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Disorder is an unavoidable ingredient of real systems. Spatial disorder generates Griffiths phases
(GPs) which, in analogy to critical points, are characterized by a slow relaxation of the order
parameter and divergences of quantities such as the susceptibility. However, these singularities
appear in an extended region of the parameter space and not just at a (critical) point, i.e. there is
generic scale invariance. Here, we study the effects of temporal disorder, focusing on systems with
absorbing states. We show that for dimensions d ≥ 2 there are Temporal Griffiths phases (TGPs)
characterized by generic power-law spatial scaling and generic divergences of the susceptibility.
TGPs turn out to be a counterpart of GPs, but with space and time playing reversed roles. TGPs
constitute a unifying concept, shedding light on the non-trivial effects of temporal disorder.
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Quenched disorder affects the behavior of particle sys-
tems, altering critical properties and introducing new
universality classes. Non-magnetic impurities in mag-
netic systems or defects in type-I superconductors are
typical examples of this [1]. Moreover, novel phases,
with phenomenology unheard-of in pure systems, can be
induced by spatial disorder. This is the case of Grif-

fiths phases (GPs) appearing in classical, quantum, and
non-equilibrium disordered systems [2–4]. GPs, which
are of relevance in condensed matter physics as well as
in other contexts [4, 5], are regions of the phase space
�actually a sub-region of the disordered phase �charac-
terized by extended singularities of the thermodynamic
potentials and, as a consequence, generic divergences of
magnitudes such as the susceptibility [2]. Furthermore,
GPs are characterized by an anomalously slow (power-
law or stretched exponential) relaxation to zero of the
order parameter (and of other time-dependent quanti-
ties) which contrasts with the fast (exponential) decay
typical of pure systems. Such an anomalous relaxation
in the disordered phase occurs owing to the presence of
rare regions where the disorder is such that the system is
locally in its ordered phase and, hence, a potential barrier
has to be overcome for it to relax. The convolution of dif-
ferent, exponentially rare, sizes with exponentially large
decaying times gives rise to an overall slowing down of the
system’s dynamics, which typically becomes algebraic in
time �with continuously varying exponents �and loga-
rithmic at the critical point (see below for more details)
[3, 4]. Divergences in the potentials together with slow
relaxation are two features strongly reminiscent of criti-
cality and its concomitant scale-invariance. However, in
GPs these traits appear not just at a critical point but in
a broad extended region, providing a robust mechanism
to justify some cases of scale-invariance in Nature [6].

The modeling of some problems in physics, chemistry

or ecology requires parameters to be disordered in time

rather than in space [7]. This is the case of magnetic sys-
tems under a fluctuating external field [1], or of ecological
populations under changing environmental conditions [8].
In general, temporal fluctuations in the parameters can
shift critical points [9] and affect universal features both
in equilibrium [10] and non-equilibrium systems [11]. In
a pioneering work, Leigh showed that, in one-variable
(mean-field) models of stochastic populations, environ-
mental noise changes the system mean lifetime (time to
reach the absorbing state) from exponential to a power-
law in system-size [8, 12]. This result inspired us to
systematically explore the role of temporal disorder in
spatially extended systems (beyond mean-field) and to
study if rare temporal regions induce new phases analo-
gous to spatial-disorder induced GPs. Do temporal Grif-

fiths phases exist? If so, which properties do they have?
Do they exhibit any type of generic scale invariance?

To tackle these questions, we start by analyzing a spe-
cific model with absorbing states: the contact process
(CP) [13], in the presence of temporal disorder. In the
CP, each site of a d-dimensional lattice can be either oc-
cupied z(x) = 1 (active) or vacant z(x) = 0. At each time
step, an active site is randomly chosen and, with proba-
bility b, it converts into active a nearest neighboring site
(provided it was empty), while with probability 1−b it is
declared empty. Time, t, is then increased by 1/N(t),
where N(t) is the total number of active sites. The
“pure” CP is critical only at some dimension-dependent
value bc,pure(d) separating an active from an absorbing
phase (see [13] and the schematic diagram in Fig.1). This
phase transition, occurring at bc,pure ≈ 0.767, 0.622, and
0.5 for d = 1, d = 2 and d = ∞, respectively, lies in
the very robust directed percolation universality class [13].
For the spatially-disordered case, b is replaced by b(x); in
this case, a GP emerges between bc,pure and the critical
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point of this quenched version, bq,c > bc,pure (see Fig. 1).

Temporal disorder is implemented by allowing b to be
a time-dependent random variable, b → b(t), for all x. In
the simplest (uncorrelated) case, b takes a random value
extracted at each Monte Carlo step (i.e. whenever the in-
teger value of t increases) from some distribution of mean
b0 and width σ. Correlated fluctuations can also be im-
plemented, by allowing b to obey an Ornstein-Uhlenbeck
dynamics [12, 14]. This temporally-disordered contact
process (TD-CP) is similar to the Jensen’s model in
[11]. Following the instantaneous value of b, the system
shifts between the tendencies to be active (b(t) > bc,pure)
or absorbing (b(t) < bc,pure), provided that the disorder
distribution is broad enough (see Fig.1 for a schematic
diagram). Owing to fluctuations, any finite system is,
however, condemned to end up in the absorbing state,
either for fixed and changing b [14]. However, the mean
lifetime τ(N) grows exponentially with system size N
(Arrhenius law [14]) in the pure system case, making it
stable in the thermodynamic limit. Instead, in the TD-
CP, as b(t) can be adverse (b(t) < bc,pure) for arbitrarily
long time intervals, τ(N) is expected to be significantly
reduced. But, does τ(N) still diverge for N → ∞? i.e.
does a truly stable active phase exist?

Let us first report on numerical simulations of the TD-
CP performed in dimensions d = 1, d = 2, and d → ∞
(for which we consider a fully connected network (FCN)).
b(t) is independently extracted at each Monte Carlo step
from a homogeneous distribution b ∈ [b0 − σ, b0 + σ].
We performed both, homogeneous initial density experi-
ments (with all sites initially active) and spreading ones
(starting from a single active seed) [13]. In the first set of
experiments we measured the average value, over many
realizations, of the density of activity ρ(t) as a function
of time and the mean lifetime τ(N) vs system size N .
In the second set, we measured standard quantities such
as the survival probability as a function of time, Ps(t)
[13]. Searching for power-laws of the form ρ(t) ∼ t−θ

and Ps(t) ∼ t−δ, we determined the critical point lo-
cation b0,c = 0.907(2), 0.656(1), and 0.500(1), and the
exponent δ ≈ 0.10(5), 0.126(2), and 0.5, for dimensions
d = 1, d = 2, and the FCN respectively (in all cases
θ ≈ δ; σ = 0.55 for d = 1 and σ = 0.4 otherwise). For a
fixed value of σ, the shift b0,c − bc,pure is larger in d = 1
than in d = 2, and vanishes in d = ∞. Except for the
mean-field value, and in agreement with previous findings
[11], these critical exponents are non universal, as they
decrease upon increasing the noise amplitude σ. Remark-
ably, in d = 2 and d = ∞, τ(N) scales at criticality as
τ ∼ (lnN)z

′

with z′(d = 2) = 5.18(5) (inset of Fig.2) and
z′(d = ∞) = 3.49(5) for σ = 0.2. The values of z′(d) do
not seem universal either, as they decrease with increas-
ing σ. Instead, in d = 1 we observe standard power-law
scaling τ ∼ N1.55(1). Furthermore, in d = 2 and d = ∞
(but, again, not in d = 1), we find a whole region within
the active phase (b > b0,c) in which τ(N) grows generi-

FIG. 1: Schematic phase diagram for the pure contact process
(CP) (solid line) the CP with quenched disorder (dashed line),
and the CP with temporal disorder (dot-dashed line). For the
second, a Griffiths phase appears within the absorbing region,
while for the third a Temporal Griffiths phase appears (for
d > 1) within the active region. The actual locations of the
critical points may depend on noise intensity and dimension.
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FIG. 2: Main: Log-log plot of the lifetime τ as a function
of system size N for the TD-CP in d = 2 for various b0 and
σ = 0.4. There is a finite region, b0 ∈ [0.656, 0.675] with
generic algebraic scaling of τ(N) and continuously varying
exponents. Inset: log-log plot of τ(N) vs ln(N); from the fit

at criticality (dashed line) we estimate τ ∼ (lnN)5.18(5).

cally as a power-law with continuously varying exponent
ζ, τ(N) ∼ N ζ , with ζ → 0 as b0 → b+0,c (observe, in
Fig.2, the slight downward curvature in the log τ − logN
curves at criticality, reflecting the asymptotic logarith-
mic behavior). Let us remark that obtaining data for
larger sizes and deeper into the active phase, where the
surviving times are huge, becomes excessively expensive.
Hence, estimating with accuracy the upper limit of the
algebraic scaling region is prohibitive. We have also mea-
sured τ(N) in the absorbing state; as in the pure model
case, it scales as τ(N) ∼ ln(N) in all dimensions. In
summary, while the behavior of τ(N) in d = 1 is similar
to that of pure systems, in d = 2 and d → ∞, we found
(i) logarithmic scaling at criticality and (ii) an extended
region with algebraic scaling.

Let us now present analytical calculations for the high-
dimensional limit (FCN). Given that, at every single
step, the change on the global density ρ is ±1/N , one
can map its dynamics into a random walk in the in-
terval [0, 1], with jumps ±1/N occurring with probabili-
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ties b(t) ρ(1 − ρ) and [1− b(t)] ρ respectively. The Mas-
ter Equation for this process is easily written [14], and
by performing a 1/N expansion one readily obtains a
Fokker-Planck equation whose (Ito) Langevin equivalent
is (up to leading order),

ρ̇(t) = aρ− bρ2 + α
√
ρ η(t) + σρ ξ(t), (1)

with a = 2b0−1+σ2/2, b = b0, α = 1/
√
N , and the noise

ξ(t) = 2(b(t) − b0)/σ. Observe the presence of both, a
demographic noise, proportional to

√
ρ which vanishes in

the N → ∞ limit and an external or environmental noise,
linear in ρ [9, 15]. Generalizing to any spatial dimension
one can show that the corresponding Langevin equation
is just that of the directed percolation universality class
[13] with a fluctuating linear-term parameter:

ρ̇ = (a+ σξ(t))ρ− bρ2 +∇2ρ(x, t) + γ
√
ρ η(x, t), (2)

where γ is a constant. For the sake of generality, we have
numerically integrated Eq. (2) in d = 1, d = 2 and in a
FCN, by using the scheme in [16]. We reproduced all the
findings above proving that our conclusions are robust,
and apply to any model in the directed percolation class
not just the TD-CP.
In the case of uncorrelated white noise (as used in the

numerics above) the quasi-stationary solution of Eq. (1)

is P (ρ) ∼ ρ−1
(

1 + σ2ρ/α2
)2 bα

2+aσ
2

σ4 −1
exp(−2bρ/σ2)

which in the large N limit can be approximated
by P (ρ) ∼ ρ2(a/σ

2−1)e−2bρ/σ2

, exhibiting an a/σ2-
dependent singularity at ρ = 0. In this limit, the sin-
gularity is not integrable for a < ac = σ2/2 (b <
b0,c(FCN) = 0.5 for all σ), and the only solution is a
delta distribution at ρ = 0, i.e. the system is absorb-
ing. Instead, for finite N , there is a 1/ρ singularity for
any value of a and the only possible steady state is the
absorbing one (as occurs for any finite system with de-
mographic noise [13]). Defining z = ln ρ, Eq. (1) be-
comes ż = ã − b exp(z) + σξ(t), with ã = a − σ2/2,
which describes a random walker trapped in a poten-
tial V (z) = −ãz + b exp(z). It exhibits the three fol-
lowing regimes: (i) Active phase (ã > 0): the time
required for the active state to fluctuate and reach the
vicinity of the absorbing state (which is approximately
ρ = 1/N , i.e. z = − ln(N)) and, eventually, die, is ex-
ponential in the height of the potential [14], τ(N) ∼
exp

[

V (− lnN)/(σ2/2)
]

∼ exp(2ã lnN/σ2) ∼ N2ã/σ2

.
This is, τ(N) exhibits generic algebraic scaling with con-
tinuously varying exponents[8]. Hence, the active phase
is truly stable when N → ∞. (ii) Critical point
(ã = 0): For sufficiently small values of z we have a
free random walk (no potential barrier to be overcome)
which covers a typical distance

√
τ in time τ ; equating

this distance to z = lnN , the time to die scales logarith-
mically, τ ∼ [ln(N)]

2
. (iii) Absorbing phase (ã < 0):

z decays linearly in time and, hence, the time needed

to reach z = − lnN scales as τ ∼ lnN . These predic-
tions are in excellent agreement with the corresponding
numerical results for the FCN.

Result (i) can be recovered by using the path-integral
representation of Eq. (1) [13]. The most probable path
to the absorbing state can be easily calculated in semi-
classical approximation. τ is simply the inverse of the
probability weight associated with such a path. By using
this formalism, Kamenev et al. [12] have recently in-
vestigated in an interesting work the effect of correlated
temporal disorder on a one-variable birth-death process.
They conclude that, in the case of interest here (short-
time correlated noise), τ(N) grows exponentially with N
for weak noise amplitudes and algebraically in the strong
external-noise limit. Our result differs slightly from this:
given that the demographic noise amplitude in Eq. (1)
vanishes in the large N -limit, the strong-noise limit does
not need to be invoked to obtain algebraic scaling.

In order to extend our conclusions to finite dimensions
and to make a parallelism between the reported broad
regions of generic algebraic scaling �that we call tempo-

ral Griffiths phases (TGPs) �and standard GPs, let us
sketch the main properties of GPs for the contact pro-
cess equipped with quenched disorder, i.e. b → b(x) [17].
In the quenched CP, rare regions with b(x) > bc,pure
and arbitrary size s appear with probability exp(−αs),
where α is a disorder-dependent constant. Such re-
gions are locally active and, hence, activity survives on
them until a coherent fluctuation kills it. This occurs
at a characteristic time tc(s) ∼ exp(βs) where β is a
constant, as given by the Arrhenius law [14]. Hence,
the time-decay of the survival probability of a homo-
geneous initial condition is given by the convolution
Ps(t) ∝

∫

ds exp(−αs) exp(−t/tc(s)), and the leading
contribution in saddle point approximation comes from
size s∗(t) = (1/β) ln(βt/α), implying Ps(t) ∝ t−α/β

(right at the critical point, the exponent vanishes, and
there is “activated scaling”, characterized by a logarith-
mic decay Ps(t) ∼ (ln t)−θ′

[4]). Similar expressions ap-
ply to the time decay of other quantities such as the ac-
tivity density, as well as to many different systems with
quenched disorder [4].

Thus, some analogies between GPs and TGPs are: i)
In GPs disorder is “quenched in space”; in TGPs it is
“quenched in time”. ii) In GPs rare (locally active)
regions exist even if the overall state is absorbing; in
TGPs rare (temporarily absorbing) time-intervals exist
even if the overall state is active; i.e. the roles of ac-
tive/absorbing phases are exchanged. iii) In GPs the
probability for a (rare) active region of size s to occur is
exp(−αs); in TGPs (rare) time intervals of length T are
absorbing with probability exp(−αT ); hence, the typical
time to observe them is τ ∼ exp(αT ). iv) In GPs, as we
just argued, the leading contribution of the decay at time
t comes from a rare region of size s∗ ∼ ln(tβ/α)/β; this
combined with (iii) leads to a generic power-law decay
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FIG. 3: Log-log plot of the susceptibility, Ξ, as a function of
the field h, obtained by integrating Eq. (1) (main plot) and
Eq. (2) for d = 2 (inset), for different values of a.

in time, t−α/β . In TGPs, the time required to reach the
absorbing state in an absorbing time-interval, is given by
exp(−βt∗) ∼ 1/N , or t∗ ∼ ln(N)/β. Equating t∗ with T
in (iii), one obtains a generic algebraic decay in system

size; τ(N) ∼ Nα/β . In conclusion, TGPs are analogous
to GPs by exchanging the roles of space and time. These
heuristic arguments seem to be valid even for finite di-
mensional systems (down to d = 2). The reason why a
TGP phase is not observed in d = 1 is not completely
clear to us. Presently we are developing a semiclassical
approximation, analogous to that in [12], but for the spa-
tialy explicit Eq. (2) (see [18]), in order to have a more
precise understanding of low-dimensional cases.
To further delve into the GP/TGP analogy, and given

that GPs exhibit generic divergences of the susceptibility
[2, 3], we have measured numerically the susceptibility,
defined as Ξ = ∂ρst(h)/∂h|h→0 where ρst is the average
value of the activity in the steady state after introducing
an external field h coupled to the system’s dynamics, for
Eq. (1) and for Eq. (2) in d = 2. Fig.3 shows that Ξ mea-
sured from Eq. (1) (which perfectly agrees with that in
Monte Carlo simulations of the TD-CP on FCN) diverges
all along the TGP. Fig.3-inset shows generic divergences
also for d = 2; however, given that very small values of h
cannot be reached in this case, it is difficult to elucidate
numerically whether such a divergence is for real in the
h → 0 limit or it just a transient effect.
To analytically understand these findings, we take

Eq. (1) in the N → ∞ limit and include an external field
h. A new term exp

[

−2h/(ρσ2)
]

, exhibiting an essential
singularity at ρ = 0, appears in the stationary solution
(see above). It is a matter of algebra to verify analytically

that ∂ρst(h)/∂h diverges algebraically as h−1+2|a−ac|/σ
2

,
in an extended interval a ∈ [0, σ2] around the critical
point [15]. If, in this calculation, we replace α by γ
which does not vanish when N → ∞ and mimics what
happens in finite dimensions (see Eq.(2)), the parameter-
dependent singularities are replaced by the usual ρ−1 ab-
sorbing state singularity. This suggests that the generic
divergence of the susceptibility is a transient effect in the
presence of non-vanishing demographic noise. In that

case, the strong external-noise limit needs to be taken for
the generic divergence to survive. Going beyond mean-
field, it can be proved by using simple field-theoretical
arguments (similarly to [15]) that Eq. (2) with α = 0 ex-
hibits generic divergences of the susceptibility in a broad
interval even in finite spatial dimensions.

In summary, systems with absorbing states and fluc-
tuating external conditions exhibit a region in the ac-
tive phase �the “temporal Griffiths phase”�such that
the mean lifetime scales generically as a power-law (with
continuously varying exponents) of system size and log-
arithmically at criticality. This occurs not only in mean
field [8, 12] but also in extended systems as long as d ≥ 2.
TGPs have deep analogies with standard GPs, but the
roles of space and time are reversed: in GPs (TGPs) spa-
tial (temporal) disorder leads to generic algebraic scaling
as a function of time (size). Moreover, as GPs, TGPs
exhibit (at least in the strong noise limit) generic diver-
gences of magnitudes such as the susceptibility and of
stationary distribution functions.

TGPs could be measured in the experimental realiza-
tions of the directed percolation class with liquid-crystals
[19] by introducing externally changing fields, and could
appear in many other systems such as in bistable Ising-
like models with randomly changing conditions. We hope
this work will stimulate new research along these lines.
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