tm=0.22 for the

hex-sq, whereas there is no clear maximum for the sq microstructure and a single peak at

T/Tm=0.20 is observed for the hex one. The location of the characteristic temperatures
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(a) (b)

Figure 3.14: Statistics for the surface adatoms: (a) mean coordination number and its statistical
fluctuations (inset) versus the substrate temperature at a deposition rate R= 1 mono-
layer/s for the different microstructures; (b) total number of surface adatoms, ns,
divided by the total number of adatoms, N, under the same conditions.

given by these maxima, considering the first peak when double peaks are present, is in

every case slightly below the characteristic temperatures associated to bulk and total val-

ues. Therefore, the coordination transition from low to high values takes place at lower

temperatures in the surface than in the bulk region. This behavior can be understood by

noting that surface adatoms cannot, by definition, reach themaximum coordination num-

ber allowed for the bulk adatoms for any given microstructure. Consequently, surface

adatoms reach their maximum coordination at lower temperatures.

In addition to this intrinsically complex behavior, the statistical contribution of the

surface adatoms to the averaged total coordination number is not constant along the tran-

sition curves since, as is shown in Figure 3.14(b) , the number of surface adatoms decreases

with substrate temperature. This is an evident consequence of the film compactationwith

the temperature and the “non-buried” criterium for the definition of surface adatoms and

finally explains the differences between the bulk and total curves observed in Figures

3.13(a) and 3.13(b) at low temperatures.

3.3 Simulations in (2+1) dimensions

The simulations and analysis approach performed for the (2+1)-dimensional microstruc-

tures are analogous to the already presented for results in (1+1) dimensions. Despite the
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abstract perspecive assumed in this study and the increased computatinal cost implied

by these simulations, it is worth checking if the interesting and subtle effects caused by

the different microstructures on the bulk mesoscopic morphologies are also observed in

higher system dimensions.

Mesoscopic morphologies

Figure 3.15 shows two sequences of mesoscopic film morphologies obtained at different

substrate temperatures and corresponding to the two (2+1)-dimensional bonding sym-

metries defined in Figure 3.2, the 3d-hex and the 3d-csmicrostructures. The samples have

been obtained from the deposition of 50000 particles at a fixed mean rate of R= 1 ML/s

onto a flat square substrate, formed by 40x40 adatoms disposed in a close packed hexag-

onal —for the 3d-hex microstructure— or square lattice —for the 3d-cs one. According

to an analysis analogous to the presented in Section 3.2.3, these system parameters have

been found to be in the lower limit of bulk steady growth regimes.

As previously observed in the (1+1)-dimensional case, low-density dendritic structures

are found at substrate temperatures at which surface diffusion is negligible. As the

substrate temperature increases, diffusion becomes significant and the film tends to be

formed of more compact structures. From a careful qualitative observation of such

samples, one can conclude that the microstructure with a smaller value of the maximum

coordination number —the 3d-cs symmetry, with a maximum value of 6— shows more

compact structures at the same substrate temperature than the microstructure with a

higher maximum coordination number —the 3d-hex microstructure, with a maximum

value of 12. Another characteristic that can be observed in a direct inspection of the film

morphologies is once again the development of columnar structureswith small interstitial

voids at high temperatures.

Structural parameters

As the inspection of the film samples suggests, a statistical behavior similar to the ob-

served for the cases in (1+1) dimensions has been found in general for the structural

parameters of the (2+1)-dimensional morphologies. The results for the evolution with

the substrate temperature of themean packing density for twodeposition rates,R= 1ML/s

and R= 10 ML/s, are shown in Figure 3.16. The sigmoidal shape for such evolution is re-

produced for each microstructure, but it displays a more pronounced disparity between

the microstructures due to the increased difference in the maximum density allowed in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.15: Examples of mesoscopic film morphologies obtained for the 3d-hex (upper row) and
3d-cs (lower row) (2+1)-dimensional microstructures from the deposition of 50000
adatoms onto a flat substrate at a fixed mean deposition rate of R= 1 ML/s and
different substrate temperatures: (a) and (e) T/Tm=0.17; (b) and (f) T/Tm=0.23; (c)
and (g) T/Tm=0.26; (d) and (h) T/Tm=0.30.

each case, as one can observe in Figure 3.16(a). The characteristic temperatures defining

the limits between Zone I and Zone II morphologies, Tc, determined by the maxima in

the fluctuations, confirm the previous qualitative observation that the transition for the

3d-csmicrostructure takes place at lower temperatures. Again, the rescaling of the curves
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with their corresponding values of Tc leads to their collapse onto a master curve for each

type of microstructure.

(a) (b)

Figure 3.16: (a) Mean packing density and its fluctuations (inset figure) as a function of the sub-
strate temperature for the (2+1)-dimensional microstructures and deposition rates of
R = 1 and R = 100 ML/s. (b) Collapse of the same curves when rescaled with the
characteristic temperatures, Tc.

Finally, the behavior of the mean coordination number in (2+1) dimensions has been

found to be qualitatively the same than the observed for the low dimensional cases: an

slight anticipation of the morphology transition in the surface adatoms as the substrate

temperature increases is obtained again.

In conclusion, the effects of the different coordination numbers ofmicrostructures found

in (1+1) dimensions persistently manifest in (2+1) dimensions.

3.4 Discussion and concluding remarks

The study presented in this Chapter has addressed the question of how the maximum

coordination number allowed by the bonding symmetries of the deposited materials

affects the mesoscopicmorphologies of thin solid films grown by a simple physical vapor

deposition process. This is an early effort towards the accurate mesoscopic modeling of

nonmetallic and/or non crystallinematerials, eventuallywith a strongbonddirectionality.

With this purpose, a computational simulation model has been developed and intensive

numerical experiments have been performed.
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The study has assumed an abstract perspective that is not intended to predict quanti-

tatively the experimental properties of any particular thin film system. Instead, the goal

was to obtain a qualitative description of the mentioned effects on the evolution of the

morphologies of thin films with the relevant deposition parameters as described by the

simplest Structure Zone Model. In particular, the study has been focused on the bulk

properties of the film mesoscopic structures. In order to achieve this objective, a careful

tradeoff between the incorporation of specific and generic modeling approaches for the

principal mechanisms of the system has been necessary in the development of the sim-

ulation model. On the one hand, a specific accurate empirical model for the mesoscopic

simulation of surface diffusion of a givenmaterial, chosen to beNickel, has been necessary

in order to reproduce the experimental limits between Zone I and Zone II morphologies,

which are well known for that particular case, because of the strong dependence of the

simulation results on the accuracy of the diffusion model. On the other hand, a generic

novel approach for the definition of arbitrary bonding symmetries has been introduced

in the simulation model, which has been used to study the effects of different (1+1) and

(2+1)-dimensional abstract bonding symmetry definitions.

In order to study consistently the mesoscopic bulk properties of the growing films, the

conditions for reaching a steady growth regime have been determined for every case.

This determination has allowed the optimization of the computing costs associated to the

simulated system size for obtaining an adequate characterization of the steady bulk prop-

erties. The smooth evolution between dendritic, low density structures obtained at low

substrate temperatures, commonly identified as Zone I morphologies, and the densely-

packed non-competing columnar structures associated to high substrate temperatures

and Zone II morphologies are reproduced by themodel. Despite that the diffusionmodel

does not include any explicit interlayer energy barrier, the microstuctures with allowed

bonding positions in the corner of an interlayer step present remarkably pronounced

columns in a wide range of substrate temperatures. This anticipates the possibility of

formation of columnar morphologies in a non-equilibrium growth system of physical de-

position and surface diffusion, due to purely dynamical effects. This finding has been

confirmed by very recent independent experiments.

The novel approach for the definition of bonding symmetries has proven to reproduce

epitaxy and crystalline texture competition effects, so far only reproduced in multilattice

schemes which hardly can represent local lattice frustrations.

The characterization of the evolution of the bulk structures with the deposition param-

80



3.4 Discussion and concluding remarks

eters has been performed from a careful statistical estimation of two refined structural

parameters: an accurate local estimation of the fraction volume occupied by adatoms, the

mean packing density, and the mean coordination number of all the adatoms in the sam-

ple structure. The behavior of these structural parameters calculated for steady growth

regimes has shown a strong analogy with the corresponding to the order parameter of an

equilibrium continuous phase transition. Of course, the evolution with the fixed deposi-

tionparameters of the film structures grown from the different associated non-equilibrium

processes does not represent a true equilibrium continuous phase transition. Neither the

structural parameters could be considered adequate order parameters, since they are in-

tensive parameters with bounded fluctuations which, for steady growth cconditions, do

not exhibit any dependence with the system size as required by a true critical behavior.

However, the mere analogy is shown to be useful in its own right, simplifying the anal-

ysis and providing subtle insights to the effects of the different maximum coordination

numbers associated to distinct bonding symmetries.

The analysis of the behavior of the structural parameters as a function of the deposition

parameters shows the existence of significant quantitative effects of the distinct bond-

ing symmetries in the vicinity of the boundaries between structure zones I and II. The

microstructures with a lower maximum coordination number, both in (1+1) and (2+1)

dimensions, tend to be relatively more compact under the same deposition conditions

than the corresponding to a higher maximum coordination number. In all cases, the

mean packing density presents a maximum in its fluctuations which can be identified as

the limit between the Zone I and Zone II characteristic bulk morphologies, providing a

consistent and accurate criterium compared to the previous inconsistent criteria used by

different authors. The position of these boundaries in the deposition parameters space

is rather similar for all the microstructures and consistent with previous theoretical and

experimental results, except for a case in which the dynamical rules for surface diffusion

are significantly different. The mean coordination number shows even a stronger influ-

ence of the different microstructures, displaying in general a less smooth behavior. It also

evidences that the surface adatoms tend to reach their maximum coordination number at

lower temperatures than their bulk counterparts.

In general, the results obtained in these simulations confirm the robustness of the sim-

plest Structure Zone Model, showing that the boundaries between different structure

zones depend mainly on the diffusion mechanisms, whereas remaining rather indepen-

dent from the bonding symmetries. However, the latter may determine the quantitative
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behavior of the structural evolution near to the zone boundaries.
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In 1963 Salvatore Bellini, from the Istituto di Microbiologia of the University of Pavia,

made the first observation of the existence of some anaerobic bacteria found in bog sedi-

ments with an unique ability to remain aligned with the Earth’s magnetic field [164,165].

In their internal technical reports, he proposed the name magnetosensitive bacteria for such

organisms. However, his finding was a result of an accidental observation and remained

unpublished until further observations were carried out and published by the microbi-

ologist Richard Blakemore in 1975 [166]. Blakemore coined the generic and currently

accepted terms ofmagnetotactic bacteria to name suchmagnetosensitive unicellular organ-

ism. After Blakemore’s observations, magnetotactic bacteria have become a subject of

increasing research interest, especially from a biophysical perspective.

The ability of magnetotactic bacteria to align with an external magentic field is based

on the presence of a number of intracellular mineral bodies, or mineral organelles in

their cytoplasm. These organelles are formed by solid crystals of different materials,

such as magnetite (Fe3O4) or greitite (Fe3S4), with a permanent magnetic moment at

room temperature. Figure 4.1(a) shows a micrograph of a magnetotactic cell, with its

magnetic organelles as dark spots. Such magnetic organelles, called magnetosomes, are

sinthetized by bacteria in many different nanometer-sized shapes [167], as illustrated by

Figure 4.1(b). However, in most cases they are found to form straight chains with all the

magnetic moments aligned and adding together into a net moment high enough to allow

the passive rotation of the cell as a result of its interaction with the geomagnetic field.

Such straight chains of aligned permanent magnets are not stable structures [168] and

require a surrounding network of cytoskeletal filaments to keep them as an essentially

one-dimensional system [169].

For many years the study of magnetotactic bacteria has been an interesting subject

in the context of different biophysical transversal pieces of research, such as those on

biomineralization including applications to the study of evolution and the origin of life

[172, 173]. Magnetosomes have been also suggested as cellular biomarkers [174]. Most

remarkably, the magnetic structures found within magnetotactic bacteria have inspired
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(a) (b) (c)

Figure 4.1: (a) Early electron micrograph of a magnetotactic bacteria, Magentospirillum Magneto-
tacticum Strain (MS-1), with aligned magnetosomes as dark spots. After [170]. (b) Dif-
ferent examples of magnetosome morphologies within magnetotactic bacteria. From
top to bottom: prismatic, cubo-octahedral and bullet-shaped crystals. After [167]. (c)
Synthetic magnetic filament prepared from the self-assembly of polymer-coated cobalt
ferromagnetic particles with a diameter of approximately 20 nm. After [171].

new concepts with a great potential for novel technological applications outside the field

of biophysics.

In general, the study of magnetic systems is an important research topic in nanoscience

and nanotechnology. For instance, molecular and polymeric magnetic systems have at-

tracted increasing interest in recent years [175–177]. Nevertheless, the small scale of

molecular magnetic systems imposes limitations to their magnetic properties. In par-

ticular, it is extremely difficult to observe significant magnetic properties in molecules

at room temperature [176]. Instead, submicrometric ferromagnetic crystals exhibit re-

markable magnetic moments under these conditions. For this reason, the idea of having

a supramolecular mesoscopic system formed by a chain of submicrometric permanent

magnets linked by polymers or other molecules to form a flexible or semiflexible fila-
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ment, is particularly attractive. This idea has led to the recent appearance of shyntesis

and modeling methods for such type of mesoscopic magnetic structures, called gener-

ically magnetic filaments. Figure 4.1(c) is an example of an artificial magnetic filament

synthesized from cobalt nanometric spherules coated with polymers.

The key aspect for the technological application of magnetic filaments is the fact that

their behavior can be accurately controlled by appropriate external magnetic fields with-

out affecting the surrounding system constituents, at least for most materials and sub-

stances found in biological and technological systems. Due to to this unique advantage,

magnetic filaments can be used inmultiple and diverse technological applications includ-

ing biomedical uses, data storage, chemical andmicromechanical nanosensors, patterned

nanometric watermarks or actuators in microfluidics applications.

Many of the potential applications of magnetic filaments involve the interaction of the

magnetic chain with different surfaces. Therefore, the understanding of the behavior of

such magnetic chains in the neighborhood of a surface is crucial for the development

of new applications. To address this problem one can take advantage of the previous

extensive studies on the interaction of long flexible or semiflexible chains with surfaces

performed in the past within the field of polymer physics. Despite the differences in

the size scale and the presence of long-ranged anisotropic magnetic interactions even

in absence of external fields, one might expect that many modeling tools from polymer

physics would be useful in the study of magnetic filaments near attractive surfaces.

From this perspective, the next chapter presents a computational study of the effects of

the intrinsic magnetic interactions on the adsorption transition of a magnetic filament,

considered as a mesoscopic polymer-like structure, into an attractive flat surface.

The next sectionswithin this chapter provide further insight on the unique properties of

nanometric permanent magnets and magnetic filaments, their synthesismethods and the

most prominent modeling advances in the field, as well as the basic theoretical concepts

related to the study of transitions in polymer-like structures near attractive surfaces.

4.1 Ferromagnetic nanocrystals: a matter of size

Nanoparticles with ferromagnetic or ferrimagnetic properties, i.e., with a permanent

magnetic moment even in absence of external fields, are the basic building blocks of

magnetic filaments, playing a role similar to the monomers in a polymer. The synthesis

of ferromagnetic nanoparticles, either from biomineralization in magnetotactic bacteria
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[178] or by more conventional chemical methods [179–182], is subjected to the strong

dependence on the system size exhibited by the magnetic properties of materials at

submicrometric scales [183].

In general, bulk magnetic materials are composed of different regions with an uniform

magnetization. Thesemagnetic domains have typical sizes in the range of tens to few hun-

dred nanometers. The global magnetic properties of a bulk magnetic material depends

on the relative orientations of their constituent domains. For instance, in absence of any

external field, ferromagnetic and ferrimagnetic materials have their magnetic domains

mostly aligned in a particular direction, leading to a net magnetic moment. In paramag-

netic materials instead the domains are highly disordered and the net magnetic moment

is zero, except when an ordering external field is applied.

Figure 4.2 is a qualitative scheme of how the magnetic behavior of a ferromagnetic

material varies with its characteristic size. By decreasing the size, the total amount of

magnetic domains in the material also decreases. As a side effect, its coercivity—the resis-

tance of the material to become permanently demagnetized by a strong enough external

field— increases. This tendency persists until the diameter of the particles reaches the

typical domain sizeDS of the material. At such critical size the material becomes a single-

domain particle and its coercivity is maximal. For even smaller sizes, the coercivity of the

Figure 4.2: Qualitative scheme of the magnetic behavior of a ferromagnetic material as a function
of its characteristic size.
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single-domain particle decreases due to the increasing relative relevance of the effects of

thermal fluctuations. At a critical diameter, DP, the coercivity vanishes and remains zero

for even smaller particles. At these sizes the particles become superparamagnetic which

means that the magnetization is reversed spontaneously as a thermally activated process

with a given mean rate, which leads to zero net magnetization on average.

Obviously, the optimal condition for a ferromagnetic nanoparticle intended for techno-

logical applications involving either unstructured powders or defined structures such as

magnetic filaments, is to constitute a single magnetic domain with a maximum coerciv-

ity. In other words, such particles should have the same diameter as the typical domain

size.

4.2 Synthetic magnetic filaments

The synthesis of magnetic filaments by linking submicrometric magnetic particles with

macromolecules is a recent experimental achievement of supramolecular chemistry. In

essence, the fabrication methods are bottom-up processes in which the magnetic beads

are coated with appropiate bridging molecules responsible of the chemical assembling in

a one-dimensional chain. The successive improvements of such methods have led to the

synthesis offilamentswith increasing lengths. However, the fabrication andmanipulation

of magnetic beads for their assembly in magnetic filaments has followed also a top-down

approach, starting with micrometric beads and progressively reducing their sizes and

enhancing their magnetic properties.

In the first seminal works, from the lates 1990s, micrometric latex beads filled with

paramagnetic materials were linked with polystyrene [184, 185]. The use of DNA as

bridging molecules was also achieved for the first time using micrometric paramagnetic

beads in 2005 [186]. The first magnetic filaments created with submicrometric beads

(0.5–0.8 µm) were reported in 2003 [187]. In 2005 were announced magnetic filaments

with mesoscopic lengths up to 50 µm, whereas arrays of filaments with lenghts up to

200 µm and ratios of chain length to bead diameter as large as 125 were obtained in

2007 [188, 189]. Filaments with bead diameters below 50 nm were achieved in next

years by using materials with strong ferromagnetic properties such as magnetite and

cobalt [171,190–196]. In 2010, the one-dimensional assembling of ferromagnetic particles

of cobalt with a size as small as 23.5 nm has been obtained [197]. These examples illustrate

the recent origin and the impressive experimental expansion of the subject.
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The synthesis of mesoscopic low-dimensional structures and in particular, the assem-

bly of chain-like mesoscopic systems is a very active research subject beyond the scope

of magnetic filaments. The development of novel assembly methods for non-magnetic

materials susceptible of being applied to the synthesis of magnetic filaments is an alterna-

tive source of improvements. For instance, a new method for a very selective end-to-end

assembling of anisotropic gold-coated nanometric particles reported very recently [198]

could be a promising approach for the fabrication magnetic filaments.

4.3 Modeling approaches and basic concepts from Polymer Physics

Besides the improvements in their synthesis methods, the characterization of the prop-

erties of magnetic filaments has been so far mainly limited to the study of few specific

aspects such as the behaviour of single magnetoresponsive filaments far from any surface

as a function of the external magnetic field [199–204], the application of magnetic fila-

ments asmagneticmicro-swimmers in thepresence of non steady external fields [205–207]

and the study of the equilibrium shapes of twisted magnetic filaments [208]. These stud-

ies were based on equilibriumMonte Carlo simulations with in-lattice classical spin chain

models, on dynamical simulations with simple analytical models based onKirchhoff elas-

tic rods [209, 210] —a frequently used mechanical approach for the modeling of elastic

filaments— and on experimentalmeasurements of the elastic properties of different types

of magnetic filaments.

On the other hand, there exists a more mature research field in which the behavior of

chains formed by discrete structural units linked with deformable bonds has been stud-

ied for many years: Polymer Science. Of course, polymers are large molecules composed

by small, usually repeating, molecules linked by covalent bonds, not supramolecular sys-

tems. However, they are complex enough to require in many cases statistical approaches

and coarse-grained models to study their physical properties. Thus, it is reasonable to

expect that at least the most abstract modeling approaches from polymer physics would

be useful to the study of magnetic filaments. Moreover, in spite of the difference in scale,

one would expect that both systems share some physical properties that can be present at

different scales. In particular, the central question addressed by the work presented in the

next chapter —the characterization of the adsorption process of a semiflexible chain by

an attractive surface— has been extensively studied in polymer systems and, therefore,

the current knowledge on polymer physics under analogous conditions has been used as
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a the starting point for the modeling approaches applied to the present study.

The simplest way to describe polymer chains is the ideal chain or freely jointed chain

model [211]. In such a model the monomers are represented as connected immaterial

one-dimensional rigid rods with a fixed length and random orientations. No interac-

tions between monomers or with the background medium —usually a solvent— are

considered. Therefore, the structure has no other geometric constrains than themonomer

sequence connectivity and the chain behaves statistically as a random walk, including the

possibility of overlaping monomer positions. In polymer physics, this type of structure

is also known as random coil.

Diverse variations of the ideal chain model include geometric constrains in the

monomer orientations in order to represent the experimental bonding angles and, even-

tually, the flexibility of the bonds. Alternatively, the polymer can be representedbymeans

of a continuous flexible or semiflexible filament. In general such simple models disre-

gard any long range interaction to facilitate their analysis which, in many cases, lead to

known analytical solutions.

Despite its simplicity, ideal models are able to reproduce some universal properties ex-

hibited by real polymers under certain conditions. However, in most cases it is necessary

to consider non ideal effects to model the actual behavior observed in real polymers.

4.3.1 Non-ideal mechanisms affecting real polymers

In general, non-ideal chain properties arise from diverse types of long range effects, such

as effective interactions between non bonded monomers —which may be distant in the

chain sequence but close in space— or between monomers and the surrounding solvent

particles. The most relevant of such non-ideal effects, namely, the effects of excluded

volume andmonomer-monomer andmonomer solvent interactions, are described below.

Excluded volume effects

One of the main effects on real polymers disregarded by ideal models is the fact that

monomers are not zero or one-dimensional entities, but have a dimension and, therefore,

actually occupy some volume. Steric effects due to the electrostatic repulsion between

the electronic clouds found around the molecules forbid the spatial overlap of different

monomers in the chain. In other words, a monomer can not occupy the volume occupied

by other monomers. Therefore, this excluded volume effect reduces the total number of

configurations available to a real polymer, forcing it to adopt, on average, structuresmore
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expanded than the ones corresponding to an ideal chain. Statistically, the configurations of

a real polymer subject to excluded volume effects differ froma pure randomwalk, tending

instead to resemble random trajectories which avoid self overlaps. This trajectories are

known as self avoiding random walks (SAW) [211, 212].

Van der Waals interactions and solvent effects

In real polymers, besides the covalent bonds that keep the chain connectivity and the

excluded volume effects, there may also exist weak attrative forces of Van der Waals type

between monomers that are relatively close in space. Monomers have also interactions

with the solvent that can be either attractive or repulsive. In fact, the nature of such

interactions depends on the system’s temperature and on the chemical composition of the

polymer and the solvent altogether. These effects strongly influence the global structure

of the polymer.

When the system composition and temperature lead to an effective attraction between

monomers and solvent, the system is considered to be under good solvent conditions and

the resultant polymer tends to adopt a coil structure that maximizes the contact between

monomers and solvent. Therefore, the contour volume of the polymer tends to be higher

than the corresponding to an ideal chain.

On the other hand, poor solvent conditions correspond to an effective general attraction

between monomers. When poor solvent conditions are imposed, the polymer tends to

adopt a compact, globule-like structure which minimizes the contact betweenmonomers

and solvent.

In some systems it is possible to observe a transition between the expanded coil struc-

tures typical of a good solvent and the globule structures led by a poor solvent by varying

the system temperature [213, 214]. This coil-globule transition has been the subject of ex-

tensive studies in Polymer Physics. One of theirmost interestingproperties is that at some

point of the transition the system shows a mutual cancellation between the excluded vol-

ume effects and the effective attraction between monomers, which to an ideal behavior

of the chain. Under such specific conditions, known as theta conditions or theta point, the

polymer is exclusively dominated by entropic effects and the experimental measurement

of local properties becomes easier [215].
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4.3.2 Structural parameters

From the previous discussion, one can deduce that polymers present many different

time-varying conformations depending on their nature and conditions. Consequently,

the structural characterization of polymers, usually carried out by means time and/or

ensemble averages, is an essential point in the study of their behavior. For this purpose,

different structural parameters are commonly used to describe the polymers structures

anduniversal properties. The studypresented in the tollowing chaptermakes reference to

some of themost common structural parameters used polymer physics which are defined

next.

Gyration tensor and derived parameters

The gyration tensor,Gα,β, describes the variance, or secondmoments, of the positions of a

set of immaterial points. It is equivalent to the inertia tensor obtainedwith a constant value

of mass for every point. Different structure descriptors can be deduced from the gyration

tensor to characterize molecular structures and, particularly, to describe macromolecules

and polymers. In the latter case, the tensor is constructed for the positions of the chain

monomers.

The terms of the gyration tensor for a polymer chain of N monomers are defined as:

Gα,β =
1
N

N
∑

i=1

Sαi S
β

i
, (4.1)

where α, β = x, y, z are the cartesian axes and Si = ri − 〈r〉 is the displacement vector from

the average position of the set of monomers, 〈r〉 = 1
N

∑N
j=1 r j, to the position of the i-th

monomer, ri.

The gyration tensor is a symmetric and therefore diagonalizable matrix. Their ordered

eigenvalues are called principal moments of the tensor:

λ2x ≤ λ2y ≤ λ2z . (4.2)

These principal moments can be combined to obtain the diverse structural parame-

ters mentioned above, such as the asphericity, the acylindricity or the relative shape

anisotropy. However, the most simple and widely used —in polymer physics— of the

structural parameters that can be obtained from the gyration tensor is the radius of gyra-

tion of the chain. The quadratic radius of gyration is simply defined as the sum of the
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principal moments of the gyration tensor obtained for the monomer positions:

R2
g = λ2x + λ2y + λ2z = R2

xx + R2
yy + R2

zz. (4.3)

The radius of gyration is a simple structure descriptor that roughly measures the di-

mensions of the chain. More interestingly, it can be determined experimentally for real

polymers by radiation scattering methods [212]. When the spatial distribution of the

chain monomers is isotropic, the quadratic radius of gyration can be calculated without

the need of explicitly computing the gyration tensor and their eigenvalues [211]:

R2
g =

1
2N2

∑

i, j

( ri − r j)2 =
1
N

N
∑

k=1

( rk − 〈rk〉)2 . (4.4)

In general, the mean size of a chain shows a power law dependence on the number of

monomers [215]. This is the case for the radius of gyration, 〈Rg〉 ∝ Nν. The exponent ν is,

in fact, the inverse of the fractal dimension of the chain, dF = 1/ν. For ideal chains, i.e.,

for a polymer under theta conditions, ν = 1/2, whereas ν = 3/(d + 2) for good solvent

and ν = 1/d for poor solvent conditions, where d is the system dimensionality [215,216].

For the case of good solvent conditions, the expression ν = 3/(d + 2) is obtained by

minimizing the free energyof the systemassuming that it has only twomain contributions:

an entropic term corresponding to a gaussian random distribution of the chain bond

orientations which is proportional to R2
g/N, and a repulsion term that takes into account

the excluded volume effects and is proportional to N2/Rd
g [215].

End-to-end distance

Another simple parameter for the structure characterization of polymers is the displace-

ment vector, or end-to-end vector, that joins both extremes in a polymer chain. Hence,

for a chain with N monomers, the quadratic norm of the end-to-end vector, or quadratic

end-to-end distance, is defined as:

R2
ee = (r1 − rN)2. (4.5)

The maximum possible value of the end-to-end distance corresponds to a fully stretched

chain and is also called the contour length of the chain, while smaller values would

indicate more complex geometries. In the absence of correlations between the positions

of the monomers, the mean quadratic end-to-end distance and the radius of gyration
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satisfy, in the thermodynamic limit, the relation 〈R2
ee〉 ∝ 〈R2

g〉 [217], which implies that

both quantities follow the same asymptotic scaling.

In general, the presence of an attractive surface near a polymer introduces a structural

anisotropy which affects the values and the asymptotic behavior of the structural param-

eters Rg and Ree of the chain. In particular, the parallel and perpendicular components

of such parameters with respect to the attractive surface are no longer equivalent and

the configurational entropy of the chain tends to decrease as the adsorption process takes

place.

Persistence length

The persistence length, lp, is formally defined as the correlation length of the bond-angle

correlation function. It is directly related with the stiffness of a polymer since it basically

measures the length scale up to which the chain behaves as a rod. The refered correlation

function is defined as the average 〈τ̂i · τ̂i+x〉, where τ̂i is the unitary vector tangent to the

chain backbone at the position of the i-thmonomer. Therefore, the bond-angle correlation

function is expected to behave as 〈τ̂i · τ̂i+x〉 = exp(−x/lp).

Structural motifs during adsorption on surfaces: loops, trains and tails

The adsorptionof a polymer by an attractive surface is a continuousphase transition [218].

This means that it does not occurs abruptly, by adsorbing all the monomers in the chain at

the same time, but in a continuous process dominated by fluctuations during which the

mean number of adsorbedmonomers varies and tends to increase as the adsorption takes

place. Therefore, the chain can be represented as a composition of diverse segments, or

structural motifs, with different characteristic morphologies defined with respect to the

adsorption surface. The most widely used classification of such adsorption structures

distinguishes three types of motifs, known as loops, trains and tails.

The definitions of loops, trains and tails that will be used in the next chapter are

schematized in Figure 4.3: a train is defined as a consecutive sequence of adsorbed

monomers, a loop is a chain sequence in which all the monomers are not adsorbed but

have adsorbed neighbors at both extremes of the segment, whereas a tail is a sequence of

non adsorbed monomers in which one of their extremes is an end of the chain.

The statistics of loops, trains and tails are commonly used to characterize adsorption

processes and to study of diverse aspects of the behavior of grafted polymers [219–221].
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4.3.3 Critical behavior of polymers near attractive surfaces

There are numerous studies of the adsorption process of non-magnetic chains. For in-

stance, the transition from a desorbed to an adsorbed state in good solvents has been

investigated in detail [222–238] and poor [235,239–251]. For the case of semi-flexible ideal

chains, Khokhlov et al [252] obtained an analytical solution to the adsorption problem

showing that it is a continuous phase transition in the limit of an infinite chain length.

The influence of the chain stiffness on adsorption has also been studied through nu-

merical simulations with coarse-grained models [229, 253–255]. Computer simulations

have been also carried out to determine the phase diagrams of systems with competing

forces [241–250, 256–258]. For neutral polymers the conformational adsorption phases

have been studied using multicanonical computer simulations [259]. In addition to the

main phases of adsorbed and desorbed conformations, several other phase transitions,

such as the freezing transitions between globular entropy-dominated conformations and

energy-dominated crystalline low-temperature structures [260], have been observed. The

case of the adsorption of charged polymers onto surfaces has also received considerable

attention [261]. Very recently, the coil-globule transition near an attractive surface [262]

and the adsorption of random copolymers from a melt onto a solid surface [263] have

been analyzed.

For the conditions that will be considered in the next chapter to describe the adsorption

of amagnetic filament controlled by the system temperature, we need to take into account

excluded volume and good solvent effects. For this reason, the relevant details of the

current knowledge on the critical behavior of non-ideal polymers near attractive surfaces

Figure 4.3: Schematic representation of the different types of structures developed by a partially
adsorbed polymer-like chain.
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in a good solvent are summarized next.

Scaling relations for non-ideal chains in a good solvent

The universal properties and scaling relations for the temperature-controlled adsorption

process of a single non-ideal polymer chain under good solvent conditions were estab-

lished by Eisenriegler and coworkers [225]. This study was based on the pioneering

works by de Gennes, Diehl and others, and was carried out by means of Monte Carlo

simulations and a theoretical approach based on the mapping of the polymer adsorption

process to the problem of correlation functions in the n-vector model of magnetism in the

n → ∞ limit. The model included a short-ranged attractive interaction with the surface

and represented the polymer as a self-avoiding random walk on a regular lattice with at

least one of their monomers in permanent contact with the surface.

The main finding of Esenriegler and coworkers regarding the adsorption energy of the

chain, Uads, was its dependence on the chain length,N. For finite chains they have shown

that

Uads

N
∝



























N−1, T > Tc(N)

Nφ−1, T = Tc(N)

const., T < Tc(N)

(4.6)

where Tc(N) is the transition temperature for a chain of N monomers. Therefore, the

adsorption energy scales as a power law of the chain size at the transitionpoint,Uads ∝ Nφ.

Due to finite size effects, a wide crossover region is expected and the predicted behavior

for T > Tc(N) and T < Tc(N) would be obtained only for temperatures far enough from

the transition point, Tc(N). The exponentφwas deducedby fitting the results for different

chain lengths. They obtained φ = 0.58 ± 0.03. For the finite size scaling analysis of the

adsorption energy, the relation

Uads/Nφ = h
(

τNφ
)

(4.7)

was established. In such relation, as usual, τ = (T − Tc(N →∞)) /Tc(N→∞) represents

the relative distance to the critical temperature, Tc(N → ∞), which can be obtained by

extrapolation of the finite size transition temperatures, whereas h(x) is the following

scaling function:

h(x) ∝



























x−1, x→∞
const., x→ 0

|x|(1−φ)/φ, x→ −∞
(4.8)
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4 Magnetic filaments

Hence, the adsorption energy has the following asymptotic behavior:

Uads/N ∝














0, T ≥ Tc(N→∞)

|τ|(1−φ)/φ, T < Tc(N→∞)
(4.9)
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5 Transitions of semiflexible magnetic

filaments near an attratctive surface

The present work is focused on the study of the influence of the magnetic interactions on

the adsorption process of a semiflexible magnetic filament by an attractive flat surface.

Magnetic filaments and their behavior near attractive surfaces have an unquestionable

interest because of their potential for novel technological applications. This study is also

a preliminary theoretical approach to these novel systems which intends to determine

what are the most adequate modeling strategies for this case.

The behaviour of the adsorptionof non-magnetic polymers on attractive surfaces iswell

known. In general, the adsorption process is favored by the chain length and the stiffness,

letting it to take place at higher temperatures. The addition of a permanent magnetic

moment to the particles forming a polymer-like supramolecular chain is expected to

produce significant effects on this behavior. Unlike magnetic filaments, ferrofluids have

been already studied to a certain extent and can provide some prospects of what can

one expect from the magnetic interactions effects. On the one hand, it is known that in

ferrofluids the magnetic particles tend to form chain-like structures with a head-to-tail

arrangement of the dipoles [197, 264]. Therefore, it is reasonable to suppose that the

magnetic interactions would contribute to increase the chain stiffness and, consequently,

would favor the adsorption process as the stiffness does. On the other hand, it is also

known that ferrofluid particles tend to form annular structures [264] that are found to be

the ground state of the system in quasi-two dimensional geometries [265]. Hence, the

magnetic interactions would have an influence on the chain morphology that could be

very different from the one own to the stiffness as the system energy decreases. However,

it is not trivial to anticipatewhat the effect of thedipolar interactionswill be on semiflexible

magnetic filaments near an attractive surface.

In order to determine the nature of such influence, extensive Langevin Dynamics (LD)

simulations using a novel coarse bead-spring chain model for the filaments have been

carried out, and the effects of the temperature, the strength of the magnetic interactions,
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5 Transitions of semiflexible magnetic filaments near an attratctive surface

the stiffness and the length of the chain have been thoroughly studied.

This Chapter is organized as follows: in Section 5.1 the numerical model and the

details of the performed simulations are presented, Section 5.2 is devoted to introduce the

obtained results and finally a summary and a discusion of the conclusions is presented in

Section 5.3.

5.1 A coarse-grained model for semiflexible magnetic filaments

The coarse-grained simulation model developed for this study represents magnetic fil-

aments as bead-spring semiflexible chains composed of N identical spherical particles

of diameter σ with a point magnetic dipole of permanent magnetic moment µ located

at their centers. Since pair potentials with abrupt discontinuities are difficult to man-

age in dynamic simulations, continuous expressions have been used in general for the

model interactions. However, except for the magnetic interactions that are effectively

long-ranged, the rest of the model interactions are considered as short-ranged; onse-

quently adequate cutoff distances have been specified for each of their components in

order to avoid negligible potential evaluations.

5.1.1 The filament model

Themodel intrachain interactions are displayed schematically in Figure 5.1, Excludedvol-

ume effects are explicitely considered by imposing a mutual steric repulsion to the chain

beads. This repulsion is described by a truncated-shifted Lennard-Jones pair potential

(tsLJ) also known as Weeks-Chandler-Andersen potential [266]:

UtsLJ(r) =















ULJ(r) −ULJ(rcut), r < rcut

0, r ≥ rcut
(5.1)

where r is the distance between the centers of the interacting monomers and ULJ(r) is the

standard Lennard-Jones expression [27]:

ULJ(r) = 4ǫe

[

(

σ

r

)12
−
(

σ

r

)6
]

. (5.2)

For the sake of simplicity, reduced units have been used for the model definitions, so that

the values σ = 1 and ǫe = 1 have been taken for the previous expression. The cutoff

radius for the tsLJ potential has been set to rcut = 21/6σ, what means a soft-core repulsion

between monomers. The one-dimensional connectivity of the chain is kept by a bonding
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5.1 A coarse-grained model for semiflexible magnetic filaments

Figure 5.1: Representation of the coarse-grained model used to study the behavior of magnetic
filaments.

interaction which includes two components: the first nearest neighbor attraction and the

stiffness. For the first one, a finite extensible nonlinear elastic (FENE) potential provides

a radial attraction between the said neighbors in the chain

U f ene(r) =
−K f r

2
max

2
ln
[

1−
(

r

rmax

)2
]

, (5.3)

with K f = 30/σ2 and rmax = 1.5σ, being r again the distance between the center of the

bonded particles1. Figure 5.2(a) shows the net profile resulting from such non-directional

potentials, evidencing that in this model the bonds does not have a fixed length, but may

have any length below the maximum value rmax = 1.5σ, led by the FENE potential, with

the lower unbounded limit of the soft core repulsion.

On the other hand, the chain stiffness is represented bymeans of the following bending

potential [254, 255]:

UB =
∑

θ

κ

2
(cosθ− cosθ0)2, (5.4)

where θ is the bond angle determined by the positions of any three consecutive beads in

the chain, θ0 is the preferred angle —i.e., the angle that minimizes the bending energy

of the chain— and κ is the bending constant. As is usual for coarse-grained models, the

configuration of minimum bending energy has been assumed to be an straight rod, hence

1It should be noted that having the chain elastic bonding attraction as a function of the distance between
the centers of the bonded beads, r, is a rough approximation to the actual experimental case, in which the
linkingmolecules that constitute the semiflexible bond are fixed to points in the beads surface. Therefore,
the contribution of the rotations of a bead to the stretching of its bonds are neglected.
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5 Transitions of semiflexible magnetic filaments near an attratctive surface

(a) (b)

Figure 5.2: Terms of the bonding interactions of the chain beads: (a) radial terms; (b) bending
potential.

the preferred angle has been taken to be θ0 = π. In the absence of magnetic interactions,

the stiffness parameter κ is directly related to the chain persistence length, which can be

experimentally measured by scattering techniques in real polymer chains [267–269]. This

potential is depicted in Figure 5.2(b).

Since the magnetic nature of the filaments is represented by a point magnetic dipole

at the center of each chain bead, the long range magnetic interactions between beads are

given by the well known expression for magnetic dipole-dipole interactions:

Udip(ri j) =
µi · µ j
|ri j|3

−
3[µi · ri j][µ j · ri j]

|ri j|5
, (5.5)

where ri j = ri − r j is the displacement vector between particles i and j, whereas µi and µ j
are their respective magnetic moments. As a first approach, the point dipole of each bead

is allowed to freely rotate in any direction of the three-dimensional space, independently

from the chain bonds. However, the behavior observed in ferrofluidsmakes reasonable to

expected that magnetic interactions between first nearest neighbors will tend to align the

dipoles with the chain backbone without imposing any explicit geometrical restriction to

their orientations.

In this study each chain has been set to have all their dipoles with the same modulus,

|µi| = µ. The value of µ has been established from its squared expression, µ2, which

represents the total intensity of the dipolar pair interaction in reduced units. In fact, µ2 is

proportional to the maximum dipolar energy between two spherical dipoles and can be
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5.1 A coarse-grained model for semiflexible magnetic filaments

related to the experimental parameters byµ2 = µ2e/(ǫe σ3e ), whereσe and ǫe are respectively

the range and the strength of the interacting potential and µe is the experimental dipolar

magneticmoment. Therefore, the value ofµ2woulddepend in general on the composition

and size of the magnetic particles. In particular, typical values for common magnetic

minerals, such as magnetite, are found to be µ2 < 10, whereas more exotic magnetic

materials, such as cobalt-based materials, can show higher values.

Since no attractive interaction between non-neighbor beads has been defined —apart

from the effects of eventually favorable magnetic interactions— it is assumed that the

background system is composed by a perfect solvent.

5.1.2 Surface interactions and dynamics

The simulation box consists in a three-dimensional constrained open space unbounded

along the x − y plane but limited in the z direction by two impenetrable, neutral and

non-magnetic walls located at z = 0 and z = 50σ, respectively. The wall at z = 0 is an

attractive surface which interacts with the filament beads by a truncated-shiftedmodified

version of the Lennard-Jones potential:

Us(z) =















U9−3(z) −U9−3(zcut), z < zcut

0, z ≥ zcut
(5.6)

where

U9−3(z) = 4ǫs

[

(

σ

z

)9
−
(

σ

z

)3
]

(5.7)

is the known 9–3 Lennard-Jones potential [270] expressed as a function of the distance

between thewall and the center of the bead. This expression, obtained fromthe integration

of the original Lennard-Jones potential over an infinite flat surface, is frequently used to

represent the interactions of fluid particles with flat solid walls. In this case, the values

ǫs = ǫe = 1 and zcut = 2.5σ have been taken.

The secondwall, located at z = 50σ, has the purpose of preventing the filament tomove

too far away from the attractive wall. This is done to ensure that the the filaments will

effectively interact with the adsorbing wall within a reasonable equilibration interval of

time. Several tests have been performed for an adequate location of this repulsive wall in

order to avoid any bias in the adsorption process. In this case, the repulsive interaction

is represented by a potential equivalent to expression (5.1), with the same cutoff distance

rcut = zcut = 21/6σ and the change r = 50σ − z.
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5 Transitions of semiflexible magnetic filaments near an attratctive surface

The main control parameter in the model is the system temperature. This parameter is

defined in reduced units as T ≡ kB Te/ǫe, where Te is the experimental temperature and

kB the Boltzmann’s constant. In simulations of other magnetic systems, a dimensionless

dipolar coupling parameter λ is often defined to characterize the strength of the dipolar

interaction. In general, λ is one half the ratio of the magnetic energy of two dipoles,

separated by one particle diameter and oriented head to tail, to the thermal energy. In

our reduced units this relation is λ = µ2/T.

The simulation of system dynamics is carried out by applying translational and rota-

tional Langevin equations of motion, as discussed in Section 1.3.1, to any of the chain

beads [30]:

Mi
dvi
dt

= Fi − γTvi + ξTi (5.8)

Ii ·
dωi

dt
= τi − γRωi + ξ

R
i (5.9)

where Fi, and τi are respectively the total force and torque acting on the particle i,Mi and

Ii are its mass and inertia tensor, γT and γR are the translational and rotational friction

constants, whereas ξT
i
and ξR

i
are the gaussian random force and torque, respectively. The

time is expressed in reduced units as t = te [ǫe/(Me σ2e )]
1/2, whereMe and te are the mass

of the bead and the measured time, respectively.

For equilibrium simulations the values of themass, the inertia tensor, as well as friction

constants γT and γR are irrelevant. The bead mass has been chosen to be Mi = 1 and for

the inertia tensor the identity matrix has been used in order to ensure isotropic rotations

Ii = 1. The values γT = 1 and γR = 3/4 have been taken from previous studies in which

a conveniently fast relaxation to equilibriumwas achieved [264,271]. Finally, the reduced

time step has been set to be δt = 5 · 10−3.

In all the cases the simulation starts by placing the filament in the bulk region with

its first bead located in the interval z ∈ (σ, 5σ). This choice guarantees that the chain is

sufficiently close to the attracting surface to avoid the unnecessary computational time

that it would spend just diffusing in the bulk region. The remaining monomers are

positioned using a self-avoiding random walk scheme with an overlap radius of 0.9σ.

The system is pre-equilibrated for a period of 5 · 105 steps using a sequence of increasing

time steps until the final value δt is reached. Subsequently, the chain is equilibrated for

a period of 2 · 106 δt to ensure that the results have lost memory of initial configuration.

After the equilibration period, the system is sampled at intervals of 4 · 103 δt for another
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5.2 Simulation results and calculations

period of 2 · 106 δt. The equilibrium statistics heve been improved by averaging measures

from 70 independent runs for each explored set of system parameters.

The results, presented in the next section, have been obtained using the simulation soft-

ware ESPResSo [272], a package specifically intended for soft matter problems. Although

the package includes advanced approaches for the evaluation of the long range inter-

actions, such as Ewald summations [29] or approximate methods based on Fast Fourier

Transforms [273], the simulation in open space of single chains with small lenghts per-

formed in this study allows for the exact pair evaluation over all the chain particles.

5.2 Simulation results and calculations

The numerical experiments presented here have been performed for single magnetic

chains with lengths varying in the range N ∈ [20, 300] and strengths of the magnetic

point dipole of the monomers within the range µ2 ∈ [1, 10]. Regarding the chain stiffness

constant, values within the range κ ∈ [0, 30] were explored but here, only the results

obtained forκ = 10will be presented in a complete form, because no qualitative difference

was found for other values. In particular, the limit in which the persistence lengths is

similar or larger than the chain contour length has not been considered. Finally, the range

of inverse temperatures explored in the simulations has been 1/T ∈ [0.25, 4].

Figure 5.3 shows some examples of equilibriumconformations obtained for a chainwith

length N = 100. A first inspection of such equilibrium conformations clearly evidences

that at high temperatures (1/T . 0.25) all chains are completely desorbedwhereas at low

temperatures (1/T → 4) they are fully adsorbed. A more careful inspection evidences

the existence of three possible different phases in the system. At high temperatures, the

chain is desorbed and exhibits the shape of a self-avoiding random coil with little order in

the orientation of their dipoles (Fig. 5.3(a)). As the temperature is lowered, the filament

is adsorbed onto the surface and dipoles align with the chain backbone, which tends to

adopt more stretched conformations (Fig. 5.3(b)). Except for the presence of the dipoles,

this situation corresponds to the well known behavior observed for non-magnetic semi-

flexible polymers, whose adsorption process undergoes a continuum phase transition.

Nonetheless, below a certain characteristic temperature that depends on the chain pa-

rameters, the tendency to stretch is reversed and the equilibrium chain conformations are

characterized by the formation of closed structures in the adsorbed state, forming pla-

nar loops with a smooth curvature and an almost perfect alignment of the dipoles with
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5 Transitions of semiflexible magnetic filaments near an attratctive surface

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Snapshots of equilibrium conformations of a magnetic filament near a flat homoge-
neous attractive surface for N = 100, κ = 10 and µ2 = 3 at different temperature
values. Filament beads are depicted as two-colored spheres with the two colors repre-
senting the magnetic dipole orientation. (a) 1/T = 0.5, (b) 1/T = 1.0, (c) 1/T = 3.0,
(d) 1/T = 4.0. — Equilibrium chain conformations obtained at low temperatures
(1/T = 4.0). (a) A fully flexible filament (κ = 0) for N = 100 and µ2 = 3.0 displays
a more corrugated shape in comparison with Figs. 5.3(c) and 5.3(d); (b) Effect of high
magnetization values (µ2 = 10) on the chain conformation (N = 100, κ = 10).

the chain backbone (Fig. 5.3(c) and Fig. 5.3(d)). This behavior suggests the existence of a

second structural transition as a consequence of competing interactions in the system. A

further reduction in temperature apparently leads to an increase in the number of loops

(Fig. 5.3(d)).

For low temperatures and strengths of the magnetic interaction close to the upper limit

of the thoroughly explored range, µ2 → 10, there exist indications of a more complex

behavior. Figure 5.3(f) depicts the shape of a typical filament structure obtained at

1/T = 4.0 and µ2 = 10. It is reasonably identify such structure as corresponding to the

result of a competition between the interaction with the adsorption surface, that tends
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5.2 Simulation results and calculations

to flatten the adsorbed chain conformations, with secondary dipole-dipole interactions

between beads which are far in the chain sequence but close in space, leading to an

effective attraction between these beads which is strong enough to produce nonplanar

compact adsorbed conformations. This behavior is similar to the one observed in non-

magnetic polymer chains immersed in a poor solvent near an attractive surface, for which

an adsorbed, non-flat collapsed phase is identified [245]. The role of the chain stiffness is

illustrated in Figure 5.3(e), where a fully flexible chain (κ = 0) displays amore corrugated

shape in comparison with the analogous semiflexible chain (κ = 10) shown in Figure

5.3(c).

As mentioned before, dipoles tend to align locally with the filament structure as the

temperature is reduced. In order to quantify the degree of such local alignment, a bond-

dipole local orientation parameter is defined as:

〈A〉 = 1
N − 2

〈 N−1
∑

i=2

∣

∣

∣ r̂i−1,i+1 · µ̂i
∣

∣

∣

〉

, (5.10)

where 〈 ... 〉 stands for the thermal average of the different chain conformations collected

from all runs at a given temperature T, r̂i−1,i+1 is the unitary displacement vector between

the center of particles i − 1 and i + 1, and µ̂i is the unitary dipole moment associated to

bead i. This definition for amean local alignment parameter is not unique, but it is evident

that in this case a perfect local alignment of the dipoles with the chain backbone will lead

to 〈A〉 → 1, whereas a orientation distribution of the dipoles completely uncorrelated

with the chain backbone will produce 〈A〉 ∼ 1/2. The behavior of this parameter with

the inverse temperature is shown in Figure 5.4 for N = 100, κ = 10 and different values

of the intensity of the magnetic interaction. It is evident that the local ordering tends

to increase as the temperature is reduced until 〈A〉 reaches a plateau around 〈A〉 ∼ 0.95.

The local alignment is never perfect due to the small but necessary curvature needed to

form the closed structures that develop at small temperatures (see Fig.5.3). In general,

the local alignment of the dipoles increases more abruptly and at a higher temperature

as the dipolar strength is increased but, remarkably, for the highest values of µ2 and very

low temperatures 〈A〉 tends to slightly decrease again due to the growing ocurrences of

the non-planar adsorbed conformations noted in the previous qualitative inspection.

The next two sections will be devoted to characterize the undergoing continuum phase

transitionof themagneticfilament towards the adsorbed state and the structural transition

from open stretched chains to closed folded configurations led by magnetic interactions
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5 Transitions of semiflexible magnetic filaments near an attratctive surface

Figure 5.4: Bond-dipole local orientation parameter as a function of the inverse temperature for
different values of the magnetization for the case N = 100 and κ = 10.

at low temperatures.

5.2.1 Adsorption transition

The adsorption transition in polymeric systems can be characterized using observables

like the mean normalized adsorption energy, 〈Γ〉, and its associated specific heat at con-

stant volume, CV, which are defined as:

Γ =

∣

∣

∣

∣

∣

∣

∣

∣

Uads

U
(max)

ads

∣

∣

∣

∣

∣

∣

∣

∣

, (5.11)

CV

N
=
〈U2

ads
〉 − 〈Uads〉2

NT2
, (5.12)

where

Uads =
N
∑

i=1

Us(zi) (5.13)

is the total adsorption energy, obtained from equation (5.6), and U
(max)

ads
is the largest

possible adsorption energy for the chain, obtained when all the monomers are located

at the minimum of the potential (5.7) as defined by their assigned parameters: U(max)

ads
=

N Us(z = 31/6σ).

Figure 5.5 presents the change of the mean normalized adsorption energy 〈Γ〉 as a

function of the inverse temperature 1/T for different values of the dipolar interaction and

for distinct chain lengths. The inset plots show the behavior of the associated specific
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(a) (b)

Figure 5.5: Mean normalized adsorption energy, 〈Γ〉, and its corresponding specific heat (inset
figures), for a semiflexible chain with κ = 10 as a function of the inverse temperature
1/T: (a) (b) for N = 100 and different values of the dipolar interaction µ2.

heat derived from the energy fluctuations. In all cases the position of the CV peak

determines the characteristic adsorption temperature at which the filament adsorbs onto

the surface. The results evidence that an increase of the dipolar interaction (µ2 < 10) favors

the adsorption at higher temperatures as is commonly observed for an increasing chain

stiffness (Figure 5.5(b)). The same effect, led exclusively by the magnetic interactions, can

also be observed for a fully flexible magnetic filament (κ = 0). This result confirms the

behavior expected from the existence of a configurational energy local minimum when

the dipoles are aligned in a parallel head to tail orientation. Hence magnetic interactions

favor more stretched configurations which, as occurs in non-magnetic polymers, tend to

allow the adsorption of the chains at higher temperatures since stretched configurations

lose much less entropy in such process than the coil-shaped ones. However, at lower

temperatures and moderate values of the dipolar interaction, the tendency of the chains

to stretch is reversed and the equilibrium chain conformations are characterized by the

formation of ordered closed loops with smooth shapes. This behavior will be further

analyzed in the next section.

The adsorption transition also exhibits an indication of criticality in its dependencewith

the system size: as shown in Figure 5.6, the adsorption takes place at higher temperatures

as the chain length increases. Consequently, for a given chain stiffness the characteristic

adsorption temperature depends on both the intensity of the magnetic interactions and
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5 Transitions of semiflexible magnetic filaments near an attratctive surface

Figure 5.6: Same as Figure 5.5 for µ2 = 3 and κ = 10 for different values of the chain length N,
illustrating the finite size effects.

the chain length: Tc

(

N, µ2
)

. The critical adsorption temperature, Tc(N→∞, µ2), can be

derived by extrapolation to the limit of infinite chain lengths from a least-square fitting

of the assumed dependence for the critical temperature Tc

(

N, µ2
)

∼ N−φ, where φ is

the critical crossover exponent. Figure 5.7(a) shows the result of this fitting for diverse

values of the dipolar parameter, as well as the extrapolation to N−φ = 0 to obtain the

corresponding critical temperatures. The data fits to the exponent φ = 0.59 ± 0.04, a

value also obtained for the adsorption of non-magnetic homopolymers onto flat surfaces

[225, 253].

Since the effects of the magnetic interactions on the adsorption transition of magnetic

filaments appear to be essentially quantitative within the range of parameters explored,

in order to examine the critical properties of such transition the known scaling ansatz for

non-magnetic polymers, introduced in Section 4.3.3, has been adopted. Using the values

of Tc(∞, µ2) previously obtained, the scaling relations (4.7) and (4.8) for the adsorption

energy Uads have been applied to the available data. The results of this rescaling of the

adsorption energy for µ2 = 3 and different chain lengths are shown in Figure 5.7(b). The

data reproduces reasonably well the conventional scaling relationship taking a value for

the crossover exponent of φ = 0.59. An analogous behavior has been observed for all the

values of the dipolar interaction explored (µ2 < 10). This result confirms, for the range

of parameters studied, the quantitative nature of the magnetic interaction effects on the

adsorption transition.

A further insight on the chain morphology close to the adsorption transition point can
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(a) (b)

Figure 5.7: (a) Determination of the critical adsorption temperatures Tc(N → ∞,µ2) for different
values of the dipolar interaction µ2. The chain stiffness is set to κ = 10. The data fits
to the known exponent φ = 0.59 for the adsorption of homopolymers on flat surfaces.
(b) The log-log plot of the scaling function Uads/Nφ−1 vs the scaling argument |τ|Nφ

for the case κ = 10 and µ2 = 3. The straight lines indicate the asymptotic limit.

be obtained from the study of the statistics of the three different types of structural mo-

tifs that may conform the filament during the adsorption process, namely: loops, trains

and tails, as defined in Section 4.3.2. The results obtained for these motifs are summa-

rized in Figure 5.8. In particular, Figure 5.8(a) shows an example of the averaged number

of monomers belonging to loops, trains and tails, 〈n〉, as a function of the inverse tem-

perature for N = 100, κ = 10 and µ2 = 3. In such representative case one can observe

a monotonous increase in the averaged number of monomers in train segments as the

temperature decreases, in an analogous way to the behavior observed for the adsorption

energy, 〈Γ〉. This process is accompanied by amonotonous decrease of monomers in tails,

as expected. On the other hand, the number of monomers involved in loops becomes

only significant and reaches a maximum close to the characteristic adsorption transition

temperature. This behavior is consistentwith the idea that close to the transition point the

adsorbed/unadsorbed fluctuations should be maximal. Nonetheless, the location of this

maximum is slightly shifted to smaller temperatureswith respect to the transition temper-

ature derived from the position of the peak in the specific heat. Butmore interestingly, the

temperature at which the curves corresponding to trains and tails intersect, namely Ttt, is

found to be strongly correlated with the characteristic adsorption temperature Tc(N, µ2)

as shown in Figure 5.8(b). Within a precision of ∆T = ±0.04 both temperatures coincide
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(a) (b)

Figure 5.8: (a) Average number of monomers involved in train, tail and loop segments close to
the adsorption transition point for N = 100, κ = 10 and µ2 = 3. The dashed line
identifies the temperature at the train-tail crossing point, Ttt. (b) Correlation between
the characteristic temperaturesderived from the position of the peak in the specific heat
data Tc(N,µ2) and the intersection point between the averaged number of monomers
in train and tail segments Ttt for κ = 10, µ2 = 0, 2, 3, 4, 6, 8 and different chain lengths
N.

for all the cases studied. To date, this is the first time in which a technique based on the

analysis of the train and tail statistics is used to determine the characteristic adsorption

temperature. In addition, this technique has the advantage that good estimates can be

obtained with much less numerical effort than the accurate determination of the specific

heat maxima.

5.2.2 Structural open-closed transition

Once the critical behavior of the continuous phase transition led by the adsorptionprocess

has been characterized, the study is now focused on the structural change displayed by

the adsorbed filament conformations at low temperatures. This behavior is particularly

interesting since it has not known equivalence in non-magnetic systems.

As a first approach to such characterization, the behavior of the parallel, 〈R2
g,‖〉

1/2, and

perpendicular, 〈R2
g,⊥〉1/2, components of the root mean squared radius of gyration of the

chains, as defined in the expressions (4.4), have been calculated. Figure 5.9 shows the

results for these parameters as a function of 1/T forN = 100, κ = 10 and different values

of the dipolar strength. At high temperatures, the perpendicular component drops to zero

and the parallel component grows abruptly to a high value as soon as the chain becomes
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Figure 5.9: Parallel, 〈R2
g,‖〉

1/2, and perpendicular, 〈R2
g,⊥〉1/2, components of the root mean squared

radius of gyration as a function of 1/T for a magnetic filament with N = 100, κ = 10
and different values of the dipolar interaction µ2.

adsorbed onto the surface, as previously observed in non-magnetic polymer chains [253].

In such non-magnetic systems the parallel component of the already adsorbed chain

keeps growing smoothly as the temperature decreases due to the stretching of the chain

structure, as illustrated by the case µ2 = 0. However, for non zero values of the dipolar

interaction, the growth of the parallel component is reverted at a given temperaturewhich

increases with µ2. Threfore, this particular behavior of the radius of gyration provides

a numerical evidence of the new characteristic structures that would be observed in

adsorbed magnetic filaments at low temperatures and moderate values of the dipolar

interaction (µ2 < 10). This result strongly suggests the existence of a second structural

transition that takes place at temperatures below the corresponding to the adsorption

process, Tc(∞, µ2).

Considering its definition, provided in Equation (4.5), a more sensitive parameter to

characterize the structural transition of magnetic filaments from a stretched to a closed

planar structure as the temperature is decreased should be the root mean squared end-to-

end distance, 〈R2
ee〉1/2. In effect, the results obtained for this parameter, shown in Figure

5.10(a) for N = 100, κ = 10 and different values of the dipolar parameter, evidence

more clearly the open-closed transition of the filament structures. As the temperature is

reduced the mean end-to-end distance grows in a similar way as the parallel component

of the radius of gyration, thus confirming the idea that moderated magnetic interactions

tend to stretch the chain at relatively high temperatures, those at which the adsorption
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5 Transitions of semiflexible magnetic filaments near an attratctive surface

(a) (b)

Figure 5.10: (a) Root mean squared end-to-end distance, 〈R2
ee〉1/2, as a function of 1/T forN = 100,

κ = 10 and different values of the dipolar interaction µ2. (b) Parallel and perpen-
dicular components with respect to the adsorbing surface of the total normalized
magnetization 〈M〉 as a function of 1/T for N = 100, κ = 10 and non-zero values of
the dipolar interaction µ2.

process takes place. For non zero dipolar strengths, and after reaching a maximum

value, 〈R2
ee〉1/2 drops to almost zero values as a clear indication that a closed structure

becomes the preferred equilibrium morphology. Again, this process operates at higher

temperatures as the dipolar strength increases.

An analogousway tomeasure the structural change of the adsorbedmagnetic filaments

is by computing the normalized accumulated spontaneous magnetization of the chain,

calculated as the modulus of the vector sum of all the dipoles, M =
∣

∣

∣

∑N
i=1 µi

∣

∣

∣/(Nµ).

Figure 5.10(b) shows themean parallel and perpendicular components of such parameter.

Remarkably, the latter component has the same type of behavior observed for the end-

to-end distance, with an evident correspondence between the curves obtained under the

same system parameters. In fact, this correspondence is a direct consequence of having a

good alignment between the dipoles and the backbones of the adsorbed chains: as long as

such alignment increases, the end-to-end displacement vector, Ree, and the vector sum of

the aligned dipoles,M, will tend to differ only by a constant factor. The existence of a high

alignment of the dipoles with the chain backbone for all the adsorbed states obtained at

non zero dipole intensities can be deduced by observing the value of the local alignment

parameter, presented in Figure 5.4, at temperatures below the adsorption transition point.

The presented structural parameters may provide further insights into the open-closed
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Figure 5.11: 〈R2
ee〉1/2 vs. 1/T for κ = 10, µ2 = 3 and different values of the filament legth N. Inset:

corresponding fluctuations of the same parameter.

transition. By analyzing their statistical fluctuations and their dependence with the

system size in an analogous way to the adsorption transition analysis, the corresponding

transition points and critical temperatures associated to each set of systemparameters can

be determined for this new transition. In this case, the end-to-end distance parameter,

instead of a component of the system energy, has been chosen for the analysis due

to the small differences in configurational energies exhibited by the open and closed

adsorbed structures. Figure 5.11 shows the behavior of 〈R2
ee〉1/2 and its fluctuations,

in the inset figure, as a function of the inverse temperature for κ = 10, µ2 = 3 and

different chain lengths. As was observed for the adsorption transition, a maximum in

the parameter fluctuations that shifts towards higher temperatures as the chain length

increases is obtained. Therefore, the dependence with the system size and the existence

of the fluctuations maxima are again indications of a critical behavior associated to a

continuous phase transition. Consequently, in order to estimate the critical temperatures

for this new transition, Tc(N →∞, µ2), the fluctuations maxima have been taken as finite

size characteristic temperatures, Tc(N, µ2), and an extrapolation to the limit of infinite

chain lengths has been carried out. For this extrapolation, it has been assumed that the

measured characteristic temperatures follow a power law dependence with the chain

length defined by Tc(N, µ2) = a − bN−ψ. A three parameters least-square fit to the data

provides a new crossover exponent ψ = 0.7 ± 0.1, though estimated temperatures are

quite insensitive to the value of ψwithin the error range.

Based on the results obtained for the adsorption and the structural transition tempera-
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5 Transitions of semiflexible magnetic filaments near an attratctive surface

Figure 5.12: Representation of the phase diagram obtained for a single semiflexible magnetic fila-
ment (κ = 10) near an attractive flat surface for moderate values of the magnetization
(µ2 < 10).

tures, Figure 5.12 shows a representation of the phase diagram for a semiflexible magnetic

filament (κ = 10) near an attractive homogeneous surface with moderate values of the

dipolar interaction (µ2 < 10). The diagram only includes temperatures as low as T ≥ 0.5

due to the difficulties to obtain a good equilibration of the longest chains at the lowest

temperatures and the excessive uncertainties associatedwith them. As anticipated by the

inspection of the filament structures, the statistical analysis of the simulation results has

confirmed the existence of three different phases for the range of parameters explored. At

high temperatures the filaments remain in a unadsorbed state for any value of µ2, display-

ing a self-avoiding random coil morphology. At intermediate temperatures there exist a

region where the magnetic chains are adsorbed an exhibit preferentially open stretched

structures. At low temperatures, beyond a minimal dipolar strength, another phase is

observed in which planar closed loop structures are favored. This latter phase has not

known equivalence in non magnetic systems.

The final point to be addressed in this study is the dependenceof the structures found in

the closed adsorbed phasewith the dipole intensities. As already noted in the preliminary

inspection of the filament conformations, the number of planar loops observed in such

phase seems to increase with µ2. In order to determine the mean number of loops in a

given structure, a new characterization parameter is needed. A very simple parameter

that contains information of the closed internal structures of the filament is the partial

accumulated magnetization along the chain, M(k), which is defined as the modulus of
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(a)

Figure 5.13: Behavior of the accumulatedmagnetization along the chain for threedifferent filament
conformations.

the vector sum of any k consecutive beads in the chain:

M(k) =

∣

∣

∣

∣

∣

∣

∣

k
∑

i=1

µi

∣

∣

∣

∣

∣

∣

∣

, k ≤ N, (5.14)

where the index i = 1 represents an arbitrary bead in the sequence of the closed chain and

the sum is performed over consecutive neighbors in any of the two possible directions

along the chain. Figure 5.13 shows the behavior of such parameter for three examples of

filament structures formed by 1, 3 and 5 loops. It is notably evident the correspondence

between the number of loops in the structure and the number ofmaxima, or peaks, inM(k).

Therefore, by simply counting the number of peaks inM(k) along the whole domain of k,

one obtains a rather good estimation of the number of loops present in the structure. The

process can be easily automatized by using an adequate peak detection algorithm.

Figure 5.14 shows the smoothed normalized histograms of number of loops, P(n),

found in adsorbed structures with the previous method for some representative cases

with N = 100 and κ = 10. On the one hand, Figure 5.14(a) corresponds to a fixed low

temperature, T = 0.25, and three values of the dipole intensity. For µ2 = 1 the open

structures (P(n) = 0) are still significant, but the most probable morphology is formed by

a single closed loop. As the dipole intensity increases, the most probable structures have

a higher number of loops. On the other hand, Figure 5.14(b) shows the same parameter

for a fixed dipole intensity, µ2 = 6, and three values of temperature. In this case, the most
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(a) (b)

Figure 5.14: Normalized histograms for the mean number of loops calculated from the accumu-
lated magnetization along the chain: (a) for T = 0.25 and different values of the
dipolar constant; (b) for µ2 = 6 and different values of temperature.

probable number of loops clearly decreases with the increasing temperature. Therefore,

it has been statistically confirmed that the number of loops in closed adsorbed structures

tends to increase with the magnetic strength and decrease with temperature.

5.3 Discussion and concluding remarks

The equilibrium properties in the adsorption of stiffmagnetic filaments close to an attrac-

tive flat surface has been studied thoroughly via extensive Langevin Dynamics simula-

tions,with aparticular attention to the effects of themagnetic interactions and the eventual

differences that such interactions may lead with respect to analogous non magnetic sys-

tems. In general, common modeling strategies for the study of adsorption processes of

non magnetic polymers have been adopted, introducing new specific characterization

parameters only when needed.

A new coarse-grained model for magnetic filaments has been developed for this nu-

merical study. In this model, magnetic filaments are represented by a bead-spring chain,

with a point magnetic dipole of a given intensity located at the center of each bead. Ex-

cluded volume interactions are represented by a soft-core repulsive potential, whereas a

radial, finitely extensible nonlinear elastic potential keeps bonded the first nearest neigh-

bors in the chain and a bending potential models the bond stiffness. The dipoles are able

to change their orientation independently from the bonds.
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The numerical experiments evidence twomain relevant phenomenawithin the range of

parameters explored for the adsorption of a single filament onto the attractive surface: on

the one hand, magnetic interactions have an additive effect on the adsorption continuous

phase transition —extensively studied for magnetic polymers— which is analogous to

the role played by the chain stiffness. On the other hand, the filaments already adsorbed

may experience a structural transition between two very different morphologies as the

system temperature is changed. This novel second transition, which is absent in non

magnetic systems, also exhibits indications of criticality and allows the calculation of

critical transition temperatures.

By combining the results obtained for both transitions, a representation of the structural

phase diagram of amagnetic filament in a perfect solvent and close to an attractive surface

has been presented for the first time. The phase diagram is limited to moderate values of

temperatures, chain stiffness and dipole intensities.

The dominant mechanisms and resulting morphologies observed as the system tem-

perature is changed can be summarized as follows. At relatively high temperatures,

thermal fluctuations are the most significant mechanism in the system and the filaments

remain unadsorbed, showing the shape of a self-avoiding random coil and a mostly ran-

dom distribution of their dipoles orientations. In general, under this conditions the total

magnetization of the chain is small but not zero.

As the temperature is decreased, the filament is more likely to have some segment

adsorbed onto the attractive surface. The dipoles adopt soon a high alignement with

the chain backbone, in a head to tail arrangement with their first nearest neighbors, by

reducing their magnetic energy towards a local minimum. This behavior is consistent

with such observed experimentally for the non bonded magnetic colloids that conform

ferrofluids. In fact, the local arrangement of the dipoles, associated to a small reduction

in the chain configurational entropy, necessarily modifies the self-avoiding random coil

structures leading to more stretched morphologies. Therefore, the local ordering of the

dipoles contributes to increase the effective chain stiffness and, consequently, to increase

the radius of gyration, the end-to-end distance and the net chain magnetization.

As is well known for non magnetic polymers, the chain stiffness favors the adsorption

process on a flat surface at higher temperatures due to the lower reduction in entropy

needed to lay onto a plane by a stretched structure with respect to a random coil mor-

phology. Consequently, the adsorption temperature increases with the dipole intensity,

as well as with the chain stiffness. Interestingly, it has been reported for the first time the
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existence of an unexpected strong correlation between the transition temperatures and

the equilibrium point of two structural parameters, known as trains and tails, character-

istic of the adsorption process of chains on flat surfaces. The nature of this correlation

has not been formally established, but the following interpretation is suggested for fu-

ture studies: under the simulation conditions of this study, the statistics for trains and

tails is expected to capture the residence times of the chain into the adsorbed and the

unadsorbed states, respectively. From the basis of such assumption, the identification

bewteen the trains–tails equilibrium point and the transition temperature becomes evi-

dent. Finally, the asymptotic scaling behavior of the continuous adsorption transition has

not been found to be essentially affected by the presence of the magnetic interactions.

At some temperature below the adsorption transition, dipoles are almost perfectly

aligned with a very smooth and rather stretched chain backbone, thus they are not able

to further reduce the configurational entropy by simple local rearrangements. Con-

sequently, long range magnetic interactions become significant, leading to the closure

transition of the chain and reducing the net magnetization to near zero. As pointed pre-

viously, this closure transition also exhibits indications of a critical behavior, for which

a phenomenological characterization, based on the scaling properties of the end-to-end

distance parameter, has been provided. The use of a structural parameter instead of any

component of the system energy is justified by the fact that the differences between the

configurational energies of the open and closed adsorbed structures is very small. This

suggest that the nature of the closure transition could be essentially entropic.

The closure transition is also consistentwith a presumably tendency expected from pla-

nar arrangements of magnetic dipoles to form single ring structures, which are known to

be the ground state of two-dimensional ferrofluid systems. In this transition, the end-to-

end distance shows an almost perfectly qualitative equivalence with the component of

the magnetization parallel to the surface plane. However, as the temperature is reduced

or the dipole intensity is increased, the closed adsorbed structure tends to be formed for

an increasing number of closed loops which also minimize locally their net magnetiza-

tion. Superficially, this could be understood as a contradictory result with respect to the

previously noted behavior of formation of single rings expected from ferrofluids close to

the ground state. However, magnetic filaments involve not only the magnetic interac-

tions but the chain bonds, with a radial and an orientational components, as well as a

given fixed chain length for every case. Therefore, the geometrical constrains imposed

by different competing interactions and finite size effects in this system are expected to
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be much more complex and is very hard to anticipate what could be its true ground

state. Moreover, it seems quite reasonable to expect very different ground state confor-

mations depending on the systemparameters. In any case, the calculation of ground state

conformations for this system falls outside the practical capabilities of simple Langevin

Dynamics simulations.

Besides the range of parameters thoroughly explored, the system is also expected to

exhibit even more interesting behaviors. For instance, at very low temperatures and

high values of the dipole intensity, the numerical experiments show indications that

magnetic interactions can become strong enough to compete with the chain stiffness and

the adsorption potential to bring closer dipoles which are far away in the chain sequence,

leading to nonplanar compact adsorbed structures. Thus, the phase diagram of magnetic

filaments near an attractive flat surface is expected to be enriched with new phases, such

as partially adsorbed globular structures.
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6 Conclusions summary

In this Thesis, the relevant structural properties and transitions observed in two different

clases of mesoscopic systems of interest in nanotechnological applications have been

studied: thin solid films grown by physical vapor deposition and synthetic magnetic

filaments. Both studies have been mainly carried out by means of extensive numerical

simulations. In spite of the differences in the specific atomistic simulation models and

techniques that have been used for each kind of system, both studies rely on the same

basis of a common coarse-grained modeling perspective and a theoretical background

based on the concepts of minimal physical modeling, criticality and phase transitions

applied at the mesoscopic scale.

Effects of coordination on thin films mesoscopic morpholgy transitions

The non-equilibrium growth of thin films has been approached using the kinetic Monte

Carlo simulation method with a novel coarse-grained atomistic simulation model. In

particular, themodel incorporates a novel flexible scheme for the arbitrary definitionof the

bonding symmetries led by the nature of the depositedmaterial. In order to determine the

effects of themicrostructure maximum coordination number on the universal mesoscopic

morphologies of thin solid films grown under simple deposition conditions, different

(1+1) and (2+1)-dimensional abstractmicrostructures have been considered. The simplest

Structure Zone Model, that describes qualitatively the mesoscopic morphologies of thin

films obtained from simple physical vapor deposition processes, has been used as the

main experimental refersence for the simulation results.

The simulation model and their approximations have been initially verified by ana-

lyzing the scaling behavior of the surface kinetic roughening of films grown under low

adatom mobility conditions. As expected, the scaling behavior corresponding to the

Ballistic Deposition model has been reproduced. As an additional result, it has been

found that microstructure coordination number has no significant effects on the universal

aspects of the Structure Zone Model.

The model of this Thesis also reproduces the essential experimental mechanisms of
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selection of crystalline textures imposed by the substrate microstructure under epitaxial

growth regimes, i.e., under relatively high adatom mobility conditions.

From the simulations, a strong evidence have been found for a behavior analogous to

an equilibrium continuous phase transition of the changes in the thin film morfologies

obtained in the steady, non-equilibrium growth regime as the deposition parameters are

varied. Specifically, the equilibrium transition-like behavior has been evidenced for film

characteristic morphologies at the border from structure Zone I to structure Zone II as the

substrate temperature is increased. This analogy with equilibrium structural transitions

has been used in general as the main analysis approach during this study.

The effects of the different microstructures have been characterized by means of an

accurate statistical analysis of two non-extensive structural parameters, taken as order

parameters for the continuous structural transition: the mean packing density and the

mean coordination number. The simulation results show that themaximum coordination

number of the microstructure has no significant effect on the transition point of the

structural transition. This transition point is determined from the fluctuations maxima

of the main packing density and is considered as the boundary between structure Zones

I and II. This novel criterium for the determination of a structure zones boundary is

suggested as a more consistent method than those proposed by previous studies.

The independence of the structure zones boundary with respect to the microstructure
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Figure 6.1: (a) Relative mean lateral width of the compact film structures as a function of the
reduced substrate temperature for every (1+1)-dimensional bonding symmetry. (b)
Phase diagram for the structure Zone I and Zone II for each (1+1)-dimensional mi-
crostructure.

122



is consistent with the experimental robustness observed in experiments for the Structure

Zone models, specially with respect to the deposited materials. However, a quantita-

tive dependence with the maximum coordination number is effectively observed in the

vicinity of the boundary between structure zones, either for (1+1) and (2+1)-dimensional

microstructures. In particular, this dependence is clearly observed in the behavior of the

order parameters, as well as in the mean characteristic size of the compact, column-like

crystalline substructures which conform the film for substrate temperatures close to the

transition point, as illustrated in Figure 6.1(a): at high substrate temperatures—above the

transition point— the size of such crystalline substructures tends to be larger for bonding

symmetries with lower maximum coordination number, whereas at low substrate tem-

peratures —below the transition point— the formation of crystalline substructures takes

place at lower temperatures for themicrostructures with a highermaximum coordination

number.

On the other hand, the simulation results show that a non local change in the dynamic

mechanisms of growth has a strong impact on the boundaries bewteen structure zones,

as shown in Figure 6.1(b). More interestingly, the formation of non competing columnar

structures has been observed in the simulated films without the inclusion of any explicit

interlayer diffussion barrier in the model. Such behavior is explained by indirect dy-

namical constrains introduced by the interplay between the microstructure and epitaxial

effects, and is found to be consistent with very recent experiments where the existence

of implicit interlayer diffussion barriers induced by purely dynamical effects has been

reported.

Altogether, these results provide a consistent picture of either the essential mechanisms

of thin film growth and the relationship between the mesoscopic bulk morphologies and

the deposition parameters, as well as an indication of the influence of themaximum coor-

dination number of the system bonding symmetry on such morphologies. In particular,

the growth regimes in which the microstructure of the deposited material can be highly

significant for the resulting mesoscopic morphologies of the films have been character-

ized. Also, these results are expected to provide some useful coarse-grained modeling

approaches to novel thin film systems.

Transitions of semiflexible magnetic filaments near an attratctive surface

In the second class of mesoscopic systems, the equilibrium structural behavior of syn-

thetic magnetic filaments near to an attractive flat surface as the system temperature
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is changed has been studied by means of extensive Langevin Dynamics simulations.

The work constitutes the first study of equilibrium structural properties of this type of

novel mesoscopic systems. For this purpose, a simple coarse-grained atomistic model

—which includes long ranged magnetic dipolar interactions, excluded volume effects

and stiffness— has been introduced. In general, the analysis of the simulation results has

been based on an adaptation of well tested statistical analysis developed in the field of

polymer physics.

The simulations have been performed for moderate values of the system parameters

—the temperature, the chain length and the intensity of themagnetic dipoles— assuming

the conditions of infinite dilution in a perfect solvent. Three phases with very different

structural characteristics and two corresponding structural phase transitions have been

identified at these moderate values of the parameters.

At high temperatures, the magnetic chain remains desorbed and exhibits the shape

of a self-avoiding random coil, with the magnetic dipoles highly disordered. As the

temperature is decreased, the adsorption of the filament onto the attractive surface begins

to take place. At the same time, the dipoles tend to adopt a locally ordered head-

to-tail conformation aligned with the chain backbone, increasing the total stiffness of the

chain. As a consequence, the chain tends to globally adoptmore stretched conformations,

reducing its conformational entropywith respect to the non-magnetic case. Consequently,

the adsorption process —which is the first equilibrium continous phase transition— is

observed at higher temperatures as the intensity of the magnetic dipoles is increased and

a higher local ordering of the dipoles is obtained.

The adsorption transition has been mainly characterized by a statistical analysis of

the finite size and critical scaling behaviors of the adsorption energy. The simulations

show that the same scaling exponents than the ones corresponding to non-magnetic, non-

ideal homopolymers are obtained for the adsorption transition of magnetic filaments.

This result reinforces the interpretation that, during the adsorption process, the magnetic

interactions act just as a local stretching factor, leading to an effective enhancement of the

chain stiffness. Another analysis based on the statistics of occurrences for the different

types of chain structures found during the adsorption process —loops, trains and tails—

has been also performed. This analysis shows a high correlation between the adsorption

transition point and the temperature at which themean numbers of trains and tails are the

same. This alternative method for the estimation of the transition temperature has been

found to require less statistics than the analysis of the adsorption energy fluctuations.
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As the temperature is decreased below the adsorption transition point, the chain tends

to remain adsorbed, displaying an increasing alignment of the dipoles with the chain

backbone as well as smother and more stretched global conformations. However, at

some characteristic low temperature—once the dipoles are almost perfectly aligned with

the chain backbone— this tendency to stretch is reverted and the chain experiences a

closure transition, leading to chain structures that tend to be formed by one or more

closed two-dimensional smooth loops. This second structural transition is explained as a

consequence of the long-rangedmagnetic interactions that tend tominimize themagnetic

energy globally, once the magnetic energy have been locally minimized by the alignment

of the dipoles. The transition has been characterized by analyzing the finite size statistics

of a structural parameter, the end-to-end distance, shown in Figure 6.2(a). Due to the

high alignment of the dipoles with the chain backbone, such parameter has been found

to be equivalent to the total magnetization of the chain. The analysis of the end-to-end

distance has provided an estimation of the critical temperatures for this second transition,

allowing the construction of an approximate phase diagram, shown in Figure 6.2(b), for

the range of parameters explored.

(a) (b)

Figure 6.2: (a) Evolution of the end-to-end distance and its fluctuations (inset figure) of a magnetic
filament with different lengths near to an attractive surface as a function of the system
inverse temperature. (b) Representation of the corresponding configurational phase
diagram obtained for moderate values of the magnetic dipoles.

As observed for the adsorption transition, the intensity of the magnetic dipoles favors

the closure transition at higher temperatures. More interestingly, within the range of

parameters studied, the number of closed loops forming the chain structure tends to
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increase with the magnetic intensity and with the inverse temperature.

Even if it was not thoroughly studied in this Thesis, an indication of an even more

complex behavior whichmay take place at higher values of themagnetic dipolar intensity

has been obtained. In particular, for streghts of the magnetic interaction high enough

compared to the stiffness and the adsorption potentials, the two-dimensional looped

chain structure may collapse into a compact, partially desorbed globule structure in

which dipoles far away in the chain sequence come into close contact. Moreover, further

new phases are expected to arise from the interplay of extreme values of the parameters.

As a final concluding remark, this study has been intended to be a first step towards

the adequate mesoscopic modeling and understanding of the behavior of magnetic fil-

aments near attractive surfaces. Some interesting aspects of such novel systems have

been determined from these numerical simulations but, as one can expect from any rele-

vant early study on an almost unexplored system,manymore new questions have arisen.

Hopefully, such novel questions will be the central subject of future work.
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