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Preface

Statistical physics has had already a great succes in describing how global phe-
nomena appear, taking as point of departure a set of simple entities which interact
among them. Given the general framework that it provides, there is a trend towards
applying the statistical physics’ techniques in interdisciplinary fields away from tra-
ditional physics such as biology, medicine, information technology and computer
science among others. Social phenomena are being studied for the last years from
this point of view too. In social sciences the basic units are not particles but hu-
mans. Despite humans appear to be quite heterogeneous and interact only with a
small number of peers compared to the whole population, stunning global regulari-
ties appear. Examples of this are the sudden appearance of fashions, or the adoption
of one of two apparently equivalent technological innovations, or the sudden mas-
sive spread of a fad, which point to the idea of studying them as disorder-order
transitions. This kind of phenomena suggests the idea of studying society from the
statistical physics’ point of view, as it aims at explaining non trivial collective be-
haviors from the interaction of relatively simple indivivuals. In the past few years
a lot of research has been done in this direction. The triggering facts for this were
the appearance of large databases on human activities, the appearance of new so-
cial phenomena (mostly related to the internet) and the tendency of social scientist
towards quantitative analysis. But a big difficulty appears. Classically, statistical
physics deals with atoms and molecules, which always obbey the same laws. On
the contrary humans, the basic units of society, do not behave this way. The ac-
tions of humans are already the outcome of complex physiological and psychological
processes, which are largely unknown by now. But statistical physics has here also
something to add. In most situations qualitative properties of large scale phenomena
do not depend on the microscopic details of the process. Symmetries, dimensionality
or conservation laws are sometimes the only important ingredients to have the same
qualitative result irrespective of the details. This is what is called universality. With
this concept in mind we can model society, trying to include the basic ingredients
of the individuals and their interactions. A crucial step is to compare the features
of the models with those of real data, to see whether the trends are similar, or we
need additional ingredients to recover the same qualitative behavior.
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In this work we deal with a model for consensus formation. These are models
in which there is a population of agents and each of them can be in one of many
equivalent states. Through interactions among the agents, they can change their
states, normally converging locally. The basic questions in these kind of models
are: what will be the final state, and how is the transient to this state? The
interaction amongst the agents and the topology of the interactions (who interacts
with whom) defines typically what the final state will be: either all agents having
the same state (consensus) or coexistence of agents in the different states. There
exist many of these models. Some of them are based on a random imitation process
as the voter model [1, 2, 3], others incorporate the pressure that society makes on
us like the majority rule model [4, 5], others incorporate what is called bounded
confidence or homophily, that is the fact that individuals interact only with other
individuals whose opinions are not very different from their own opinion like the
Deffuant model [6], the Hegselmann-Krause model [7] or the Axelrod model [8]. As
the simplest case of this type of models we choose the voter model. The agents can
be in one of two equivalent states, and whenever two of the agents interact, one of
them copies the state of the other one. It is an imitation interaction. The system
has two absorbing states, i.e. states where the dynamics freezes, which correspond
to consensus configurations in either of the two states.

In these kind of models persistence has been studied [9] taking into account
the number of agents which have not changed state at simulation time t from a
given initial condition at simulation time t = 0. In this work we extend this concept
to measure the interevent time distribution, that is, the probability that an agent
stays a certain time t without changing state. In this way we quantify the activity
patterns. The extension of this kind of measure is motivated by recent measurements
on human activity where the interevent time distributions were extracted. The
common feature for many human activities is that the distribution of times between
consecutive events has a heavy tail, where extremely long times are to be expected.
When measuring it in the usual voter model this is not what is observed. We argue
that the update rule, i.e. the order and timing by which agents are updated, is
responsible for the activity patterns. The issue of the update rule and its dynamical
consequences on the models has already been noticed and investigated in several
studies. For example it was shown that if all agents are updated at the same time,
this can result in chaotic or periodic behavior for some models, while this kind of
solutions are not present for an asynchronous update [10,11]. In order to account for
heavy tails in the persistence distributions we propose an update rule and implement
it in two conceptually different ways. One of the ways is coupled to the states of
the agents (endogenous update) and the other does not (exogenous update). We will
see that the macroscopic outcome of the model in terms of consensus formation is
modified when using the endogenous update.

The organization of the manuscript is as follows. In the first chapter we define
the voter model and review the previous results on it, which are for a particular
standard update rule called random asynchronous update (RAU). In the second
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chapter we define standard update rules used in simulations of agent based models
and study the voter model with those update rules in terms of consensus, but quan-
tifying also the activity patterns by measuring the persistence distribution, i.e. the
distribution of times between consecutive changes of state of the single agents. In
terms of consensus, the model does not order for the networks studied. Concerning
the activity patterns, they are quite homogeneous, with the persistence distribution
showing an exponential tail. In the third chapter we present a new update rule and
apply it to the voter model in two different ways. The exogenous update, which is
decoupled from the dynamics, gives rise to changes in the timescales, but qualita-
tively the same behavior as with standard update rules. The endogenous update,
which is coupled to the states of the agents, leads to a coarsening process which
orders the system. The activity patterns are modified by the new update rule and
we find persistence distributions with power-law tails. The fourth chapter contains
the conclusions of the work. There is one appendix in the end, which explains briefly
the interaction networks (who interacts whith whom) that were used for computer
simulations in the second and third chapters.

vii
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1
The Voter Model

1.1 Definition of the voter model

The voter model is a microscopic model born in the theory of probabilities [1]. It
was named in this way for the natural interpretation of its rules in terms of opinion
dynamics [12, 13], however it has been investigated not just in the context of social
dynamics but also in fields such as probability theory [1] and population dynam-
ics [14]. It was first considered in Ref. [14] in 1973 as a model for the competition
of species and named voter model in Ref. [1] in 1975.
It consists of a set of N agents placed on the nodes of an interacting network. The
links of the network are the connections among agents. Two nodes are first neigh-
bours if they are directly connected by a link in the network. The agents have a
binary variable (opinion, state,...) which can take the values +1 or −1. The be-
haviour of the agents is characterized by an imitation process, because, whenever
they interact, they just copy the state of a randomly chosen first neighbour.
The model has two absorbing configurations, i.e., configurations in which the dy-
namics stop, which consist either of all agents in state +1 or in state −1. These
absorbing configurations are also typically called consensus, as the whole population
has agreed in the same state.
This model has been studied by computer simulations using what we later define as
random asynchronous update for node dynamics. In this case the basic steps in the
dynamics are:

1. Randomly choose an agent i with opinion xi.

2. Randomly choose one of i’s neighbours, j, with opinion xj. Agent i adopts j’s
opinion; xi → xi = xj.

3. Repeat ad infinitum.

The alternative link dynamics considered in Ref. [2] is defined by the following steps:

1. Randomly choose a link i− j.

1



2 Chapter 1.

2. i adopts j’s opinion with probability 1/2 (xi → xi = xj). Otherwise j adopts
i’s opinion (xj → xj = xi).

3. Repeat ad infinitum.

For regular networks, where every agent has the same degree, i.e., the same number
of neighbours, link dynamics is equivalent to node dynamics, but for heterogeneous
networks these two updates are not equivalent [2]. Usually the time is measured in
units of N basic steps, i.e., a montecarlo step, following the idea that every agent
gets updated on average once per unit time.

1.1.1 Macroscopic description

A basic question is under which conditions consensus will be reached and how. In
order to answer this question we have to define some macroscopic quantities which
will describe the state of the system and its dynamical behaviour.

Magnetization m(t): It is a quantity that reflects the configuration of the system
as a whole. It is just the average state of the population and is defined as

m(t) =
1

N

N∑
i=1

xi.

Density of interfaces ρ(t): This quantity characterizes locally the level of order in
the system. It is the density of links in the network connecting agents with
different states. This is a good quantity to use as order parameter as it is
nonzero while the system is not in one of the absorbing states and is zero
otherwise. It is defined as

ρ(t) =
# of links between −1 and +1

# of links in the network
=

1∑N
i=1 ki

∑
〈ij〉

1− xixj

2

 ,

where 〈ij〉 stands for summing over neighbouring nodes. A decrease of ρ(t)
describes the coarsening process with growth of domains with agents in the
same state.

In numerical simulations of the voter model finite size effects come into play. In finite
size systems consensus will be reached, but we have to diferentiate if consensus is
reached due to the inherent dynamics or to a finite size fluctuation. We use averages
over many realizations to extract the mean behaviour. This is what is called an
ensemble average and will be denoted by 〈·〉. When doing the ensemble averages
some conservation laws can be found. For the case of regular networks, where every
node has the same number of neighbours (same degree), the ensemble average of
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the magnetization 〈m(t)〉 is conserved under node dynamics [2]. For this reason the
magnetization is not a good order parameter and we have to define the density of
interfaces ρ, which in general is not conserved. But if the network is heterogeneous,
i.e., the degrees of the nodes are not all the same, the conservation law for 〈m(t)〉
breaks down unless we use link dynamics. If we use node dynamics we can still find a
conserved quantity, which is an ensemble average of a magnetization weighted with
the degree ki of node i [2].

m′(t) =

∑N
i=1 kixi∑N
i=1 ki

. (1.1)

Notice that, when doing link dynamics we are in fact choosing a node for being
updated with probability proportional to its degree.

In order to gain more insight into the dynamics for finite size systems we also
introduce two other quantities to characterize the dynamics. These quantities are:

Survival probability S(t): It is the probability that a realization of the system has
not reached one of the absorbing states at time t. The mean time 〈T 〉 to reach
consensus is then given by1

〈T 〉 =
∫ ∞

0

S(t)dt.

Density of interfaces averaged over surviving runs 〈ρ∗(t)〉: This quantity is basically
the same as the density of interfaces, but disregarding the realizations that
have already reached an absorbing state when doing the ensemble average. It
tells us the degree of order in the system for the realizations that are still in
an active state. This quantity is related to the density of interfaces averaged
over all realizations by

〈ρ(t)〉 = S(t)〈ρ∗(t)〉.

1.2 Summary of results

The voter model has been investigated on many different interaction networks rang-
ing from regular lattices to different kinds of complex networks [2, 15, 3, 16]. Con-
servation laws have been found [2,17] and theoretical calculations on the dynamical
behaviour of the model have also been reported [18, 19, 20, 21]. A review on this
model as well as other social dynamics investigations can be found in Ref. [13].

1S(t) is the probability of being in an active configuration at simulation time t. Then the
probability of reaching an absorbing state at time t is d/dt(1 − S(t)) = −d/dtS(t). The average
time to reach consensus is then 〈T 〉 = −

∫∞
0

(tdS(t)/dt)dt and, integrating by parts one finds that

〈T 〉 =
∫∞
0

S(t).
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1.2.1 Hypercubic lattices

Microscopic models in Statistical Mechanics have been historically studied on regular
lattices [22, 23, 24]. d-dimensional regular lattices are topologies where every node
has the same number of connections such that it is discrete translational invariant
in the d directions. For example in one dimension what we have is a chain. In the
simplest case any node in the chain has only two connections, but there could be
more connections. In two dimensions there are more possibilities, as one can build
a square lattice, a triangular lattice, a honeycomb,...

Hypercubic lattices in one dimension are square lattices, in three dimensions
are simple cubic lattices and so on. For hypercubic lattices of arbitrary dimension
the model is solvable. In early studies by probabilists [14,25,1,26] the fact that the
model can be exactly mapped on a model of random walkers that coalesce upon
encounter was exploited. Then, using the machinery of random walk theory [26,27]
the model can be solved. We will follow instead another approach based on master
equations to derive the general solution on lattices, see Ref. [28]. Considering a
d-dimensional square lattice and being X = {xi, i = 1, . . . , N} the configuration of
the system, the transition rate for an agent k to change state is

Wk(X) =
d

4

(
1− 1

2d
xk

∑
j

xj

)
, (1.2)

where j runs over all 2d nearest neighbours and the prefactor that sets the overall
timescale is chosen for convenience. The probability of having configuration X at
time t, P (X, t), obeys the master equation

d

dt
P (X, t) =

∑
k

[Wk(X
k)P (Xk, t)−Wk(X)P (X, t)], (1.3)

where Xk is equal to X except for the agent with changed state xk. Due to the
particular form of the transition rates , Eq. (1.2), the equations for correlation
functions of any order 〈xk · · ·xl〉 =

∑
X P (X, t)xk · · · xl can be closed, i.e., they do

not depend on higher order functions and hence can be solved. The equation for
the mean value of the state of an agent is

d

dt
〈xi〉 = ∆i〈xi〉, (1.4)

where ∆i is the discrete Laplace operator. Summing over i one sees that the ensemble
average of the magnetization 〈m(t)〉 is conserved. This conservation allows us to
determine the probability that a finite size system will end with all agents in state
+1 or −1 (exit probability), depending on the initial configuration of the system.
The probability of ending with all agents in state +1 is equal to the initial fraction
of agents in that state. For the two-body correlation function we have

d

dt
〈xkxl〉 = (∆k +∆l)〈xkxl〉. (1.5)
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The structure of this equation is similar [28] in any dimension to the equations of the
one-dimensional Ising model with zero temperature Glauber dynamics [29], which
is equivalent to the voter model in one dimension. It can be solved via Laplace
transform. In this way we can know the asymptotic behaviour of the density of
interfaces 〈ρ(t)〉 = (1− 〈xkxk+1〉)/2 [28]

〈ρ(t)〉 ∝


t−(2−d)/2 d < 2

1/ ln(t) d = 2

a− bt−d/2 d > 2.

(1.6)

This shows that for d ≤ 2 the voter model undergoes a coarsening process leading to
complete consensus, while for d > 2, and in the thermodynamic limit, it has asymp-
totically a finite density of interfaces and thus no consensus is reached. This means
that 〈ρ(t)〉 stays asymptotically at a plateau (the constant value a in Eq. (1.6)).
However, as mentioned before, for finite size systems consensus is reached invariably.
In this case, for long times 〈ρ(t)〉 departs from Eq. (1.6) with an exponential decay.
One can extract the time TN needed to reach consensus in a system of size N [30]

TN ∝


N2 d = 1

N ln(N) d = 2

N d > 2.

(1.7)

We emphasize that the way consensus is reached on finite systems has a different
nature for d ≤ 2, where the system tends towards consensus by a coarsening pro-
cess, and for d > 2, where a large fluctuation takes the system to the absorbing
configuration. In Fig.1.1 one can see the evolution of 〈ρ(t)〉 for different system
sizes of one dimensional and two dimensional cubic lattices. The evolution is as
stated in Eq. (1.6) until a finite size fluctuation brings the system to the absorbing
configuration before the coarsening process ends.
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(a) Time evolution of the density of inter-
faces averaged over all runs for a one di-
mensional system. The dashed line cor-
responds to a power-law decay with expo-
nent −1/2. The system sizes are N =
100, 200, 300, 400, 500.
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(b) Time evolution of the density of inter-
faces averaged over all runs in a log-log plot
for a two dimensional system. We can see
that the system coherently goes toward con-
sensus following a law ∝ 1/ ln(t). The sys-
tem sizes are N = 302, 502, 602, 702.

Figure 1.1: Time evolution of the density of interfaces for regular lattices in one
and two dimensions, where the system reaches consensus by a coarsening process
(Eq. 1.6). All the curves are averages over 1000 realizations of the dynamics with
random initial condition with, on average 〈m(0)〉 = 0.

1.2.2 Complete graph

In a complete graph every agent in the network is connected to every other agent. It
is also called all-to-all interaction. The model can be solved using a master equation
approach [15, 21] for the probability density P (m, t) of having magnetization m at
time t. The equations for the averaged quantities 〈m(t)〉 and 〈ρ(t)〉 in finite systems
are respectively [18]

d

dt
〈m(t)〉 = 0, (1.8)

d

dt
〈ρ(t)〉 = − 2

N − 1
〈ρ(t)〉. (1.9)

From the conservation of the magnetization, Eq. (1.8) and knowing that all realiza-
tions of the model on a finite systems finally reach one of the absorbing configura-
tions, we can infer the exit probability, i.e., the probability that the systems ends
in the absorbing configuration +1 or −1. The probability of ending in each one of
the absorbing configurations is equal to the initial fraction of agents in that state,
P (m = ±1, t → ∞) = 1±m(0)

2
. (The same argument that we did for the case of

regular lattices.)
From Eq. (1.9) for the evolution of the average density of interfaces we know
that in a finite system it will behave as an exponential with a characteristic time
τ(N) = (N − 1)/2. In the thermodynamic limit, i.e., in the infinite system size
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limit, we see that the average density of interfaces also remains constant and equal
to its initial value due to the divergence of τ(N). This is a state that is only stable
in the thermodynamic limit. For finite size systems it is a metastable state, around
which the system is trapped.
In order to gain more insight, let us separately consider the survival probability S(t)
and the density of interfaces averaged over surviving runs.
The survival probability is calculated in Refs. [21,18] and, for m(0) = 0 it is

S(t) =

{
1 t � τ(N)
3
2
e−t/τ(N) t � τ(N),

(1.10)

where τ(N) is the same as before. Then, using the relation 〈ρ(t)〉 = S(t)〈ρ∗(t)〉, the
density of interfaces averaged over surviving runs is easily computed

〈ρ∗(t)〉 =

{
1
2
e−t/τ(N) t � τ(N)

1
3

t � τ(N).
(1.11)

We realize that the fully ordered state is not reached in the thermodynamic limit.
There are two reasons for drawing this conclusion. On the one hand the temporal
scale τ(N) over which consensus is reached in finite systems diverges with the system
size N . This is already evident from the behaviour of 〈ρ(t)〉, which will remain
constant and equal to its initial value. On the other hand we see that even for
t � τ(N) the fraction of interfaces in surviving runs is finite independent of the
system size. This means that surviving runs do not order but stay in configurations
with, on average, a finite fraction of interfaces. The plateau observed in this quantity
differs from the one in 〈ρ(t)〉 for the infinite size limit because, when doing the
average over surviving runs, the fluctuations around the metastable state are not
symmetric, but can only go below it. A random fluctuation will eventually bring
the system to consensus, but as long as a realization survives, it stays, on average,
in a disordered configuration. The decay of ρ(t) is then a consequence of the decay
in the survival probability S(t).
In Fig. (1.2) we show the evolution of the ensemble average of ρ(t) (Figs.1.2a and
1.2b) on a complete graph in different scales. The log-log plot shows better the
existence of a plateau (dashed line) in the thermodynamic limit, while the log-
linear plot makes clear the exponential decay. Fig. 1.2c shows the average of ρ over
surviving runs, which reaches a plateau (dashed line). The last figure (1.2d) shows
the evolution of ρ in a single realization. There we can see that the system is in fact
trapped around the plateau (dashed line) and a big finite size fluctuation brings it to
one of the absorbing configurations. Note that the fluctuations around the plateau
are not symmetric and can only go below it, giving rise to a lower plateau when
averaging over surviving runs (Fig. 1.2c).
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(d) Density of interfaces in a single run.
The density of interfaces stays around the
value corresponding to the metastable state
at ρ(0). Fluctuations can only go below that
value. The system has N = 5000 agents.

Figure 1.2: Different visualizations of the density of interfaces on a complete graph.
All the curves are averages over 1000 realizations of the system. The system sizes
range from N = 103 to N = 104.

1.2.3 Complex networks

Random uncorrelated networks

By random uncorrelated networks we mean networks with an arbitrary degree dis-
tribution Pk

2, but no correlations between the degrees of the nodes. In fact these
are families of networks, all of them having the same degree distribution. When
doing simulations on them one has not only to average over many realizations, but
also over different realizations of the network. Examples of such networks are the

2Pk is the probability that a randomly chosen node in the network has degree k.
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Erdös-Renyi network [31], which consist of a set of nodes and every link that could
connect any two nodes is present with certain probability p. Scale-free networks [31]
can also be put into this class of networks if we retain the power-law degree distri-
bution that gives the name to these networks, but drop any correlations between
nodes’ degrees. There exist methods to create networks with a given degree distri-
bution, but random in the rest of characteristics [32].
Vázquez and Egúıluz in Ref. [18] studied the dynamics of the voter model on such
networks with great detail, deriving a complete analytical description, using the
fact that the degrees of the nodes are uncorrelated. The time evolution of ρ(t) in
an infinite size system is found to be

d

dt
ρ(t) =

2ρ(t)

〈k〉

[
(〈k〉 − 1)

(
1− 2ρ(t)

1−m2(t)

)
− 1

]
, (1.12)

where 〈k〉 =
∑N

k=1 kPk is the average degree of the network. From this equation we
can infer that there are two stationary solutions. For 〈k〉 ≤ 2, the stable solution ρ =
0 corresponds to a fully ordered state, but this is an artifact of the approximation,
since there is no abrupt change of behavior of ρ for this 〈k〉 [19]. For 〈k〉 > 2, one
can do an adiabatic elimination of the fast vartiable ρ, since ρ evolves much faster
than m and so ρ(t) accomodates to the value

ρ(t) = ξ(〈k〉)(1−m2(t)). (1.13)

This solution with

ξ(〈k〉) = 〈k〉 − 2

2(〈k〉 − 1)
, (1.14)

corresponds to a partially ordered system, composed by a fraction ρ > 0 of interfaces,
as long as m 6= ±1. Notice that for networks of arbitrary degree distribution the
average magnetization is not generally conserved. But if the initial distributions of
+1 and −1 are not correlated with the degree of the nodes, then the magnetization
will also be conserved when averaging over initial conditions. So with this condition
we can say that in an infinite size system, the density of interfaces will evolve until
it reaches the value ξ(〈k〉)(1−m2(0)) and will stay there forever. This means that
in the thermodynamic limit the system is not ordering.
For the case of finite systems the average density of interfaces decays rapidly to
the value where it would stay in the infinite size limit and from there begins an
exponential decay that can be calculated [18]

〈ρ(t)〉 = ξ(〈k〉)(1− 〈m2(0)〉)e−t/τ , (1.15)

where the characteristic time τ is

τ =
(〈k〉 − 1)〈k〉2N
2(〈k〉 − 2)〈k2〉

(1.16)

with 〈k2〉 =
∑

k k
2Pk the second moment of the degree distribution. The time to

reach consensus can be calculated using an analogy with random walks [18]. This
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time is equal to the characteristic time τ of Eq. (1.16) times a function of the
initial magnetization. This shows that the time to reach consensus scales as the
system size N for any network with first moment, 〈k〉, and second moment, 〈k2〉,
of the degree distribution independent of the system size. For the case of scale-free
networks, where the second moment 〈k2〉 of the degree distribution depends on the
system size, Eq. (1.16) is still valid, but the scaling of τ with the system size N is
different [18,20].
For a scale-free degree distribution Pk ∝ k−γ

τ ∝



N γ > 3,

N/ lnN γ = 3,

N2(γ−2)/(γ−1) 2 < γ < 3,

(lnN)2 γ = 2,

O(1) γ < 2

(1.17)

The survival probability is:

S(t) =

{
1 t � τ
3
2
(1− 〈m2(0)〉)e−t/τ t � τ.

(1.18)

From this solution and the one for 〈ρ(t)〉 it is straightforward to recover the density
of interfaces averaged over surviving runs

〈ρ∗(t)〉 =

{
(〈k〉−2)
2(〈k〉−1)

(1− 〈m2(0)〉)e−t/τ t � τ
(〈k〉−2)
3(〈k〉−1)

t � τ.
(1.19)

Summing up, the behavior of the voter model on uncorrelated random graphs is very
similar to the behavior on a complete graph, with the times rescaled by a constant
that depends just on 〈k〉 and 〈k2〉, and the plateau heights depending now on 〈k〉.
In fact the case of a complete graph is obtained in the limit 〈k〉 → ∞. The results of
computer simulations for the case of a random network with average degree 〈k〉 = 8
and a scale-free graph with 〈k〉 = 6 are plotted in Figs. 1.3 and 1.4 respectively.
The figures contain similar plots to those presented for the case of a complete graph
(figure 1.2). In Fig. 1.5 Eq. (1.14) for the height of the plateau is tested against
computer simulations, showing good agreement.
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(d) Density of interfaces in a single run.
The density of interfaces stays around the
value corresponding to the metastable state
at ξ(〈k〉). Fluctuations can only go below
that value. The system has N = 4000
agents.

Figure 1.3: Different visualizations of the density of interfaces on an Erdös-Renyi
random graph with average degree 〈k〉 = 8, i.e. ξ(〈k〉) = 3/7. All the curves are
averages over 1000 realizations of the system. The system sizes range from N = 103

to N = 4 · 103. The initial magnetization is m = 0.
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Figure 1.4: Different visualizations of the density of interfaces on a Barabási-Albert
scale-free graph (Pk ∝ k−3) with average degree 〈k〉 = 6, i.e. ξ(〈k〉) = 2/5. All the
curves are averages over 1000 realizations of the system. The system sizes range
from N = 103 to N = 104. The initial magnetization is m = 0.
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Figure 1.5: Plateau heights of ρ∗ as a function of 〈k〉 (labeled µ in the figure).
Circles are for Barabási-Albert scale-free networks and squares for degree regular
random networks 3, both of size N = 104. The solid line is the analytical prediction
2ξ(〈k〉)/3 = (〈k〉−2)

3(〈k〉−1)
. From Ref. [18].

Small-World networks

In the literature one can find two definitions of the small-world property of networks.
Sometimes it is defined as the characteristic of a network, whose average shortest
path length connecting two nodes in the network is very small compared to the
size of the network. The other definition is the previous characteristic plus a high
clustering coefficient, which translates in a high probability that two neighbours of
a node are also neighbours between them.
In the sense of the second definition, Watts and Strogatz in Ref. [33] proposed a
model for generating networks with both properties. These networks are called
small-world networks. Their model consists of a regular network in one dimension
with periodic boundary conditions (a ring), where each node connects to k nearest
neighbours. Each link in the network is rewired with certain probability p. By
varying p between 0 and 1 we interpolate between a regular one-dimensional network
and a random network. For intermediate values of p the small-world regime is found,
where the average shortest path length is very small compared to the system size
and the clustering coefficient very high compared to the one obtained for a random
network of the same size.
The behaviour of the voter model on these networks was studied numerically in
Ref. [16] and later analytically in Ref. [34]. The presence of long-range connections
inhibit the ordering process in the thermodynamic limit, which is a counterintuitive
result. A metastable dynamical state with coexisting opinions is found. There exist

3Degree regular random networks are such that each node in the system has the same degree,
but there are no other correlations. So the nodes are linked at random taking into consideration
two constraints: the degree is the same for all nodes and there are no repeated links.
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two different times cales. When the average size of a growing domain, which has a
size ξ ∼ 1/ρ in one dimension, is much smaller than the characteristic length between
two shortcuts, l∗ = 1/(kp) [35], the coarsening process is practically ρ ∝ t−1/2; as in
a one-dimensional lattice. When ξ ∼ l∗, the long range interactions start to play a
role, and the coarsening stops: ρ reaches a plateau [16] and in the thermodynamic
limit the absorbing state is never reached. This is different in finite size systems,
where finite size effects eventually drive the system to an absorbing state, and the
time to reach it scales as T ∝ N . In Fig. 1.6 the time evolution of the average density
of interfaces 〈ρ(t)〉 is plotted for small world networks and for a one dimensional ring
for different system sizes.

Figure 1.6: Time evolution of the average density of interfaces 〈ρ(t)〉 (labeled nA in
the figure). Values are averaged over 1000 realizations. Time is measured in Monte
Carlo steps per site. Empty symbols are for the one-dimensional case (p = 0). Filled
symbols are for rewiring probability p = 0.005. Data are for N = 200 (circles),
N = 400 (squares), N = 800 (diamonds), N = 1600 (triangles up) and N = 3200
(triangles left). From Ref. [16].

Other effects of different characteristics of the network of interaction have
been studied. For example Suchecki et al. in Ref. [3] studied in great detail the
effect of different characteristics of heterogeneous networks on the plateau heights
of the metastable states and the survival times. The results presented come to
support the claim that whether the system orders under the rules given by the voter
dynamics depends on the effective dimensionality of the interaction network. In any
complex network, which in general has an effective infinite dimension, the dynamics
gets trapped in metastable states. In finite systems one of the absorbing states is
reached by finite size fluctuations that bring the system out of the metastable state.
As an example of the crucial role of dimensionality the authors of Ref. [3] checked
that the coarsening process in a scale-free network with effective dimension equal to
one was the same as in a regular network of dimension one, i.e., 〈ρ(t)〉 ∝ t−1/2.



2
Standard update rules

In this chapter we review standard update rules used in simulations of agent based
models (ABM’s). We also investigate the behavior of the voter model for these
different rules. In ABM’s agents are placed on the nodes of a network. The state
of the agents is characterized by a variable that can take one of various values. The
specific dynamics tells how the states of the nodes are updated. But in addition
to the dynamical rules, simulation incorporate rules that determine when an agent
is given the opportunity to update her state. Standard update rules implement a
homogeneous pattern of updates in time.

The simulations all over this and the next chapter where done with random
initial conditions, i.e. every agent has the same probability in the beginning to have
one state or the other, and setting their persistence time equal to zero, i.e. the time
since their last change of state.

2.1 Definitions of standard update rules

Typically the update rules implemented are

•Asynchronous update: At each simulation step only one of the agents is up-
dated. The unit of time is typically defined asN simulation steps (a montecarlo
step), where N is the number of agents in the system.

Random asynchronous update (RAU): the agents are updated in a
random order (cf. Fig. (2.1)).

Sequential asynchronous update (SAU): the agents are always updated
in the same order (cf. Fig. (2.2)).

•Synchronous update (SU): All the agents are updated at the same time. The
time is measured in units of simulation steps (cf. Fig. (2.3)).

15
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In the previous chapter we reviewed the results of the voter model under RAU,
which is the update rule most commonly used in simulations of the voter model.

t t+ dt

+dt

Figure 2.1: Example of random asynchronous update, RAU. For each dt = 1/N one
randomly picked agent is updated.1
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t+ 2dt
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t+ 1 t+ 1 + dt t+ 1 + 2dt

Figure 2.2: Example of sequential asynchronous update, SAU. Remember that dt =
1/N . The agents are updated always in the same order, so after a time delay of 1
the same agent is updated.1



2.1. Definitions of standard update rules 17

t t+ 1

+1

Figure 2.3: Example of synchronous update, SU. All agents are updated at the same
time.1

As we can see from the definitions of these standard update rules, there exists
a well defined characteristic time between two consecutive updates of the same node.
In the case of SAU and SU every agent is updated exactly once per unit time, while
for RAU this only happens on average.
In the cellular automata literature the topic of the update rules used in simulations
has been widely studied (see for example [36, 37, 38, 39, 40, 11]). Different update
rules may result in very different collective behavior. In particular SU on regular
lattices can result in periodic or chaotic patterns in time coming from the inherent
discrete dynamics, like maps. These behaviours do not have their counterpart when
dealing with other update rules. This was found for the case of the spatial prisoner’s
dilemma in [10] and explained later in [11]. In the case of the voter model under SU in
a regular lattice periodic behavior is found if the system reaches a configuration that
is chess-board like (cf. Fig. (2.4)). The whole system stays indefinitely switching
between two configurations. When comparing different update rules for the voter
model we will avoid this situation by running the simulations on disordered networks
of effective infinite dimensionality (see appendix A).

Figure 2.4: Example of dynamical trap in the dynamics of the voter model for SU
on a two dimensional square lattice. The state of the system alternates between
both states.

1In these figures we exemplify the diferent kinds of update rules for the voter model on a two
dimensional square lattice. The two possible states of the nodes are represented by blue squares
and red circles. The node or nodes inside a black dashed circle are the ones that are updated. The
nodes inside a green circle are the randomly chosen neighbours for the interaction and the purple
arrow tells in which direction the state will be copied.
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2.2 Voter model with standard update rules

In this section we report simulations of the voter model under SAU and SU node
update dynamics and compare the results with the ones reviewed in section 1.2 for
RAU node update dynamics.
In Figs. 2.5-2.7 we can see the outcome of the simulations on a complete graph
(Fig. 2.5), a random graph of average degree 〈k〉 = 6 (Fig. 2.6) and on a scale-free
graph of average degree 〈k〉 = 6 (Fig. 2.7). These figures include plots of the av-
eraged density of active links 〈ρ(t)〉, the density of active links averaged only over
surviving runs 〈ρ∗(t)〉, the evolution of ρ in a single realization, the survival prob-
ability S(t) and the cumulative persistence C(τ). The cumulative persistence is a
quantity which we did not consider in chapter 2 and it is used to characterize the
activity patterns paying attention to the interevent times in a realization of the voter
model. We define interevent time as the time elapsed between two changes of state
of a single agent. We extract the interevent cumulative distribution, or cumulative
persistence C(τ) from the simulations. From this distribution we can compute the
probability density of interevent times (persistence) M(τ)dτ = −dC(τ). This dis-
tribution describes the activity patterns of change of state. The question of interest
is if M(τ) is Poisson-like or a more heterogeneous distribution.
Results for RAU, SAU and SU are plotted together in Figs.2.5-2.7 for comparison
purposes. We observe that the averaged density of active links 〈ρ(t)〉, the survival
probability S(t) and the tail of the cumulative persistence C(τ) display an expo-
nential decay exp(−t/τ(N)), with a characteristic time that depends on the system
size. These characteristic times have been extracted by fitting the data for many
system sizes and computing the scaling behaviour of τ(N). The results of this data
analysis is summarized in table (2.1) for the different update rules and networks.
For 〈ρ(t)〉 and S(t) the same characteristic time is found. By inspecting the figures
we can realize that those characteristic times have to be the same in order to get
the plateau in the density of active links averaged over surviving runs shown in
Figs. 2.5c,2.6c,2.7c, as 〈ρ∗(t)〉 = 〈ρ(t)〉/S(t).
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Figure 2.5: The voter model under the usual update rules (RAU, SAU, SU) on a
complete graph for a system size N = 10000. All the averages where done over
1000 realizations.
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Figure 2.6: The voter model under the usual update rules (RAU, SAU, SU) on a
random graph with average degree 〈k〉 = 6 for a system size N = 4000. All the
averages where done over 1000 realizations.
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Figure 2.7: The voter model under the usual update rules (RAU, SAU, SU) on a
Barabási-Albert scale-free graph with mean degree 〈k〉 = 6 for a system size
N = 10000. All the averages where done over 1000 realizations.
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RAU τ(N) SAU τ(N) SU τ(N)

CG
〈ρ〉|S(t) N/2 0.23(4)N1.01(2) 0.9(1)N1.01(2)

C 0.63(7)N0.47(2) 0.33(4)N0.50(1) 0.6(1)N0.51(2)

RG 〈k〉 = 6
〈ρ〉|S(t) 0.57(7)N0.99(2) 0.34(6)N0.97(2) 1.0(1)N1.01(2)

C 1.0(2)N0.47(2) 0.38(6)N0.51(2) 0.74(9)N0.51(2)

SFG 〈k〉 = 6
〈ρ〉|S(t) 0.25(5)N0.88(2) 0.19(3)N0.92(5) 1.6(4)N0.84(3)

C 0.35(7)N0.52(2) 0.18(7)N0.53(4) 1.0(3)N0.43(3)

Table 2.1: System size dependence of the characteristic times in the density of active
links, 〈ρ(t)〉 and in the cumulative distribution of interevent times, C(τ), for different
network topologies and node update rules. CG stands for complete graph, RG for
random graph and S-FG for scale-free graph.

Our results indicate that the voter model has the same qualitative dynami-
cal behaviour under RAU, SAU and SU node update rules. These results can be
summarized as follows:

Density of active links:
〈ρ(t)〉: For the ensemble average over all realizations we find an exponential
decay in 〈ρ(t)〉 ∝ e−t/τ(N) with a characteristic time that scales as τ(N) ∝ N
for a complete graph and random graphs. For the case of Barabási-Albert
scale-free graphs the scaling is compatible with the analytical result τ(N) ∝
N/ log(N) [2,18,20]. We can see that the characteristic time diverges with the
system size, so that 〈ρ(t)〉 remains constant in the infinite size limit for any of
these networks. This is telling us already that the system is not reaching an
ordered state in the thermodynamic limit.
〈ρ∗(t)〉: Decays exponentially until it reaches a plateau. The plateau height
is independent of the system size, meaning that, on average, the realizations
that have not yet reached an absorbing state, stay at a disordered state with
a finite and large fraction of active links.

Survival probability:
S(t): The survival probability decays exponentially, S(t) ∝ e−t/τ(N), with the
same characteristic time as 〈ρ(t)〉. That’s why when combining 〈ρ(t)〉/S(t) =
〈ρ∗(t)〉 we find a constant value for 〈ρ∗(t)〉. The mean times to reach consensus
for finite systems are well defined. In the infinite size limit, as τ(N) diverges
with the system size, we can conclude again that the system does not reach
an ordered state and the survival probability is just equal to one for all times
in the thermodynamic limit.

Cumulative distribution of persistence times:
C(τ): This distribution shows an exponential tail, indicating that there is a
well defined average persistence time. The characteristic time in the exponen-
tial tail scales approximately as the square root of the system size.
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These are the features shared by all standard node update rules. There are also
differences, since the precise characteristic times and the plateau heights of 〈ρ(t)〉
and 〈ρ∗(t)〉 depend on the update rule. See Figs. 2.6a and 2.7a where the plateaus
for the different update rules are plotted wit a dashed black line. It is clear that
the difference between RAU and SAU update rule lies in correlations that will be
present in SAU and not in RAU. For the case of SU, the differences come from
the fact that for this update rule the dynamics is purely discrete. Still the main
result is that the qualitative behavior is the same: for these three update rules the
system remains, in the thermodynamic limit, in an active disordered configuration
for the voter model dynamics in a complete graph and in complex networks of infinite
effective dimensionality such as Erdös-Renyi and Barabási-Albert networks. Also
the activity patterns are very homogeneous, with a well defined persistence time.
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3
Update rules for heterogeneous
activity patterns

3.1 Motivation: human activity patterns

Many interevent time distributions measured recently in empirical studies about
human activities such as e-mail communication, surface mail, timing of financial
trades, visits to public places, long-range travels, online games, response time of
internauts, printing processes and phone calls among others [41,42,43,44,45,46,47,
48,49,50], show a heavy tail or a power law for large times. Some efforts have been
made to unravel the origin as well as the consequences of such a particular timing
in human activities. There exist mainly two important topics in which research is
being done:

• Origin of these heavy-tailed distributions: in the literature one can find two
main approaches

– Explain these tails based on cyrcadian cycle and seasonality, via a non-
homogeneous Poisson process with a cascading mechanism. [41,48]

– Root these heavy tails in the way individuals organize and prioritize their
tasks modelling it via a priority queing model. [42,45,49,50]

• Effects of this special timing on certain dynamics: independently of the origin
of this feature it has been noticed that a non-homogeneous interaction in time
can give rise to non-trivial behaviour. An example considered so far in some
detail is spreading and infection dynamics: SI-type spreading dynamics have
been investigated, showing that this peculiar timing gives rise to a slowing
down of the dynamics that cannot be explained just by a change of time scale
but it changes the functional form of the prevalence of a disease [44,45,46,47].

The present work explores the second of these two big topics related to interevent
time distributions. First we modify the update rule to account for this special

25
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pattern of activity and see whether it has an effect on the outcome of the dynamics
or not, irrespective of the origin of such heavy tails. In order to do this we define
an update rule and implement it in two different ways. One that is coupled to the
dynamics of the states of the agents, endogenous update; and one that is independent
of the states of the agents, exogenous update. Second, as an illustration, we apply
the two variations of the new update rule to the voter model.

3.2 New update rule

A set of N agents are placed on the nodes of a network of interaction. Each agent i
is characterized by its state xi and an internal variable that we will call persistence
time τi. For any given interaction model (Ising, voter, contact process, ...), the
dynamics is as follows: at each time step,

1. with probability p(τi) each agent i becomes active, otherwise it stays inactive;

2. active agents update their state according to the dynamical rules of the par-
ticular interaction model;

3. all agents increase their persistence time τi in one unit

The persistence time measures the time since the last event for each agent. Typically
an event is an interaction (exogenous update: active agents reset τ = 0 after step
(ii)) or a change of state (endogenous update: only active agents that change their
state in step (ii) reset τ = 0).
There are two interesting limiting cases of this update when p(τ) is independent of τ :
when p(τ) = 1, all agents are updated synchronously; when p(τ) = 1/N , every agent
will be updated on average once per N unit time steps. The latter corresponds to
the usual random asynchronous update (RAU). We are interested in non-Poissonian
activation processes, with probabilities p(τ) that decay with τ , that is, the longer an
agent stays innactive, the harder is to activate. To be precise, we will later consider
that

p(τ) =
b

τ
, (3.1)

where b is a parameter that controls the decay with τ .
We expect the persistence M(t) to be related to the activation probability p(τ).
Neglecting the actual dynamics and assuming that at each update event, the agent
changes state we can find an approximate relation between M(t) and p(τ). Recall
that M(t) is the probability that an agent changes state (updating and changing
state coincide in this approximation) t timesteps after her last change of state.
Therefore the probability that an agent has not changed state in t− 1 timesteps is
1 −

∑t−1
j=1 M(j) and the probability of changing state having persistence time t is
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p(t). Therefore we can write:(
1−

t−1∑
j=1

M(j)

)
p(t) = M(t), (3.2)

with p(1) = M(1). Taking the continous limit and expressing this equation in terms
of the cumulative persistence distribution we obtain

d ln(C(t)) = −p(t)dt. (3.3)

Setting p(τ) = b/τ the cumulative persistence distribution decays as a power law
C(t) ∼ t−β with β = b. Numerical simulations show that this approximation holds
for the voter model on a fully connected network for endogenous updates and for a
small range of b-values in the exogenous update for any topology of the ones con-
sidered in this study.
The modification of the model is investigated more exhaustively for the case in which
the cumulative persistence is set to a power law C(τ) ∝ τ−β, but any distribution
C(τ) can be plugged into the definition of p(τ), Eq. (3.3). In fact the case β = 1
will be studied in more detail.

t

τ1 τ2 τ3

τ4 τ5 τ6

τ7 τ8 τ9

τ1 τ2 τ3

τ4 τ5 τ6

τ7 τ8 τ9

+1

t+ 1

p(τ1)

p(τ5) p(τ6)

p(τ8)

Figure 3.1: Example of the new update rule. Every agent gets updated with her
own probability p(τi), being τi her persistence time.

When applied to the voter model the new update rule we changes the transition
rates for node-dependent rates that are function of the persistence time of each
node. A precedent of our study is the work in ref. [51], where they just modified the
transition rates in the simplest way, in order to see if it had any effect on the mean
times to reach consensus. In the present work we use a variation that leads to the
appearance of heavy tails in the persistence M(τ) and we focus on the question of
the implication of the update rule on the existence or not of coarsening.

3.3 Voter model with exogenous update

If instead of the standard update rules discussed in section 2.2 we now use the
exogenous version of the new update, the agents will not be characterized only by
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its state xi, but also by their internal time τi, i.e. the time since their last update
event.
The simulation steps for this modified voter model are as follows:

1. With probability p(τi) every agent i is given the opportunity of updating her
state by interacting with a neighbor.

2. If the agent interacts, one of its neighbours j is chosen at random and agent i
copies j’s state. xi → xi = xj. Agent i resets τi = 0.

3. The time is updated to a unit more and we return to 1 to keep on with the
dynamics.

For an activation probability p(τ) = 1/τ , i.e. β = 1 we ran simulations on a com-
plete graph, Fig. 3.2, on random graphs of different average degrees, Fig. 3.3, and
on a Barabási-Albert scale-free graph of average degree 〈k〉 = 6, Fig. 3.4 and for
different system sizes.
Our results can be summarized as follows:

Density of active links 〈ρ(t)〉 and 〈ρ∗(t)〉: When averaged over all runs, 〈ρ(t)〉
decays with different rates depending on the interaction networks and system
sizes. For bigger system sizes the decay slows down, reaching a plateau in the
thermodynamic limit (Figs. 3.2a,3.3a and 3.4a). When averaged over active
runs 〈ρ∗(t)〉 reaches a plateau (Figs. 3.2b,3.3b and 3.4b), which is independent
of the system size, showing that living runs stay, on average, on a dynamical
disordered state, as happens with standard update rules.

Survival probability S(t): It is one until it decays in a nontrivial way. It is not a
purely exponential decay, but decays faster than any power law, therefore no
normalization problems are expected.

Cumulative persistence C(τ): Develops a power-law tail consistent with the expo-
nent β = b, which in this case is set to 1, as we could expect if the approxi-
mation of Eq.3.3 holds.

The dynamics does not order the system with the exogenous update.
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(a) Density of active links averaged over all
runs.
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(b) Density of active links averaged over sur-
viving runs.
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(c) Density of active links in a single realiza-
tion with system size N = 103.
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(d) Survival probability.
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Figure 3.2: Results of the voter model under the exogenous update rule with activa-
tion probability p(τ) = 1/τ on a complete graph. Different colors stand for different
system sizes N = 100, 200, 300. All the averages are done over 1000 realizations.
Larger system sizes display the same behavior, but the characteristic times are much
longer, and so are the simulations.
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(a) Density of active links averaged over all
runs.
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(b) Density of active links averaged over sur-
viving runs.
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(c) Density of active links in a single realiza-
tion with system size N = 4000.
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(d) Survival probability.
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Figure 3.3: Results of the voter model under the exogenous update rule with ac-
tivation probability p(τ) = 1/τ on a random graph with 〈k〉 = 6. Different col-
ors stand for different system sizes N = 1000, 2000, 3000 for 〈ρ(t)〉 and C(τ); and
N = 100, 200, 300 for 〈ρ∗(t)〉 and S(t), otherwise the plateau in 〈ρ∗(t)〈 and the decay
S(t) are not present in a reasonable simulation time. All the averages are done over
1000 realizations.
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(a) Density of active links averaged over all
runs.
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(b) Density of active links averaged over sur-
viving runs.
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(c) Density of active links in a single realiza-
tion with system size N = 104.
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(d) Survival probability.
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Figure 3.4: Results of the voter model under the endogenous update rule with
activation probability p(τ) = 1/τ on a scale-free graph with mean degree 〈k〉 = 6.
Different colors stand for different system sizes N = 1000, 2000, 3000 for 〈ρ(t)〉 and
C(τ); and N = 100, 200, 300 for 〈ρ∗(t)〉 and S(t), otherwise the plateau in 〈ρ∗(t)〈
and the decay S(t) are not present in a reasonable simulation time. All the averages
are done over 1000 realizations.
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3.4 Voter model with endogenous update rule

We now use the endogenous update for the voter mopdel. This is just the same as
the exogenous update rule, but in this case the internal time of each agent i, τi, is
the time since her last change of state. In this way the update rule is coupled to the
states of the agents.
The simulation steps for the modified voter model that we study are as follows:

1. With probability p(τi) every agent i is given the opportunity of updating her
state by interacting with a neighbor.

2. If the agent interacts, one of its neighbours j is chosen at random and agent i
copies j’s state. xi → xi = xj.

3. If the update produces a change of state of node i, then τi is set to zero.

4. The time is updated to a unit more and we return to 1 to keep on with the
dynamics.

The question now is if this modification will lead to qualitative changes in the
outcome of the dynamics of the voter model. For an activation probability p(τ) =
1/τ , i.e. β = 1 we ran simulations on a complete graph, Fig. 3.5, on random graphs
of different average degrees, Fig. 3.6, and on a Barabási-Albert scale-free graph of
average degree 〈k〉 = 6, Fig. 3.7 and for different system sizes. The exponents in the
power laws of the quantities plotted in figures 3.5-3.7 are summarized in table (3.1)
for the cases of complete, random and scale-free graph with mean degree 〈k〉 = 6.

〈ρ(t)〉 ∝ t−γ S(t) ∝ t−δ C(τ) ∝ t−β

Complete graph γ = 0.985(5) δ = 0.95(2) β = 0.99(3)
Random graph 〈k〉 = 20 γ = 0.99(1) δ = 0.82(1) β = 0.94(4)
Random graph 〈k〉 = 6 γ = 0.249(4) δ = 0.13(1) β = 0.45(1)
Scale-free graph 〈k〉 = 6 γ = 0.324(7) δ = 0.32(1) β = 0.46(1)

Table 3.1: Exponents for the power-law decaying quantities ρ(t), S(t) and C(τ) for
the voter model with the endogenous update rule.

We can see from the table that, increasing the average degree of the random
networks we get results that get closer to the ones on a complete graph.
Our results can be summarized as follows:

Density of active links 〈ρ(t)〉 and 〈ρ∗(t)〉: When averaged over all runs, 〈ρ(t)〉
decays as a power law with different exponents depending on the interaction
network. When averaged over active runs 〈ρ∗(t)〉 we see that it decays as
a power-law until it reaches a plateau whose height depends on the system
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Figure 3.5: Results of the voter model under the endogenous update rule with
activation probability p(τ) = 1/τ on a complete graph. Different colors stand for
different system sizes N = 1000, 2000, 4000. All the averages are done over 1000
realizations.
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(c) Density of active links in a single realiza-
tion with system size N = 4000.
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Figure 3.6: Results of the voter model under the endogenous update rule with
activation probability p(τ) = 1/τ on a random graph with 〈k〉 = 6. Different colors
stand for different system sizes N = 1000, 2000, 4000. All the averages are done over
1000 realizations.
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viving runs.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

t

10
-3

10
-2

10
-1

ρ(
t)
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Figure 3.7: Results of the voter model under the endogenous update rule with
activation probability p(τ) = 1/τ on a scale-free graph with mean degree 〈k〉 =
6. Different colors stand for different system sizes N = 1000, 2000, 4000. All the
averages are done over 1000 realizations.
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size and is smaller for bigger system sizes, which tells that the system is
heading towards consensus, contrary to what happens with the standard
update rules. This is one of the main results of the present work.

Survival probability S(t): It is one until it decays, also like a power-law. The
exponents are in all cases smaller or around 1, so that the average time to
reach consensus diverges for all system sizes. Remember that the mean
time to reach consensus is 〈T 〉 =

∫∞
0

S(t)dt. So, we cannot speak of a properly
defined average time to reach consensus.

Cumulative persistence C(τ): Develops a power-law tail. For a complete graph
and a random network with high degree we recover an exponent β in the tail
of the interevent times cumulative distribution C(τ) that matches the one we
wanted it to follow given our calculations and our choice p(τ) = 1/τ . For the
other two networks, random and scale-free with 〈k〉 = 6 we recover that the
tail behaves aproximately as 1/

√
τ .

The dynamics does not order the system with the endogenous update
through a coarsening process that leads to the divergence of the mean
time to reach consensus for all system sizes. As a summary, the complete
graph case gives us already the qualitative behavior: for the voter model with ex-
ogenous update the timescales are much larger than in the voter model with RAU,
but it has the same qualitative behavior: the system doesn’t order in the thermo-
dynamic limit, but stays in a disordered dynamical configuration with asymptotic
coexistence of both states. This contrasts with what happens with the endogenous
update, where the timescales are also perturbed, but with the difference that a
coarsening process occurs, slowly ordering the system. We have checked that the
ensemble average of the magnetization 〈m(t)〉 = 1

N

∑N
i=1〈si(t)〉 is conserved for the

exogenous update, whereas for the endogenous update this conservation law breaks
down, as previously discussed in Ref. [51]. The non-conservation of the magne-
tization leads to an ordering process. The conservation law is broken due to the
different average values of the persistence time in both populations of agents (+1
and -1) leading to different average activation probabilities.
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3.5 Varying the exponents of the cumulative per-

sistence C(τ )

As we saw in section 3.2 the exponent in the persistence times cumulative distribu-
tion C(τ) ∝ τ−β should be related to the parameter b appearing in the activation
probability p(τ) = b/τ . If every time we let an agent be updated, this one changes
state, this relation is such that β = b. When introducing the dynamics, this relation
is not so clear and depends also on the kind of network where the dynamics are
taking place. In Fig. 3.8 we can see the interevent times cumulative distributions
for different values of b for the exogenous update.
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Figure 3.8: Endogenous update: cumulative persistence C(τ) for different values of
the parameter b (grows from left to right) appearing in the activation probability
p(τ) for complete graph, random graph with 〈k〉 = 6 and Barabási-Albert scale-free
network with 〈k〉 = 6 and for system size N = 1000.

We can see that for b = 1 the power law tail is recovered with an exponent
that matches β = b. For higher values of b the form of the tail is rapidly lost and we
have cumulative persistences C(τ) are similar to those with standard update rules,
i.e., do not display heavy tails.
In Fig. 3.9 we can see the interevent times cumulative distributions for different
values of b for the endogenous update.
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Figure 3.10: Endogenous update. Relation of β, the exponent of the cumulative
persistence distribution C(t) ∼ t−β, and b, the parameter in the function p(τ) =
b/τ for three different topologies; fully connected (circles), random with 〈k〉 = 6
(squares) and scale free with 〈k〉 = 6 (diamonds) networks. As a guide to the eye
we plot the curve β = b with a dashed line.
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Figure 3.9: Endogenous update: cumulative persistence C(τ) for different values of
the parameter b (grows from left to right) appearing in the activation probability
p(τ) for complete graph, random graph with 〈k〉 = 6 and Barabási-Albert scale-free
network with 〈k〉 = 6 and for system size N = 1000.

The endogenous update rule has a wider range of b-values for which the heavy
tail is recovered. We measured the exponents of the tails for different values b in
the different topologies. The results can be seen in Fig. 3.10

Surprisingly, for the case of the complete graph, we recover the relation pre-
dicted, i.e. a linear relation between β in the cumulative distribution function and
b, the parameter in the probability p(τ).
In the case of other topologies we find that the relation b−β is not the one predicted
in the case of no interactions, but it displays a reminiscent behaviour of the one ob-
served for a complete graph: the exponent β found in the cumulative interevent
time distribution increases monotonically with the parameter b in the activation
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probability.
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4
Conclusions

Specific conclusions

Standard update rules. With the standard update rules; RAU, SAU and SU;
the voter model on the networks studied here behaves qualitatively the same. In
terms of consensus formation and in the thermodynamic limit, the model reaches
asymptotically a stationary active state with coexistence of agents in both states.
For finite size systems the average density of interfaces 〈ρ(t)〉 and the survival prob-
ability S(t) decay exponentially with a characteristic time that scales as N for any of
these updates on a complete graph and on a random graph, but as something com-
patible with N/ ln(N) on Barabási-Albert networks. The patterns of interaction,
measured via the interevent times distribution M(τ) or, equivalently the cumulative
interevent time ditribution C(τ) appear to be quite homogeneous. C(τ) shows an
exponential tail, which has a characteric time that scales approximately as

√
N .

New update rule. With the exogenous update the model behaves qualitatively
the same as with standard update rules, i.e., although the timescales are disturbed
in a non-trivial way, the system does not reach order in the thermodynamic limit
for any of the topologies considered. We are able to reproduce heavy tails in the
cumulative persistence C(τ) for small values of the parameter b appearing in the
activation probability p(τ) = b/τ .
With the endogenous version of the new update rule, and using an activation prob-
ability p(τ) = 1/τ the voter model undergoes a coarsening process that in the
thermodynamic limit orders the system asymptotically. The coarsening process is
such that the average density of interfaces 〈ρ(t)〉 decays as a power law with differ-
ent exponents depending on the interaction network. The survival probability also
decays in a power-law manner whith an exponent smaller than one in any of the
interaction networks that were studied. This fact makes the average time to reach
consensus to be not well defined. Regarding the interaction patterns, these are very
heterogeneous, having C(τ) a heavy tail, consistent with a power law of different
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exponents depending on the interaction network. For the case of a complete graph
we can even approximately infer the exponent in the tail of C(τ) ∝ τ−β given the
activation probability p(τ) = b/τ , having β = b.

General conclusions.

As a general conclusion, we have implemented an update rule in two ways to the
voter model, which is able to account for heterogeneous activity patterns. When the
update rule is coupled to the states of the agents (endogenous update) it happens to
give qualitatively different results than the one known for the voter model with the
standard update rules. For the state-dependent update rule (endogenous update),
the system orders in the thermodynamic limit while it stayed in a disordered active
state for the standard update rules in infinite dimensional networks. Also the times
to reach consensus are varied in such a way that for the endogenous version of the
update rule they are not well defined. It is then something to take into account
when drawing conclussions from microscopic models of human activity, that the
macroscopic outcome might vary depending on the timing and sequences of the
interactions. Even if we implement this characteristic in the model, the way in which
it is done can have different results (exogenous vs endogenous update rule). Recent
research on human dynamics has revealed the “small but slow” paradigm [46, 45],
that is, the spreading of an infection can be slow despite the underlying small-world
property of the underlying network of interaction. Here, with the help of the general
updating algorithm for agent based models which can account for realistic interevent
time distributions, we have shown that the competition of opinion can lead to slow
ordering not only in small networks but also in the mean field case. The results
provide a theoretical framework that bridges the empirical efforts devoted to uncover
the properties of human dynamics with modeling efforts in opinion dynamics.



A
Interaction networks

The interaction networks where the model is studied are the graphs schematically
shown in figs. (A.1)-(A.3).

Figure A.1: Complete graph.

Complete graph: Every node in the network is connected to all the other nodes.
This is what is also called all-to-all interactions.

Figure A.2: Random graph.

Random graph: They are also called Erdös-Renyi graphs. We have a set of N
nodes. There is a probability p that each of the N(N − 1)/2 possible links among
them exists. Usually the probability p is set such that, given a system size N , the
average degree 〈k〉, i.e. the average number of neighbours of a node, of the network
is fixed, then 〈k〉 = pN(N − 1)/2.
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Figure A.3: Scale-free graph.

Scale-free graph: The main characteristic of these kind of networks is that
the degree distribution is a power-law. This fact enables the existence of hubs,
i.e. extremely highly connected nodes. We generate here these networks using the
method of Barabási-Albert, which consists of two ingredients: a growing network and
the fact that new added nodes attach preferentially to high degree nodes. The main
characteristic of these networks is their power-law degree distribution1 P (k) ∝ k−γ

with exponent γ = 3.

For a general review on complex networks and related topics see [31].

1The degree distribution P (k) of a network is the probability that a randomly chosen node has
degree k.
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[2] K. Suchecki, V.M. Egúıluz, M. San Miguel, Conservation laws for the voter model in
complex networks, Europhysics Letters Journal B 69 (2005) 228.
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