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We introduce a general methodology of update rules accounting for arbitrary interevent time
distributions in simulations of interacting agents. In particular we consider update rules that depend
on the state of the agent, so that the update becomes part of the dynamical model. As an illustration
we consider the voter model in fully-connected, random and scale free networks with an update
probability inversely proportional to the persistence, that is, the time since the last event. We find
that in the thermodynamic limit, at variance with standard updates, the system orders slowly. The
approach to the absorbing state is characterized by a power law decay of the density of interfaces,
observing that the mean time to reach the absorbing state might be not well defined.
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Introduction.- There exists broad empirical evidence of
a large heterogeneity in the timing of individual activi-
ties [1–9]: The distribution of times at which an indi-
vidual initiates an action or an interaction with another
individual is such that a meaningful characteristic in-
terevent time does not exist. Beyond studying the origin
of such individual interevent distributions [2–4, 10], an
important challenge is to study the implications of these
activity patterns in the collective behavior of interact-
ing agents. Much understanding of collective behavior
has been gained by simulation of models of interacting
agents. The standard approach in these simulations is
that agents are updated following independent random
Poisson processes (random asynchronous update) so that
an exponential interevent time distribution is expected.
The characteristic updating time is the Monte Carlo step
in which each agent has been updated once on average.
It is known that other updating mechanisms which also
rely on a characteristic time, such as the extreme case
of synchronous update, can result in different collective
behavior of the system or even artificial behavior [11, 12].
Still, the necessary implementation in simulation studies
of updating mechanisms that incorporate the observed
heterogeneous timing of agents actions is largely unex-
plored. This is the central issue addressed in this paper.

The effects of power law or broad interevent distribu-
tions in the collective behavior have been, so far, mostly
addressed in the context of spreading of information or
infection processes [5, 6, 10, 13] resulting in a slowing
down of the dynamics. Here we will focus on consensus
processes [14, 15] in which agents can be in several equiv-
alent states, and instead of a spreading process, there is a
competition between these states. The interaction among
agents leads either to a consensus in one of these states or
to asymptotic coexistence of different states. The system
is said to order when in the thermodynamic limit there
is unbounded growth of the number of agents in one of
the equivalent states. In dealing with these consensus

processes we propose a general updating algorithm and
implement it in two conceptually different ways. Updat-
ing means here the attempt to change the state of the
agent according to an interaction with her neighbors, so
that updating does not necessarily mean change of state
[16, 17]. In both implementations considered, the update
probability depends on an internal time, giving rise to a
heterogeneous timing. In a first case, exogenous update,
the update probability is independent of the state of the
agent but in a second case, endogenous update, it is a
function of the persistence time of that agent, i.e., the
time spent since its last change of state. We propose
this second updating mechanism as a genuine ingredient
for the understanding of many aspects of social collec-
tive behavior: There is a co-evolution of the state of the
agent and the updating algorithm, so that the updat-
ing process is itself a part of the dynamical model of
agent-agent interaction. We will argue that qualitative
changes in the collective behavior, as for example order-
ing vs non-ordering in consensus processes, occur due to
such state-dependent update. As an illustration of these
general problems we will consider the simplest consensus
problem described by the voter model [14, 15, 18].

The update.- A set of N agents are placed on the nodes
of a network of interaction. Each agent i is character-
ized by its state si and an internal variable that we will
call persistence time τi. For any given interaction model
(Ising, voter, contact process, ...), the dynamics is as fol-
lows: at each time step,

1. with probability p(τi) each agent i becomes active,
otherwise it stays inactive;

2. active agents update their state according to the
dynamical rules of the particular interaction model;

3. all agents increase their persistence time τi in one
unit

The persistence time measures the time since the last
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FIG. 1. Average density of interfaces 〈ρ(t)〉 with activation
probability p(τ) = 1/τ on a fully connected network [Inset:
density of interfaces averaged over surviving runs 〈ρ∗(t)〉].
Empty symbols stand for the endogenous update while filled
ones for the exogenous. System sizes are 1000 (circles) and
4000 (diamonds); average over 1000 realizations.

event for each agent. Typically an event is an interaction
(exogenous update: active agents reset τ = 0 after step
(ii)) or a change of state (endogenous update: only active
agents that change their state in step (ii) reset τ = 0).

There are two interesting limiting cases of this up-
date when p(τ) is independent of τ : when p(τ) = 1,
all agents are updated synchronously; when p(τ) = 1/N ,
every agent will be updated on average once per N unit
time steps. The latter corresponds to the usual random
asynchronous update (RAU). We are interested in non-
Poissonian activation processes, with probabilities p(τ)
that decay with τ , that is, the longer an agent stays in-
nactive, the harder is to activate. To be precise, we will
later consider that

p(τ) =
b

τ
, (1)

where b is a parameter that controls the decay with τ .

For the sake of clarity we will focus on the voter model
[14, 15, 18]. In this model the state of an agent can take
only one of two values +1 or −1. Initially the state of the
agents is randomly assigned any of the two possibilities
and the internal persistence time τi is set to 0 for all
agents. At step (ii) above, each active agent updates its
state copying the state of one of its neighbors chosen at
random si(t) = sj(t− 1) (node update dynamics).

The voter model has two absorbing configurations cor-
responding to all agents having the same state. The ab-
sorbing state is reached in a finite time in any finite net-
work (as long as all nodes are reachable from at least one
node). The approach to the absorbing state can be char-
acterized by the time evolution of the ensemble average
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FIG. 2. Cumulative persistence distribution for the endoge-
nous update [inset: for the exogenous update] with activation
probability p(τ) = 1/τ on a fully connected network of sizes
1000 (circles), 2000 (squares) and 4000 (diamonds).

of the density of interfaces 〈ρ(t)〉, that is, links in the net-
work connecting nodes with different states. The voter
model has been usually studied with RAU dynamics. A
main conclusion in these studies is that the qualitative
form of the evolution of 〈ρ(t)〉 depends on the effective di-
mensionality d of the interaction network [19]. For d ≤ 2
the system orders, so that there is a coarsening process
with growth of domains of agents in the same state. How-
ever, for d > 2 the RAU voter dynamics does not order
the system, and there is no coarsening process. In each
dynamical realization ρ(t) reaches a plateau value asso-
ciated with a long lived dynamically active state until a
finite size fluctuation takes the system to the absorbing
state. This is reflected in an exponential decay for the
ensemble average 〈ρ(t)〉. The characteristic time of the
exponential decay is found to scale linearly with system
size τ ∼ N for a fully connected network and for general
random uncorrelated networks [24], while for a Barabási-
Albert scale-free network τ ∼ N lnN [20–22]. We have
performed detailed numerical simulations checking that
the same exponential decay for 〈ρ(t)〉 and the same sys-
tem size scaling of the characteristic times is found in
these networks when using a synchronous update or a
sequential asynchronous update instead of a RAU.

The concept of persistence has been quantified by mea-
suring the number of agents that have not changed their
state at time t starting from a given initial condition.
This has been analyzed in detail in the voter model
in regular lattices and in a mean-field approach [23].
This quantity is found to be a good characterization
of the dynamics, showing for example different behav-
ior for voter and Ising dynamics. For the mean field
solution of the voter model it is found that the frac-
tion of agents that have not changed their state after
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FIG. 3. Endogenous update. Relation of β, the exponent of
the cumulative persistence distribution C(t) ∼ t−β , and b,
the parameter in the function p(τ) = b/τ for three different
topologies; fully connected (circles), random with 〈k〉 = 6
(squares) and scale free with 〈k〉 = 6 (diamonds) networks.
As a guide to the eye we plot the curve β = b with a dashed
line.

t time steps decays exponentially with a characteristic
time that depends on the initial fraction of agents in
each state. In order to compare with recent empirical
analysis, we extend this concept of persistence and mea-
sure the probability that an agent changes its state after
t time steps, M(t). Equivalently the cumulative distri-

bution C(t) = 1 −
∫ t

1
M(T )dT measures the probability

that an agent has not changed its state after t time steps.
We have performed detailed numerical simulation for the
voter model with RAU, synchronous and sequential asyn-
chronous update dynamics in fully connected and various
random uncorrelated networks (including scale-free net-
works). In all the cases explored we have found that
C(t) has an exponential tail with a characteristic time
that scales as τ ∼ N1/2 for random initial conditions.

We will now explore the consequences of the updates
proposed above in the voter model: we examine the
changes of the time evolution of 〈ρ(t)〉 and of the form of
C(t) with respect to the results with RAU dynamics.

Fully connected networks.- We first consider the case of
a fully connected network with p(τ) = 1/τ . Our results
are summarized in Fig. 1.

a) Exogenous update. The dynamics does not order
the system: The average density of interfaces 〈ρ(t)〉
reaches a plateau in the thermodynamic limit. The
density of interfaces averaged over surviving runs,
〈ρ∗(t)〉, reaches a plateau (inset of Fig. 1), which is
independent of the system size, showing that living
runs stay, on average, on a dynamical disordered
state.

b) Endogenous update. The dynamics orders the sys-
tem: The evolution of the average density of in-
terfaces 〈ρ(t)〉 shows a power-law decay towards
the absorbing configuration, with the same expo-
nent for all system sizes. The average of the den-
sity over surviving runs, 〈ρ∗(t)〉 reaches a plateau,
whose height decreases as 1/N indicating that in
the thermodynamic limit it will be zero (Fig. 1).
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FIG. 4. Endogenous update in complex networks: (a) av-
erage density of interfaces 〈ρ(t)〉, (b) cumulative persistence
distribution C(τ) for an ER random network with 〈k〉 = 6;
(c) average density of interfaces 〈ρ(t)〉, (d) cumulative per-
sistence distribution C(τ) for a BA scale free network with
〈k〉 = 6. System sizes are 1000 (circles), 2000 (squares) and
4000 (diamonds); averages over 1000 realizations.

For the voter model with exogenous update the
timescales are much larger than in the voter model with
RAU, but it has the same qualitative behavior: the sys-
tem doesn’t order in the thermodynamic limit, but stays
in a disordered dynamical configuration with asymptotic
coexistence of both states. This contrasts with what hap-
pens with the endogenous update, where the timescales
are also perturbed, but with the difference that a coars-
ening process occurs, slowly ordering the system. We
have checked that the ensemble average of the magneti-
zation 〈m(t)〉 = 1

N

∑N
i=1〈si(t)〉 is conserved for the ex-

ogenous update, whereas for the endogenous update this
conservation law breaks down, as previously discussed
in Ref. [16]. The non-conservation of the magnetization
leads to an ordering process. The conservation law is bro-
ken due to the different average values of the persistence
time in both populations of agents (+1 and -1) leading
to different activation probabilities (agents changing to
state +1 have larger 〈τ〉 than the ones changing to state
-1).

Our results for the cumulative persistence distribution
on a fully connected network with p(τ) = 1/τ are shown
in Fig. 2. The distributions C(t) show heavy tails con-
sistent with a power-law of exponent −1. We expect the
persistence M(t) to be related to the activation probabil-
ity p(τ). Neglecting the actual dynamics and assuming
that at each update event, the agent changes state we can
find an approximate relation betweenM(t) and p(τ). Re-
call that M(t) is the probability that an agent changes
state (updating and changing state coincide in this ap-
proximation) t timesteps after her last change of state.
Therefore the probability that an agent has not changed
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〈ρ(t)〉 ∼ t−γ C(t) ∼ t−β

FC γ = 0.99(1) β = 0.99(3)

ER 〈k〉 = 20 γ = 0.99(1) β = 0.97(4)

ER 〈k〉 = 6 γ = 0.25(1) β = 0.45(1)

BA 〈k〉 = 6 γ = 0.32(1) β = 0.46(1)

TABLE I. Characteristic exponents of the average interface
density 〈ρ(t)〉 and cumulative persistence distribution C(τ)
for the voter model with endogenous update and activation
probability p(τ) = 1/τ . FC: fully connected network, ER:
Erdös-Rényi random network, BA: Barabási-Albert scale-free
network.

state in t− 1 timesteps is 1−
∑t−1

j=1 M(j) and the proba-
bility of changing state having persistence time t is p(t).

Therefore we can write:
(
1−

∑t−1
j=1 M(j)

)
p(t) = M(t),

with p(1) = M(1). Taking the continous limit and ex-
pressing this equation in terms of the cumulative persis-
tence distribution we obtain d ln(C(t)) = −p(t)dt. Set-
ting p(τ) = b/τ the cumulative persistence distribution
decays as a power law C(t) ∼ t−β with β = b. Numer-
ical simulations show that this approximation holds for
a fully connected network for exogenous and endogenous
updates (see Fig. 3, exogenous update not shown).

Complex networks.- To check the generality of the re-
sults obtained for a fully connected network we have per-
formed simulations of the voter model with the exogenous
and endogenous updates on complex networks such as
Erdös-Rényi (ER) random networks [25] and Barabási-
Albert (BA) scale-free networks [26]. We confirm the
same qualitative results as in the fully connected network
case in terms of ordering.

For the endogenous update the average interface den-
sity decays as a power law 〈ρ(t)〉 ∼ t−γ with an exponent
γ that depends on the interaction network, but not on
the system size (see Figs. 4(a),(c)). Table I whows that
the decay of 〈ρ(t)〉 is slower on complex networks, be-
ing slower in BA scale-free than in ER random networks.
For random networks of high degree the behaviour of
the model tends to the observed behaviour on a fully
connected network, as expected. The density of inter-
faces averaged only over surviving runs 〈ρ∗(t)〉 displays
a plateau for large times, whose height is inversely pro-
portional to the system size (not shown). Therefore the
system is coarsening and order is asymptotically reached
in the thermodynamic limit, contrary to what happens
with the standard updates in these networks [24]. For the
exogenous update (data not shown) the average density
of interfaces 〈ρ(t)〉 decays very slowly and slower for big-
ger system sizes and, in the thermodynamic limit stays
on a dynamical disordered state, similarly to the fully
connected network case.

The endogenous update gives rise to heavy tails in the
persistence (see Figs. 4(b),(d) for the case b = 1). In
the case of complex topologies although the exponents of

the power law tails of C(t) are not given by β = b as in
the mean field case, it seems that they are proportional
β ∝ b (Fig. 3). The exponents for the case b = 1 in dif-
ferent topologies are also summarized in Table I finding
that they are smaller than 1 which is a signature of slow
ordering, suggesting that the mean time to order is not
well defined.

Summary and Conclusions.- Recent research on human
dynamics has revealed the “small but slow” paradigm
[6, 10], that is, the spreading of an infection can be slow
despite the underlying small-world property of the un-
derlying network of interaction. Here, with the help of a
general updating algorithm for agent based models which
can account for realistic interevent time distributions, we
have shown that the competition of opinion can lead to
slow ordering not only in small networks but also in the
mean field case. By comparing the exogenous and the en-
dogenous update we have pointed out the importance of
a state dependent update. Our results provide a theoret-
ical framework that bridges the empirical efforts devoted
to uncover the properties of human dynamics with mod-
eling efforts in opinion dynamics.
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[19] K. Suchecki, V.M. Egúıluz, and M. San Miguel, Phys.

Rev. E 72, 036132 (2005).
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