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Abstract—The time evolution of the output of a semiconductor
laser subject to delayed optical feedback can exhibit high-
dimensional chaotic fluctuations. In this contribution, ou aim
is to quantify the degree of unpredictability of this hyperchaotic
time evolution. To that end, we estimate permutation entrop, a
novel information-theory-derived quantifier particularl y robust
in a noisy environment. The permutation entropy is defined as
a functional of a symbolic probability distribution, evaluated
using the Bandt-Pompe recipe to assign a probability disttution
function to the time series generated by the chaotic system.
This measure quantifies the diversity of orderings presentri the
associated time series. In order to evaluate the performarec of
this novel quantifier, we compare with the results obtained lg
using a more standard chaos quantifier, namely the Kolmogone-
Sinai entropy. Here, we present numerical results showinghat
the permutation entropy, evaluated at specific time-scalesn-
volved in the chaotic regime of the semiconductor laser subgt
to optical feedback, give valuable information about the dgree
of unpredictability of the chaotic laser dynamics. The infllence

The security of data encryption using techniques based on
chaotic carriers relies, to a large extent, on the unprablility

of the carrier signal and needs to be quantified [13]-[15F It
the purpose of the present article to quantify the unpraditt

ity of the dynamics generated by semiconductor lasers subje
to delayed optical feedback as a function of the controlesyst
parameters. This analysis can provide useful informatan f
choosing the optimal chaotic carrier.

Semiconductor lasers subject to optical feedback can be
modeled via delay differential equations (DDESs) [16], fgein
an example of infinite-dimensional chaotic systems. Altitou
systems with delay are theoretically infinite dimensionzny
infinite-dimensional systems can be considered, in practic
have a finite dimension and can be fully characterized by the
largest Lyapunov exponents [7]. The knowledge of the pasiti
Lyapunov exponents allows computing the Kolmogorov-Sinai

pf ad_ditive observational noise on the proposed tool is also (KS) entropy through the Pesin’s identity, which measures
investigated. the average loss of information rate and can be seen as a
Index Terms—Chaos, semiconductor lasers, optical feedback, complexity measure of the chaotic attractor. The KS entropy

degree of unpredictability, permutation entropy.

I. INTRODUCTION

Semiconductor lasers are very sensitive to external geatur

tions such as injection of light from another laser [1], feack
from a distant mirror [2], phase conjugate feedback [3ctete
optical feedback [4] or frequency filtered external optiesld-

back [5]. As a consequence of these perturbations, the put|
of these lasers may show very complex dynamical behavior.

particular, high-dimensional chaos can be developed W], [

is a widely used invariant of a dynamical system. Howeuvsr, it
estimation is highly demanding, particularly for experirted
analysis. Lyapunov exponents are very difficult, if not im-
possible, to be estimated when analyzing data coming from
complex systems. Therefore, alternative ways to calculae
KS entropy, instead of applying Pesin’s identity, should be
taken into consideration [17], [18]. In this work we investie

the properties of a novel measure based on informationyheor
%Iled permutation entropy (PE) [19], as an alternativestd e
mate the unpredictability of chaotic time traces. This sgfith
entropy quantifier has the advantage to be a straightforward

Chaotic semiconductor lasers are able to synchronize whén

coupled, and can be used to transmit encrypted infor
tion [8]—[12]. In this context, computational tools for assing
the predictability of the associated temporal traces arexef

treme importance because they are directly related to isgcur.
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measure and its estimation does not involve demanding and

r‘qlrﬁe-consuming numerical calculations. The basic initins

structure of complex systems is obtained in a very fast and
flexible way. It was shown that the PE based methodology
is up to 100 times faster than a Lyapunov exponent based
technique, due to the fact that neighborhood searchingtis no
needed [20]. Moreover, PE approach is invariant with respec
to nonlinear monotonous transformations [19]. Thus, maar
drifts or scalings artificially introduced by a measurement
device do not modify the quantifier estimations. This prtper

is highly desired for the analysis of experimental data.

It is worth mentioning that a related permutation-
information-theory approach was recently introduced &nid
tify delay phenomena and characteristic time scales fram ti
series [21], [22]. It was shown, both numerically and experi
mentally, that permutation entropy and permutation stesis



TABLE |

complexity present well defined extrema when the embedding PARAMETER SET IN THE NUMERICAL SIMULATION.

delay of the symbolic reconstruction matches the intritigie

scales of the systems dynamics. Estimations of both quenstifi | Parameter Description Value

are necessary to identify all the relevant time scales. blare a linewidth enhancement facto 5

it was found that this methodology is particularly robustain Tp photon lifetime 2 ps

noise environment [21]. In the present work, and by estinggati ™ carrier lifetime 2ns

the permutation entropy from numerically generated time g differential gain coefficient | 1.5 x 107% ps~!

series, we provide evidence that this quantifier can be a N, carrier transparency 1.5 x 108

practical, simple and efficient alternative for the purpose s gain compression coefficient 5x 107

quantifying the unpredictability degree of hyperchaotisdr g feedback time delay 1 ns

dynamics. o feedback strength 7.5ns™! —40 ns~!
The paper is organized as follows. In Section Il we briefly & optical feedback phase 0

describe the Lang-Kobayashi rate equations used for nrageli I threshold current 14.7 mA

the dynamical behaviors of semiconductor lasers subject to injected current V11, — 2.51,,

coherent optical feedback. The permutation entropy dfianti
is introduced in Section Ill. In Section IV, numerical resul
are presented and discussed. A detailed comparison with the

results obtained by estimating the Kolmogorov-Sinai gmtro the coherence collapse regime=€ 1.51;,, v = 20 ns~') and
is also included in this section. Finally, some concludingig. 1(b) depicts its corresponding autocorrelation fiorct
remarks are given in Section V.

IIl. PERMUTATION ENTROPY

Il. RATE EQUATION MODEL Entropy quantifiers are able to capture the degree of un-
In this paper, we focus on the chaotic dynamics of @ertainty and disorder present in a time series. Partigular
semiconductor laser. More specifically, we consider a singbhannon entropy is very often used as the first natural en-
mode laser subject to coherent optical feedback. The dath ugopy measure. Given any arbitrary probability distribunti
in our analysis originate from the numerical integrationtted P = {p; : ¢ = 1,...,M}, the Shannon’s logarithmic
Lang-Kobayashi rate equation model [16]. These equatioimformation measure$[P] = _Zi]\il p; Inp;, is related to
have been shown to be successful in modeling the dynamitta uncertainty associated with the physical process ithestr
behaviors of semiconductor lasers subject to weak to meglerby P. If S[P] = 0 we are in position to predict with
coherent optical feedback, with a single reflection in theomplete certainty which of the possible outcomieshose
external cavity. The equations for the complex slowly vagyi probabilities are given by, will actually take place. In this
amplitude of the electric field2(¢) and the carrier number case, our knowledge of the underlying process described by

inside the cavityN(t) are the probability distribution is maximal. On the contraryro
_ 1 +ia 1 . knowledge is minimal for a uniform distribution ar{P] is
E(t) = 5 [G(t) - —] E(t) +~vE(t —75)e (1) maximized.
» In order to evaluate the above-mentioned quantifiér],
N(t) - I N(?) — G)|E®)?, (2) an associated probability distribution should be constdic
e TN in advance. The adequate choice of the probability distri-

where G(t) = g(N(t) — No)/(1 + s|E(t)[2) is the optical bgtipn associated to a time se_ries_ is a crucial step for ob-
gain, o is the linewidth enhancement factot, is the photon taining a succesgful charactenzgtmn of the system. Bandt
lifetime, 7 is the carrier lifetime,g is the differential gain @1d Pompe [19] introduced a simple and robust method to
coefficient, N, is the carrier number at transpareney,is gvaluate th_e probability d|str|but|on taking into accouhé

the gain compression coefficients is the feedback time time causality of the system (_lenam|cs. They sugges_tedhbat_t
delay, ~ is the feedback strengti is the optical feedback symbol sequence should arise naturally from the time series
phase anct is the electron chargel denotes the injected without any model assumptlong. Thu_s, they took partitions
current. Table | details the parameter values that were udd4 comparing the order of neighboring values rather than
in the simulations. With these parameter values, the rétaxa Partitioning the amplitude into different levels. That gven

oscillation frequency of the solitary laser fso — 4.2 GHz @ time series{z;,t = 1,..., N}, an embedding dimension
atl = 1.51,,. D > 1 (D € N), and an embedding delay (7. € N), the

Time series representing the intensity of the laser were rRfdinal pattern of ordeD generated by

merically integrated using a second-order Runge-Kuttdnotet
with a time step ofAt = 0.1 ps. In this work ten realizations,
each one of lengthv = 10° data points with a sampling periodhas to be considered. To each tilewe assign aD-

of Q, = 1 ps, were analyzed in order to obtain statisticalldimensional vector that results from the evaluation of the
significant results. Each realization starts at a diffefeitial time series at times — (D — 1)7.,...,s — 7, s. Clearly, the
condition. Figure 1(a) shows a typical temporal trace dfigher the value ofD, the more information about the past is
|E(t)|? generated by simulating the Lang-Kobayashi model atcorporated into the ensuing vectors. By the ordinal patte

S (xs—(D—l)Te?IS—(D—Q)Te? s aI'SfTCaIS) (3)
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% if Z4_p.r. = Ts_p,_,-. This is justified if the values of;
° .l have a continuous distribution so that equal values are very
g unusual. Otherwise, it is possible to break these equalitie
2 o adding small random perturbations [19].
For all theD! possible orderings (permutations)when the
02 embedding dimension i®, their associated relative frequen-
os cies can be naturally computed by the number of times this

4 5 6 7 8 9 10 particular order sequence is found in the time series divile
Time-shift (ns) .
the total number of sequences. Thus, an ordinal pattern prob
Fig. 1.  (a) Temporal evolution of the semiconductor laseterigity ability dIS_tI’IbutIOI_’l P - {p(mi), i = 1.’ - TD!} 1S Ol?tall’_led
(|E(t)]2/10°) simulated by using the Lang-Kobayashi model at the colerenfrom the time series. Itis clear that with this ordinal tinegies
collapse regimeX( = 1.5I;;,, v = 20 ns~1). (b) Autocorrelation function of analysis some details of the original amplitude informatoe
the semiconductor laser intensity’(¢)|. lost. However, a meaningful reduction of the complex system
to their basic intrinsic structure is provided. This way of
symbolizing time series, based on a comparison of consecuti
of order D related to the times we mean the permutationpoints, allows a more accurate empirical reconstructiothef
m = (ro,m,...,7p-1) 0f (0,1,...,D — 1) defined by underlying phase space of chaotic time series affected lakwe
(observational and dynamical) noise [19]. Furthermore, th
ordinal pattern probability distribution is invariant Witespect
In this way the vector defined by Eq. (3) is converted into @ nonlinear monotonous transformations. Thus, nonlinear
unigue symbolr. The procedure can be better illustrated witklrifts or scalings artificially introduced by a measurement
a simple example; let us assume that we start with the tirdevice do not modify the quantifiers’ estimations, a relévan
series depicted in Fig. 2. It corresponds to a small segmentpmoperty for the analysis of experimental data. These age th
the semiconductor laser intensity depicted in Fig. 1 buhwitmain advantages with respect to more conventional methods
sampling period of), = 30 ps. We set the embedding dimenbased on range partitioning. The probability distributifn
sion D = 4, s = 20 and the embedding delay = 3. In this is obtained once we fix the embedding dimensiorand the
case the state space is divided idtgoartitions and24 mutu- embedding delay.. The former parameter plays an important
ally exclusive permutation symbols are considered. Adogrd role for the evaluation of the appropriate probability dist
to Eqg. (3), the firs4-dimensional vector corresponding withbution, sinceD determines the number of accessible states,
(Ts—37,, Ts—2r,, Ts—r., Ts) 1S (0.834,1.537,1.715,1.125), see given by D!. Moreover, it was established that the lendéh
the dashed line in Fig. 2. Following Eq. (4), we find thatf the time series must satisfy the conditidh>> D! in order
Ts—r, > Ts—2;, = Ts > Ts—3.,. Then, the ordinal patternto achieve a proper differentiation between stochastic and
which allows us to fulfill Eq. (4) will bg(1, 2,0, 3). The nextd- deterministic dynamics [23]. With respect to the selecidn
dimensional vector, at = 21, is (0.864,0.640,1.128,1.287), the other parameter, Bandt and Pompe specifically considere
and (0,1, 3,2) will be its associated permutation, and so oran embedding delay. = 1 in their cornerstone paper [19].
In order to get a unique result we consider that< r;,_; Nevertheless, it is clear that other valuesrpfcould provide

0 1 2 3
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additional information. for a proper reconstruction of the chaotic attractor. Thi-o
The normalized permutation entropy is just defined as theal reconstruction lag, denoted hereafter &8, is estimated
normalized Shannon entropy associated to the Bandt anaim the autocorrelation function at the next point where it
Pompe probability distributio®® = {p(m;),i =1,...,D!}: drops tol—e~! = 0.63 of its initial value [36], [37]. Estimated
DI values for7f°¢ as a function of the injected current and
feedback strength are detailed in Table Il. The values obthi
Hs[F] = SIP]/ Smax = _Z p(ms) n(p(ms)) | /Smax for this optimalgreconstruction lag are approximately athien
(5) of the solitary laser relaxation oscillation period. Sirte
where Smax = InD!, (0 < Hg < 1), and S stands for sampling time of the laser intensity time serieflis= 1 ps,
Shannon entropy. The lower bound is reached for regular= 7 captures the semiconductor laser dynamical behavior
dynamics (e.g., periodic) and the upper bound for completedt the fastest time-scale of Egs. (1)-(2), which is given by
random stochastic dynamics (i.e., white noise). This sylimbothe photon lifetime (picoseconds). Figures 3(a) and (bWwsho
entropy measure, that quantifies the diversity of orderimgs #g, evaluated at. = 7:°¢, as a function of the injected
shown to be particularly useful for very different purposesurrent (for a fixed feedback strength= 20 ns~!) and the
like detecting dynamical changes in complex time serie$, [2@eedback strength (for a fixed injected currdnt= 1.51;;),
predicting epileptic seizures [24], characterizing stamtlt respectively. Mean and standard deviation of the pernuurtati
processes [25], tracking the anesthetic drug effect in-elentropy estimations obtained for the ten different reéiire
troencephalographic data [26], testing for independeB@g [ for each control parameter value are plotted. On the one
detecting noise-induced temporal correlations in stdaihashand, we find tha#{s decreases with an increasing injected
resonance phenomena [28], measuring the stock market éofrent. On the other hand, we find tidt increases with an
efficiency [29], and quantifying the randomness of chaotiocreasing feedback strength, saturating at large valties o
pseudo-random number generators [30]. In the next section,
we show that this information-theory-derived quantifien ca TABLE Il
. e T72¢¢ MEASURED IN UNITS OF THE SAMPLING PERIO{2s = 1 ps) FOR
also be useful for detecting and quantifying the presence®  c-crent INJECTED CURRENTEy = 20 ns—1) AND DIFFERENT
of correlations and regular structures in the time traces efepBack STRENGTHY(I = 1.51;,). MEAN VALUES ASSOCIATED TO THE

i=1

high-dimensional chaotic systems. The smaller the value of TEN DIFFERENT REALIZATIONS ARE DETAILED.
Hs, the more regular the time series is. The identification
of regularities between subsequent points of a time segies b I/Lip, [ 72 (s) | [ v (s~ 1) | 72°¢ (ps)
using the symbolic Bandt and Pompe approach was recently 1.1 37 7.5 30
shown specially useful for distinguishing chaotic seq@snc 1.2 31 10 28
from random ones [31]-[33]. 1.3 28 12.5 26
1.4 26 15 26
IV. NUMERICAL RESULTS 1.5 24 17.5 25
A. Permutation entropy approach 1.6 23 20 24
In this section, we investigate the unpredictability of the 1; 2(1) 2225')5 22
hyperchaotic laser dynamics by estimating the permutation 1'9 19 75 0
entropy,Hs, to quantify the presence of patterns and regular ' '
structures in the chaotic time series. The main parameters 20 18 30 21
involved in the numerical computation ¢fs are the em- 2.1 18 82.5 20
bedding dimensionD, and the embedding delay,. In the 2.2 o 35 19
present study, we consider different embedding dimensions 2.3 7 37.5 18
4 < D < 7, and we varyr, between 1 and 2000. We have 2.4 16 40 18
found that the results obtained are strongly dependent ®n th 2.5 16

embedding delay. Therefore, we advise a proper selection of
this parameter for obtaining meaningful results. The embed
ding delayr, is directly related to the sampling frequency of We also present the results féfs whenr, = 1000, which
the system under analysis [34]. By increasing this parametematches a characteristic time-scale of the system, narhely t
the original time series is subsampled in a very efficient.\Way feedback time delayr{ = 75/Qs = 1000). Figure 4(a)
has been recently shown that characteristic time scalasepre shows? s as a function of the injected current for a constant
in the system dynamics are detected through the presefemedback strengthy( = 20 ns~!). A clear maximum can
of clear extrema of the permutation entropy and permutatibe seen atl ~ 1.41;;. In Fig. 4(b), Hs as a function of
complexity when they are calculated as a function of thibe feedback strength for a constant injected currént(
embedding delay [21], [22]. Furthermore, periodicitieegemt 1.5I;,) is depicted. We find that{s has a maximum at
in the system can be identified by analyzing the behavior ¢f ~ 20 ns~' when 7, = 1000. We have found a similar
the permutation entropy as a function@f[35]. behavior when the embedding delay matches harmonics
We first present the results f6fs for different embedding and some subharmonics of the system’s feedback time delay
dimensions4 < D < 7) with a 7. value that typically allows 7s. More precisely, when, = k75/Qs with &k € N and when
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Fig. 3. Permutation entropy for the semiconductor lasejestitio optical Fig. 4. Permutation entropy for the semiconductor lasejestitio optical
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strength { = 1.51;,). Embedding delay. = 72°¢ and sampling tim&s =  strength { = 1.51;;). Embedding delay. = 75 /s = 1000 and sampling
1 ps. Mean and standard deviation of the permutation entrgbynations time Qs = 1 ps. Mean and standard deviation of the permutation entropy
obtained for ten different realizations are plotted. estimations obtained for ten different realizations awttpd.

To = 75/(20), 75/ (30%), . .., 75/ (D — 1)Q,). 229-231)
Taking into account the high variability observed in the-per hiksg = Z i, (6)
mutation entropy estimations as a function of the embedding iA>0

delayr., it is essential to compare with the results obtained b here the L ¢
using a more established tool. In the next subsection welde 'I?reb i are the %/apunov fexr;])onen_s_. L
the results obtained for the Kolmogorov-Sinai (KS) entrapy . 0 be precise, the sum of the positive Lyapunov exponents

well-known and widely used invariant of a dynamical systenHS. an upper boun_d to the Kolmogor(_)v-S?nai entrop_y bUt Eq. (6)
seems to hold in very general situations and it is usually

the only way to obtain a good estimation bf;s [7]. The

Lyapunov exponents have been computed following Farmer’s
B. Kolmogorov-Sinai Entropy approach [39]. We have integrated the corresponding delay

differential equations with an Euler method. Therefores th

The Kolmogorov-Sinai (KS) entropy measures the averageginal delay differential equations are converted intmap.

loss of information rate. Its range of values goes from zero fWe then compute the Lyapunov exponents of this map. Only
regular dynamics, it is positive for chaotic systems anditdi a finite portion of the set of\; can be determined by such
for a perfectly stochastic process. The larger the entritjgy, a numerical analysis. The number of Lyapunov exponents
larger the unpredictability of the system, which is a highlthat can be calculated is given by /h, where b is the
desired property to ensure security in a chaos encryptidiscretization time step ang is the feedback time delay. The
scheme. The computation of the KS entropy is performed fromasults for the largest Lyapunov exponents are independent
the positive Lyapunov exponents as follows (see Ref. [38], pof the time step provided that is not too large. The KS



Tg. The same similarity is found when the embedding delay
(@) 7. matches harmonics and some subharmonicssofThese
results allow us to conclude that the dynamics at the feddbac
time delay strongly influences the overall dynamical betvavi
This finding agrees with the fact that the dynamics of certain
chaotic delayed systems can be identified and modeled once
their feedback time delay is known [40]-[42].

We have also studied the effect that the feedback time
delayts has on the permutation entropy estimations. For that
purpose numerical simulations with different feedbacketim
delays were generateds = 100 ps, 200 ps, ..., 1000 ps).

KS entropy fis™1)
o (2]

IS
T

3 | Ten different realizations ofV = 10° data points with a
sampling period of);, = 1 ps were considered for each value
1112 13 14 15 16 1.7 18 1.9 2 2.1 22 2.3 24 25 of the feedback time delay. The injected current and feddbac
Injected current{//;s) strength were fixed equal th51,, and20 ns~!, respectively,

for this analysis. Taking into account the previous reswks
have estimated{s for 7. = 75/€s. The results obtained for
‘Hs are compared with those for the KS entropy in Fig. 6.
The trends observed in the curves for the permutation eptrop
Fig. 6(a), are reproduced in the curve for the KS entropy,
Fig. 6(b). Both the permutation and the KS entropy quansfier
show a constant value for large feedback times.

Finally, we have tested the effect an additive observationa
noise has on the proposed approach. Taking into account the
low sensitivity to noise of the symbolic Bandt and Pompe
approach [19], robustness to noise is expected by using the
PE quantification. In order to perform this analysis, Gaarssi
white noises of different noise to signal ratio (NSR) were
added to the original semiconductor laser intensity tinteese

(b)

KS entropy (s™1)
(6] (2]

N
T

I
7.5 10 125 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 The NSR is defined as the standard deviation of the noise over

Feedback strength (ns~!) L. .. . .
" the standard deviation of the original signal. Figure 7 show

Fig. 5. KS entropy for the semiconductor laser subject tacapfeedback the '”f'Pence thIS_ O_bservatlonal noise has on PE estimasiens
as a function of (a) injected current & 20 ns~1) and (b) feedback strength @ function of the injected current, for a fixed feedback gjten
(I = 1.514). v = 20 ns~! and feedback time delay;, = 1 ns. Ten different
realizations for eact /I, value were analyzed. Embedding
dimensionD = 6 and 7. = 75/Qs = 1000 were chosen for
entropy is characterized by the positie obtained with this tehsetlrgﬁlgg?gﬁ ;t)ginc:rerig?,nocl;l::iigértiiillfle\?efvl\?heenr;ﬂfy
procedure [7], [39]. the standard deviation of the noise and the original sigraal a
In Fig. 5(a), we present the KS entropy as a function of thgyual (NSR = 1). We have found a similar insensitivity to Bois
injected current for a constant feedback strength 20 ns™". i the analysis o5 as a function of the feedback strength for
It can be seen the KS entropy displays a maximum arougonstant injected current & 1.51;,). These results confirm

I'=1.51;,. We also show the KS entropy as a function of thghe robustness to noise of the permutation entropy approach
feedback strength in Fig. 5(b) for a constant injected curre

I = 1.51;,. The KS entropy increases with an increasing
feedback strength up tg9 ~ 22.5 ns—', where it reaches
a maximum. The results presented in this section for thewe have numerically analyzed the degree of unpredictgbilit
KS entropy quantitatively agree with the results presentegl the hyperchaotic time traces generated by the output of
by Vicente et al. [7], where the hyperchaoticity of the lasef semiconductor laser subject to delayed optical feedback
dynamics was described by means of the KS entropy and #¢ estimating a novel information-theory-derived quaetifi
Kaplan-Yorke dimension. namely the permutation entropy. The behavior of this quanti
It is clear that the results obtained fGf{s and for the fier as a function of the embedding delaywas analyzed. A
KS entropy differ when the former quantifier is estimatedetailed comparison with the results obtained by employing
by consideringr. = 7!¢¢, as can be concluded from thethe Kolmogorov-Sinai entropy allows us to conclude that the
comparison of Figs. 3 and 5. However, it has been shownerall laser dynamics is strongly dominated by the delayed
that the KS entropy and the permutation entropy give similégedback term in Eq. (1). More precisely, we found that the
results when the latter is estimated by using an embeddipgrmutation entropy should be estimated with an embedding
delay r. that coincides with the system’s feedback time delagelayr. around the feedback time delay in order to recover

V. CONCLUSIONS
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the results obtained with the KS entropy. We have also cliecke
that this symbolic entropy quantifier is especially robust t
additive observational noise. Consequently, its estionatian

be very useful for analyzing experimental data.

An exact determination of the Kolmogorov-Sinai entropy is
only possible in a few special cases and its estimation from
the output time series of a system is very difficult and nog fre
from arbitrariness [43]. In this context, the permutatiotrepy
is an interesting alternative because it can be easily attin
for any type of time series (regular, chaotic, noisy) [12}]
Moreover, it was theoretically shown that both quantifiers,
i.e. Kolmogorov-Sinai and permutation entropies, coiecid
for a simple class of dynamical systems [45]. Therefore, we
suggest that the permutation entropy can be of more general
and practical applicability for arbitrary real-world dath
particular, we have shown that it can be very useful for
quantifying the degree of unpredictability of hyperchadine
traces generated by semiconductor lasers subject to delaye
optical feedback. A generalization of this finding to other
dynamical systems with delay still remains an open question
and needs further study.
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