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ABSTRACT 
 
We report results on the numerical analysis of the behaviour of a semiconductor ring laser under 

the influence of feedback from two external cavities. Double feedback arises naturally in a 

semiconductor ring laser, e.g. at the end facets of an outcoupling waveguide. We find that, under 

certain conditions, the system displays quasi-periodic and chaotic behavior. 
 
 

1 INTRODUCTION 

Semiconductor ring lasers (SRLs) are becoming key components in photonic integrated circuits. 

Contrary to integrated lasers of Fabry-Perot type, they do not require cleaved facets or gratings 

to provide the necessary optical feedback [1]. They have been proposed in applications such as 

wavelength filtering, unidirectional travelling-wave operation and multiplexing/demultiplexing 

applications [2-7]. Monolithic SRLs can exhibit a bistable unidirectional operation. This 

bistability between counter-propagating modes makes them highly desirable for use in systems 

for all-optical switching, gating, wavelength-conversion functions and optical memories [4,8]. 

Semiconductor lasers from the Fabry-Perot type subject to delayed optical feedback can generate 

chaotic dynamics with intensity pulsations on subnanosecond time scales. Such dynamics does 

not only occur due to optical feedback, but happens also when coupling semiconductor lasers to 

each other even for short propagation distances [9]. This chaotic dynamics can in some cases be 

unwanted. However, the unpredictability of the optical chaotic signal can be put to good use by 

way of chaos encryption techniques [10]. Here, we study how stable the dynamical response of 

the SRL is to delayed optical feedback coming from reflections in the output coupler. In this 

case, the delayed signal of the clockwise mode of the SRL will be injected in the counter-

clockwise mode and vice versa. This cross-feedback is a unique property of the device structure 

of the SRL and can not be achieved in other semiconductor laser structures. 
 

2 SETUP AND THE MODEL 
 
The system under study is depicted schematically in Figure 1. It consists of a SRL coupled to a 

straight waveguide. The end facets of the waveguide will provide for the optical feedback. We 

assume that multiple reflections do not occur in between the two end facets. 
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Fig. 1. A SRL with its directionally coupled straight waveguide. Feedback occurs at the end-

facets of the waveguide. 

 

The dynamics of this system is studied by way of rate equations. We propose the following 

model, which is an extension of an established rate equation model for a SRL operating in a 

single longitudinal mode regime [2-3]. Terms accounting for the injection of the delayed optical 

field of the counter-propagating mode are added according to Lang-Kobayashi. This results in 

the following set of equations for the complex field amplitudes (��W�� and (��W�� of the two 

counter-propagating modes and the carrier density 1�W���
 
 
 

where 1K  and 2K are the feedback strengths. 1W  and 2W  are the respective delay times and 14  and 

24  are the accumulated optical phases during propagation in the straight waveguide. Phase-

amplitude coupling is modeled by D =3.5. Nonlinear gain saturation effects are taking into 

account using the self-saturation s=0.005 and the cross-saturation c=0.01 coefficients. The two 

fields are coupled linearly by way of internal backscattering or reflection at output coupler. This 

gives rise to dissipative kd=0.000327 and conservative component kc ==0.0044. J =0.002 is the 

ratio of photon lifetime (
p

W =10ps) to carrier lifetime. The dedimensionalized injection current is 

represented by P =1.7. Time has been rescaled to the
p

W . 
 
 

3 SYMMETRIC CASE 
 

Without optical feedback ( 1K = 2K =0), the SRL is operating in the bistable unidirectional 

regime. We start by considering the fully symmetric case: 1K = 2K , 14 = 24 , 1W = 2W . If we 

increase the feedback strength slightly, the SRL will start emitting bidirectionally. We study the 

different dynamical regimes by noting the maxima of the intensity of the unidirectional modes as 

the feedback strength is increased. Figure 2 shows this intensity bifurcation diagram for 

14 = 24 =0 and the delay times fixed 1W = 2W =0.5ns. 

The dynamics of the SRL subject to delayed optical feedback is relatively stable in the 

symmetric case. Parameter regimes of stable operation are alternated with period 1 oscillations. 

Dynamics which is more complex is not observed. This indicates that at least for this symmetric 

case the SRL is very immune to optical feedback noise. 
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Fig. 2. Bifurcation diagram for the intensity. The maxima of the clock-wise mode (x) and of 
the counterclockwise mode (o) are recorded. 
 

 
Fig. 3. Bifurcation diagram for the intensity. The feedback strength 1K =0.5ns

-1
 is fixed, 

� 14 = 24 =S ���The maxima of the clock-wise mode (x) and of the counter-clockwise mode (o) 
are recorded. 

 

 
Fig. 4. Map of the dynamical behaviour of the SRL subject to delayed feedback. 

 
 

4 ASYMMETRIC CASE 

In the asymmetric case ( 1K z 2K ) more complex dynamics emerges (Figure 3). The entire 

feedback strength parameter regime is in Figure 4. We indicate for all different combinations 

1K and 2K  what kind of dynamical behavior is observed. When 1K = 2K , only stable continuous 

wave (CW) and period 1 oscillations (P1) are found. Increasing the difference between the 
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feedback strength gives rise to period 2 oscillations (P2), quasi-periodicity (QP) and even chaos 

(Ch). If one wants to use SRLs for chaos communications, one has to make sure that the 

asymmetry is large enough to obtain chaos with enough complexity. 

CONCLUSION 

In conclusion, we have studied the double delayed optical feedback that arises naturally for 

semiconductor ring lasers. We find that when this cross-feedback is symmetric, the dynamical 

behavior of the semiconductor ring laser has very low-complexity. Only, when this symmetry is 

broken, complex dynamics such as chaos can emerge. 
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