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Abstract: We theoretically discuss the impact of the cavity configura-
tion on the possible longitudinal mode multistability in homogeneously
broadened lasers. Our analysis is based on the most general form of a
Travelling-Wave Model for which we present a method that allows us to
evaluate the monochromatic solutions as well as their eigenvalue spectrum.
We find, in agreement with recent experimental reports, that multistability is
more easily reached in Ring than in Fabry-Pérot cavities which we attribute
to the different amount of Spatial-Hole Burning in each configuration.
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Several recent reports [1–4] experimentally demonstrate that the emission wavelength of bidi-
rectional semiconductor ring lasers (SRL) can be selected by optical injection among that of
several longitudinal modes; upon removal of the optical injection, the emission wavelength re-
mains stable at the chosen value. In addition, wavelength multistability in SRLs can coexist
with the directional bistability [5], hence it can be of interest for all-optical signal processing
applications at a higher-logical level [6]. Although early studies of unidirectional ring lasers,
where only one propagation direction was allowed, suggested possible multistability among
longitudinal modes [7, 8], this behavior has, to our knowledge, never before been explained or
experimentally observed in other types of single-cavity free-running devices lasers.

Multistable behavior has been observed in more complex configurations as lasers with optical
feedback [9,10] or with intracavity saturable absorbers [11]. Notice also that it was shown that
a carefully chosen detuning can induce a degeneracy between two adjacent modes and promote
bistability in Fabry-Pérot (FP) CO2 laser [12]. Also, in FP semiconductor lasers, one should
mention stochastic mode-hopping between two adjacent modes that consists of random jumps
with short characteristic times (below 1 ms) from one stable mode to the other induced by
spontaneous emission noise [13, 14] or, in general, by parameter fluctuations [15] that change
the tuning of the gain with respect to the cavity. Yet, at variance with SRL, in these cases there
is no evidence that the emission wavelength can be selected at will and remain for long periods.

The different behavior of SRL and FP lasers regarding wavelength multistability calls for an
explanation. However, ascertaining multistability requires the determination of the monochro-
matic solutions and the resolution of the linear stability analysis (LSA). These two problems
are known to be difficult if not impossible to implement analytically in the general case, and so-
lutions are only available under strong approximations. Within the Uniform Field Limit (UFL)
approximation [7], this can be accomplished via a modal decomposition for either ring [16] or
FP lasers [17]. Beyond the UFL, analytical results are available for unidirectional rings if one
neglects internal losses [18] and/or invokes singular perturbation techniques [19]. When bidi-
rectional emission, cavity losses or spatially dependent parameters come into play, no general
method for the LSA is known, which hinders the study of many devices as bidirectional SRL,
FP lasers, or devices for which the UFL or singular perturbations methods are inadequate.

In this paper we compare bidirectional ring and FP lasers regarding the possible multistabil-
ity of their longitudinal modes. We present numerical methods –independent of the boundary
conditions and of parameter values – that allow for determining any monochromatic solution
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by a low dimensional shooting procedure. The LSA is obtained by constructing the linearized
evolution operator for which we can evaluate the Floquet multipliers and trace back the eigen-
values governing the stability. Our approach is quite general and could also be applied to other
dynamical systems described by partial differential equations (PDE)s, and our results extend
and generalize the previous studies performed for unidirectional ring lasers [7,18–21]. We find
that multistability is more easily reached in rings as compared to FP cavities, because of the
different amounts of Spatial-Hole Burning in each configuration.

We consider homogeneously broadened lasers described by the bidirectional Travelling-
Wave Model (TWM) (see [22] and references therein) that reads

(±∂s +∂τ)A± = B±−αA± , (1)

γ−1∂τ B± = −(1+ iδ )B±+g(D0A±+D±2A∓) , (2)

ε−1∂τ D0 = J−D0 − (A+B∗
++A−B∗

−+ c.c.) , (3)

η−1∂τ D±2 = −D±2 − εη−1(A±B∗
∓+A∗

∓B±) , (4)

where A± are the scaled slowly varying amplitudes of the counter-propagating electric fields,
B± are their respective polarizations, D0 is the quasi-homogeneous inversion density and D±2

are the spatially-dependent contributions to the grating in the population inversion density that
arise from standing wave effects and lead to saturation of the gain. Space and time (s,τ) are
scaled by the length Lc and the time of flight τc of the cavity, respectively. α are the internal
losses per unit length, γ determines the spectral width of the gain spectrum, δ is the detuning,
and ε and η are the decay times for D0 and D±2 respectively, which differ due to the impact
of diffusion on the decay of the grating terms. Although this model does not correctly describe

A+ (0, τ ) = t+ A+ (1, τ ) + r− A− (0, τ )
A− (1, τ ) = t− A− (0, τ ) + r+ A+ (1, τ )

Fig. 1. General cavity structure and boundary conditions.

the asymmetric gain curve typical of semiconductor materials as it lacks the strong amplitude-
phase coupling denoted by Henry’s linewidth enhancement factor αH , it still can shed some
light on the different behavior of ring and FP lasers regarding multistability. One can expect
αH to induce an asymmetry of the multistability band around the dominant mode, but a precise
analysis of semiconductor devices requires modelling the material response as in e.g. [23].
Since in the TWM the field evolution is governed by a PDE, it is possible to treat on equal
grounds ring and FP cavities simply by supplying for the appropriate boundary conditions.
For the sake of simplicity we consider that the atomic line is resonant with a cavity mode (i.
e., δ = 0), hence the boundary conditions are written in Fig. 1, where r± and t± denote the
reflectivity and transmissivity of the forward and backward waves.

The TWM admits multiple monochromatic solutions that might be stable above their lasing
threshold, given by their branching points on the off state D0 = J,A± = B± = D±2 = 0 [22,24].
For instance, for a pure ring cavity (r± = 0), the frequency (ω±

m ) and threshold (J±m ) for mode
m in each of the counter-propagating directions read

ω±
m =

2πm

1+α±
tot/γ

, J±m =
α±

tot

g

[
1+

(
ω±

m

γ

)2
]
, (5)

#136640 - $15.00 USD Received 18 Oct 2010; revised 20 Dec 2010; accepted 23 Dec 2010; published 4 Feb 2011
(C) 2011 OSA 14 February 2011 / Vol. 19,  No. 4 / OPTICS EXPRESS  3286



where α±
tot = α − ln t± denotes the total distributed loss in each propagation direction. In the

same way for a FP cavity (t± = 0), we have —with αtot = α − ln
√

r+r−—

ωm =
πm

1+αtot/γ
, Jm =

αtot

g

[
1+

(
ωm

γ

)2
]
. (6)

Assessing modal multistability requires finding the monochromatic solutions of Eqs. (1)-
(4) and determining their stability for a given operation point. We compute the modes for a
given cavity configuration via a shooting method. With an initial guess for the modal frequency
and amplitudes A±(0), we solve for the spatial dependence of (1)-(4) using standard integration
techniques with a spatial step h= 1/N towards the other end of the cavity, where the propagated
values A±(1) must verify the boundary conditions. By using a Newton-Raphson algorithm a
new guess for the field amplitudes A±(0) and the modal frequency is proposed and the process is
repeated until one reaches convergence. The final trajectory generated by this shooting method
provides a discretized representation of the modal profile as a spatial mesh of N points.

From the monochromatic solutions, one could in principle compute the eigenvalues from the
linearized form of Eqs. (1)–(4). However, the resulting system is still a hyperbolic PDE, and
a discrete representation of the solution would require to express the gradient operator using
finite differences. This approach is not practical: time propagation of hyperbolic PDEs cannot
be made reliably for an arbitrary choice of the spatial and of the temporal discretization, leading
to large errors in the eigenvalues. Instead, we use the temporal map Vn+1 = U(h,Vn) described
in [22] that advances the state vector V a time step h while verifying the Courant condition [25]
and cancelling numerical dissipation. We then consider all possible perturbations of V hereby
finding the matrix M = ∂U/∂V representing the linear operator governing the time evolution
for the perturbations around one given monochromatic solution. We finally compute the 11×N
Floquet multipliers zi of M, which determine the eigenvalues as λi = h−1 lnzi. We used N =
256 mesh points; in this case, determining the spatial profile of the monochromatic solution,
generating the matrix M and diagonalizing it using the QR decomposition method takes 1,
10 and 60 seconds, respectively, on an standard PC using C++ routine based on Octave [26].
Stability results have been controled by direct integration of the TWM [22]. In the following
pictures, solid (dashed) lines represent the stable (unstable) solutions and parameters are typical
of III-V semiconductor systems: a cavity of Lc = 2.4 mm and τc = 25 ps, a modal gain of
33 cm−1, a gain width of 13 nm, a carrier lifetime 0.5 ns and a diffusion coefficient of 5 cm2/s.

The results are shown in Fig. 2 for the solution m = 2 of a symmetric, bidirectional ring laser.
In panel a) we show that just above the threshold current J � 0.51, this solution corresponds to
an unstable bidirectional state. At J∈ � 1.5, a pitchfork bifurcation into unidirectional emission
occurs, but the degenerate (almost) unidirectional states are also unstable, as evidenced by the
eigenvalues shown in panel b) for J = 3. However, for currents above J > 3.5, they become
stable and all the eigenvalues have Re(λ )< 0 (see panel c) for J = 4).

Repeating this procedure for all solutions allows us to obtain a general view of the stability of
the system by plotting the bifurcation diagrams for all modes. In our case, however, it suffices
to examine only half of the diagram because the resonance condition implies symmetry for ±m.

Figure 3 depicts the general bifurcation diagram for both the ring laser with the parameters
in Fig. 2 (panel a), and an equivalent FP device (panel b). In this sense, a word of caution is
in order: for a fair comparison of the behavior of the two devices, both should work with the
same degree of gain saturation, hence the pump density and the threshold pump density should
be the same in both cases. Since the lasing condition in ring lasers involves a single pass in the
cavity, while that of FP lasers implies a roundtrip, the length of the FP cavity should be one
half of that of the ring provided that the total distributed losses are the same in both cases. In
this way, moreover, the frequency spacing of the modes and their threshold gain difference are
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Fig. 2. (a) Numerical bifurcation diagram for mode m = 2 for a ring laser, g = 4, γ = 250,
α = 2.03, ε = 0.05, η = 10, t+ = t− = 0.98 and r+ = r− = 0.01. The threshold value is
Jth = 0.51. (b) Real versus imaginary part of the eigenvalues for J = 3. Eigenvalues in blue
(red) have Re(λ )< 0 (Re(λ )> 0). (c) Same as panel (b) for J = 4.

the same in both configurations. Thus, the scaled parameters g, γ , ε , and η of a ring laser have
to be twice their equivalent FP values. For the parameters of Fig. 2, the ring laser just above
threshold has only one stable solution m = 0. Upon increasing J, this bidirectional solution
becomes unstable first via a Hopf bifurcation at J ∼ 0.7 and then via a pitchfork bifurcation at
J∈ ∼ 1.5 that leads to two symmetrical, almost unidirectional, solutions. Although the solutions
corresponding to m = 3 remain unstable over the interval of J shown, solutions m = 1 and
m = 2 become stable for high enough J, hence the system easily displays multistability once
in the almost unidirectional regime. The equivalent FP laser behaves remarkably different from
the ring laser regarding multistability (see Fig. 3b). Above threshold, the mode m = 0 starts
lasing stably, but when the pump is increased it quickly becomes unstable through a multimode
instability [17]. All the other modes are unstable over all the pump interval examined.
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Fig. 3. Bifurcation diagram for the first modes of a ring laser (a) with the parameters of
Fig. 2 and for an equivalent FP laser (b), g = 2, γ = 125, α = 1.01, ε = 0.025, η = 5,
t± = 0 and r± = 0.99. (c) < |D2|> is the average of |D2| along the cavity for cases (a) and
(b).

The results in Fig. 3 correspond to the UFL, but our methodology allows us to easily address
their robustness regarding the cavity losses. We can confirm that, in this case, non uniform field
amplitudes do not qualitatively modify the multistability scenario as shown in Fig. 4, where we
plot the results obtained for a high-loss ring laser (panel a) and two equivalent FP lasers, one
symmetric (panel b) and one highly asymmetric (panel c). Again, while the ring laser shows
multistability, we never observe multistability for the FP cavities.

The physical reason for such a different behavior of FP and ring lasers is the quite different
degree of spatial hole burning in the gain, as shown in Figs. 3 (panel c) and 4 (panel d), where
we plot the absolute value of D2 averaged along the cavity at different pumping levels for
mode m = 0 of the lasers in Figs. 3 and 4, respectively. D2 is almost the same for all modes
of a given laser due to the minute modal gain differences. In the ring laser, |D2| saturates at a
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Fig. 4. Bifurcation diagram for: (a) ring laser with parameters g = 4, t± = 0.6, r± =
0.01, γ = 250, α = 1.55, ε = 0.05, η = 10; (b) equivalent symmetric FP with α = 0.51,
η = 5 and r± = 0.6; (c) equivalent asymmetric FP with α = 0.21, η = 5 and r+ = 0.99
and r− = 0.2. The threshold value is Jth = 0.51. (d) < |D2|> vs J for these lasers.

comparatively low value as soon as the pitchfork bifurcation leading to unidirectional operation
occurs; for FP configurations, instead, the necessarily higher reflectivity of the facets makes
|D2| larger than in the equivalent ring, and it increases continuously with the pump level.

To confirm that the grating term is what destroys multistability in the FP configuration, we
consider a system with higher diffusion, which should reduce the values of D2 (see Eq. (4)). In
fact, as shown in Fig. 5, now both FP configurations display multistability among longitudinal
modes because now the spatial average of D2 (Fig. 5 panel c) is half that in Fig. 4 (panel d).
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Fig. 5. Bifurcation diagram for the first three modes for a symmetric (a) and asymmetric
(b) Fabry-Pérot lasers. In both cases η = 10, for other parameters see Fig. 4. (c) < |D2|>
vs J for the FPs (a) and (b).

Therefore, high-quality SRL, with low reflectivity couplers, allow to observe longitudinal
mode multistability much more easily than their equivalent FP configurations. Lasing in the
latter requires high-enough facet reflectivities, which in turn generate substantial gain gratings
that impede multistability because the self-saturation of the modal gain is larger than the cross-
saturation. The former, instead, easily pass to a regime of almost unidirectional emission where
the gain grating is small, and self-saturation is smaller than cross-saturation. FP devices can
exhibit multistability if diffusion is strong enough to wash out the grating effectively: in this
limit the grating lifetime is much shorter than carrier lifetime, and cross-saturation dominates
over self-saturation.
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