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Juan Carlos González-Avella1*, Victor M. Eguı́luz1, Matteo Marsili2, Fernado Vega-Redondo3,4, Maxi San

Miguel1

1 Instituto de Fı́sica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, Spain, 2 The Abdus Salam International Centre for Theoretical Physics,

Trieste, Italy, 3 European University Institute, Florence, Italy, 4 Instituto Valenciano de Investigaciones Económicas, Valencia, Spain

Abstract

Social learning is defined as the ability of a population to aggregate information, a process which must crucially depend on
the mechanisms of social interaction. Consumers choosing which product to buy, or voters deciding which option to take
with respect to an important issue, typically confront external signals to the information gathered from their contacts.
Economic models typically predict that correct social learning occurs in large populations unless some individuals display
unbounded influence. We challenge this conclusion by showing that an intuitive threshold process of individual adjustment
does not always lead to such social learning. We find, specifically, that three generic regimes exist separated by sharp
discontinuous transitions. And only in one of them, where the threshold is within a suitable intermediate range, the
population learns the correct information. In the other two, where the threshold is either too high or too low, the system
either freezes or enters into persistent flux, respectively. These regimes are generally observed in different social networks
(both complex or regular), but limited interaction is found to promote correct learning by enlarging the parameter region
where it occurs.
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Introduction

Social learning has been a topic of central concern in economics

during the last decades [1], as it is central to a wide range of socio-

economic phenomena. Consumers who want to choose among a

given set of available products may seek the opinion of people they

trust, in addition to the information they gather from prices and/or

advertisement. And voters who have to decide what candidate to

support in an election, or citizens who have to take a stand on some

issue of social relevance may rely on their contacts to form their

opinion. Ultimately, whether our societies take the right course of

action on any given issue (e.g. on climate change) will hinge upon

our ability to aggregate individual information that is largely

disperse. Thus, in particular, it must depend on the information

diffusion mechanism by which agents learn from each other, and

therefore on the underlying social network in which they are

embedded. The significance of the conceptual challenges raised by

these issues is made even more compelling by the booming advance

in Information and Communication Technologies, with its impact

on the patterns of influence and communication, and on the way

and speed in which we communicate.

These key issues have attracted the interest of researchers in

several fields. For example, the celebrated ‘‘voter model’’ [2,3] is a

prototype of those simple mechanistic models that are very

parsimonious in the description of individual behavior but allow

for a full characterization of the collective behavior induced. The

voter model embodies a situation where each agent switches to the

opinion/state held by one of the randomly selected neighbors at

some given rate, and raises the question of whether the population

is able to reach consensus, i.e. a situation where all agents display

the same state. The literature on consensus formation, as reviewed

e.g. in Refs. [4,5], has focused, in particular, on the role played by

the structure of the underlying network in shaping the asymptotic

behavior. One of the main insights is that the higher the effective

dimensionality of the network, the harder it is to obtain conformity

[6,7]. Consensus formation in social systems is closely related to

the phenomenon of social learning. Indeed, the latter can be

regarded as a particular case of the former, when consensus is

reached on some ‘‘true’’ (or objective) state of the world, for

example, given by an external signal [8,9] impinging on the social

dynamics.

At the opposite end of the spectrum, economists have stressed

the micro-motives that underlie individual behavior and the

assumption of rationality. They have also emphasized the

importance of going beyond models of global interaction and/or

bilateral random matching, accounting for some local structure

(modeled as a social network) in the pattern of influence or

communication among agents. This literature (see Ref. [10] for an

early survey) has considered a number of quite different scenarios,

ranging from those where agents just gather and refine

information [11–13] to contexts where, in addition, there is

genuine strategic interaction among agents [14]. Despite the wide

range of specific models considered, the literature largely conveys

a striking conclusion: full social conformity is attained (although

not necessarily correct learning), irrespectively of the network

architecture. On the other hand, to attain correct learning, one

must require not only that the population be large but, in the limit,

that no individual retain too much influence [14,15].
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The model studied in this paper displays some similarities to, as

well as crucial differences with, those outlined above. To fix ideas,

the model could be regarded as reflecting a situation where,

despite the fact that new information keeps arriving throughout,

the consequences of any decision can only be observed in the

future. As a more concrete example, this could apply to the

performance of a political candidate, the health consequences of

consuming a particular good, or the severity of the problem of

climate change, on all of which a flow of fresh information may be

generated that is largely independent of agents’ evolving position

on the issue. So, as in Ref. [9], the agents receive an external

signal; however, the signal is noisy and it is confronted with the

behavior displayed by neighbors. As in Refs. [12,14], while the

agents make and adjust their choices, they keep receiving noisy

signals on what is the best action. In contrast, however, these

signals are not associated to experimentation. In this respect, we

share with Ref. [13,15] the assumption that agents’ arrival of

information is not tailored to current choices.

The problem, of course, would become trivially uninteresting if

agents either had unbounded memory or stored information that

is a sufficient statistic of the whole past (e.g. updated beliefs in a

Bayesian setup). In this case, agents could eventually learn the best

action by relying on their own information alone. Therefore we

make the stylized assumption that the particular action currently

adopted by each individual is the only ‘‘trace’’ she (and others)

keep of her past experience. Thus her ensuing behavior can only

be affected by the signal she receives and the range of behavior she

observes (i.e., her own as well as her neighbors’). Under these

conditions, it is natural to posit that if an agent receives a signal

that suggests changing her current action, she will look for

evidence supporting this change in the behavior she observes on

the part of her neighbors. And then, only if a sufficiently large

fraction of these are adopting the alternative action, she will

undertake the change. This, indeed, is the specific formulation of

individual learning studied in the present paper, which is in the

spirit of the many threshold models studied in the literature, such

as Refs. [16–20]. This formulation can be conceived as the

outcome of a situation where agents use Bayes rule to update their

actions rather than their beliefs, and have no memory of the past

(see Methods). The confidence they have on their current choice

(as embodied by their subjective probability that they are right), as

well as the corresponding confidence they attach to the signals and

and neighbors’ choices are taken as fixed parameters. Then,

essentially, what is required for an agent to follow a threshold rule

as described is that she attaches a high confidence to both her

current choice and her current signal. For, under these conditions,

when the signal and the choice point in opposite directions – and

only then – any change of behavior will hinge upon sufficient

strong support for it provided by the neighbors’ actions.

In the setup outlined, it is intuitive that the ‘‘acceptance

threshold’’ that agents require to abandon the status quo should

play a key role in the overall dynamics. And, indeed, we find that

its effect is very sharp. First, note the obvious fact that if the

threshold is either very high or very low, social learning (or even

behavioral convergence) cannot possibly occur. For, in the first

case (a very high threshold), the initial social configuration must

remain frozen, while in the second case (a very low threshold), the

social process would enter into a state of persistent flux where

agents keep changing their actions. In both of these polar

situations, therefore, the fraction of agents choosing the good

action would center around the probability p with which the signal

favors that action.

Outside these two polar situations, there is always an

intermediate region where social learning does occur. Within this

region, learning emerges abruptly: there are upper and lower

bounds (dependent on p) such that, if the threshold lies within

these bounds, all agents learn to play the good action while no

learning at all occurs if the threshold is outside that range. Thus the

three aforementioned regions are separated by sharp boundaries.

A similar abruptness in learning arises as one considers changes in

p. In this case, there is a lower bound on p (which depends on the

threshold) such that, again, we have a binary situation (i.e., no

learning or a complete one) if the informativeness of the signal is

respectively below or above that bound. In a sense, these stark

conclusions highlight the importance of the social dimension in the

learning process. They show that, when matters/parameters are

‘‘right,’’ the process of social learning builds upon itself to produce

the sharp changes just outlined. The situation is reminiscent of the

‘‘tipping-point’’ behavior that has been widely studied for

epidemic phenomena and which, as it is well understood by

now, often characterize as well the transitions of complex dynamic

systems.

As it turns out, this same qualitative behavior is encountered in

a wide variety of different network contexts. To understand the

essential features at work, we start our analysis by studying the

simple case of a complete graph, where every agent is linked to any

other agent. This context allows one to get a clear theoretical grasp

of the phenomenon. In particular, it allows us to characterize

analytically the three different regimes of social learning indicated:

correct learning, frozen behavior, or persistent flux. We then show

that this characterization also provides a good qualitative

description of the situation when the interaction among agents is

mediated via a sparse complex network. We consider, in

particular, three paradigmatic classes of networks: regular two-

dimensional lattices, Poisson random networks, and Barabási-

Albert scale free networks. For all these cases, we conduct

numerical simulations and find a pattern analogous to the one

observed for the complete graph. The interesting additional

observation is that local interaction enlarges (in contrast to global

interaction) the region where social learning occurs. In fact, this

positive effect is mitigated as the average degree of the network

grows, suggesting a positive role for relatively limited/local

connectivity in furthering social learning.

The model
There is large population of agents, N~f1,2,:::,Ng, placed on

a given undirected network C~(N,L), where we write ij [L if

there is link between nodes i and j in C. Let update step

s~0,1,2,::: be indexed discretely. Each agent i[N displays, at any

step s, one of two alternative actions ai(s)~+1, which are not

equivalent. One of them, say action 1, induces a higher (expected)

payoff, but the agents do not know this.

At each step s, one randomly chosen agent i[N receives a

signal on the relative payoff of the two actions. This signal, which

is independent across time and agents, is only partially

informative. Specifically, it provides the correct information (i.e.,

‘‘action 1 is best’’) with probability pw1=2, while it delivers the

opposite information with the complementary probability 1{p.

If agent i’s previous action ai(s{1) does not coincide with the

action ai(s) suggested as best, she considers whether changing to

the latter. We assume that she chooses ai(s) (thus making

ai(s)~ai(s)) if, and only if, the fraction of neighbors in

N i: j [N : ij [Lf g who chose ai(s) at s{1 exceeds a certain

threshold. Let this (common) threshold be denoted by t[ 0,1½ �.
At the start of the dynamic process, each agent receives one

signal ai(0) and adopts the corresponding action. In other words,

the initial condition for the process is one where each agent,
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independently, holds action z1 with probability p or action {1
with probability 1{p.

The central question posed in the paper can now be precisely

formulated:

What is the relationship between p (the quality of the signal) and

t (the threshold for action change) that underlies the spread and

consolidation of action 1?

This is the question addressed in what follows, in a range of

different setups and relying on a variety of methodologies.

Results

Global interaction for infinite populations
Let us consider the case where interaction is global: for each

pair of agents i,j we have that i[N j and j [N i. Let x(t)[0,1�
stand for the fraction of agents choosing action 1 at time

t~s=N. Setting the time in this way, for each agent the average

number of updates per unit of time is 1, irrespective of system

size N . In the limit of infinite population size (N??), the

dynamics is given by:

_xx~{(1{p)xh(1{x{t)zp(1{x)h(x{t) ð1Þ

where h(z)~1 if z§0 while h(z)~0 if zv0. This equation is

derived by considering the change dx in the fraction x occurring

in a time interval of dt time steps (equivalently, Ndt updates). For

N??, for any finite dt, this increment converges, by the law of

large numbers, to a constant given by the right hand side of Eq. (1)

times dt. The first term accounts for the number of agents initially

with the right signal (x) who receive the wrong signal (with

probability 1{p) and adopt it, as the fraction of agents also

adopting it is larger than the threshold (1{xwt). The second

accounts for the opposite subprocess, whereby agents who receive

the correct signal (with probability p) switch to the correct action

when the population supports it (xwt).

We assume that, at time t~0, each agent receives a signal ai(0)
and adopts the corresponding action ai(0)~ai(0). Hence the

initial condition for the dynamics above is x(0)~p.

It is useful to divide the analysis into two cases:

Case I. t.1/2

In this case, it is straightforward to check that

xv1{t [ _xx~{(1{p)xv0

1{tvxvt [ _xx~0

xwt [ _xx~p(1{x)w0

So, it follows that correct social learning, in which the whole

population adopts the action privileged by the signal

(x?~x(t??)~1), occurs iff pwt.

Case II. t,1/2

In this case, we find:

xvt [ _xx~{(1{p)xv0

tvxv1{t [ _xx~p{x

xw1{t [ _xx~p(1{x)w0

And, therefore, correct social learning occurs iff pw1{t.

Combining both cases, we can simply state that, in the global

interaction case, correct social learning occurs iff,

t[ (1{p,p), ð2Þ

that is, the threshold t is within an intermediate region whose

size grows with the probability p, which captures the informative-

ness of the signal. However, there are other two phases: if

t[ (0,1{p), the system reaches the stationary solution x?~p;

while if t[ (p,1), we have _xx~0 for all times, which means that the

system stays in the initial condition x?~x(t~0)~p.

It should be noted that the frozen solution x?~x(t~0)~p
only exists rigourously for the step-wise threshold function used in

our model. In a model with a blurred threshold in which h(z) is

replaced in equation (1), for example, by f (z)~½1z tanh (az)�=2,

then _xx=0 in the interval 1{tvxvt, and there is complete

learning for t[ (p,1). However, for reasonable large values of the

parameter a for which the threshold concept is still meaningful, the

dynamical flux is so small that the asymptotic learning solution is

only reached numerically on extremely long time scales. In fact, in

the numerical simulations described below for discrete systems

with a large population, only the frozen solution x?~x(t~0)~p
is observed for the whole duration of the simulations, even when

smoothing out the threshold function.

Numerical simulations
Now we explore whether the insights obtained from the infinite

size limit of the global interaction case carry over to setups with a

finite but large population, where agents are connected through a

social network.

First, we consider the benchmark case of global interaction (i.e.,

a completely connected network). Then, we turn to the case of

local interaction and focus on three paradigmatic network setups:

lattice networks, Erdös-Rényi (Poisson) networks, and Barabási-

Albert (scale-free) networks [21].

Global interaction
The results obtained on the completely connected network (i.e.,

the network where every pair of nodes is linked) are in line with the

theory presented in the previous section. The essential conclusions

can be summarized through the phase diagram in the (p,t)-space

of parameters depicted in Figure 1. There we represent the

fraction of agents choosing action 1 in the steady state for each

parameter configuration, with the red color standing for a

homogeneous situation with x~1 (i.e., all agents choosing action

1) while the blue color codes for a situation where x~0:5 and

therefore the two actions are equally present in the population.

Intermediate situations appear as a continuous color grading

between these two polar configurations.

We find that, depending on the quality of the external signal p
and the threshold t, the system reaches configurations where

either complete learning occurs (x~1) or not (x~p). Indeed, the

observed asymptotic behavior is exactly as predicted by the

analysis of the previous section and it displays the following three

phases:

N Phase I: tv1{p. The system reaches a stationary aggregate

configuration where the nodes are continuously changing their

state but the average fraction of those choosing action 1
gravitates around the frequency x~p, with some fluctuations

(see Figure 2 A). The magnitude of these fluctuations decreases

with system size N.

N Phase II: 1{pvtvp. The system reaches the absorbing state

x~1 where everyone adopts action 1. This is a situation where

Threshold Learning Dynamics in Social Networks
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the whole population eventually learns that the correct choice

is action 1 (see Figure 2 B).

N Phase III: twp. The system freezes in the initial state, so the

fraction x~p of agents choosing the correct action coincides

with the fraction of those that received the corresponding

signal at the start of the process (see Figure 2 C).

It is worth noting that, while in Phase I the theory predicts

x~p, any finite-size system must eventually reach an absorbing

homogenous state due to fluctuations. Thus, to understand the

nature of the dynamics, we determine the average time tsv that

the system requires to reach such an absorbing state. As shown in

Figure 3, tsv grows exponentially with N . This means that tsv
grows very fast with system size, and thus the coexistence predicted

by the theory in Phase I can be regarded as a good account of the

situation even when N is just moderately large.

Lattice networks
Now assume that all nodes are placed on a regular boundariless

lattice of dimension 2, endowed with the distance function d(:)
given by d(i,j)~ max Dxi{xj D,Dyi{yj D

� �
. The social network is

then constructed by establishing a link between every pair of

agents lying at a lattice distance not larger than a pre-specified

level �dd. This defines the neighborhood N i of any agent i[N , as

given by N i~fj [N : d(j,i)ƒ�ddg. In this network, the degree (i.e.

the number of neighbors) of any node ki~k is related to �dd ; for

instance, if �dd~1 we have k~8.

The behavior of the system is qualitatively similar to the case of

a fully connected network. Again we find three phases. In two of

them, both actions coexist with respective frequencies p and 1{p
(one phase is frozen and the other continuously fluctuating), while

in the other phase the whole population converges to action 1. A

global picture of the situation for the entire range of parameter

values is shown in Figure 4, with the black diagonal lines define the

boundaries of the full-convergence region under global interac-

tion. In comparison with the situation depicted in Figure 1, we

observe that the region in the (p,t)-space where behavioral

convergence obtains in the lattice network is broader than in the

completely connected network. This indicates that restricted (or

local) interaction facilitate social learning, in the sense of enlarging

the range of conditions under which the behavior of the

population converges to action 1.

As a useful complement to the previous discussion, Figure 5

illustrates the evolution of the spatial configuration for a typical

simulation of the model in a lattice network, with different values

of t and p~0:6. Panels a, b and c show the configurations of the

system for a low value of t~1=8 at three different time steps: t~0,

1000 and 2000 respectively. The evolution of the system displays a

configuration analogous to the initial condition, both actions

coexisting and evenly spreading throughout the network. This is a

situation that leads to dynamics of the sort encountered in Phase I

above. In contrast, Panels g, h and i correspond to a context with a

high t~7=8, which induces the same performance as in Phase III.

It is worth

emphasizing that although Panels a, b and c display a similar

spatial pattern, they reflect very different dynamics, i.e., contin-

uous turnover in the first case, while static (frozen initial

conditions) in the second case. Finally, Panels d , e and f illustrate

the dynamics for an intermediate value of t~1=2, which leads to a

behavior of the kind displayed in Phase II. Specifically, these panels

show that, as the system moves across the three time steps: t~0,

16 and 21, the system evolves, very quickly, toward a state where

all agents converge to action 1.

Erdös-Rényi and scale-free networks
A lattice network is the simplest possible context where local

interaction can be studied. It is, in particular, a regular network

where every agent faces exactly symmetric conditions. It is

therefore interesting to explore whether any deviation from this

rigid framework can affect our former conclusions. This we do

here by focusing on two of the canonical models studied in the

network literature: the early model of Erdös and Rényi (ER) [22]

and the more recent scale-free model introduced by Barabási and

Albert (BA) [23]. Both of them abandon the regularity displayed

by the lattice network and contemplate a non-degenerate

distribution of node degrees.

The ER random graph is characterized by a parameter m,

which is the connection probability of agents. It is assumed,

Figure 1. Phase diagram of the threshold model on a fully
connected network. The colors represent the fraction of agents
choosing action 1 (from red, x~1 to blue, x~0:5). System size given by
N~104 agents; averaged over 100 realizations.
doi:10.1371/journal.pone.0020207.g001

Figure 2. Typical realizations of the time evolution of the fraction of agents choosing action 1, x, in a fully connected network of
system size N~104 with p~0:60, and (A) t~0:20; (B) t~0:50; (C) t~0:80.
doi:10.1371/journal.pone.0020207.g002
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specifically, that each possible link is established in a stochastically

independent manner with probability m. Consequently, for any

given node, its degree distribution P:fP(k)g determining the

probability that its degree is k is Binomial, i.e.,

P(k)~
N{1

k

� �
mk(1{m)N{1{k, with an expected degree given

by SkT~m(N{1). In the simulations reported below, we have

focused on networks with SkT~8 and N~104.

On the other hand, to build a BA network, we follow the

procedure described in Ref. [23]. At each step, a new node is

added to the network and establishes m links to existing nodes.

The newcomer selects its neighbors randomly, with the probability

of attaching to each of the existing nodes being proportional to

their degree k. It is well known that this procedure generates

networks whose degree distribution follows a power law of the

form P(k)^2m2k{c, with c&3. For our simulations, we have

constructed BA networks using this procedure and a value of

m~4, leading to an average degree SkT~2m~8.

The networks are constructed, therefore, so that they have the

same average degree in both the ER and BA contexts. It is

important to emphasize, however, that the degree distributions

obtained in each case are markedly different. While in the former

case, the degree distribution induces an exponentially decaying

Figure 3. The average survival time tsv in fully connected networks for different system sizes N for p~0:60 and t~0:20. The
continuous line corresponds to an exponential fit of the form tsv* exp(cN), being c a constant; averaged over 100 realizations.
doi:10.1371/journal.pone.0020207.g003

Figure 4. Phase diagram of the threshold model on a two-
dimensional lattice with k~8 (�dd~1). The colors represent the
fraction of agents choosing action 1 (from red, x~1, to blue, x~0:5).
System size N~104 ; average over 100 realizations.
doi:10.1371/journal.pone.0020207.g004

Figure 5. Time evolution of the threshold model on a two-
dimensional lattice with k~8 for different values of t and
p~0:60. Panels (A–C): t~ 1

8
and time steps (A) t~0, (B) 1000 and (C)

2000. Panels (D–F): t~ 1
2

and time steps (D) t~0, (E) 16 and (F) t3~21.
Panels (G–I): t~ 7

8
and time steps (G) t~0, (H) 1000 and (I) 2000. Black

color represents an agent using action {1, while white color represents
action 1. The system size is N~104 .
doi:10.1371/journal.pone.0020207.g005
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probability for high-degree nodes, in the latter case it leads to ‘‘fat

tails’’, i.e. associates significant probability to high-degree nodes.

The results are illustrated in Figure 6. For the two alternative

network topologies, the system displays qualitatively the same

behavior found in the lattice network. That is, there are three

distinct phases yielding distinct kinds of dynamic performance:

convergence to action 1, frozen behavior, and persistent turnover.

However, it is interesting to note that, compared with the case of

global interaction, the convergence region (which we labeled as

Phase II before) is significantly larger. This suggests that local (i.e.

limited) connectivity facilitates social learning.

Why does limited connectivity extend the learning region?

Intuitively, the reason is that it enhances the positive role in

learning played by random fluctuations. Such fluctuations are

neglected, by construction, in the mean-field approximation and

are also minimized when the whole population interacts globally.

But, when interaction is local, those fluctuations will tend to de-

stabilize the situation in both the constant flux and in the frozen

phases – at first, locally, but then also globally.

To gain a more refined understanding of this issue, let us try to

assess the effect of local interaction on the likelihood that, at some

random initial conditions, any given node faces a set of neighbors

who favors a change of actions. This, of course, is just equal to the

probability that the fraction of neighbors who display opposite

behavior is higher than t, the required threshold for change. Thus,

more generally, we want to focus on the conditional distribution

densities wz(n) and w{(n) that specify, for an agent displaying

actions 1 and {1 respectively, the probability density of finding a

fraction n of neighbors who adopt actions {1 and 1, respectively.

Of course, these distributions must depend on the degree

distribution of the network and, in particular, on its average

degree. Specifically, when the average degree of the network is

large relative to population size (thus we approximate a situation of

global interaction) those distributions must be highly concentrated

around p and 1{p respectively. Instead, under lower connectivity

(and genuine local interaction), the distributions wz(n) and w{(n)
will tend to be quite disperse.

Next, let us understand what are the implications of each

situation. In the first case, when the connectivity is high, the

situation is essentially captured by a mean-field approximation,

and thus the induced dynamics must be well described by the

global interaction case (in particular, as it concerns the size of the

convergence region). In contrast, when the connectivity is low and

the distributions wz(n) and w{(n) are disperse, a significant

deviation from the mean-field theory is introduced. In fact, the

nature of this deviation is different depending on the level of the

threshold t. If it is low, and thus action turnover high, it mitigates

such turnover by increasing the probability that the fraction of

neighbors with opposite behavior lie below t. Instead, if t is high

and action change is difficult, it renders it easier by increasing the

probability that the fraction of neighbors with opposite behavior

lies above t. Thus, in both cases it works against the forces that

hamper social learning and thus improves the chances that it

occurs.

More precisely, the above considerations are illustrated in

Figure 7 for a lattice network. There we plot the distributions

wz(n) for different levels of connectivity k and parameter values

p~0:60 and t~0:30 – recall that these values correspond to

Phase I (with high turnover) in a fully connected network. Consider

first the situation that arises for values of k~8,24,56 – i.e. low

connectivity relative to the size of the system. Then we find that,

among the nodes that are adopting action 1, wz attributes a

significant probability mass to those agents whose fraction of

neighbors n choosing action {1 is below the threshold required to

change (as marked by the vertical dashed line). Such nodes,

therefore, will not change their action. And, as explained, this has

the beneficial effect of limiting the extent of action turnover as

compared with the global interaction setup. On the other hand,

the inset of Figure 7 shows that, among the nodes that are

adopting action {1, the distribution w{ associates a large

probability mass to those agents whose fraction of neighbors n
choosing the opposite action is above t. This ensures that there is a

large enough flow from action {1 to action 1. In conjunction,

these two considerations lead to a situation that allows, first, for

some limited nucleation around action 1 to take place, followed by

the ensuing spread of this action across the whole system

(Figure 7(B–D)).

Let us now reconsider the former line of reasoning when k is

large – in particular, take the case k~828 depicted in Figure 7.

Then, the corresponding distribution wz is highly concentrated

around n~p, essentially all its probability mass associated to values

that lie above t~0:30. This means that the induced dynamics

must be similar to that resulting from the complete-network setups,

and thus too-fast turnover in action choice prevents the attainment

of social learning. Clearly, social learning would also fail to occur

for such high value of k if the threshold t were large. In this case,

however, the problem would be that the highly concentrated

distributions wz and w{ would have most of their probability

mass lying below the threshold. This, in turn, would lead to the

A

B

Figure 6. Phase diagram of the threshold model in a (A) ER
network and in a (B) scale-free network with average degree
SkT~8. The colors represent the fraction of agents choosing action 1
(from red, x~1, to blue x~0:5). System size N~104 , average over 100
realizations.
doi:10.1371/journal.pone.0020207.g006
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freezing of the initial conditions, which again is the behavior

encountered for a complete network.

Discussion

The paper has studied a simple model of social learning with the

following features. Recurrently, agents receive an external

(informative) signal on the relative merits of two actions. And, in

that event, they switch to the action supported by the signal if, and

only if, they find support for it among their peers - specifically, iff

the fraction of these choosing that action lies above a certain

threshold. Given the quality of the signal, correct social learning

occurs iff the threshold is within some intermediate region, i.e.

neither too high nor too low. For, if it is too high, the situation

freezes at the configuration shaped at the beginning of the process;

and if it is too low, the social dynamics enters into a process of

continuous action turnover. A key conclusion is that social learning

is a dichotomic phenomenon, i.e. it either occurs completely or not

at all, depending on whether the threshold lies within or outside

the aforementioned region.

These same qualitative conclusions are obtained, analytically, in

the case of global interaction – which corresponds to a mean-field

version of the model – as well as, numerically, in a wide range of

social networks: complete graphs, regular lattices, Poisson random

networks, and Barabási-Albert scale-free networks. However, the

size of the parameter region where social learning occurs depends

on the pattern of social interaction. In general, learning is

enhanced (i.e. the size of the region enlarged) the less widespread is

such interaction. This happens because genuinely local interaction

favors a process of spatial nucleation and consolidation around the

correct action, which can then spread to the whole population.

In sum, a central point that transpires from our work is that,

in contrast to what most of the received socio-economic

literature suggests, social learning is hardly a forgone conclu-

sion. This, of course, is in line with the common wisdom that,

paraphrasing a usual phrase, crowds are not always wise. In our

threshold framework, this insight is robust to the topology or

density of social interaction. Furthermore, our results highlight

the importance of identifying the information diffusion mech-

anism, and the local sampling of the population provided by the

social network. But future research should explore whether it is

also robust to a number of important extensions. Just to mention

a few, these should include (a) interagent heterogeneity – e.g. in

their individual thresholds for change; (b) different behavioral

Figure 7. Influence of local connectivity in social learning (A). The initial probability density wz that a node using action 1 has a fraction n of
neighbor nodes with action {1, computed on a two-dimensional lattice for k~8, 24, 56, 828 and a completely connected network (from the
broadest to the narrowest probability density distribution). [Inset: wz (black, continuous) and w{ (red, dotted) for k~8.] Time evolution of the
probability densities wz (black) and w{ (red) in a two-dimensional lattice with k~56 for (B) t~0, (C) 5 and (D) 10. For all panels, the dashed line
indicates the threshold t~0:3; parameter values: system size is N~104 , p~0:60, and t~0:30.
doi:10.1371/journal.pone.0020207.g007
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rules – e.g. payoff-based imitation; or (c) the possibility that

agents adjust their links, so that learning co-evolves with the

social network.

Methods

Derivation of the threshold rule based on Bayesian
update

Consider a population of N agents and let X5V be the event

which agents are interested in predicting, which is a subset of the

sample space V.

The literature on Bayesian learning (see e.g. [24] and references

therein) discusses cases where a population exchanges their prior

information on X , and the key quantity is the log-likelihood ratio:

h(=)~ log
PfX D=g
Pf �XX D=g , ð3Þ

where �XX~V=X is the complement of X and = is a given

information set. It is easy to show (see Ref. [24]) that when an

agent with information = receives information =’ (e.g. because he/

she exchanges information with another agent or receives a signal)

the log-likelihood ratio changes in an additive manner

h(=)?h(=|=’)~h(=)zh(=’): ð4Þ

Such a dynamics, after an infinite number of updates,

generically converge to a situation where h?+? corresponding

to the agent’s beliefs converging to certainty on whether X will

occur or not. Naı̈vely speaking, Bayesian learning describes a

dynamics under which individuals develop an ‘‘expertise’’ in the

subject matter and converge to a state of absolute certainty about

it.

This, however, seems implausible in cases where the subject

matter is extremely complex (e.g. climate change). Then

individuals are unlikely to become experts, rather they might hold

a particular opinion, and display a corresponding action, to which

they attach a given confidence. In this situation, if an agent

receives enough signals contrary to his/her current action (or

opinion) and enough of his/her neighbors also support the

opposite view, then that agent may change opinion. Social

learning then refers to the fact that the population as a whole may

converge to a consensus, even though individuals themselves have

beliefs which do not converge to certainty.

In order to model this setup, we assume from the outset that

agents attach a certain confidence to their opinion, to that of their

neighbors and to the signals they receive. Specifically, if X5V is

the event which agents are interested in predicting, we assume that

signals are random variables ai~0,1 with

P(ai~1DX )~P(ai~0D �XX )~pw1=2: ð5Þ

Agents, at any time, have their priors on X encoded in variables

ai~0,1, to which they attach a certain confidence p0w1=2, i.e.

P(X Dai)~p
ai
0 (1{p0)1{ai : ð6Þ

In words, ai~1 means that i believes X will occur and ai~0
means he/she believes it will not, and p0 is the confidence they

have in such a belief.

The variable ai is observable by the nearest neighbors of i.
Reciprocally, i has access to the actions aj of his/her neighbors

which reveal their opinions. We assume that agents have

subjective beliefs on the correctness of the predictions of their

peers, i.e.

P(aj~1DX )~P(aj~0D �XX )~pnw1=2, j [ Ni: ð7Þ

Here pn codifies the confidence which agents have on

neighbors’ opinions.

When news ai arrives, agent i will recompute the posterior

probability of X , given the new evidence. At that time he/she will

also look at neighbors and take their ‘‘opinion’’ into account. By

Bayes rule:

P X Dai,faj , j [ Nig,ai

� �
~

P(ai DX )Pj [Ni
P(aj DX )

P(ai)Pj [Ni
P(aj)

P(X Dai): ð8Þ

From this one can compute the likelihood ratio and conclude

that if

P X Dai,faj ,j [Nig,ai

� �
P �XX Dai,faj ,j [Nig,ai

� �w1, ð9Þ

then agent i will update ai?1. Otherwise he/she will set ai?0.

A simple calculation shows that, mathematically, this is equivalent

to

ai?a0i~
0 if 2ai{1zc0(2ai{1)zcn

P
j [Ni

(2aj{1)v0

1 if 2ai{1zc0(2ai{1)zcn

P
j [Ni

(2aj{1)§0

(
ð10Þ

with

c0~
p0(1{p)

p(1{p0)
,cn~

pn(1{p)

p(1{pn)
: ð11Þ

Now, the fact that agents change opinion only when they

receive a signal which is opposite to their opinion (i.e. when

ai~1{ai) and not when their neighbors change opinion, implies

that when ai~ai agents stick to their opinion. This requires

1zc0wkcn, ð12Þ

where k is the number of neighbors. On the other hand, when

ai=ai, in order to change opinion, agent i will need a fraction of

supporters of the new opinion ai which is larger than

f ~
1

2
z

c0{1

kcn

, ð13Þ

as it can easily be argued from Eq. (10).

This implies that, f v1=2 describes a situation where agents

consider signals more informative than their own opinion (c0v1,

i.e. p0vp) whereas in general they consider the opinion of others
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less reliable than signals and than their own (see Eq. 12). Indeed

this analysis applies to the case where signals are nearly as

informative as one’s own opinion (c0&1) where cn*Dc0{1D%1.
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