
Viability and Resilience of Languages in Competition
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Abstract

We study the viability and resilience of languages, using a simple dynamical model of two languages in competition.
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cases: (i) the prestige can only take two values, (ii) it can take any value but its change at each time step is bounded. In both
cases, we determine the viability kernel, that is, the set of states for which there exists an action policy maintaining the
coexistence of the two languages, and we define such policies. We also study the resilience of the languages and identify
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lead to disappear (zero resilience). Within our current framework, the maintenance of a bilingual society is shown to be
possible by introducing the prestige of a language as a control variable.
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Introduction

The study of language dynamics using computer simulations has

become a research field of increasing interest in the scientific

community. Models studying language dynamics range from social

impact theory applied to language competition [1] to genetic

approaches for the evolution of universal grammar [2]. We are

here interested in the problem of language competition, i.e., the

dynamics of language use among a population of interacting

agents speaking different languages. Around 50% of the 6000

languages spoken today are in danger and will disappear during

the current century according to the recent studies in language

contact [3]. Beyond Weinreich’s Languages in contact [4], several

studies in sociolinguistics have addressed questions regarding the

level of endangerment of specific languages [5] and the challenge

to find a common pattern that might relate language choice to

ethnicity, community identity or the like [6]. Lately, the need to

provide a quantitative analysis in the field of sociolinguistics is

getting an increasing attention [7]. This fact has triggered an effort

in order to model and understand the mechanisms within

scenarios of language competition: some models study the

competition between many languages in order to reproduce the

distribution of language sizes in the world in terms of the number

of speakers [8,9]; while others focus on the case of language

contact between few languages (for a review see Refs [10,11]). In

particular, Abrams and Strogatz [12] proposed a simple

mathematical model of competition between two languages. The

model describes the system by aggregated variables that represent

the fraction of speakers of each language, where a higher local

density of speakers and a higher prestige, the relative status of a

language, tend to increase the density of speakers of a language.

The analytical study of the model and the fitting to real data from

the competition between Quechua-Spanish, Scottish Gaelic-

English and Welsh-English, predict that the coexistence of two

languages is unstable, irrespective of the prestige of the languages

and their initial density of speakers in the model, in contrast to the

evidence that bilingual societies exist today. The paper finished

with the following remarks:

Contrary to the model’s stark prediction, bilingual societies

do, in fact, exist. […] The example of Quebec French

demonstrates that language decline can be slowed by

strategies such as policy-making, education and advertising,

in essence increasing an endangered language’s status. An

extension to [the model] that incorporates such control on s

through active feedback does indeed show stabilization of a

bilingual fixed point.

Several modifications and extensions of this model of language

competition have investigated deeper this problem: (i) developing

agent-based models in order to study the behavior of the model in

regular networks [13], in which the path to a final scenario of

extinction of one of the languages is analyzed in finite size systems;

(ii) introducing geographical dependencies in terms of a reaction-

diffusion equation, which allow the survival of the two languages,

with speakers of different languages mostly located in different

geographical areas [14,15]; (iii) implementing Lotka-Volterra type

modifications to the original model which can lead to a scenario of

coexistence of the two languages in the same geographical area

[16]; (iv) introducing bilingualism in the model: individuals can use

both languages [17,18]. In this last extension [18], and in the same
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parameter setting studied by Abrams and Strogatz, introducing

bilingualism keeps the coexistence of both languages unstable.

This extension of the model has been extensively studied and

compared to the seminal model of Abrams and Strogatz for the

case of socially equivalent languages and linear dependence on the

density of speakers [19]. The analysis has been done in agent

based models in finite systems where social structure has been

taken into account using complex social networks. The models

have been studied in two-dimensional regular lattices and small-

world networks [19], as well as in networks with community

structure [20,21].

The prestige of a language has been considered as one of the

main factors affecting language competition since Labov’s

Sociolinguistic Patterns [22]. It measures the status associated to a

language due to individual and social advantages related to the use

of that language, being higher according to its presence in

education, religion, administration and the media. Minett and

Wang [23] defined simple strategies for modifying the prestige to

maintain the coexistence of the two languages, following the

remarks of the seminal work quoted above [12]. Beyond this initial

effort in proposing simple strategies to foster language coexistence,

the aim of this work is to provide a more general approach to

determine the actions on the prestige to maintain the coexistence

of both languages.

We adopt a viability theory perspective: viability theory [24]

provides theoretical concepts and practical tools, in order to

maintain a dynamical system inside a given set of a priori desired

states, called the viability constraint set. This set represents the ‘‘good

health’’ of a system beyond which its safe existence would be

jeopardized; in the context of language maintenance, it charac-

terizes the safe coexistence of both languages. The goal of viability

theory is to determine policies (viable policies) that always keep the

system inside the viability constraint set, rather than to optimize

some criterion. The main concept is the viability kernel: the set of

states, given some possible control actions on the system, for which

the system can be maintained inside the viability constraint set. It

provides the actual constraints of the system: inside the viability

kernel, there is at least one control policy which maintains the

system indefinitely inside the constraint set; outside the viability

kernel, the system will break the constraint set, irrespective of the

policy applied. Moreover, viability theory provides a particularly

appropriate framework to define rigorously the concept of resilience

[25], the capacity of a system to undergo some exogenous

disturbances and to maintain some of its dynamical properties.

Resilience is often defined within the dynamic systems theory: it

can be measured as a function of the time needed to return to

equilibrium after a perturbation [26], or as a function of the

distance to bifurcation points [27], where these are defined as

points where the stability of a fixed point changes. In the viability

framework, the desired properties can be defined by viability

constraints, and resilience, which refers to viable states, becomes

the capacity to drive the system inside its viability kernel when a

perturbation pulls it off. It focuses on the ways by which the system

can recover from such a perturbation by providing control policies

(if any) that will drive back the system to a safe coexistence

scenario with a minimal cost of restoration. Applying viability

theory to the Abrams-Strogatz model, We identify the configura-

tions for which an indefinite coexistence can be insured, and

provide the corresponding action policies on the prestige.

Following Ref [25]’s approach, we study the resilience of the

model by identifying configurations from where the system can

return to a state of coexistence (finite resilience) and other

configurations from where one of the languages faces extinction

irrespective of the policy applied (zero resilience).

This paper is divided as follows: in the material and methods

section, we introduce the Abrams-Strogatz model, first briefly

describing the model and making a stability analysis depending

on the parameters. We then state the viability and resilience

problems. In the results section, we study the viability of the

languages by defining action policies that maintain the system

within its viability kernel. In the language resilience subsection,

we compute the resilience of the two languages using two

dfferent criteria. We finally discuss the results and draw some

conclusions.

Materials and Methods

Language Dynamics: the Abrams-Strogatz Model
To study the competition between languages in a given

population, Abrams and Strogatz proposed a simple model to

represent a population with two languages (A and B) in

competition for speakers. Let S be the fraction of A-speakers

and 1{S the fraction of B-speakers. A B-speaker can become an

A-speaker with the probability PBA(S), and the inverse event

happens with the probability PAB(S). In this way, the time

evolution for S is:

dS

dt
~(1{S)PBA(S){SPAB(S): ð1Þ

Speakers change their language according to the attractiveness of

the other language, which depends on the fraction of speakers and

on two parameters: the prestige of the language, s, and the volatility,

a. The probability for B-speakers to become A-speakers reads:

PBA(S)~Sas: ð2Þ

The prestige of language A is modelled as a scalar, s [ ½0,1� (the

prestige of language B is 1{s), which aggregates the multiple

factors affecting the prestige of a language. Notice that the case

s~0:5 corresponds to the case of socially equivalent languages.

The functional form of PBA(S) is shaped by the parameter a,

which we define as volatility (see Figure 1). For the case a~1, we

have the special case of linear transition probabilities (marginal

Figure 1. Dependence on the volatility parameter a for the
transition probability to change from state B to state A, PBA.
Case of socially equivalent languages (s~0:5). Marginal volatility (a~1,
solid line), high volatility regime (av1, dashed line), and low volatility
regime (aw1, dotted line).
doi:10.1371/journal.pone.0008681.g001
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volatility); a high volatility regime is obtained for av1, where the

transition probabilities are larger than linear (agents are likely to

change language); while a low volatility regime is obtained for

aw1 where happens the opposite (agents more rarely change

their language). Similarly, the probability for A-speakers to

become B-speakers is:

PAB(S)~(1{S)a(1{s): ð3Þ

Equations 2 and 3 incorporate the assumption that if a language

has no speakers or has zero prestige, the probability for a speaker

to change for this extinct language is zero.

Introducing Eqns 2 and 3 in Eqn 1, the Abrams-Strogatz model

results in the following population dynamics

dS

dt
~(1{S)S½Sa{1s{(1{S)a{1(1{s)�: ð4Þ

We focus now on a brief stability analysis of the model. When

a=1, the stability analysis shows that there are three fixed points:

S�~1 and S�~0 which correspond to consensus in the state A or

B, respectively; and the other one corresponds to coexistence:

S�~
s

1{s

� � 1
a{1

z1

 !{1

: ð5Þ

N For aw1, the two first fixed points are stable, and the third one

is unstable, leading to a scenario of dominance of one of the

languages and extinction of the other.

N For av1 instead, the stability of the fixed points changes:

consensus becomes unstable giving rise to the coexistence of

the two languages. A change in the status does not change the

stability of the fixed points, but changes its value; the higher

the difference in the relative prestige, the higher the difference

in densities between the two languages in the third fixed point.

Notice that the case s~0:5 corresponds to the case of socially

equivalent languages, and for this case, the transition

probabilities (Eqns 2 and 3) become symmetric and the third

solution is S�~0:5 independently of a.

N For a~1, and s=0:5, Eqn 4 becomes the logistic-Verhulst

equation [13]:

dS

dt
~(2s{1)S(1{S): ð6Þ

In this case, there exist just two fixed points: (i) S�~0 and (ii)

S�~1. For sv0:5, (i) is stable and (ii) unstable while for sw0:5 it

happens the opposite. For the case s~0:5, we obtain dS=dt~0
with a degeneracy of fixed points: any initial condition is a fixed

point of the dynamics. This special case of socially equivalent

languages and linear transition probabilities corresponds to the

voter model dynamics, extensively studied in complex networks

[28–31].

Language Viability
In this work, we are interested in how active policies in favor of

an endangered language might lead to a coexistence of the two

languages in competition. Abrams and Strogatz already suggested

that [12]:

An extension to Eqn 4 that incorporates such control on s
through active feedback does indeed show stabilization of a

bilingual fixed point.

We will give evidence of this remark by studying the Abrams-

Strogatz model in a viability theory framework.

Viability theory [24] focuses on how to maintain a dynamical

system inside a viability constraint set. The system is composed by

state variables, that describe the system, and by control variables

that allow one to act on it. The viability constraint set defines a state

set outside which the system escapes from an a priori desired

setting. A state is called viable if there exists at least one control

function that maintains indefinitely the system inside the viability

constraint set; the set of all these viable states is called the viability

kernel. The viability problem is thus to define a control function

that keeps the system viable. On the contrary, for states located

outside the viability kernel, all possible evolutions break the

constraints in finite time. As shown below, the viability kernel is

essential in order to define action policies that maintain viability

and the main task in order to solve a viability problem is thus to

determine its viability kernel.

When defining the viability constraint set in the case of language

competition, in general, in order to characterize a language as

endangered, the fraction of people speaking it is not enough: other

crucial aspects include the point at which children no longer learn

the language as their mother tongue; as well as the increase of the

average age of speakers (in an endangered language, eventually

only older generations speak the language) [32]. However, these

factors are out of the scope of the current approach, and we will

assume in this work, as a first approximation, that a fraction of

speakers below a critical value becomes an endangered situation.

Building up from this point, in the Abrams-Strogatz model, we

want to determine all the couples of density of speakers and

language prestige which let the coexistence of the two languages.

The viability constraint set is defined by setting minimal and

maximal thresholds on the density of speakers. Below the minimal

threshold, S, or above the maximal threshold, S, we consider that

language A, or B respectively, is endagered, meaning that the

system is not viable. We set S~1{S such that there is no need to

consider explicitly language B: if S is outside the constraint set, so

does 1{S.

As it is advocated in Ref [12], we introduce prestige s as the

control variable. The enhancement of the prestige of an

endangered language can be triggered by political actions such

as the increase of the prestige, wealth and legitimate power of its

speakers within the dominant community, the strong presence

of the language in the educational system, the possibility that the

speakers can write their language down, and the use of

electronic technology by its speakers [3]. The computation of

the viability kernel for the Abrams-Strogatz model will allow us

to answer questions like: for a given density of speakers, are

there action policies performed in favor of the endangered

language that will keep the coexistence of the two languages? If

the answer is yes, which are convenient policies? To answer this

question, Minett and Wang [23] proposed strategies in a simple

framework (only two control values are considered). The main

advantage of using viability theory is that it provides general

tools and methods to determine the set of initial density of

speakers for which it is possible to control the system such that

the coexistence is ensured.

Language Resilience
We study the viability of the language model, supposing that one

language is endangered when its density of speakers goes below a

Viab., Resilience of Languages
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critical value. However, being endangered does not necessarily

mean that the language will disappear. In the resilience problem,

we are interested in how to maintain or restore coexistence of the

two languages when the system is in danger, meaning that a

disturbance pulls it outside the viability constraint set.

As we pointed out in the introduction, resilience is the capacity

of a system to restore its properties of interest, lost after

disturbances. In this subsection, we define resilience of system

Eqns 9 and 10 by considering its capacity to return into its viability

kernel when a perturbation pulls it out from it, following Ref [25]

definition of resilience.

We are interested in situations of crisis, which take place when

the system leaves the viability constraint set. We distinguish two

types of states located outside the viability kernel:

N States for which there exists at least one evolution driving back

the system to the viability kernel after leaving the constraint

set, are called resilient. The system is resilient to a perturbation

which leads it into a resilient state;

N States for which irrespective of the control policy applied, the

system remains outside the viability kernel, are called non-

resilient. The system is not resilient to perturbations leading

the system into a non-resilient state.

For states located inside the viability kernel, the resilience is

infinite. Reference [25] also introduces the notion of cost of

restoration in its resilience definition. This cost measures the

distance between the evolution of the state of the system and the

property of interest (i.e. being inside the viability kernel). Its

definition must fulfill three conditions. First, the cost of an action

which keeps the property of interest indefinitely is zero:

maintaining this property may lead to some action update, but

they are not taken into account in the cost computation. Second,

when the property of interest can not be restored, the cost of

restoration is infinite. Third, when the property can be restored,

the cost is finite. It is often defined by the minimum time the

system is outside the viability kernel or the minimal deficit

accumulated along the trajectory. Then, the resilience is the

inverse of the restoration cost of the properties of interest lost after

disturbances. The trajectory starting from (S, s) with a minimal

cost defines the sequence of ‘‘best’’ action policies to perform, and

thus defines the resilience value. Resilience values can be

approximated numerically using Ref [33]’s algorithm, which is

based on the Ref [34]’s viability kernel approximation algorithm.

In the context of language competition, the use of viability theory

provides a measure of the cost associated to a policy action which

will favor an endangered language.

Results and Discussion

Language Viability
We consider three values of the volatility parameter: a~0:2, 1

and 2. Note that in the case a~0:2 (in general for av1), the fixed

point corresponding to coexistence of the two languages is stable,

and thus no control parameter on s needs to be included to

stabilize a bilingual fixed point. However, depending on the

difference in the prestige of the two languages, the fixed point

might lay outside the constraint set.

First case: two prestige values. Following the idea of

Minett and Wang [23], we consider first a setting where the

control u is the prestige s of language A, and we restrict the

possible values of the control to only two discrete values u1 and u2.

We consider the following viability problem: Find the action

policies (a function defining the action in time), such that the

dynamical system

dS
dt

~(1{S)S Sa{1s{(1{S)a{1(1{s)
� �

s~u; u [ u1,u2f g

(
ð7Þ

remains in the viability constraint set K :

K~½S,S�: ð8Þ

Our aim is to find the set of values of S for which there exists at

least one control function that keeps the states of the system

defined by Eqn 7 always inside the viability constraint set (Eqn 8).

The set of all the values of S satisfying Eqns 7 and 8 constitutes the

viability kernel associated to the model with such control settings,

and is denoted Viab(1)(K).

We will assume that the critical threshold of the density of

speakers is 20% of the size of the whole population. Thus we set

S~0:8 and S~1{S~0:2, the viability constraint being

K~½0:2,0:8�. We also suppose that some action can switch the

prestige of language A at any time from u1~0:4 to u2~0:6. The

theoretical boundaries of the viability kernel can be determined

analytically. Table 1 gives the boundaries of viability kernels for

three values of the volatility a: a~0:2, 1 and 2. The details and

proofs are given in Appendix S1.

For aƒ1, the viability kernel is the whole constraint set. This

means that it is possible to maintain language coexistence

between 0:2ƒSƒ0:8, irrespective of the initial density of

speakers A and the initial value of the prestige (given that the

initial state belongs to the constraint set, K ). For aw1, the

maintenance is only possible for initial densities of speakers A
between 0:4 and 0:6. When a state S 6[ Viab(1)(K), the system

will leave the viability constraint set, irrespective of the actions

applied.

We are interested now in how frequently policy actions must be

performed. We use the heavy control principle, which specifies to

change the control only when viability is at stake. The principle of

the heavy control algorithm is as follows:

N consider an initial state S located inside the viability kernel and

an initial control u0;

N anticipate the state of the system at the next time step, keeping

the same control;

N if the obtained state is inside the viability kernel, then the

control does not change;

N on the contrary, if it is outside the viability kernel, then change

the control.

Viability theory guarantees that this procedure maintains

language coexistence. However, there may be many action

policies that ensure coexistence: the only requirement is that the

chosen controls never lead outside the viability kernel. Figure 2

Table 1. Boundaries of the viability kernel for the dynamics
associated to system Eqn 7 and Eqn 8.

Lower Bound Upper Bound

a = 0.2 0.2 0.8

a = 1 0.2 0.8

a = 2 0.4 0.6

doi:10.1371/journal.pone.0008681.t001
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displays viability kernels and control policies. For av1, there exists

a stable fixed point and the trajectory leads to equilibrium.

Starting from any initial density of A-speakers and prestige, there

is no need to apply any control policy; the equilibrium is naturally

reached. For a§1, there are no stable fixed points inside the

viability constraint set. The control procedure is then applied at

each time step: the control is changed only when it leads to a point

located outside the viability kernel.

Second case: prestige chosen in a continuous

interval. In this paragraph, instead of taking only two values,

we suppose that the prestige can take any value s [ ½0,1� but the

action on the prestige is not immediate: the time variation of the

prestige
ds
dt

is bounded by a constant denoted c. This bound

reflects that changes in prestige take time: to reach a prestige

value s1 starting from an initial prestige s0vs1, the stakeholder

will have to anticipate at least
s1{s0

cDt
time steps, where c is the

maximum change per unit time Dt. We consider the viability

problem to define a function u of time, which maintains the

dynamical system:

dS
dt

~(1{S)S Sa{1s{(1{S)a{1(1{s)
� �

ds
dt

~u

u [ {c,zc½ �; c [ ½0,1�

8>>><
>>>:

ð9Þ

inside the viability constraint set K :

K~½S,S�|½0,1�: ð10Þ

The first step is to determine the viability kernel Viab(2)(K), defined

by all couples (S,s) that are solution of the system, Eqn 9, for which

there exists at least one control function keeping the system

indefinitely inside the viability constraint set defined by Eqn 10.

We still assume again that the critical threshold of the density of

speakers is 20% of the size of the whole population. Therefore, the

viability constraint set is K~½0:2,0:8�|½0,1�. The theoretical

Figure 2. Viability kernels and trajectories that maintain the system viable for a~0:2, 1 and 2. The viability kernels are represented in blue
and stable attractors (if any) by dots. Arrows represent the field direction and the controls to choose. For a~0:2, any control is convenient because
they lead the system to a stable fixed point. For a~1 and 2, when trajectory lead to a point located outside the viability kernel, the control value must
be changed in order to ensure coexistence.
doi:10.1371/journal.pone.0008681.g002
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boundaries of the viability kernel can be computed analytically

(Appendix S2). In general, there exists no explicit formula to define

the viability kernel boundaries and algorithms have been proposed

to approximate them. In this paper and in addition to the

theoretical boundaries, we approximate the viability kernel using

the algorithm described in Ref [34], that considers the dynamics in

discrete time Dt. The obtained approximation enables us to use a

simpler heavy control procedure. Figure 3 shows the analytical

and approximated viability kernels of the system for a~0:2, 1, and

2. The thick grey lines corresponding to the fixed points of the

dynamics has been obtained using Eqn 5. We set c~0:1, which

means that the time variation of the prestige cannot be higher than

10%. The figure shows how for states with a low A or B-speakers

density, the prestige associated to this language must be strong

enough to maintain viability. In situations where the density of one

language is high, smaller values of its associated prestige also give

raise to viable situations. On the contrary, non-viable states

correspond to situations where the density of one language and its

associated prestige are low at the same time. In this case, if the

actions in favor of this language come too late, its density of

speakers will get below the critical threshold 20% while the other

will spread through the majority of the population (above 80%). As

a increases, the viability kernel shrinks. Indeed, the higher the

parameter a, the more rarely agents change their language (low

volatility regime). The impact of the change on the prestige is then

lower as a increases, which means that when a language is close to

the boundary of the viability kernel, even with the maximal

government action, the effect on the density of speakers will be too

slow to avoid leaving the viability constraint set. On the contrary,

as a decreases, agents are likely to change their language (high

volatility regime) and to restore coexistence. Note that for a~0:2,

the viability kernel is not the whole constraint set: non-viable states

reach a stable fixed point located outside K .

The control procedure models an action to enhance the prestige

of an endangered language, and we assume that such an action is

costly. Therefore, if among different possible action policies to

maintain language coexistence, doing nothing keeps the system in

a viable situation, we assume that this strategy will be chosen in

order to reduce costs. In other words, we suppose that, if several

situations with {cƒuƒc lead to viable situations, the best choice

is u~0. The principle of the control algorithm is roughly as

follows:

Figure 3. Viability kernel for the Abrams-Strogatz model, with c~0:1 and Dt~0:05. The continuous black lines represent the theoretical
curves of the viability kernel, and the area in blue the approximation. The continuous grey line represents stable fixed points and the dotted grey
lines unstable fixed points.
doi:10.1371/journal.pone.0008681.g003

Viab., Resilience of Languages
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N consider an initial state (S,s) located inside the viability kernel;

N anticipate the trajectory in the next time steps, by considering

u~0;

N if the obtained state is located inside the viability kernel, do not

change the control;

N otherwise, choose a control that brings the system away from

the viability kernel’s boundary as much as possible.

This control procedure is described in more details in Ref [34].

We use here the viability kernel approximation boundary instead

of the analytical one because it makes easier to check if the

anticipation of the trajectory leads to a point outside the kernel

and to approximate the distance to the viability kernel boundary.

Figure 4 presents some examples of trajectories for three different

values of a, and the time evolution of the control (c~0:1), during

750 time steps. For av1, there exist stable fixed points

corresponding to coexistence of the two languages and the

dynamics settles there, keeping u~0 along the trajectory. For

a§1 instead, there are no stable fixed points inside the viability

kernel, and the control procedure must be applied at each time

step. As long as the trajectory is far away from the kernel’s

boundary, the control is kept to zero; when it approaches the

boundary, the control that brings the system away from the

boundary corresponds to the maximum value of the control with

the appropriate sign, +c.

Language Resilience
In this subsection, we deal only with the second case, where the

prestige is chosen on a continuous interval.

Determining the resilient and non-resilient states. All

the states can undergo a disturbance. For instance, immigration:

people speaking language A exile to another country, hence the

density of A-speakers reduces dramatically in the home country,

and increases in the destination country. Another perturbation to

the system can be due to an abrupt change in the prestige of a

language because of political actions such as invasion, occupation,

etc. The states resulting from disturbances might bring the system

outside the constraint set, leading to situations where the density of

speakers is lower than the minimal threshold or higher than the

maximal threshold. Thus, we consider now the set of all the

possible situations H~½0,1�|½0,1�, where the first dimension

represent the density of speakers of language A and the second

the prestige of language A, and we study the resilience of the

system in H .

First, we determine the set of states of infinite resilience, that are

the states located inside the viability kernel of the system defined

Figure 4. (Left panel) Examples of trajectories (in green) starting from an initial state x0 for three values of a (a~0:2, 1 and 2), and
(right panel) evolution of the control, with c~0:1. The continuous grey line represents stable fixed points and the dotted grey line unstable
fixed points.
doi:10.1371/journal.pone.0008681.g004

Viab., Resilience of Languages

PLoS ONE | www.plosone.org 7 January 2010 | Volume 5 | Issue 1 | e8681



by Eqn 9 associated to constraint set defined by Eqn 10. It

corresponds to the dark blue area on Figure 5. Then, we look for

all the states for which at least one evolution drives the system back

to the viability kernel after spending a finite time in the critical

area H\K (where E\F is the complementary set of the set F in the

set E). These are the resilient states, in colored light blue in

Figure 5. Note that states located in K\Viab(2)(K) can have a finite

resilience: when coming back towards Viab(2)(K), the trajectory

leaves the constraint set and reaches Viab(2)(K) after spending

time in the critical area. The states that, irrespective of the applied

policy, remain outside the viability kernel are in the white zone.

For these states, the desired level of language coexistence is

impossible and resilience is zero (given the assumed value of c,

which limits the effect of action).

In Figure 5, we show the resilient and non-resilient states for

a~0:2, 1, and 2. For a small value of a, all the states are resilient,

except S~0 and S~1, irrespective of the value of s. As we

pointed out previously, the fixed point corresponding to

coexistence is stable for av1. Therefore, the desired level of

coexistence for the two languages is ensured or can be reached,

irrespective of their initial density of speakers and their prestige,

except when a perturbation leads to a situation where one

language is already extinct. For a~1, nearly for all the initial

density of speakers and prestige, reaching the desired level of

languages coexistence is possible, except if the initial state

represents a large density of speakers of language A associated

with high prestige (language B becomes extinct, irrespective of the

action applied) or vice versa. For aw1, the set of resilient states

becomes smaller as it can be seen in Figure 5. The larger the value

of a, the smaller the set of resilient states is. Indeed, as mentioned

before for the shrinking of the viability kernel, a high value of a

means that agents rarely change their language and the effects of

increasing or decreasing the prestige of a language become less

effective.

Computing resilience values. As we pointed out previously,

the resilience value is then defined as the inverse of its restoration

cost. There exist several ways of defining a cost of restoration,

depending on the situations and the point of view. We studied two

possibilities for the cost: on the one hand, we considered that the

time needed to restore viability is the only ingredient under

consideration, the cost value is then the time the system is outside

the viability kernel. The cost function C1 that associates to a state

x the minimal cost of restoration among all the trajectories starting

from x is defined by:

Figure 5. Resilient (blue) and non resilient states (in white) in the model associated to dynamics Eqn 9 with constraint set Eqn 10,
for three values of a: a~0:2, a~1, a~2. Viability kernel is in dark blue.
doi:10.1371/journal.pone.0008681.g005
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C1(x)~minx(:)

Ðz?
0

xV (x(t))dt
� �

and xV (x(t))~1 when x(t) 6[ Viab(2)(K) and 0 otherwise,
ð11Þ

where x represents the state (S,s), x(t) is the state at time t and x(:)

is the trajectory starting from this state. Hence the cost value is zero

when the system is inside the viability kernel. On the other hand,

we considered a more complete cost function composed of two

terms: the first one that accounts for the time the system is not

viable, and the second one, representing the distance to the viability

constraint set. This cost function, denoted C2, thus associates the

time of restoration and the measure of the density of speakers above

or below the thresholds of the viability constraint set:

C2(x)~minx(:)

Ðz?
0

xV (x(t))dtzc2xK (x(t))dt
� �

and xK (x(t))~d(x(t), K) when x(t) 6[ K and 0 otherwise,
ð12Þ

where d(x(t),K)~ max S{S(t), S(t){S
� �

measures the distance

between the density S(t) at time t and the density thresholds.

Equation 12 takes into account that the cost of restoration of a state

near extinction is more costly than the one for states located near

the boundary of K . Parameter c2 reflects the relative weight of each

cost, fixing the cost of being far from K relatively to the time spent

outside the viability kernel.

Figure 6 compares resilience values for the Abrams-Strogatz

model for different values of a, and for the two cost functions

defined (with an arbitrary cost parameter c2~20 for the second

cost function). The difference of cost between two iso-cost curves

is 4:8, and therefore the difference in resilience is
1

4:8&0:2 (the 4:8

value is arbitrary and is linked to the parametrization of the

algorithm in Ref [33]). The darker the line, the higher the cost

value is. In the white area, cost is infinite, meaning that restoring

coexistence of both languages is impossible. For a~0:2, the

maximal cost of restoration is equal to 4:8 for cost function C1

defined by Eqn 11 and 19:2 for the cost C2 defined by Eqn 12.

The cost associated to the function defined by Eqn 12 is bigger

than the one associated with Eqn 11 because it introduces an

additional part (the distance to viability) on the final cost. For

a~1, the maximal cost of restoration is more important (14:4 for

Eqn 11 and 62:4 for Eqn 12). For a~2, the resilient zone is

smaller and the costs of restoration are larger (24 for Eqn 11 and

67:2 for Eqn 12). This means that for higher values of a, where the

resilient set is smaller, the cost of restoration is larger: there are less

resilient situations and the action policies to perform in order to

restore viability are the most costly.

Determining action policies to restore viability at

minimum cost. Computing resilience values is instrumental

to define action policies that drive back the system inside the

viability kernel. Here, we use an optimal controller instead of a

heavy controller: we do not look for one action policy that keeps

the system in a resilient state, but we define a sequence of actions

that allows the system to return to the viability kernel at the lowest

cost of restoration. It can be shown (see Ref [33]) that choosing the

action that decreases the cost at each step (or increases the

resilience), minimizes the whole cost of restoration. Hence,

Figure 6. Resilience values of the Abrams-Strogatz model. In dark blue, the viability kernel; between the level lines (light blue area), the cost
of restoration is finite (one level line corresponds to a cost of 4.8 and the darker the line, the higher the cost); in the white area, the cost is infinite and
the resilience is zero. (Left panel) Cost function C1 (Eqn 11); (Right panel) cost function C2 (Eqn 12).
doi:10.1371/journal.pone.0008681.g006

Viab., Resilience of Languages

PLoS ONE | www.plosone.org 9 January 2010 | Volume 5 | Issue 1 | e8681



theoretically this approach also provides a means to compute

resilient policies, which minimizes the cost of restoration along the

trajectory. The procedure is roughly as follows:

N consider an initial state (S,s) for which resilience is finite;

N choose the action policy that decreases the cost at maximum at

each time step, until the trajectory reaches the viability kernel;

N once the state is viable, use the heavy control procedure

described previously to ensure the indefinite maintenance of

the system.

Figure 7 displays some trajectories starting from resilient states

for a~0:2, 1 and 2. Considering the cost C2 of Eqn 12, the

controller produces a trajectory that avoids situations where the

density of speakers is too small or too large, because these are the

most costly. Notice that for a~0:2, the trajectory first reaches the

equilibrium line outside K , but in order to bring the system inside

the viability kernel, the control function is chosen such that it does

not get stuck on this fixed point. The procedure leads the system to

a second fixed point, located this time inside the viability kernel.

Even if the starting point is located inside K but outside the

viability kernel (see for example case a~1), the trajectory crosses

the viability constraint set before going back to Viab(2)(K), as it is

not possible by definition for these states to directly reach the

viability kernel.

Conclusion
In this paper, we provide general means for determining action

policies to maintain the coexistence of two languages in

competition within the Abrams-Strogatz model [12] by using the

framework of viability theory. We compute viable policies of

action on the prestige variable to keep language coexistence within

a given constraint set, computing the viability kernel of the system.

We thus give evidence of the Abrams and Strogatz remark:

language coexistence is unstable if we consider a fixed prestige, but

introducing the prestige as a control variable of the model enables

the maintenance of a bilingual society, where both languages have

a density above a critical value. We also define the resilience of the

system in the formalism of viability theory: the system is resilient to

a perturbation if, after the perturbation, there exists an action

Figure 7. Examples of trajectories (in green) starting from a point x0 during 750 time steps, that allow the system to restore its
viability at the minimal cost of restoration, using cost function Eqn 12. The continuous grey line represents stable fixed points and the
dotted grey line unstable fixed points. Note that for an initial state x0 located inside K but outside Viab(2)(K), the trajectory crosses the viability
constraint set boundaries before reaching Viab(2)(K).
doi:10.1371/journal.pone.0008681.g007
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policy driving back the system to its viability kernel. In this way, we

determine the action policies that minimize the cost to drive an

endangered language to coexistence (i.e. to the viability kernel of

the system). In the paper, we have analyzed the role played by the

two parameters of the model: the prestige of the language, s, and

the volatility, a. The prestige has been considered as the control

variable of the system; we have shown how the viability kernel

shrinks as the volatility parameter increases, due to the fact that

agents become less likely to change their language.

The whole approach illustrates the new definition of resilience

proposed in Ref [25], which enlarges previous definitions of

resilience, yet with a precise mathematical meaning. In particular,

we don’t need to define the resilience relatively to the attractors of

the dynamics, whereas the presence of such attractors is generally

required in previous mathematical views of resilience [26,27]. In

the future, it will be interesting to consider the extension of the

Abrams-Strogatz model that includes bilingual speakers [19,23],

and compare the results with the ones presented in this paper in

order to illustrate which is the role of bilingual agents in the

dynamics of language competition from the viability theory

perspective.
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Appendix S2 Theoretical bounds of the Abrams-Strogatz model
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