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Characterizing the hyperchaotic dynamics of a
semiconductor laser subject to optical feedback via

permutation entropy
Luciano Zunino, Osvaldo A. Rosso, and Miguel C. Soriano

Abstract—The time evolution of the output of a semiconductor
laser subject to delayed optical feedback can exhibit high-
dimensional chaotic fluctuations. In this contribution, our aim
is to quantify the degree of unpredictability of this hyperchaotic
time evolution. To that end, we estimate permutation entropy, a
novel information-theory-derived quantifier particularl y robust
in a noisy environment. The permutation entropy is defined as
a functional of a symbolic probability distribution, evaluated
using the Bandt-Pompe recipe to assign a probability distribution
function to the time series generated by the chaotic system.
This measure quantifies the diversity of orderings present in the
associated time series. In order to evaluate the performance of
this novel quantifier, we compare with the results obtained by
using a more standard chaos quantifier, namely the Kolmogorov-
Sinai entropy. Here, we present numerical results showing that
the permutation entropy, evaluated at specific time-scalesin-
volved in the chaotic regime of the semiconductor laser subject
to optical feedback, give valuable information about the degree
of unpredictability of the chaotic laser dynamics. The influence
of additive observational noise on the proposed tool is also
investigated.

Index Terms—Chaos, semiconductor lasers, optical feedback,
degree of unpredictability, permutation entropy.

I. I NTRODUCTION

Semiconductor lasers are very sensitive to external perturba-
tions such as injection of light from another laser [1], feedback
from a distant mirror [2], phase conjugate feedback [3], electro
optical feedback [4] or frequency filtered external opticalfeed-
back [5]. As a consequence of these perturbations, the output
of these lasers may show very complex dynamical behavior. In
particular, high-dimensional chaos can be developed [6], [7].

Chaotic semiconductor lasers are able to synchronize when
coupled, and can be used to transmit encrypted informa-
tion [8]–[12]. In this context, computational tools for assessing
the predictability of the associated temporal traces are ofex-
treme importance because they are directly related to security.
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The security of data encryption using techniques based on
chaotic carriers relies, to a large extent, on the unpredictability
of the carrier signal and needs to be quantified [13]–[15]. Itis
the purpose of the present article to quantify the unpredictabil-
ity of the dynamics generated by semiconductor lasers subject
to delayed optical feedback as a function of the control system
parameters. This analysis can provide useful information for
choosing the optimal chaotic carrier.

Semiconductor lasers subject to optical feedback can be
modeled via delay differential equations (DDEs) [16], being
an example of infinite-dimensional chaotic systems. Although
systems with delay are theoretically infinite dimensional,many
infinite-dimensional systems can be considered, in practice, to
have a finite dimension and can be fully characterized by the
largest Lyapunov exponents [7]. The knowledge of the positive
Lyapunov exponents allows computing the Kolmogorov-Sinai
(KS) entropy through the Pesin’s identity, which measures
the average loss of information rate and can be seen as a
complexity measure of the chaotic attractor. The KS entropy
is a widely used invariant of a dynamical system. However, its
estimation is highly demanding, particularly for experimental
analysis. Lyapunov exponents are very difficult, if not im-
possible, to be estimated when analyzing data coming from
complex systems. Therefore, alternative ways to calculatethe
KS entropy, instead of applying Pesin’s identity, should be
taken into consideration [17], [18]. In this work we investigate
the properties of a novel measure based on information theory,
called permutation entropy (PE) [19], as an alternative to esti-
mate the unpredictability of chaotic time traces. This symbolic
entropy quantifier has the advantage to be a straightforward
measure and its estimation does not involve demanding and
time-consuming numerical calculations. The basic intrinsic
structure of complex systems is obtained in a very fast and
flexible way. It was shown that the PE based methodology
is up to 100 times faster than a Lyapunov exponent based
technique, due to the fact that neighborhood searching is not
needed [20]. Moreover, PE approach is invariant with respect
to nonlinear monotonous transformations [19]. Thus, nonlinear
drifts or scalings artificially introduced by a measurement
device do not modify the quantifier estimations. This property
is highly desired for the analysis of experimental data.

It is worth mentioning that a related permutation-
information-theory approach was recently introduced to iden-
tify delay phenomena and characteristic time scales from time
series [21], [22]. It was shown, both numerically and experi-
mentally, that permutation entropy and permutation statistical



2

complexity present well defined extrema when the embedding
delay of the symbolic reconstruction matches the intrinsictime
scales of the systems dynamics. Estimations of both quantifiers
are necessary to identify all the relevant time scales. Moreover,
it was found that this methodology is particularly robust ina
noise environment [21]. In the present work, and by estimating
the permutation entropy from numerically generated time
series, we provide evidence that this quantifier can be a
practical, simple and efficient alternative for the purposeof
quantifying the unpredictability degree of hyperchaotic laser
dynamics.

The paper is organized as follows. In Section II we briefly
describe the Lang-Kobayashi rate equations used for modeling
the dynamical behaviors of semiconductor lasers subject to
coherent optical feedback. The permutation entropy quantifier
is introduced in Section III. In Section IV, numerical results
are presented and discussed. A detailed comparison with the
results obtained by estimating the Kolmogorov-Sinai entropy
is also included in this section. Finally, some concluding
remarks are given in Section V.

II. RATE EQUATION MODEL

In this paper, we focus on the chaotic dynamics of a
semiconductor laser. More specifically, we consider a single
mode laser subject to coherent optical feedback. The data used
in our analysis originate from the numerical integration ofthe
Lang-Kobayashi rate equation model [16]. These equations
have been shown to be successful in modeling the dynamical
behaviors of semiconductor lasers subject to weak to moderate
coherent optical feedback, with a single reflection in the
external cavity. The equations for the complex slowly varying
amplitude of the electric fieldE(t) and the carrier number
inside the cavityN(t) are

Ė(t) =
1 + iα

2

[

G(t)−
1

τp

]

E(t) + γE(t− τS)e
−iΦ,(1)

Ṅ(t) =
I

e
−

N(t)

τN
−G(t)|E(t)|2, (2)

whereG(t) = g(N(t) − N0)/(1 + s|E(t)|2) is the optical
gain,α is the linewidth enhancement factor,τp is the photon
lifetime, τN is the carrier lifetime,g is the differential gain
coefficient, N0 is the carrier number at transparency,s is
the gain compression coefficient,τS is the feedback time
delay, γ is the feedback strength,Φ is the optical feedback
phase ande is the electron charge.I denotes the injected
current. Table I details the parameter values that were used
in the simulations. With these parameter values, the relaxation
oscillation frequency of the solitary laser isfRO = 4.2 GHz
at I = 1.5Ith.

Time series representing the intensity of the laser were nu-
merically integrated using a second-order Runge-Kutta method
with a time step of∆t = 0.1 ps. In this work ten realizations,
each one of lengthN = 105 data points with a sampling period
of Ωs = 1 ps, were analyzed in order to obtain statistically
significant results. Each realization starts at a differentinitial
condition. Figure 1(a) shows a typical temporal trace of
|E(t)|2 generated by simulating the Lang-Kobayashi model at

TABLE I
PARAMETER SET IN THE NUMERICAL SIMULATION.

Parameter Description Value

α linewidth enhancement factor 5

τp photon lifetime 2 ps

τN carrier lifetime 2 ns

g differential gain coefficient 1.5× 10−8 ps−1

No carrier transparency 1.5× 108

s gain compression coefficient 5× 10−7

τS feedback time delay 1 ns

γ feedback strength 7.5 ns−1 − 40 ns−1

Φ optical feedback phase 0

Ith threshold current 14.7 mA

I injected current 1.1Ith − 2.5Ith

the coherence collapse regime (I = 1.5Ith, γ = 20 ns−1) and
Fig. 1(b) depicts its corresponding autocorrelation function.

III. PERMUTATION ENTROPY

Entropy quantifiers are able to capture the degree of un-
certainty and disorder present in a time series. Particularly,
Shannon entropy is very often used as the first natural en-
tropy measure. Given any arbitrary probability distribution
P = {pi : i = 1, . . . ,M}, the Shannon’s logarithmic
information measure,S[P ] = −

∑M

i=1 pi ln pi, is related to
the uncertainty associated with the physical process described
by P . If S[P ] = 0 we are in position to predict with
complete certainty which of the possible outcomesi whose
probabilities are given bypi will actually take place. In this
case, our knowledge of the underlying process described by
the probability distribution is maximal. On the contrary, our
knowledge is minimal for a uniform distribution andS[P ] is
maximized.

In order to evaluate the above-mentioned quantifier,S[P ],
an associated probability distribution should be constructed
in advance. The adequate choice of the probability distri-
bution associated to a time series is a crucial step for ob-
taining a successful characterization of the system. Bandt
and Pompe [19] introduced a simple and robust method to
evaluate the probability distribution taking into accountthe
time causality of the system dynamics. They suggested that the
symbol sequence should arise naturally from the time series,
without any model assumptions. Thus, they took partitions
by comparing the order of neighboring values rather than
partitioning the amplitude into different levels. That is,given
a time series{xt, t = 1, . . . , N}, an embedding dimension
D > 1 (D ∈ N), and an embedding delayτe (τe ∈ N), the
ordinal pattern of orderD generated by

s 7→
(

xs−(D−1)τe , xs−(D−2)τe , . . . , xs−τe , xs

)

(3)

has to be considered. To each times we assign aD-
dimensional vector that results from the evaluation of the
time series at timess− (D − 1)τe, . . . , s− τe, s. Clearly, the
higher the value ofD, the more information about the past is
incorporated into the ensuing vectors. By the ordinal pattern
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Fig. 1. (a) Temporal evolution of the semiconductor laser intensity
(|E(t)|2/105) simulated by using the Lang-Kobayashi model at the coherence
collapse regime (I = 1.5Ith, γ = 20 ns−1). (b) Autocorrelation function of
the semiconductor laser intensity|E(t)|2.

of order D related to the times we mean the permutation
π = (r0, r1, . . . , rD−1) of (0, 1, . . . , D − 1) defined by

xs−r0τe ≥ xs−r1τe ≥ · · · ≥ xs−rD−2τe ≥ xs−rD−1τe . (4)

In this way the vector defined by Eq. (3) is converted into a
unique symbolπ. The procedure can be better illustrated with
a simple example; let us assume that we start with the time
series depicted in Fig. 2. It corresponds to a small segment of
the semiconductor laser intensity depicted in Fig. 1 but with
sampling period ofΩs = 30 ps. We set the embedding dimen-
sionD = 4, s = 20 and the embedding delayτe = 3. In this
case the state space is divided into4! partitions and24 mutu-
ally exclusive permutation symbols are considered. According
to Eq. (3), the first4-dimensional vector corresponding with
(xs−3τe , xs−2τe , xs−τe , xs) is (0.834, 1.537, 1.715, 1.125), see
the dashed line in Fig. 2. Following Eq. (4), we find that
xs−τe ≥ xs−2τe ≥ xs ≥ xs−3τe . Then, the ordinal pattern
which allows us to fulfill Eq. (4) will be(1, 2, 0, 3). The next4-
dimensional vector, ats = 21, is (0.864, 0.640, 1.128, 1.287),
and (0, 1, 3, 2) will be its associated permutation, and so on.
In order to get a unique result we consider thatri < ri−1
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Fig. 2. Procedure to identify ordinal patterns from a small segment of the
semiconductor laser intensity time series (|E(t)|2/105) depicted in Fig. 1 but
with sampling period ofΩs = 30 ps. In this particular example embedding
dimensionD = 4, embedding delayτe = 3 and times = 20 are considered.

if xs−riτe = xs−ri−1τe . This is justified if the values ofxt

have a continuous distribution so that equal values are very
unusual. Otherwise, it is possible to break these equalities by
adding small random perturbations [19].

For all theD! possible orderings (permutations)πi when the
embedding dimension isD, their associated relative frequen-
cies can be naturally computed by the number of times this
particular order sequence is found in the time series divided by
the total number of sequences. Thus, an ordinal pattern prob-
ability distribution P = {p(πi), i = 1, . . . , D!} is obtained
from the time series. It is clear that with this ordinal time series
analysis some details of the original amplitude information are
lost. However, a meaningful reduction of the complex systems
to their basic intrinsic structure is provided. This way of
symbolizing time series, based on a comparison of consecutive
points, allows a more accurate empirical reconstruction ofthe
underlying phase space of chaotic time series affected by weak
(observational and dynamical) noise [19]. Furthermore, the
ordinal pattern probability distribution is invariant with respect
to nonlinear monotonous transformations. Thus, nonlinear
drifts or scalings artificially introduced by a measurement
device do not modify the quantifiers’ estimations, a relevant
property for the analysis of experimental data. These are the
main advantages with respect to more conventional methods
based on range partitioning. The probability distributionP
is obtained once we fix the embedding dimensionD and the
embedding delayτe. The former parameter plays an important
role for the evaluation of the appropriate probability distri-
bution, sinceD determines the number of accessible states,
given byD!. Moreover, it was established that the lengthN
of the time series must satisfy the conditionN ≫ D! in order
to achieve a proper differentiation between stochastic and
deterministic dynamics [23]. With respect to the selectionof
the other parameter, Bandt and Pompe specifically considered
an embedding delayτe = 1 in their cornerstone paper [19].
Nevertheless, it is clear that other values ofτe could provide
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additional information.
The normalized permutation entropy is just defined as the

normalized Shannon entropy associated to the Bandt and
Pompe probability distributionP = {p(πi), i = 1, . . . , D!}:

HS [P ] = S[P ]/Smax =

[

−

D!
∑

i=1

p(πi) ln(p(πi))

]

/Smax,

(5)
where Smax = lnD!, (0 ≤ HS ≤ 1), and S stands for
Shannon entropy. The lower bound is reached for regular
dynamics (e.g., periodic) and the upper bound for completely
random stochastic dynamics (i.e., white noise). This symbolic
entropy measure, that quantifies the diversity of orderings, was
shown to be particularly useful for very different purposes
like detecting dynamical changes in complex time series [20],
predicting epileptic seizures [24], characterizing stochastic
processes [25], tracking the anesthetic drug effect in elec-
troencephalographic data [26], testing for independence [27],
detecting noise-induced temporal correlations in stochastic
resonance phenomena [28], measuring the stock market in-
efficiency [29], and quantifying the randomness of chaotic
pseudo-random number generators [30]. In the next section,
we show that this information-theory-derived quantifier can
also be useful for detecting and quantifying the presence
of correlations and regular structures in the time traces of
high-dimensional chaotic systems. The smaller the value of
HS , the more regular the time series is. The identification
of regularities between subsequent points of a time series by
using the symbolic Bandt and Pompe approach was recently
shown specially useful for distinguishing chaotic sequences
from random ones [31]–[33].

IV. N UMERICAL RESULTS

A. Permutation entropy approach

In this section, we investigate the unpredictability of the
hyperchaotic laser dynamics by estimating the permutation
entropy,HS , to quantify the presence of patterns and regular
structures in the chaotic time series. The main parameters
involved in the numerical computation ofHS are the em-
bedding dimension,D, and the embedding delay,τe. In the
present study, we consider different embedding dimensions
4 ≤ D ≤ 7, and we varyτe between 1 and 2000. We have
found that the results obtained are strongly dependent on the
embedding delay. Therefore, we advise a proper selection of
this parameter for obtaining meaningful results. The embed-
ding delayτe is directly related to the sampling frequency of
the system under analysis [34]. By increasing this parameter,
the original time series is subsampled in a very efficient way. It
has been recently shown that characteristic time scales present
in the system dynamics are detected through the presence
of clear extrema of the permutation entropy and permutation
complexity when they are calculated as a function of the
embedding delay [21], [22]. Furthermore, periodicities present
in the system can be identified by analyzing the behavior of
the permutation entropy as a function ofτe [35].

We first present the results forHS for different embedding
dimensions (4 ≤ D ≤ 7) with a τe value that typically allows

for a proper reconstruction of the chaotic attractor. This opti-
mal reconstruction lag, denoted hereafter asτ rece , is estimated
from the autocorrelation function at the next point where it
drops to1−e−1 ≈ 0.63 of its initial value [36], [37]. Estimated
values for τ rece as a function of the injected current and
feedback strength are detailed in Table II. The values obtained
for this optimal reconstruction lag are approximately a tenth
of the solitary laser relaxation oscillation period. Sincethe
sampling time of the laser intensity time series isΩs = 1 ps,
τe = τ rece captures the semiconductor laser dynamical behavior
at the fastest time-scale of Eqs. (1)-(2), which is given by
the photon lifetime (picoseconds). Figures 3(a) and (b) show
HS , evaluated atτe = τ rece , as a function of the injected
current (for a fixed feedback strengthγ = 20 ns−1) and the
feedback strength (for a fixed injected currentI = 1.5Ith),
respectively. Mean and standard deviation of the permutation
entropy estimations obtained for the ten different realizations
for each control parameter value are plotted. On the one
hand, we find thatHS decreases with an increasing injected
current. On the other hand, we find thatHS increases with an
increasing feedback strength, saturating at large values of γ.

TABLE II
τ rece MEASURED IN UNITS OF THE SAMPLING PERIOD(Ωs = 1 ps) FOR

DIFFERENT INJECTED CURRENTS(γ = 20 ns−1) AND DIFFERENT
FEEDBACK STRENGTHS(I = 1.5Ith). MEAN VALUES ASSOCIATED TO THE

TEN DIFFERENT REALIZATIONS ARE DETAILED.

I/Ith τ rece (ps)

1.1 37

1.2 31

1.3 28

1.4 26

1.5 24

1.6 23

1.7 21

1.8 20

1.9 19

2.0 18

2.1 18

2.2 17

2.3 17

2.4 16

2.5 16

γ (ns−1) τ rece (ps)

7.5 30

10 28

12.5 26

15 26

17.5 25

20 24

22.5 23

25 23

27.5 22

30 21

32.5 20

35 19

37.5 18

40 18

We also present the results forHS whenτe = 1000, which
matches a characteristic time-scale of the system, namely the
feedback time delay (τe = τS/Ωs = 1000). Figure 4(a)
showsHS as a function of the injected current for a constant
feedback strength (γ = 20 ns−1). A clear maximum can
be seen atI ≈ 1.4Ith. In Fig. 4(b), HS as a function of
the feedback strength for a constant injected current (I =
1.5Ith) is depicted. We find thatHS has a maximum at
γ ≈ 20 ns−1 when τe = 1000. We have found a similar
behavior when the embedding delayτe matches harmonics
and some subharmonics of the system’s feedback time delay
τS . More precisely, whenτe = kτS/Ωs with k ∈ N and when
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Fig. 3. Permutation entropy for the semiconductor laser subject to optical
feedback as a function of (a) injected current (γ = 20 ns−1) and (b) feedback
strength (I = 1.5Ith). Embedding delayτe = τ rece and sampling timeΩs =
1 ps. Mean and standard deviation of the permutation entropy estimations
obtained for ten different realizations are plotted.

τe = τS/(2Ωs), τS/(3Ωs), . . . , τS/((D − 1)Ωs).

Taking into account the high variability observed in the per-
mutation entropy estimations as a function of the embedding
delayτe, it is essential to compare with the results obtained by
using a more established tool. In the next subsection we detail
the results obtained for the Kolmogorov-Sinai (KS) entropy, a
well-known and widely used invariant of a dynamical system.

B. Kolmogorov-Sinai Entropy

The Kolmogorov-Sinai (KS) entropy measures the average
loss of information rate. Its range of values goes from zero for
regular dynamics, it is positive for chaotic systems and infinite
for a perfectly stochastic process. The larger the entropy,the
larger the unpredictability of the system, which is a highly
desired property to ensure security in a chaos encryption
scheme. The computation of the KS entropy is performed from
the positive Lyapunov exponents as follows (see Ref. [38], pp.
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Fig. 4. Permutation entropy for the semiconductor laser subject to optical
feedback as a function of (a) injected current (γ = 20 ns−1) and (b) feedback
strength (I = 1.5Ith). Embedding delayτe = τS/Ωs = 1000 and sampling
time Ωs = 1 ps. Mean and standard deviation of the permutation entropy
estimations obtained for ten different realizations are plotted.

229-231)

hKS =
∑

i|λi>0

λi, (6)

whereλi are the Lyapunov exponents.
To be precise, the sum of the positive Lyapunov exponents

is an upper bound to the Kolmogorov-Sinai entropy but Eq. (6)
seems to hold in very general situations and it is usually
the only way to obtain a good estimation ofhKS [7]. The
Lyapunov exponents have been computed following Farmer’s
approach [39]. We have integrated the corresponding delay
differential equations with an Euler method. Therefore, the
original delay differential equations are converted into amap.
We then compute the Lyapunov exponents of this map. Only
a finite portion of the set ofλi can be determined by such
a numerical analysis. The number of Lyapunov exponents
that can be calculated is given byτS/h, where h is the
discretization time step andτS is the feedback time delay. The
results for the largest Lyapunov exponents are independent
of the time step provided thath is not too large. The KS
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Fig. 5. KS entropy for the semiconductor laser subject to optical feedback
as a function of (a) injected current (γ = 20 ns−1) and (b) feedback strength
(I = 1.5Ith).

entropy is characterized by the positiveλi obtained with this
procedure [7], [39].

In Fig. 5(a), we present the KS entropy as a function of the
injected current for a constant feedback strengthγ = 20 ns−1.
It can be seen the KS entropy displays a maximum around
I = 1.5Ith. We also show the KS entropy as a function of the
feedback strength in Fig. 5(b) for a constant injected current
I = 1.5Ith. The KS entropy increases with an increasing
feedback strength up toγ ≈ 22.5 ns−1, where it reaches
a maximum. The results presented in this section for the
KS entropy quantitatively agree with the results presented
by Vicente et al. [7], where the hyperchaoticity of the laser
dynamics was described by means of the KS entropy and the
Kaplan-Yorke dimension.

It is clear that the results obtained forHS and for the
KS entropy differ when the former quantifier is estimated
by consideringτe = τ rece , as can be concluded from the
comparison of Figs. 3 and 5. However, it has been shown
that the KS entropy and the permutation entropy give similar
results when the latter is estimated by using an embedding
delayτe that coincides with the system’s feedback time delay

τS . The same similarity is found when the embedding delay
τe matches harmonics and some subharmonics ofτS . These
results allow us to conclude that the dynamics at the feedback
time delay strongly influences the overall dynamical behavior.
This finding agrees with the fact that the dynamics of certain
chaotic delayed systems can be identified and modeled once
their feedback time delay is known [40]–[42].

We have also studied the effect that the feedback time
delayτS has on the permutation entropy estimations. For that
purpose numerical simulations with different feedback time
delays were generated (τS = 100 ps, 200 ps, . . . , 1000 ps).
Ten different realizations ofN = 105 data points with a
sampling period ofΩs = 1 ps were considered for each value
of the feedback time delay. The injected current and feedback
strength were fixed equal to1.5Ith and20 ns−1, respectively,
for this analysis. Taking into account the previous resultswe
have estimatedHS for τe = τS/Ωs. The results obtained for
HS are compared with those for the KS entropy in Fig. 6.
The trends observed in the curves for the permutation entropy,
Fig. 6(a), are reproduced in the curve for the KS entropy,
Fig. 6(b). Both the permutation and the KS entropy quantifiers
show a constant value for large feedback times.

Finally, we have tested the effect an additive observational
noise has on the proposed approach. Taking into account the
low sensitivity to noise of the symbolic Bandt and Pompe
approach [19], robustness to noise is expected by using the
PE quantification. In order to perform this analysis, Gaussian
white noises of different noise to signal ratio (NSR) were
added to the original semiconductor laser intensity time series.
The NSR is defined as the standard deviation of the noise over
the standard deviation of the original signal. Figure 7 shows
the influence this observational noise has on PE estimationsas
a function of the injected current, for a fixed feedback strength
γ = 20 ns−1 and feedback time delayτS = 1 ns. Ten different
realizations for eachI/Ith value were analyzed. Embedding
dimensionD = 6 and τe = τS/Ωs = 1000 were chosen for
estimatingHS . It can be concluded that PE is able to identify
the optimal chaotic carrier, obtained atI ≈ 1.4Ith, even when
the standard deviation of the noise and the original signal are
equal (NSR = 1). We have found a similar insensitivity to noise
in the analysis ofHS as a function of the feedback strength for
a constant injected current (I = 1.5Ith). These results confirm
the robustness to noise of the permutation entropy approach.

V. CONCLUSIONS

We have numerically analyzed the degree of unpredictability
of the hyperchaotic time traces generated by the output of
a semiconductor laser subject to delayed optical feedback
by estimating a novel information-theory-derived quantifier,
namely the permutation entropy. The behavior of this quanti-
fier as a function of the embedding delayτe was analyzed. A
detailed comparison with the results obtained by employing
the Kolmogorov-Sinai entropy allows us to conclude that the
overall laser dynamics is strongly dominated by the delayed
feedback term in Eq. (1). More precisely, we found that the
permutation entropy should be estimated with an embedding
delayτe around the feedback time delayτS in order to recover
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Fig. 6. (a) Permutation entropy and (b) KS entropy for the semiconductor
laser subject to optical feedback as a function of the feedback time delay
τS (γ = 20 ns−1 and I = 1.5Ith). Embedding delayτe = τS/Ωs and
sampling timeΩs = 1 ps were considered for the permutation entropy
estimations. Mean and standard deviation of the values obtained for ten
different realizations are plotted in the case ofHS .
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Fig. 7. Permutation entropy for the semiconductor laser subject to optical
feedback as a function of the injected current (γ = 20 ns−1 andτS = 1 ns)
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τe = τS/Ωs = 1000 were used for the PE estimations. Mean and standard
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the results obtained with the KS entropy. We have also checked
that this symbolic entropy quantifier is especially robust to
additive observational noise. Consequently, its estimation can
be very useful for analyzing experimental data.

An exact determination of the Kolmogorov-Sinai entropy is
only possible in a few special cases and its estimation from
the output time series of a system is very difficult and not free
from arbitrariness [43]. In this context, the permutation entropy
is an interesting alternative because it can be easily estimated
for any type of time series (regular, chaotic, noisy) [19], [44].
Moreover, it was theoretically shown that both quantifiers,
i.e. Kolmogorov-Sinai and permutation entropies, coincide
for a simple class of dynamical systems [45]. Therefore, we
suggest that the permutation entropy can be of more general
and practical applicability for arbitrary real-world data. In
particular, we have shown that it can be very useful for
quantifying the degree of unpredictability of hyperchaotic time
traces generated by semiconductor lasers subject to delayed
optical feedback. A generalization of this finding to other
dynamical systems with delay still remains an open question
and needs further study.
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