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Interplay of current noise and delayed optical
feedback on the dynamics of semiconductor lasers

Miguel C. Soriano, Thomas Berkvens, Guy Van der Sande, Guy Verschaffelt, Jan Danckaert, and Ingo Fischer

Abstract—We study the influence of low frequency current
noise on a single-mode semiconductor laser subject to external
optical feedback. We experimentally show that the addition
of current noise modifies the power spectrum of the chaotic
intensity fluctuations of the laser subject to feedback. From
the power spectrum measurements, we can deduce interactions
among the feedback induced dynamics and the current noise.
Numerical modelling based on a Lang-Kobayashi rate-equations
provides additional insight as the phase of the electric field
can be analyzed. We find that the noise affects the coherence
of the chaotic oscillations, thereby being able to alter their
characteristics significantly as long as this coherence exists.

Index Terms—Semiconductor lasers, optical feedback, dynam-
ics, current noise.

I. INTRODUCTION

Semiconductor lasers are known to be very sensitive to
external perturbations such as feedback from a distant mirror
[1], phase conjugate feedback [2], electro optical feedback
[3], injection of light from another laser [4], delayed coupling
[5] and current modulation [6]. As a consequence of these
perturbations, the output of these lasers may show complex
dynamical behavior [7].

Here we concentrate on the influence and the interplay
of external current noise and external optical feedback on
the dynamical properties of semiconductor lasers, including
the relaxation oscillation dynamics and delay induced insta-
bilities. On the one hand, a large amount of current noise
can modify the basic dynamical properties of semiconductor
lasers [8]. On the other hand, a semiconductor laser subject to
optical feedback can exhibit complex dynamics. The strong
chaotic fluctuations that delayed optical feedback induces
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in the emission of semiconductor lasers can be compared
to noisy fluctuations, in the sense that the laser produces
high-dimensional, almost noise-like, dynamics over significant
parameter ranges. In particular, we focus on the combined
effects of the two external perturbations, extra current noise
and optical feedback, on a single-mode semiconductor laser
in order to explore how their described effects combine and
interact. We perform our experiments on a Vertical-Cavity
Surface-Emitting Laser (VCSEL), which allows single longi-
tudinal and single transverse mode emission [9]. As most types
of semiconductor lasers, the dynamics of VCSELs is affected
by the presence of external optical feedback [10]–[12].

The past decade has witnessed a growing interest in the
study of the effect of noise on semiconductor lasers subject
to optical feedback. It has been shown that when a nonlinear
semiconductor laser is subject to noise, new phenomena can
arise. An example of such noise-induced phenomena is coher-
ence resonance. Buldú and coworkers have analyzed the effect
of the correlation of the external noise in an optical feedback
system, looking for an optimal optical coherence resonance
response in semiconductor lasers [13]. More recently, M. A.
Arteaga et al. [14] used external current noise to study co-
herence resonance effects in a time-delayed bistable VCSEL,
as isotropic optical feedback can induce polarization mode-
hopping in VCSELs [15].

From the point of view of laser dynamics, it has also
been shown that current noise can modify the dynamical
regimes present in semiconductor lasers subject to feedback.
T. Heil et al. studied stability properties and changes to the
dynamics due to added noise to the injection current of a
single-mode semiconductor laser subject to delayed optical
feedback [16]. They concentrated on a feedback regime where
there is coexistence of complex dynamics and stable emission
on the external cavity mode with the highest gain (HGM). In
order to investigate the stability properties of the HGM, current
noise is added to the pump of the laser as a control parameter,
demonstrating that the noise-induced escape from the HGM
shows a distribution with exponential decay. Later, M. Yousefi
found that realistic levels of carrier noise can influence the
dynamics of a semiconductor laser subject to optical feedback
[17]. Their results indicate that regular attractors, such as limit
cycles or tori, tend to be more sensitive to carrier noise than
to field noise. The stable emission states (fixed points) remain
almost unaffected, apart from some broadening, and the same
holds for the chaotic attractors. Following the line of these
works, we will use the strength of the current noise as a control
parameter to alter the dynamics of the laser with coherent
feedback. While Refs. [16] and [17] deal with the effect of
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noise on the stability of different co-existing attractors, the
system we study is always exhibiting complex dynamics with
a single chaotic global attractor.

In the following sections, we will illustrate and analyze the
interplay of extra current noise and chaotic emission dynamics
of a semiconductor laser subject to delayed optical feedback.
We present the first thorough experimental characterization of
the influence of current noise in a wide range of feedback
regimes. We finally argue that such systems with delay and
noise are of high interest from a fundamental point of view,
since they play an important role not only in laser systems,
but also, for instance, in brain science and biology [18], [19].

II. EXPERIMENTAL SETUP

We have employed an oxide-confined vertical-cavity
surface-emitting laser (VCSEL) lasing at 970 nm, grown by
the Optoelectronics Department of the University of Ulm [20].
The threshold current of the solitary laser is Ith = 0.91 mA
at 25 ◦C. This device emits linearly polarized light in the
fundamental mode until Isw = 1.42 mA, where it switches
to the other orthogonal polarization mode. The switch occurs
from the high-frequency mode to the low-frequency mode for
increasing injection current.

The external optical feedback for the present study comes
via the reflection from a distant gold mirror, in a long cavity
configuration [21]. In the long cavity configuration, delay
times of the feedback arm are longer than the relaxation
oscillations (RO) period. In our experiments, the length of the
external cavity is about Lext = 65 cm, i.e. the delay time is
τ = 2Lext

c = 4.3 ns. The RO period is TRO = 0.4 ns when the
VCSEL is biased at I = 1.2 mA, being significantly shorter
than the delay time. A schematic view of the experimental
set-up is sketched in Figure 1. Therein, the feedback arm is
enclosed by a gray dotted box. The feedback arm includes
a beam-splitter, its reflection is used for the detection branch
and its transmission for the feedback. In addition, the feedback
arm includes a polarizer, to fix the linear polarization of the
VCSEL and avoid polarization switching dynamics [22], a
variable attenuator, which is a variable neutral density filter,
and a gold mirror mounted on an adjustable gimbal mount.

Fig. 1. Sketch of the experimental set-up. VCSEL: Vertical Cavity Surface
Emitting Laser; Noise: noise generator; TEC: temperature controller; F: high-
pass filter; L: collimating lens; BS: beam-splitter; POL: polarizer; M: mirror;
Attn: variable attenuator; PD: photo-diode; Isolator: optical isolator; LDC:
laser driver controller; SA: spectrum analyzer

Prior to detection, the light emitted by the VCSEL passes
through an optical isolator and is coupled into a single-

mode fiber. We checked that the light emitted by the laser
was linearly polarized along a fixed axis and no polarization
switching dynamics occurred. As in [22], [23], the polarization
of the emission is determined by the orientation of the polar-
izer in the optical feedback arm. Linearly polarized feedback
ensures single-polarization mode emission if the orientation of
the feedback axis matches the one of the laser emission. In
contrast, VCSELs subject to isotropic feedback can operate in
the two orthogonal polarization modes [24], [25].

The current noise is produced by an arbitrary waveform
generator with a built-in independent real-time Gaussian noise
generator (Tektronix AWG520). The current noise is restricted
to low frequencies and it has a finite bandwidth. The AWG has
a 3 dB bandwidth of 400 MHz. A high-pass filter, with a cut-
off frequency of 1 MHz, has been placed at the output of the
noise generator so that thermal effects due to the added current
noise can be neglected. The thermal cut-off frequency of this
laser has been measured to be around 200KHz. A modulation
with a frequency lower than the thermal cut-off could produce
additional wavelength shifts due to thermal effects that shall
be excluded from our investigation here. The current noise is
then added to the driving low-noise pump source (Thorlabs
LDC8002) by means of a bias-T and sent to the VCSEL.

III. EXPERIMENTAL RESULTS AND DISCUSSION

With the feedback configuration, as depicted in Fig. 1,
we achieve a maximum threshold reduction of 5.6% due to
the effect of the polarized optical feedback. This threshold
reduction indicates that we work in a moderate feedback
regime. Thanks to the variable attenuator in the feedback arm,
we can tune the strength of the feedback. By tuning the feed-
back strength and the injection current, we have observed the
typical feedback regimes including fully developed coherence
collapse (CC) and low frequency fluctuations (LFFs). These
feedback induced instabilities have been widely described in
the literature [1], [7], [26]–[28].

Fig. 2. Effects of the current noise in the RF spectra of a single-mode
VCSEL subject to polarized optical feedback. Intermediate feedback strength.
Bias current: I = 1.2 mA. The strength of the current noise increases from
the light gray curve to the dark gray and black curves. The plotted amplitude
is the signal above the noise floor of the measurement apparatus.

In Figure 2, we show the influence of the current noise on
the laser dynamics via the radio frequency (RF) spectra of the
VCSEL emission. The operating conditions have been chosen
such that the VCSEL is biased at I = 1.2 mA, the strength of
the polarized feedback is reduced 10 dB from the maximum
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feedback strength in our setup, and the solitary relaxation
oscillation frequency is fRO = 2.5 GHz at this pump level.
Figure 2 contains three RF spectra, corresponding to three
different strengths of the current noise. The light gray, dark
gray and black curves depict the RF spectra for the VCSEL
with the addition of current noise of zero, intermediate and
maximum strength, respectively. The maximum current noise
strength corresponds to a root mean square (rms) value of
Irms = 0.11 mA, while the intermediate noise strength
corresponds to Irms = 0.07 mA. The peaks that appear
around the solitary relaxation oscillation frequency fRO are
spaced by ∆f = c

2Lext
= 229 MHz, corresponding to

the frequency difference of external cavity modes. Thus, the
laser emission shows complex dynamical behavior on different
external cavity modes. Because of the long delay, τ = 4.3 ns,
the optical feedback generates a large number of external
cavity modes, which appear by pairs through saddle-node
bifurcations when the feedback strength is increased [1], [27],
[29], [31].

The arrows in Fig. 2 show the trends of the main features in
the RF spectrum when the current noise is increased. First, the
average spectral power density below f = 400 MHz increases
due to the addition of the current noise. Second, the ampli-
tude of the feedback peaks around f = 2 GHz significantly
diminish. The strong suppression of the feedback peaks with
increasing current noise shows that the current noise has a
damping effect on the delayed feedback-induced dynamics
at this particular level of the feedback strength. The large
amplitude and relatively narrow width of several frequency
peaks in the shown RF spectrum illustrate the presence of
dominating frequencies in the VCSEL emission, indicating
certain periodicities in the dynamics or an underlying coherent
chaotic attractor. The addition of current noise reduces the
amplitude of those frequency peaks, i.e. the coherent oscilla-
tions in the VCSEL emission due to the optical feedback are
disturbed when the current noise strength is increased.

Figure 3 provides a full overview of the experimental results
at a bias current of I = 1.2 mA. Firstly, the RF spectra
in gray show the influence of the optical feedback without
the inclusion of current noise. Secondly, the RF spectra in
black show the influence of the optical feedback with added
current noise (Irms = 0.1 mA). Finally, the feedback strength
increases from Fig. 3.(a) to Fig. 3.(f).

Figure 3.(f) is obtained for the maximum strength of the
feedback, which causes a laser threshold reduction of 5.6%.
A variable attenuator is placed in front of the gold mirror to
gradually reduce the feedback strength. Figures 3.(a)-(e) are
obtained for attenuations of 15 dB, 12 dB, 9.5 dB, 5.5 dB and
4.4 dB, respectively.

It is apparent from Fig. 3 that the influence of the current
noise on the feedback peaks is less relevant when the feedback
level is increased. The current noise has a strong damping
effect on the feedback-induced dynamics for low feedback
strengths, as shown in Figs. 3.(a)-3.(c). The damping effect is
less strong but still visible for intermediate feedback strengths,
as can be seen in Figs. 3.(d)-3.(e). Interestingly, the damping
of the feedback peaks has disappeared in Fig. 3.(f). Note that
the feedback peaks in the absence of noise in Fig. 3.(f) are

Fig. 3. Influence of the current noise in the RF spectra of a single-mode
VCSEL subject to polarized optical feedback. The feedback strength increases
from (a) to (f). Gray curves are obtained without current noise and black
curves are obtained with a strong current noise. Bias current: I = 1.2 mA.

present all over the detected RF spectrum, which ranges from
0 to 3.5 GHz (limited by the bandwidth of the detector).
This indicates that the laser exhibits complex dynamics at
this particular feedback level [32], [33]. After the inclusion of
current noise, we can see that the noise signature between 1
and 400 MHz in the RF spectrum has been modified compared
to the ones in Figs. 3.(a)-3.(e) as depicted in Fig. 3.(f), see
black line. Particularly, we see that the feedback peak around
300 MHz emerges from the current noise background.

The temporal instabilities of the laser emission associated
with the experimental results presented in Figs. 3.(a)-3.(f) can
be inferred from the shown RF spectra. On the one hand,
the optical feedback excites relaxation oscillation dynamics
for low feedback strengths, see Figs. 3.(a)-3.(c). On the other
hand, the optical feedback induces Low Frequency Fluctua-
tions (LFFs) dynamics for larger feedback strengths, see the
increase of the amplitude of the measured RF spectra in the
absence of noise at low frequencies (below 500 MHz), typical
of LFF dynamics.

Similar results are obtained for higher injection currents.
Fig. 4 shows the RF spectra measured at a bias current of
I = 1.4 mA. Again, the current noise increases the damping of
the feedback peaks around 3 GHz for an intermediate feedback
level corresponding to a feedback attenuation of 9 dB, see
Fig. 4.(a), while it has no influence on the feedback peaks
for a larger feedback strength corresponding to a feedback
attenuation of 1.5 dB, as can be seen in Fig. 4.(b). The influ-
ence of the current noise appears to be frequency dependent
in Fig. 4.(a), i.e. the amplitude of the feedback peaks around
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3 GHz diminishes with the addition of extra current noise,
while the peaks around 2 GHz are unmodified. This shows
that the current noise has a stronger influence on the peaks
that appear around fRO, which increases when the injection
current is increased.

Fig. 4. Influence of the current noise in the RF spectra of a single-mode
VCSEL subject to polarized optical feedback. (a) Moderate feedback strength.
(b) Maximum feedback strength. Gray curves are obtained without current
noise and black curves are obtained with a strong current noise. Bias current:
I = 1.4 mA.

The results presented in [8] hint at an increase of the
nonlinear saturation when the current noise is increased.
However, the lowering of the feedback peaks in Figs. 3.(a)-(e)
and Fig. 4.(a) seems not to be only related to an increase of
the nonlinear saturation when the current noise is increased.
An increase of the nonlinear saturation could indeed explain
a reduction in the amplitude of the feedback peaks, but it
would be accompanied by a similar lowering in the amplitude
levels of the valleys between these feedback peaks, which
rather increase or are unaffected in the experiments. Therefore,
another mechanism must be dominating in our case. We
discuss the origin of the reported damping in the amplitude
of the RF spectrum frequency peaks in the section devoted to
modelling and numerical results.

Finally, Fig. 3.(f) and Fig. 4.(b) show that the damping
influence of the current noise is no longer present when
the emission of the laser shows fully developed dynamics,
i.e. when there are feedback peaks all over the detected RF
spectrum. In the following section, we perform numerical
simulations of a Lang-Kobayashi rate-equations model [29]
in order to gain information on the origin of the observed
behavior.

IV. DESCRIPTION OF THE MODEL

A single-transverse and single-polarization mode VCSEL
subject to polarized optical feedback can be modeled via rate
equations for the slowly varying amplitude of the electric
field E(t) and the carrier number N(t). The use of polarized
optical feedback ensures single-polarization mode emission if
the orientation of the polarizer in the feedback arm matches
the one of the laser emission [22]. We have checked that
the addition of current noise in the presence of polarized
optical feedback does not induce polarization dynamics in our
device. Hence, we focus on the LK model being, despite its
simplifications, a good model to reproduce our experimental
findings. The equations for the dynamical evolution of E(t)

and N(t) are given by [29]:

Ė(t) =
1 + iα

2
[G(t) − γp]E(t) + κE(t − τ)e−iΦ + FE(t),

(1)

Ṅ(t) =
I + IC(t)

e
− N(t)

τN
− G(t)|E|2 + FN (t), (2)

where the gain is defined as G = g(N/V − no)/(1 + ε|E|2).
IC(t) represents the low frequency current noise added in
the experiments and corresponds to a Gaussian white noise
passed through a fifth order Butterworth filter. The But-
terworth filter is designed to have its cutoff frequency at
ω = 2π × 400 MHz. The line width enhancement factor
has been chosen as α = 3.5, the differential gain is g =
2.12× 10−4 ns−1, the active region volume is V = 1.6 µm3,
the carrier density at transparency is no = 4 × 106 µm−3,
the gain compression factor is ε = 3.375 × 10−7, the photon
decay rate is γp = 0.5 ps−1, q is the elementary charge,
the electron-hole recombination life-time is τN = 1.8 ns.
These parameter values have been adjusted to reproduce the
experimental solitary laser threshold current of Ith = 0.91 mA
and the RO frequency at I = 1.2 mA of fRO = 2.5 GHz.
The feedback strength κ will be varied in the numerical
simulations, the external cavity delay time is τ = 4.3 ns, and
a constant feedback phase is taken of φ = 0. The Langevin
noise sources FE(t) and FN (t) account for the intrinsic noise,
and satisfy 〈Fi(t)Fi(t′) = 2Diiδ(t − t′)〉, with DEE = Rsp

and DNN = N/τN , where Rsp = 1 × 1010 s−1 is the rate
of spontaneous emission into the lasing mode above lasing
threshold.

As demonstrated in [17], both field and carrier noise need to
be included in the simulations to properly model semiconduc-
tor laser dynamics. It is known that field noise contributes to
the line-width of the laser in continuous wave (CW) operation
[30]. While carrier noise does not influence the line-width of
the laser, it can modify the stability of the attractors when the
laser exhibits complex dynamics [17].

In Figure 5, we show the RF spectra of the numerical results
with and without the addition of current noise for increasing
feedback strength. The feedback strength values can be read
in the figure, ranging from κ = 0.5 ns−1 to κ = 20 ns−1;
while the values of the current noise are Irms = 0 (no noise)
and Irms = 0.09 mA (maximum noise).

The numerical results are in good qualitative agreement
with the experimental results. The current noise modifies the
feedback dynamics at low feedback strength values, while it
has no significant influence on the dynamics at large feedback
strength values. In addition, the numerical simulations provide
additional information on the influence of the current noise on
the dynamics since we have access to the phase of the electric
field. The electric field can be written as E =

√
P exp [jφ(t)],

where φ(t) is the phase of the electric field. In semiconductor
laser feedback dynamics, it is useful to introduce the delay
phase difference as ∆φ(t) = φ(t) − φ(t − τ), since this
quantity contains information about how the laser reacts to
the coherent feedback and how it visits the different external
cavity modes [27]. A constant value of the phase difference
∆φ(t) means that the laser is emitting in a single cavity mode,
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Fig. 5. Numerical results on the influence of the current noise on the RF
spectra of a single-mode VCSEL subject to polarized optical feedback. The
feedback strength increases from (a) to (f). Gray curves are obtained without
current noise and black curves are obtained with a strong current noise. Bias
current: I = 1.2 mA. The plotted amplitude has been shifted by an arbitrary
amount.

while phase-slips of 2π correspond to jumps among different
external cavity modes or their attractor ruins. Therefore, from
the dynamics of ∆φ(t) a lot of information can be gained
about the modal and phase dynamics related to the feedback
instabilities.

We have checked the temporal evolution of the phase
difference ∆φ(t) in the numerical simulations with and with-
out noise. Figure 6 illustrates ∆φ(t) for low values of the
feedback strength (κ < 2 ns−1), showing that there exist phase
difference jumps between two distinct levels (∆φ(t) = 0 and
∆φ(t) ≈ −6). The two distinct levels correspond to different
external cavity modes. These external cavity modes are not
fixed points of the dynamics but ghosts (attractor ruins) of
local attractors which have merged to a global chaotic attractor.
When the system is in the vicinity of one of the external cavity
modes, the phase space trajectory exhibits coherent oscillations
around the external cavity modes. Please note that coherent
oscillations refers in this context not to optical coherence, but
to the concept of nonlinear dynamics that oscillations around
a single center in phase space are called coherent. When the
current noise is present, the phase difference jumps between
the ruins of external cavity modes become more frequent in
time, as illustrated in Figure 6(b).

If we define ∆t as the mean time spent on one attractor
ruin of an external cavity mode, we can quantify the influence
of the current noise on the delayed-feedback dynamics as
a function of the feedback strength by using a threshold
procedure. The values of ∆t as a function of the feedback

Fig. 6. Numerical results on the influence of the current noise strength on
the phase difference of a single-mode VCSEL subject to polarized optical
feedback (κ = 1 ns−1). (a) Irms = 0 and (b) Irms = 0.09 mA. Bias
current: I = 1.2 mA.

strength, with and without current noise, are shown in Fig. 7.
For κ = 1 ns−1, we find ∆t = 66.5 ns in the absence of
current noise (Irms = 0) and ∆t = 26.7 ns in the presence
of current noise (Irms = 0.09 mA). For κ = 2 ns−1, we
find that ∆t = 8.7 ns when Irms = 0 and ∆t = 7.3 ns
when Irms = 0.09 mA. Since ∆t exhibits a certain statistical
distribution, all given values are an average over time. The
lower the values of ∆t, when the current noise is increased,
indicate that the laser dynamics is more unstable and the co-
herent periodicities are disturbed by the external cavity mode
hopping. When the feedback strength is larger (κ > 5 ns−1)
the temporal evolution of the phase difference shows a very
fast chaotic itinerancy among the external cavity modes even
in the absence of current noise. The corresponding phase
difference jumps occur so often that no coherent oscillations
around one mode can build up. Consequently, the influence of
noise reduces significantly and we do not find changes in the
RF spectra when the noise strength is increased, as shown in
Fig. 7. Therefore, as long as the feedback instabilities comprise
coherent oscillations, related to oscillations around individual
external cavity modes, noise can have a strong effect on the
dynamics and on the statistics of the mode jumps. As soon
as the deterministic dynamics already exhibits frequent mode
jumps, and no coherent oscillations can build up, the additional
influence of noise can not be easily identified anymore.

Fig. 7. Numerical results on the influence of the current noise strength on the
time between phase difference jumps ∆t of a single-mode VCSEL subject to
polarized optical feedback as a function of the feedback strength κ. Circles
for Irms = 0 and triangles for Irms = 0.09 mA. Bias current: I = 1.2 mA.
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V. CONCLUSIONS AND OUTLOOK

In conclusion, the influence of the current noise in a
semiconductor laser subject to polarized optical feedback is
twofold. On the one hand, the current noise induces a damping
of the feedback peaks for weak and intermediate feedback
levels, i.e. before the system enters the regime with fully
developed coherence collapse dynamics. On the other hand,
the effect of the current noise is not recognizable in the
RF spectra when the response of the laser is in a state
of fully developed coherence collapse. This illustrates the
rich phenomenology that appears when delayed feedback and
strong noise fluctuations interact.

According to the experimental and numerical results, the
extra current noise has a larger influence on the laser dynamics
whose attractors still exhibit some local regularity (local coher-
ent oscillations) than on fully developed chaotic attractors. In
the maximum feedback regime, the feedback peaks are spread
all over the detected RF spectrum, which ranges from 0 to
3.5 GHz. In this regime, the influence of the low frequency
current noise in the laser dynamics is minimal. In contrast, for
lower feedback strengths, the feedback peaks do not appear at
frequencies lower than 400 MHz and the extra current noise
modifies the feedback induced dynamics.

In order to explain the interplay of noise and delayed feed-
back dynamics, we have analyzed via numerical simulations
how the current noise modifies the laser dynamics, from low
to moderate optical feedback levels. The observed changes
in the RF spectra are reflected in the different way in which
the external cavity modes are visited when the current noise is
added, i.e. coherent oscillations around a single external cavity
mode are disturbed in the presence of extra current noise.

In conclusion, extra current noise and delayed optical feed-
back can modify the dynamical properties of single-mode
semiconductor lasers, which are nonlinear optical oscillators.
We have illustrated that, when both perturbations are applied
simultaneously to the laser, the modification of the dynamical
properties is not only a linear superposition of the individual
effects but there can be a delicate interplay between the two,
depending on the operation conditions.
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[21] T. Heil, I. Fischer, W. Elsässer, and A. Gavrielides, “Dynamics of
Semiconductor Lasers Subject to Delayed Optical Feedback: The Short
Cavity Regime”, Phys. Rev. Lett. vol. 87, no. 24, pp. 243901, 2001.

[22] M. C. Soriano, M. Yousefi, J. Danckaert, S. Barland, M. Romanelli, G.
Giacomelli, and F. Marin, “Low-frequency fluctuations in vertical-cavity
surface-emitting lasers with polarization selective feedback: Experiment
and theory”, IEEE J. Sel. Top. Quantum Electronics, vol. 10, no. 5, pp.
998–1005, 2004.

[23] G. Giacomelli, F. Marin, and M. Romanelli, “Multi-time-scale dynamics
of a laser with polarized optical feedback”, Phys. Rev. A, vol. 67, pp.
053809, 2003.

[24] C. Masoller and N. B. Abraham, “Low-frequency fluctuations in vertical-
cavity surface-emitting semiconductor lasers with optical feedback”, Phys.
Rev. A, vol. 59, no. 4, pp. 3021–3031, 1999.

[25] M. Giudici, S. Balle, T. Ackemann, S. Barland, and J. R. Tredicce,
“Polarization dynamics of vertical-cavity surface-emitting lasers with op-
tical feedback: experiment and model”, J. Opt. Soc. Am. B, vol. 16, pp.
2114–2123, 1999.

[26] D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-
mode semiconductor lasers due to optical feedback”, IEEE J. Quantum
Electron. vol. 21, pp. 674–679, 1985.

[27] T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence
collapse of semiconductor lasers with optical feedback”, Phys. Rev. A, vol.
50, no. 3, pp. 2719–2726, 1994.
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