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Abstract

In this paper we extract the topology of the semantic space in its encyclopedic acception, measuring
the semantic flow between the different entries of the largest modern encyclopedia, Wikipedia, and thus
creating a directed complex network of semantic flows. Notably at the percolation threshold the semantic
space is characterised by scale-free behaviour at different levels of complexity, this relating the semantic
space to a wide range of biological, social and linguistics phenomena. In particular we find that the
cluster size distribution, representing the size of different semantic areas, is scale-free. Moreover the
topology of the resulting semantic space is scale-free in the connectivity distribution and displays small-
world properties. However its statistical properties do not allow a classical interpretation via a generative
model based on a simple multiplicative process. After giving a detailed description and interpretation
of the topological properties of the semantic space, we introduce a stochastic model of content-based
network, based on a copy and mutation algorithm and on the Heaps’ law, that is able to capture the
main statistical properties of the analysed semantic space, including the Zipf’s law for the word frequency
distribution.

Introduction

The meaning of a word can be defined as an indefinite set of interpretants, which are other words that
circumscribe the semantic content of the word they represent [1]. In the same way each interpretant
has a set of interpretants representing it and so on. Hence the indefinite chain of meaning assumes a
rhizomatic shape that can be represented and analysed via the modern techniques of network theory [2].

The semantic or conceptual space (SS hereafter) has already been investigated with different ap-
proaches. A common understanding within those approaches is that the SS is made of words or concepts
that are connected by certain relations. Depending on the nature of those relations different semantic
webs have been already considered. In the psycholinguistics approach the SS is often extracted via free
word association game and a network is constructed where two words are connected if they appear to
be consecutive in a free word association experiment [3, 4]. Other semantic webs are generated with
linguistics approaches [5]. Among others an interesting one is based on dictionary, where the relations
between words are set to be of synonymy, antonymy, belonging to the same category or class, etc. [6, 7].
In all the mentioned cases a scale-free topology and small-world properties for the SS are found, suggest-
ing an intrinsic self-organising nature of the SS [6]. However it has been argued that networks derived
by dictionary relations and representing the so called dictionary semantics, characterised by scale-free
distribution for the connectivity with exponents smaller than -2, reflect the properties of language use
more than the properties of the SS [8, 9].

In contrast to the dictionary representation of the SS, it has been suggested that the meaning of a
sign, where a sign can be a word, a concept, etc. can be recovered within an encyclopedic model, where
every sign is specified by a set of other signs that interpret it [10]. “This notion of interpretants is fertile
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because it shows how semiotic processes, via continuous movements that refer a sign to other signs or
sign chains, circumscribe the meanings in an asymptotic way. They never touch them, and make them
accessible via other cultural units [...]. In this way an open system of connections between different signs
is created that takes the shape of a rhizome [11]” [10].

Hence, in its encyclopedic semantics acception, the SS can be interpreted as a metapopulation system
where each page of an encyclopedia is a population of interpretants/words characterising some meaning.
Then the structure of SS assumes a dynamical connotation, typical of population dynamics, where the
different concepts are born and grow in time, exchanging and inheriting attributes from other concepts
1 .

In this work we attempt to extract the SS in its encyclopedic semantics acception. Following the
semiotics rationale described above, we consider each page of an encyclopedia as a population of inter-
pretants and we measure the correlations between each pair of pages of that encyclopedia in terms of
directional semantic flows. In particular we analyse a whole dump of Wikipedia. Wikipedia is not only
the largest encyclopedia existing nowadays, but it is an open encyclopedia with its pages always growing
in size and number, thus it well represents the idea of encyclopedic semantics expressed above. The
resulting network is a directed network of semantic flows between the different concepts that are present
in an encyclopedia and thus portraits a snapshot of the dynamics of meaning in that representation of
the SS.

The concept of information flow, as it is used in this contest, is introduced in [13] to indicate the
correlations between populations whose elements are defined by abstract attributes. Those populations
can be social, biological or, as in this case, made of words. We choose the use of the term ”information
flow”, instead of distance between probability distributions or correlations, because in those systems
correlations are often caused by migration or inheritance of a part of a population to another one. Thus
the very term of information flow, that can be ethnical, genetical or, as in this case, semantic, gives an
idea of such a dynamical process, where to a movement of elements from a population to another one, it
corresponds a flow of information in the attribute space where those elements are defined.
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Figure 1. Cluster size distribution of the semantic space. Cluster size distribution P (S) of the
semantic network at the percolation threshold. In the inset we show the cumulative distribution
P (S > S∗).

1It is interesting to notice how Deleuze and Guattari foresaw the very essence of the semantic machine not as a machine
producing meaning, but as a machine producing its own structure [12].
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0.1 The dataset

We consider the articles of a complete snapshot of English Wikipedia dated June 2008 [14], consisting of
N ≈ 2 · 106 entries. To process our dataset first of all we get rid of redirection pages. Then, in order to
analyse the semantic content of the encyclopedia, we process the text, cleaning it from punctuation and
from the so called structural words like articles, pronouns, common adverbs, etc. [15, 16]. In fact those
words are very frequent in each page and often don’t contribute to its semantic characterisation. After
that we lemmatise the text, transforming the different words in their singular form or in their infinitive
form if they are verbs [17]. The resulting set of lemmas defines the interpretants or attribute space where
the different pages are defined and each Wikipedia page comes out to be defined by its lemmas frequency
distribution and by its size.

In order to compute the directional semantic flow between the pages we use the method introduced
in [13]. This method is very general and allows to extract a directed information flow network from a set
of populations whose elements are defined by a n-dimensional symbolic attribute vector. It is based on
the Jensen-Shannon divergence [18] and within a information theory approach it is able to measure the
amount of information flow within a set of populations of different sizes, defined in a symbolic attribute
space. Moreover, using concepts derived by geographical segregation, the methodology in [13] is able to
infer the directionality of the information flow. More details are given in the Materials and Methods
section.

The resulting network representing the SS, as we show below, displays scale invariant structures and
small world properties, revealing a hierarchical SS, where the semantic clusters are strongly connected
and communication between different areas of knowledge is fast.
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Figure 2. Connectivity distribution of the semantic space. Out-degree distribution P (kout)
(left panel) and in-degree distribution P (kin) (right panel) of the semantic network at the percolation
threshold. In the insets the corresponding cumulative degree distributions P (k > k∗) are displayed.

Results

Topology of the Semantic Space

To obtain our network we measure the directional semantic flow between all the pair of entries and obtain
a list of all the possible pairs of pages separated by a semantic distance. Then we order the entry pairs
for increasing values of their semantic distance, and we define a network of entries considering two pages
as linked when their semantic distance is smaller than a given threshold.
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Figure 3. Connectivity distribution of the minimum spanning tree of the semantic space.
Degree distribution for the undirected minimum spanning tree for the whole network representing the
semantic space. In the insets the cumulative degree distribution P (k > k∗) is displayed.

By increasing the value of the threshold we obtain a growing network where the first links to form
are the strongest in a semantic sense. As we further increase the threshold, very well connected clusters
form, each cluster representing different semantic areas. A significative threshold to analyse the network
representing the SS is the percolation threshold (PT hereafter), when a giant cluster forms and a phase
transition happens [2, 19].

The SS network reaches its PT at approximatively 362000 pages, when the two main clusters merge
to form a giant cluster of 57800 pages. At the PT the network has L ≈ 3 · 108 links with an average
degree 〈k〉 ≈ 1743. The very large average degree means that the clusters are very densely connected.
The network is composed by 44500 disconnected clusters showing scale invariant cluster size distribution,
P (S) ∝ S−2.1, with a fat tail (Fig.1).

The scale-free cluster size distribution is the first important property we find for the SS. It has been
shown that in a random growing network at the PT the cluster size distribution decays faster than a power
law, P (S) ∝ 1/(S3 ln2 S) [2, 20]. Then we can argue that the scale-free behavior we find for the cluster
size distribution is not an effect of a random growing network at percolation, but a peculiar property of
the SS.

As a matter of fact at this threshold almost each cluster represents a well defined semantic area.
Hence the scale-free distribution implies a hierarchy between the semantic areas and gives us a picture
of the structure of the SS.

The largest clusters, representing the greater body of the SS, are composed by large taxonomies, as
geographical places, biological species, etc... The largest cluster is made of 38500 pages and consists
of geographical places of USA, as villages, cities, rivers, etc... The second largest cluster is made of
19300 pages and consists of taxonomies of living species as animal, plants, insects, bacteria, etc...The
third largest cluster is mainly made of Romanian geographical entries, the fourth by French cities and
villages and so on. In each of these clusters the pages are very simple and have a structure very similar
to each other. A typical example of those kind of pages is the Canarium Zeylanicum page, that is in the
second largest cluster: ”Canarium Zeylanicum is a species of flowering plant in the frankincense family,
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Figure 4. A portion of the minimum spanning tree of the semantic space. A portion of the
undirected minimum spanning tree of the network representing the semantic space in the
neighbourhood of the entry nature until its third neighbour. The nodes represent different Wikipedia
entries, while the edges represent a semantic flow between the different entries. The color partition is
based on the nodes modularity classes. Figure realised with the opensource software Gephi [24].

Burseraceae, that is endemic to Sri Lanka.”. The content word lemmas of this page are: ”Canarium
Zeylanicum specie flower plant frankincense family Burseraceae endemic Sri Lanka”. This page easily
connects with all pages containing ”specie flower plant endemic Sri Lanka”, hence forming a taxonomy
with other pages as the Mastixia Nimali page: ”Mastixia Nimali is a species of plant in the Cornaceae
family. It is endemic to Sri Lanka.”. It is interesting to notice how the passage from a taxonomic page
to another resides in the mutation of a few rare words.

Then we have clusters at all scales of magnitude consisting of any semantic area one can possibly
think about and generally the larger is the complexity of the page, the smaller is the cluster which it
belongs to. There are clusters of football players, small clusters of different kind of bicycles, ethnicity
clusters, language families clusters, singers, technology, religions, etc...

The out-degree and in-degree distribution of the network at the PT are scale-free with a very slow
decay, characterised by exponents: γout ≈ −1.28 and γin ≈ −1.27 (see Fig.2). The distributions are scale
invariant until very large scales where a sharp cut-off appears, revealing that the SS is characterised by
structures at all the scales. The giant component of the network has a directed diameter d = 20 that is
of the order of the logarithm of the cluster size. Moreover its average clustering coefficient is 〈C〉 = 0.87,
that is larger than the clustering coefficient of a random network of the same size, 〈C〉RAND = 0.17,
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revealing local small-world properties of the SS [21].
If the description at the cluster level represents the main body of the SS, the minimum spanning tree

(hereafter MST) represents its backbone. The MST of a weighted network is an acyclic graph that has
all the vertices of the network and that minimises the sum of the distances between the pages [22]. It
represents the skeleton of the network and in a sense it represents how semantic information best flows
throughout the SS.

We compute the undirected MST of the complete network of Wikipedia via the Prim’s algorithm [23].
The degree distribution of the MST is scale free with exponent -2.4 and a fat tail (see Fig.3). Again the
scale-free behaviour of the degree distribution tells us about the hierarchical structure of the MST of the
SS. If we have a glimpse to Fig.4, where we show a small portion of the MST centred on the Wikipedia
entry nature, we can have a rough idea of how this hierarchy organises. A very general concept, as
”nature”, has not a lot of connections, but it is an important bridge for the semantic flow between
less complex concepts. Those less complex concepts are in general more connected and eventually form
taxonomies, which are hubs in the MST.

From what we said we can draw a general picture of the SS, as a space whose body is mainly composed
by simple concepts that are densely clustered in taxonomies or classifications. Then, at higher levels,
more complex concepts form, creating smaller semantic clusters. This hierarchy goes further, in a scale-
free fashion, until the more general and elaborated concepts emerge and those create an architecture of
semantic flow channels that spans through the whole SS.

The values of the exponents of the degree distributions are too large to be explained by standard
growing network models based on preferential attachment [25]. For the character of the system and its
statistical properties, the emerging topology of the SS is more likely to be represented by a new class of
models of stochastic content-based networks of the type presented in [26–28], with the difference that in
the case of Wikipedia the correlations generated by the zipfean distribution of content words [16] play
an important role on the topology of the system as it is explained below. This observation relates the
topology of the SS to a wider range of biological phenomenology [28].

The model

The complexity of the system we are considering is large, since it relates the phenomenology of different
topics page writing to the topology of the macroscopic system of the SS.

Here we present a descriptive model that is able to catch the properties of the SS at three different levels
of complexity. In particular it is able to reproduce the scale-free cluster size distribution, the exponents
for the out and in-degree distribution and the Zipf’s law for the word frequency distribution [36]. It is a
growing stochastic model of content-based network generated by a copy and mutation algorithm. This is
intended on a side to create a multiplicative process a la Simon [37], to reproduce the scale-free cluster
distribution and on the other side to create, via mutation, very well connected taxonomic clusters to
reproduce the very low exponent of the degree distribution. In the overall process a Heaps’-like law [38]
for the text growth is imposed to produce correlations between pages and to allow a percolation and this
finally generates the Zipf’s law for the word frequency distribution 2.

We give the details of the model in the Materials and Methods section, while here we just give its
general description. Each page in the model is considered to be a collection of words. Those words can

2Written human language displays a fascinating puzzle of empirical regularities. Among them, the Heaps’ law states
that the vocabulary V of a written text is a function of its size L, V (L) ∝ Lβ , with 0 < β < 1. The Heaps’ law is strictly
related to the Zipf’s law for the word frequency distribution. The Heaps’ law has been analytically and algorithmically
derived from the Zipf’s law [39, 40]. In [41] there is a derivation of the Zipf’s law from the Heaps’ law, even if it is not
straightforward.

In network theory a written text can be represented by a network whose vertices are the words and two vertices are linked
if they are adjacent in the text [42, 43]. A convenient way to model a growing text in network theory is to assume that at
each time step t a new word and a fraction of old words α · t is introduced in text, possibly preserving the eulerianity of
the system [44]. Hence in this representation the discrete time t represents the size of the vocabulary. At each time step
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be new, extracted from a potentially infinite vocabulary, or old, picked up randomly from already written
pages. The balance between new and old words is settled to respect the Heaps’-like law between text size
and vocabulary size. Each page is generated with an invariant part, whose size is random, that is a fixed
portion of the page that doesn’t change when the page mutates.

The model starts with a few pages of random words. Then, at each time step, we generate a new page
of words, that, as explained above, are in part new words and in part they are words picked up randomly
from already written pages, keeping the balance between text size and vocabulary size via the Heaps’-like
law. Then, at each time step, we generate M new pages by copying M old pages, keeping unchanged
their invariant part and mutating their variant part with some old or new words, always considering the
balance between text size and vocabulary size via the Heaps’-like law.

The generation of new pages in the model is intended to mimic the appearance of new pages in the
encyclopedia, that are formed partially by a new vocabulary and partially by words that are inherited by
already existing pages. Beside, the generation of pages via the mutation mechanism allows to generate
the different growing taxonomies and in this way to mimic the phenomenology observed in the real
encyclopedia, where different pages belonging to the same taxonomy differ only by a few rare words.

In Fig.5 we show that with an opportune choice of the parameters this model can generate a system
with the desired properties.

Discussion

Nowadays understanding the topology of the SS and the dynamics of meaning is a fundamental issue
in many fields of knowledge and technology [29]. We can think about its value for understanding the
dynamics of language and its evolution [30–32], or its relevance in psycholinguistics and psychology [33].
Also, apart for being one of the main research topics in semiotics, linguistics and philosophy [10], it has
been recently a research bursting point in artificial intelligence and robotics [34]. Moreover there is an
active effort in the information systems community to develop semantic-based web research tools [35].

The results of this research shed light upon the topology of the SS, represented as an encyclopedic
semantics. The empirical research is unique in two fundamental aspects: the first one is the content
analysis of a whole snapshot of Wikipedia, the second one is that this analysis is directional.

The empirical analysis reveals interesting properties of the SS. On a side we can observe that the
SS cluster size distribution is scale-free. This observation relates the SS to a wide range of scale-free
phenomena [25]. On the other side we find a peculiar behaviour for the degree distribution. The latter
observation relates the SS to a recently observed class of molecular biology phenomena, such as protein
networks and more in general of genomic interaction networks [26, 28] and draws a bridge between phe-
nomena whose underlying mechanism is a language, words for the SS and the DNA alphabet for the
genomic networks.

Models of content-based network are powerful tools and recently they are attracting the attention
of the scientific community especially for their relation to the so called hidden variable graphs [45, 46].
The presented stochastic model is descriptive and wants to individuate a few simple mechanisms that are
able to reproduce some interesting statistical behaviours of the SS. In particular it is able to capture the
statistical properties of Wikipedia at three levels of complexity. At microscopic level it can reproduce the
Zip’s law for the word frequency distribution, at mesoscopic level it generates the scale-free distribution
for the semantic cluster size and finally at macroscopic level it can reproduce the exponents of the out
and in-degree distribution. Interestingly enough we find again that the description of the SS at the model
level resembles mechanisms of DNA evolution, where the process involved are of copy and mutation.

α · t + 1 words are introduced in the text and the size L of the text is a function of the vocabulary size: L(t) = α
2

t2 + t.

L(t) =
α

2
t2 + t. (1)
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It is straightforward to relate the presented analysis with previous works on Wikipedia based on the
analysis of the network of hyperlinks connecting the Wikipedia different entries [47]. In particular one
of the questions arising from those works is if the Wikipedia hyperlink network has any relation to the
underlying semantic network. Some attempts to answer to this question are exposed in [29], where a
positive correlation is found between hyperlinked pages and their semantic content. At the light of this
research we can say that the topology of the SS is drastically different from the ones obtained by the
hyperlinks analysis. In the latter case the exponents of the degree distribution are smaller than -2 and
linear preferential attachment is recovered [47, 48], revealing a dynamics based on popularity. However
this should not be a surprise since the network of hyperlinks is superimposed to the SS of the encyclopedia,
so that it does not reflect the topology of the SS, but the structures locally imposed by the writers of the
different entries.

We also notice that the topological properties of the SS are different from the ones obtained for
dictionary semantics [6,8]. The topological properties of dictionary networks, characterised by scale-free
distribution with exponents smaller than -2, seem to be based again on a popularity mechanism and to
reflect properties of language use more than the properties of the SS [9]. In contrast we find that the
architecture of SS is scale invariant, hierarchical, it has small-world properties, but it is not associated
to a rich get richer mechanism for the degree distribution.

In fact the SS structure is keen to be interpreted as an emerging property of a content-based network,
where the Zipf’s distribution of the content words is a key feature for the resulting topology.

Materials and Methods

A measure for the directional semantic flow

Given two pages characterised by their lemmas frequency distributions P and Q and by their size n1 and
n2, we define their distance D(P‖Q) as:

D(P‖Q) ≡ H(π1P + π2Q)− π1H(P )− π2H(Q)
−π1 ln π1 − π2 ln π2

, (2)

where H(P ) = −∑
i pi ln pi is the Shannon entropy measured in nats and πi ≡ ni/(n1 + n2) are the

weights.
If D(P‖Q) 6= 0, the two pages have one or more words in common. Let’s call P J the frequency

distribution of those common words for the first page, normalised to 1 and QJ the frequency distribution
of those common words for the second page, normalised to 1. Moreover let’s call µP the fraction between
the number of common words in the first page and the total number of words in the first page and µQ

the fraction between the number of common words in the second page and the total number of words in
the second page. Then we can define a directionality index as:

I(P → Q) ≡ −sign
[
H(P J)

µP
− H(QJ)

µQ

]
. (3)

If I(P → Q) = 1 we can infer a direction of the semantic flow from the first page to the second one.
Otherwise, if I(P → Q) = −1, we can infer a semantic flow from the second page to the first one.

A detailed description of Eq.2 and Eq.3 is given in [13]

The model

a- When we generate a new page we first extract its size l from a log-normal distribution, with first
moment l and second moment lσ. Then we fill the page with some new words from a potentially infinite
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Figure 5. The stochastic model representing the semantic space. Results for the simulation
of the stochastic model representing the semantic space. This is a simulation of a toy-model for an
encyclopedia of 5 · 104 pages with size l log-normally distributed, with first moment l = 20 and second
moment lσ = 0.5. The parameter of the model are α = 0.001, p = 0.7 and M = 5. In the top panels we
display the out-degree distribution P (kout) (left panel) and the in-degree distribution P (kin) (right
panel) of the semantic network at the percolation threshold. The corresponding cumulative
distributions are displayed in the insets. In the bottom left panel we show the cluster size distribution
at the percolation threshold, the relative cumulative distribution is displayed in the inset. In the right
bottom panel we show the frequency-rank distribution for the words in the model.

vocabulary and some old words picked at random from the already written pages. To establish the
balance between new and old words we assume a variation of the Heaps’ law, frequently used in network
theory [2], that states that the growth of the length L of a written text is a quadratic function of the size
of the vocabulary t, L(t) = αt2 + t. Then we assign to the page a random number m, so that 1 < m < l,
representing the size of the invariant part of the page.

b-When we mutate a page we keep unchanged the first m − 1 words of the page, that is the page
invariant part. For the last l−m+1 words of the page, each word is changed with probability p and it is
kept unchanged with probability 1− p, where p is a random number between 0 and 1. When we change
a word we substitute it with an old or a new word considering the balance between vocabulary and text
size as in point a.

We start the model with a few pages of random words. Then at each time-step:
1- we generate a new page as explained at point a.
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2- We create M new pages copying M old pages picked up randomly from the old pages and mutating
them as explained at point b.

The important parameters of the model are M and α. M regulates the exponent of the cluster
size distribution that goes, increasing the value of M , from −3 to −2. Moreover, increasing M , more
connected clusters form and this increases the exponent of the degree distribution from −1.5 to −1. The
coefficient α regulates the amount of correlations between the different semantic clusters and this gives
the possibility to tune the point of percolation of the system.
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