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In this work we consider the topological analysis of symbolic formal systems in the framework
of network theory. In particular we analyse the network extracted by Principia Mathematica of
B. Russell and A.N. Whitehead, where the vertices are the statements and two statements are
connected with a directed link if one statement is used to demonstrate the other one. We compare
the obtained network with other directed acyclic graphs, such as a scientific citation network and a
stochastic model. We also introduce a novel topological ordering for directed acyclic graphs and we
discuss its properties in respect to the classical one. The main result is the observation that formal
systems of knowledge topologically behave similarly to self-organised systems.

I. INTRODUCTION.

A formal system is a set of a formal language and inferring rules that allows to create statements. Mathematics and
logics are important examples of formal systems. In particular mathematics is an axiomatic formal system that devel-
ops theorems and propositions starting from a set of axioms. The importance of formal systems in nature resides on the
fact that many scientific disciplines are developed as or are based on a symbolic formal system. Also many philosophic
theories are expressed as formal systems, that is a set of axioms/definitions and propositions/corollaries/theorems. In
this sense studying the properties of formal systems is equivalent to understand an important part of the knowledge
machine structure [1].
Formal systems can be described at a structural level within the framework of network theory. If we consider

the statements of a formal system, definitions, axioms, theorems, etc., as vertices and we connect by a directed link
two vertices if one statement is used to demonstrate another one (for instance a definition is used to demonstrate a
theorem), we obtain a so called directed acyclic graph (DAG hereafter) [2].
Formal systems are only some of the main references for knowledge production. Other knowledge systems in nature

are far less formal, but still very important. Recently it has been shown that an encyclopedia is a self-organised
system that grows and evolves as a biological system [3]. Moreover we can consider as a growing knowledge system
the ensemble of scientific publications. In particular, as we explain better below, the directed network of scientific
citations is keen to be structurally compared to formal systems.
A DAG is a directed graph without closed cycles. DAGs are widely spread in nature. As an example each tree is a

DAG (the viceversa doesn’t hold). Moreover in nature we find that transportation networks as rivers, cardiovascular
and respiratory networks, plant vascular, food webs and root systems are DAGs, within knowledge systems citation
networks of papers or patents, legal cases are DAGs and between artificial networks we find that electric circuits,
feed-forward neural and transmission networks are also DAGs [4–6].
In some of these networks, such as the scientific and patent citations, or the legal cases, the acyclicity arises from

the temporal ordering of the vertices. For instance papers can cite just older papers, as legal cases can cite just older
legal cases [7], hence closed cycles are difficult to form. In other networks, such as the formal systems, the acyclicity
of the graph arises from causality issues, so that proposition A cannot be used to demonstrate proposition B that is
used to demonstrate proposition A.
While other DAGs in nature have already received the attention of the scientific community, a statistical analysis

of a formal system of knowledge is still missing. One of the possible reasons for such a lack is that often mathematics
books are quite small, with just a few hundreds statements, and don’t allow a statistical analysis.
In this research we present the topological analysis of the first volume of Principia Mathematica of B. Russell and

A.N. Whitehead [8], possibly the largest formal system in nature. Just in the first volume there are 2125 statements
with 6805 connections. We show that the topology of the network is non trivial. In particular the network is scale-free
in the out-degree distribution and exponential in the in-degree distribution and reveals small world properties [9].
We show that these are common features with the citation networks. To underline the similarity and differences
between the formal system web and the citation network we run a parallel analysis of the citation network extracted
by the journal “Scientometric”, that has a similar number of vertices and links. We compare all the results with the
DAGs obtained by shuffling the network within a configuration model [10] and with a simple stochastic model that
reproduces the main statistical properties of the DAGs in consideration.
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A. Ordering

In DAGs where the nodes have an explicit time dependence, as in the citation graphs, an ordering for the graph
vertices is straightforward just considering the vertices in a sequence where older vertices come before younger ones
[6]. Nevertheless, even without considering the vertices time dependency, DAGs vertex ordering is naturally induced
by the topology of the network itself.
Topological ordering (TO hereafter) is a fast algorithm (the time is linear with the number of edges) to sort the

vertices of a DAG, so that for each directed edge the vertex at the beginning of the edge comes before the vertex at the
end of the edge [11] (see Fig.1 and Fig.2, left panels). The TO induces a layering in the network so that each vertex
acquires an additional degree of freedom, given by the level the vertex belongs to. The TO induces a degeneracy in
the levels, in the sense that many vertices can belong to the same level. For instance all vertices with indegree 0
belong to level 0 after a TO.

FIG. 1: Difference between the topological ordering TO and the causal ordering CO for a simple DAG.

If TO makes sense in the contest of task management where it was introduced, it’s not easy to interpret it in
physics. Considering the kind of problems we are dealing with, for instance formal systems, vertices with indegree 0
are definitions or axioms. Then the TO would assign all definitions at level 0. In our opinion it would be better a
sorting where the definition is positioned at the level before it is first used in a demonstration. Then we call causal
ordering (CO hereafter) an ordering where each node is positioned in the level before the node it is connected to, with
the constraint that all links have the same causal direction. In our knowledge CO has not been introduced before. To
have a better idea of the difference between TO and CO we show in Fig.1 a simple DAG ordered via TO in the left
panel, and via CO in the right panel.
There are more differences between TO and CO than it could appear at a first glimpse with a simple graph. First

of all if the vertex level for TO is well defined, for CO it can vary at each realization of the ordering. Hence in the case
of CO we talk about the average level < l > of a vertex over a sufficient number of realization of the CO. Then the
average standard deviation < σl > of the levels divided by the average maximum level of the DAG, lMax, quantifies
the stability of the CO and is a measure of the complexity of the DAG itself. This number must be small in order
for the CO to be meaningful. Nevertheless we find some good reasons to propose the CO as an interesting way to
sort the DAG vertices. First of all the maximum level of the DAG for CO is larger or equal to the maximum level
of the DAG for TO and this reduces the degeneracy of the levels. Moreover since the CO has a physics meaning, the
resulting sorted network gives at a glimpse interesting information about the network itself. To understand this point
we show in Fig.2 a DAG representation of the first volume of the Ethics of Spinoza [12], showing in the left panel
the TO and in the right panel the CO of the network. At an eye inspection we can catch the higher definitions at a
hierarchical level and the deepest conclusions of the book.

B. Notation

A directed network G is a couple {V,E} of V vertices connected by E directed links. A network is completely
specified by its adjacency matrix A = {ai,j}, i, j = 1, ..., V , whose elements are ai,j = 1 if there is a directed link
from vertex i to vertex j, ai,j = 0 otherwise. The first order correlations in a network are specified by its degree or
connectivity distribution P (k). The degree or connectivity of a vertex k is defined as the number of its first neighbours.

Then the out-degree of vertex i is defined as kouti ≡
∑V

j ai,j and the in-degree of vertex i is kini ≡
∑V

j aj,i.
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FIG. 2: The DAG extracted from the first volume of the Ethics of Spinoza. On the left the TO of the network and on the right
the CO of the network. We notice how in the CO there are 12 levels while in the TO just 11, this reducing the degeneracy of the
levels in the CO representation. For the CO representation we show the definition names at the top level and the proposition
names at the bottom level.

II. EMPIRICAL ANALYSIS

In our study we compare the analysis of three networks: the network extracted from the first volume of Principia
Mathematica, a citation network and a stochastic model. Also we compare the analysis of the real network with
measures obtained by shuffling the network, while preserving the out and in-degree sequence.

A. Principia Mathematica

In the first half of the last century a major debate took place in the philosophic and scientific community on the
possibility that mathematics could be represented by a unique set of axioms. To demonstrate that, B. Russell and
A.N. Whitehead began the cyclopic mission of writing an axiomatic symbolic system describing the fundamental
mathematic truths. A few years after the revised second edition of the three volumes of Principia Mathematica,
Gödel formally demonstrated that axiomatic systems are intrinsically incomplete putting a point to a long discussion
[13]. Nevertheless in this way Russell and Whitehead left to the world an opera that is the largest symbolic formal
system ever written.
In this work we analyse the first volume of the opera, in its first edition of 1910. The extraction of the network

from the PDF version [14] takes advantage from the fact that the number each statement is named with is preceded
by the symbol “∗”.
The network is composed by 2125 vertices and 6805 directed edges. The arrow of the edges follow a causal direction

so that, for instance, the link goes from the definition to the proposition. In this representation the network has 285
roots, links with in-degree 0, that are axioms and definitions.
In the top-panel of Fig.3 we show the out and in-degree distribution of the network. We can see that the network

is scale-free in the out degree distribution for many decades with an exponent around -2.5, P (kout) ∝ k−2.5
out . On

the other hand the in-degree distribution is well fitted by an exponential function P (kin) ∝ exp(−kin/⟨kin⟩), where
⟨kin⟩ =

∑
i k

in
i /V is the average in-degree. Those results are strikingly similar to the classical results reported about
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citation networks [15, 16].
The out-degree distribution for citation networks has been explained on the basis of multiplicative models mimicking

a popularity phenomena, i.e. rich get richer [15]. It looks like that a similar reasoning can be applied to the case
of formal system networks where a hierarchy of statements emerges and where hubs form. Those hubs reflect the
fact that some of the statements are widely used through the whole system, i.e. they have a global influence on the
structure of the network, while many statements are used just to develop local structures. Moreover the diameter of
the network is 11 that is close the logarithm of the network size, hence revealing small world properties of the network
[9].
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FIG. 3: Out and in-degree distributions for the three networks in consideration. In the insets the relative cumulative distri-
butions are displayed. Top panel: the Principia Mathematica. Middle panel: the citation network. Bottom panel: model
A.

B. Citation Network

The statistics of citations in scientific journals has long been considered by the scientific community [17, 18]. Network
theory appears to be an appropriate framework where to study this kind of phenomenology, since it naturally includes
the statistics of citing papers to the one of cited papers. In particular it has been shown that, considering the link
arrows going from citing papers to cited papers, the out-degree distribution for citation networks is compatible with
a scale-free distribution, while the in-degree distribution can be fitted by an exponential distribution [16].
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It is interesting to notice that even if the DAG structure of a citation network can emerge by the time sequence of
the papers, it can also be driven by causality reasons. In fact citation networks are knowledge structure that have
many similarities with the formal systems considered in this work. The reason is that each scientific paper doesn’t
start from scratch to demonstrate something, but from an already present structures of papers that are considered
reliable since they are already published. Then the parallel between formal statement/paper is straightforward, if
you use paper A to demonstrate paper B that was used to demonstrate paper A, you probably fall in a logical
contradiction. The main difference between formal and citation networks is that the knowledge system of papers is a
collective phenomena, while the formal ones often come from a single writer that recollects and formalise/crystalise
the knowledge of the time.
In this work we consider the network of citation extracted from the journal Scientometrics, from 1978 till 2006

[19]. The choice of this network between the many of them that are publicly available, comes from the observation
that this network has a size (number of vertices and links) of the same order of the one of Principia Mathematica. In
particular it has 3772 vertices and 12719 directed links. In the middle panel of Fig.3 we show its out and in-degree
distribution. As we can see the out-degree distribution is compatible with a scale-free distribution over a large range
of the degree with exponent close to -2, P (kout) ∝ k−2

out. On the other hand the in-degree distribution is exponential
and it is finely fitted by the function P (kin) ∝ exp(−kin/⟨kin⟩).

C. A stochastic model

To complete our analysis we introduce a growing stochastic model, that we call model A, based on Price’s cumulative
advantage model (CAM hereafter) [20], that mimics the main topological properties of the considered DAGs. The
CAM is pretty similar to the preferential attachment model [15], with the difference that, being the network directed,
the attachment probability is proportional to the out-degree plus one instead of just the out-degree. To create a
multi-rooted DAG we insert uniformly nodes with in-degree 0 in the growth process of the CAM.
To create a network with N vertices, the model goes like that. We start with N0 disconnected vertices. Then at

each time step we generate a new vertex and we draw m directed links from already existing vertices to the new

one. Vertex i is selected for attachment accordingly to the probability Πi =
kout
i +1∑

j(k
out
j +1)

. During the whole process,

uniformly in time, we generate M0 ≪ N vertices with in-degree 0 and we attach them to the new vertex. The number
m is extracted from a distribution that mimics the in-degree distribution of the real systems in Fig.3: P (m) ∝ e−

m
3.4 .

In the bottom panel of Fig.3 we show that this model produces a network that is topologically very similar to the
citation network and to the formal system network and then it can be used as a null model to analyse further the
correlations within the real systems.

D. Configuration model

Some models have already been proposed as shuffling procedures for DAGs [5, 6]. Here we consider the following
one: we choose two links of the network (i, j) and (h, k) and we consider the network after the rewiring process that
change the two links with the links (i, k) and (h, j), with the bias that multiple links are not allowed. If the resulting
network is still a DAG we keep the change and go on with the same procedure for a number of times of the order
of the number of links. This shuffling model keeps the out and in-degree sequence of the network unchanged, so
that the resulting network keeps the same properties of the original networks until the first order correlations, and it
randomises higher order correlations.

E. Comparison

The main topological properties of the considered networks we introduce in the last subsections can be contextualised
in a rich get richer dynamics framework. However the linear preferential attachment has been explicitly measured
for citation networks [18]. To go further in the analysis, in [6] the correlations between out and in-degree for the
vertices have been analytically computed for the configuration model and it has been found that they don’t differ in
a significative way from the correlations of real citation networks. In fact we find that also in our real networks the
out-degree and the in-degree of the vertices are not correlated as we show in Fig.4.
To characterise the complexity of DAGs we find more interesting the approach in [4], where the tree-like structure

of DAGs is considered. In particular the complexity of DAGs can be characterised in terms of the balance of the
network subtrees.
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FIG. 4: Correlations between out-degree and in-degree for the vertices of the Principia Mathematica and the citation network.
The dashed line represent the average out degree for the networks. The average out-degrees are close and is not possible to
resolve the two lines at this scale.

Tree shape can vary between completely balanced, i.e. a symmetric tree, to completely unbalanced, i.e. a comb-like
tree (for instance see [21] for a visual reference). In general a complex tree shape is in between those two extremes. It
has been shown that the functional relation between the subtree size and its cumulative measure is useful to quantify
the tree balance. In particular, given a DAG, we define the subtree size Ai of vertex i, the size of the subset of vertices
{Si}, that are the vertices that can be reached from vertex i through directed links, including vertex i itself. Then
the cumulative subtree size is defined as Ci ≡

∑
Si

Ai. As we show below, Ai embeds important information about
higher order correlations in the DAG.
We start with the analysis of the stochastic model, since it shows robust statistical behaviours. In the top panels of

Fig.5 we show the subtrees size cumulative distribution P (A > A∗) and the functional relation between the subtrees
size and its cumulative function C(A), for model A and the network obtained with the configuration model outlined

in Subsec.IID. For model A, P (A) displays a robust scale free behaviour, P (A > A∗) ∝ A∗−(γ−1), until very large
scales, with exponent γ ≈ 1.6. C(A) also is scale-free until very large scales, C(A) ∝ A1.3. This kind of behaviour was
already noticed in [4, 21] for phylogenetic trees and river networks. It is interesting to notice that in the configuration
model the scale-free behaviour for the subtrees size distribution is not preserved, while C(A), representing the balance
of the DAG subtrees, preserves the same power law with small deviations for large scales. Since the configuration
model preserves the out and in-degree sequence of the vertices, we can deduce that the scale-free behaviour of P (A)
is associated to higher order correlations, possibly associated to the preferential attachment mechanism in model A.
In the middle panels of Fig5 we show the cumulative degree distribution for the real networks in consideration and

for the relative shuffled networks. In the left panel we show the cumulative distribution for the subtrees size for the

Principia Mathematica network. It is scale-free until moderately large scales, P (A > A∗) ∝ A∗−(γ−1), with γ = 1.25,
and then it decays exponentially for larger scales. In the same plot we show the same quantity measured in the
configuration model. We can appreciate that the scale-free behaviour is partially destroyed in the shuffled net. In the
right panel we show the cumulative distribution for the subtrees size for the citation network. It is scale-free until

large scales, P (A > A∗) ∝ A∗−(γ−1), with γ = 1.5. In this case the scale-free distribution is completely destroyed
after the shuffling process of the configuration model.
In the bottom panels of Fig.5 we show the relation between the subtrees size and the cumulative subtrees size

for the vertices of the real networks in comparison with the same quantity measured for the shuffled networks via
configuration model. Until moderately large scales, C(A) follows a power law with exponent 1.3, similar to the one
of the stochastic model and then depart from the power law for larger scales. It is interesting to notice how C(A)
differ between real and shuffled networks for a more structured behaviour, characterising the complexity of the local
structures for the real networks in comparison to the shuffled ones, but it preserves the main functional behaviour.

III. DISCUSSION AND CONCLUSIONS

In this work we presented the first statistical analysis of a formal system, that is the network extracted from the
Principia Mathematica. Through the parallel comparison with two other DAGs, a citation network and a growing
stochastic model based on preferential attachment, we could show some peculiar traits of the networks in consideration.
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FIG. 5: Top panels: on the left the cumulative subtrees size distribution P (A > A∗) for model A and its configuration model;
on the right panel the functional relation between the subtrees size and the cumulative subtrees size C(A) for model A and
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network and its configuration model (left panel) and for the citation network and its configuration model (right panel). Bottom
panels: functional relation between the subtrees size and the cumulative subtrees size C(A) for the Principia Mathematica
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In particular we showed how an analysis focused on the complexity of the subtrees of a DAG can give more information
than an analysis based on out-degree-in-degree correlations.
Interestingly enough we found that the two real networks considered in this research have substantial common traits.

At a global level they’re characterised by a scale-free distribution for the out-degree and exponential distribution for
the in-degree. This allows us to classify them both in a network family that can be described by a class of models
such as the CAM (Subsec.II C), that is the precursor of the Barabasi-Albert model [15] and that shares many common
traits with it.
With the help of model A and of the configuration model, we notice that the scale-free subtrees size distribution

P (A) is not directly related to the scale-free degree distribution, but it can give information about second or higher
order correlations and it possibly relates to the preferential attachment mechanism acting during the growth of the
network. This can be an important observation. In fact, as already noticed, linear preferential attachment has been
directly measured in citation networks [18], but it is improbable that a formal system will be found to be large enough
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to allow such a measurement. Then an undirect proof like the one we propose can be an important hint for the
understanding of the growth of formal systems.
A statistical approach to formal systems is not only important for speculative reasons, i.e. as the structural

description of a natural phenomena, but it is useful for information retrieval, that is to have a clear vision of the
hierarchy and the complexity embedded in the system. As an example we can think about the still open and fascinating
problem of the 5th postulate of Euclid [22] and how the Euclid’s Elements analysis as a DAG could help to better
understand its structural role. In this sense we introduced a novel algorithm for the ordering of DAGs, the CO, and we
showed that it better catches the complexity of the system, reducing the degeneracy levels in the ordering in respect
to the classical TO and giving interesting information about the formal system just at an eye inspection.
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