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Structural and functional networks in complex systems with delay
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Functional networks of complex systems are obtained from the analysis of the temporal activity of their
components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating
topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly
the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field
solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the
in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that
the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the
associated functional network as α = (2 − γ )−1 for γ < 2.
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I. INTRODUCTION

Collective phenomena in populations of interacting ele-
ments is a subject of intense study in physical, biological,
chemical, and social systems [1–3]. In many cases the emer-
gence of patches of coherent behavior is the main observable
we have of the underlying dynamics and interaction of their
constituents. This is the case, for example, in gene expression,
measured as DNA levels in microarrays [4,5], or electrophys-
iological activity in the brain [6], measured through multiunit
extracellular electrode. In many occasions the coordination
is not global but local, and the observation reveals clusters
of elements dynamically correlated or, generally speaking,
synchronized [7–10]. The resulting networks of coordinated
activity are usually called functional networks of the system
[11,12]. The analysis of these networks, from the physicists
perspective, commonly focuses on network synchrony in the
absence of time delays. However, delays are common in
neural networks [13], and many other biological [14–16]
and social systems where the interaction between elements
involves the propagation through a communication channel.
The consideration of these delays is of utmost importance
[17]. Recently it has been analytically and experimentally
shown that zero time-lag synchronization is feasible over two
distant (delayed) interacting oscillators when a third oscillator
is placed in between them [18,19]. A recent study sheds
light along these lines by studying the synchronization of
networks of chaotic units with time-delayed couplings using
the formalism of the master stability function [20].

There has been a big effort from the scientific community
to infer the complex network of interactions between elements
from the functional network [21–28]. Here we investigate on
this inference from a fundamental physical perspective. We
analyze the functional network resulting from the simplest
dynamical system with delay presenting a synchronous
dynamics on a given topology and relate topology and
functionality. Given the simplicity of the model, we obtain
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the exact solution, develop a statistical mean-field theory
approximation, and find the relation between the degree
distribution of the topological network and the associated
functional network.

II. THE MODEL

First, we develop the analytical aspects of the problem. Let
us start considering a set of N elements coupled diffusively
with delay

φ̇i(t) = ωi + ε
∑

j

aij [φj (t − τij ) − φi(t)], (1)

where aij are the components of the adjacency matrix A, that
is, aij = 1 if element j influences i with a delay τij , and ε

is the coupling strength. Without loss of generality we can
rescale the coupling strength to ε = 1. Equation (1) represents
a system of N elements in a network, which move at constant
speed and that adjust their local position to match that of
their neighbors; the communication between pair of nodes
is not instantaneous but it is characterized by some delay.
An alternative interpretation of Eq. (1) corresponds to the
linearization of many nonlinear interaction models, including
the Kuramoto model [29], as long as the phase differences
remain small enough. As we will demonstrate later, if the
network can be reached from at least one node, Eq. (1) presents
a unique phase locked solution of the form

φi(t) = �t + θi, (2)

where � is the locking frequency and θi is the initial phase of
element i. Substituting in Eq. (1), we obtain a set of N linear
equations that can be written in matrix form as

ω − �(1 + T) = Lθ , (3)

where L is the Laplacian matrix defined as Lij = ki,inδij − aij ,
ki,in = ∑

j aij is the in-degree of node i, δij is the Kronecker
delta, 1 is a vector of 1, T is a vector of components Ti =∑

j aij τij the total delay affecting each node, and ω and θ are
the frequency vector and the phase vector with components ωi

and θi , respectively.
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In general, the Laplacian matrix L is asymmetric, however,
as the sum of its rows is zero, it admits a left eigenvector
c = (c1,c2, . . . ,cN ) with eigenvalue 0, that is, cL = 0. The left
eigenvector c is unique as long as all the nodes of the network
can be reached by at least one node [30]. Left-multiplying
Eq. (3) by c we obtain the locking frequency

� = 〈ω〉
1 + 〈T〉 , (4)

where 〈x〉 = ∑
i cixi and c is normalized,

∑
i ci = 1. The

phases are now given by

ωi − 〈ω〉 + (ωi〈T〉 − 〈ω〉Ti)

1 + 〈T〉 = (Lθ )i . (5)

For undirected networks, the left-eigenvector c =
(1/N,1/N, . . . ,1/N ) is unique if it contains a single
component and the brackets in Eq. (4) are unweighted
averages.

Thus, if all the nodes of the network can be reached by
at least one node, then Eq. (1) has a unique phase locked
solution given by Eqs. (4) and (5). These equations point
out the relationship between the topology of the network, the
distribution of delays, the locking frequency, and the state of
the elements.

A. Perfect synchronization

The topology, delays, and frequency can be combined to
achieve the same state for each node. The condition for fully
clustered solutions (θi = θj , ∀i,j ) implies

ωi

(1 + Ti)
= �. (6)

From Eq. (6) we see that in absence of delays (Ti = 0) all the
elements must have the same natural frequency, and reversely,
if all nodes have the same natural frequency (ωi = ω), the
total delay affecting each node must be the same. It is
straightforward to prove that Eq. (6) is satisfied for degree

regular networks of identical elements with equal delays,
that is, ωi = ω and τi = τ . In this case the frequency of
the phase synchronized state is � = ω

1+τk
. In general, it is

always possible to choose the frequencies, the topology, and
the delays such that perfect coordinated activity is reached. In
this case, the functional network, that is, the network formed
connecting those nodes displaying correlated activity, will be
a fully connected network despite the sparse connectivity of
the underlying interaction network.

B. Motifs

Beyond the above perfectly synchronized solutions, we will
extend our analysis to directed networks paying attention to the
clusterization of the activity with different values of the phases.
The simplest possible case corresponds to graphs of three
nodes, motifs [14,31,32]. The interest in motifs comes from
previous studies showing the impact of motifs synchronization
in absence of delays as building blocks of larger synchronized
structures [33]. Using Eq. (3) we find the locked solution for
each of the 12 different motifs of three elements with directed
couplings. For the sake of clarity we assume each element has
the same frequency ωi = ω, and delay τij = τ , ∀i, j . Solving
Eq. (3) we obtain for every motif configuration the normalized
oscillation frequency r−1 = �/ω and the phase differences
(θi − θj ) = �τ�ij . The 12 different motifs are classified in
five different functional networks (see Fig. 1). For the analyzed
dynamics and based on the phase locked solution, this result
points out the impossibility of deriving the motif topology
solely from the information of the functional networks due to
the degeneracy shown [34].

III. HETEROGENEOUS MEAN-FIELD APPROACH

Beyond the formal exact solution presented in Eqs. (4)
and (5), we want to gain insight on the class of uncorrelated
directed networks. First we start considering heterogeneous

FIG. 1. (Color online) Functional network (green, top row) for 12 structural motifs (blue, rows 2–4) of three elements. In the functional
solution the black solid line represents a zero phase difference between the oscillators while the gray dashed lines stand for a nonzero
phase difference. For the structural, solid black lines stand for interaction links and directionality is indicated by an arrow. Parameters:
�ij = (θi − θj )/�τ and r = ω/�.
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directed networks, specified by their degree distribution
P (k), where k = (kin,kout), and by the conditional probability
P (k′|k) that a node of degree k is connected to a node
of degree k′. Normalization conditions

∑
k P (k) = 1 and∑

k′ P (k′|k) = 1 must be fulfilled. The degree detailed bal-
ance condition koutP (k)Pout(k′|k) = k′

inP (k′)Pin(k|k′) {where
Pin(k′|k) [Pout(k′|k)] measures the probability to reach a vertex
of degree k′ leaving from a vertex of degree k using an
incoming [outgoing] edge of the source vertex} ensures that
the network is closed and that 〈kin〉 = 〈kout〉. We resort on
the heterogeneous mean-field approach, coarse graining the
dynamics to classes of nodes of the same degree k. Thus we
define the phase density �k of nodes of degree k as

�k = 1

Nk

∑

i∈K

φi, (7)

where Nk = P (k)N is the expected number of nodes with
degree k. Here we have made use of K to denote the set of
nodes with degree k. Similarly we define the frequency density

Wk = 1

Nk

∑

i∈K

ωi. (8)

This notation allows us to group the sums by the degrees of
the nodes. For instance, if the degree of node i is ki = k then

∑

j

aijφj = kin

∑

k′
Pin(k′|k)�k′ . (9)

For identical elements ωi = ω and τij = τ , the time
evolution of the phase density of the class of nodes of degree
k [�k(t)] can be rewritten from Eq. (1) as

�̇k(t) = Wk + kin

∑

k′
Pin(k′|k)[�k′(t − τ ) − �k(t)]. (10)

For uncorrelated networks Pin(k′|k) = k′
outP (k′)

〈k〉 and with the
ansatz of locked solutions �k = �t + 
k, we obtain

� = Wk − kin�τ + kin

〈k〉
∑

k′
k′

outP (k′)(
k′ − 
k). (11)

Summing over all degrees we find


k = �〈k〉τ〈
kout
kin

〉 1

kin
+ a, (12)

� = ω

1 + 〈k〉
〈kout/kin〉τ

, (13)

a being an arbitrary constant. For undirected networks kin =
kout, thus we recover Eq. (4) for the locking frequency where
〈k〉τ = 〈T〉 and


k = �〈k〉τ
k

+ a. (14)

This indicates that whether two nodes show a similar phase
depends on their degree difference in an uncorrelated network.
It also shows that low-degree nodes are ahead of high-degree
nodes. At least in this limit, the precise shape of the degree dis-
tribution is not playing an important role, as only the average
degree 〈k〉 enters into the equation. Obviously this dependence
of the degree is reminiscent of our hypothesis of a mean-field

coarse grained by degree, however it is not trivial that this
approximation will hold for the actual dynamics [Eq. (1)].

Furthermore, the distribution of the phases in correlated
networks as, for example, in the C. elegans neural network, also
shows a good agreement with Eq. (14). The neuronal network
connectivity of the C. elegans can be represented as a weighted
adjacency matrix of 275 nonpharyngeal neurons, out of a total
of 302 neurons (http://www.wormatlas.org/). We assume that
the nervous system of the C. elegans can be modeled as a
network, where nodes represent the center of the cell bodies,
and the links represent synapses. The heterogeneous mean-
field formalism describes the relationship between dynamics
and topology in uncorrelated networks. Such relationship can
be illustrated in a real (correlated) network analyzing the
dynamics of Eq. (1) using the connectivity of the neural system
of the C. elegans (Fig. 2). When comparing the exact solution
in the directed neural network with the analytical solution we
observe that it captures the dependence on the in-degree and
gives an excellent solution for the rewired directed network.
Thus the in-degree of a neuron gives a good first approximation
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FIG. 2. (Color online) (Top row) Phase clusterization in the
directed C. elegans neural network. We plot the phases vs the
in-degree kin for neurons in the C. elegans (open circles) and rewired
networks (filled blue symbols) (averaged over 100 realizations of the
rewiring algorithm) keeping the same (kin,kout) for each neuron. In
the rewired networks the phase is well approximated by the relation

(k) = b/k + a (continuous red line). The phases are obtained
after integration of Eq. (1) with ωi = 1 and τij = 0.1. (Bottom
row) Adjacency matrix of the neuronal connections (a) and of
the functional network (b). In both cases the neurons are ordered
according to the ranking of their phases obtained from the dynamical
system given by Eq. (1) with ωi = 1 and τij = 0.1.
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FIG. 3. (Color online) Functional degree distribution P (q) for a
network of 105 nodes with structural degree distribution P (k) ∼ k−γ

and γ = 1.5. Dashed line corresponds to q−2. Inset: Dependence of
β−1 (circles) and α (squares) on the structural degree distribution
exponent γ . Solid black line represents the theoretical prediction.
The functional networks are obtained after integration of Eq. (1) with
ωi = 1 and τij = 0.1, and � = 10−4.

to the real state of the neuron although the precise wiring details
are very important to know its exact value. Simple models
aiming at the reconstruction of the anatomical network based
on the observed neurons’ states will link, for this dynamics,
neurons with similar in-degree with no connection in the real
network (see Fig. 2).

The heterogeneous mean-field solution allows us to relate
the degree distributions of the structural and functional topolo-
gies. In the remainder we will assume undirected structural
networks. In the functional network a node with degree k is
connected with a node with degree k′ if their phase difference
is smaller than a given threshold: |�k − �k′ | � �. Then, using
Eq. (14), the functional degree of a node of structural degree k

is given by q(k) ∼ ∫
|1/k−1/k′|�δ

P (k′)dk′ where δ is an arbitrary
threshold δω〈k〉τ = �(1 + 〈k〉τ ). If the degree distribution of

the structural network is a power law P (k) ∼ k−γ then q(k) ∼
kβ where β = 2 − γ for γ < 2 and the degree distribution of
the functional network is also power law P (q) ∼ q−α where
α = (2 − γ )−1. The numerical simulations of the system given
by Eq. (1) shows an excellent agreement with the analytical
prediction for classes of nodes with degree k in uncorrelated
networks. In Fig. 3 we compare the values of the exponents α

and β obtained after integration of the dynamical system given
by Eq. (1) in scale-free networks.

IV. CONCLUSIONS

Summarizing, we have got insight in the relationship
between the topological network of connections and the
functional network obtained from a simple dynamical process
with delays. We have found the conditions for the emergence
of locked dynamical states in any network of diffusively
delay-coupled oscillators. We identify these states as the main
components of the emergent functional network generated by
this simplified dynamics. Using these analytical guides we
have explored the functional network obtained for the class
of uncorrelated heterogenous networks, under the mean-field
hypothesis, and have checked its prediction in scale-free
networks. The results allow us to grasp the dependence of the
functional network on the topological parameters, highlighting
the role played by the delays and heterogeneity [35]. Indeed,
although functional and structural topologies differ at the local
level, we have shown that the degree distributions are related
in the presence of delays as distant nodes sharing the same
degree will be functionally correlated.
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A. C. Oates, HFSP J. 3, 55 (2009).

056113-4

http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1126/science.1087447
http://dx.doi.org/10.1126/science.1087447
http://dx.doi.org/10.1186/1471-2105-10-346
http://dx.doi.org/10.1186/1471-2105-10-346
http://dx.doi.org/10.1016/j.neuron.2005.02.028
http://dx.doi.org/10.1016/j.neuron.2005.02.028
http://dx.doi.org/10.1209/0295-5075/79/64003
http://dx.doi.org/10.1126/science.1183415
http://dx.doi.org/10.1126/science.1183415
http://dx.doi.org/10.1038/nature08753
http://dx.doi.org/10.1103/PhysRevLett.104.118701
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1103/PhysRevLett.94.018102
http://dx.doi.org/10.1103/PhysRevLett.92.074104
http://dx.doi.org/10.1103/PhysRevLett.92.074104
http://dx.doi.org/10.1126/science.1156951
http://dx.doi.org/10.2976/1.3027088


STRUCTURAL AND FUNCTIONAL NETWORKS IN COMPLEX . . . PHYSICAL REVIEW E 83, 056113 (2011)

[16] L. Herrgen, S. Ares, L. G. Morelli, C. Schröter, F. Jülicher, and
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