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Resumen

El objetivo de esta tesis es responder a la siguiente pregunta:

Puede la presencia de interacciones competitivas mejorar la re-
spuesta a un forzamiento externo?

Esta es una pregunta muy general, y nuestro enfoque es encontrar var-
ios sistemas-prototipo, para verificar el dominio de aplicación del fenómeno
y explorar diferentes mecanismos.

Vamos a comenzar por abordar el efecto de las interacciones compet-
itivas en la respuesta a señales débiles, en el caso de sistemas constituidos
por unidades biestables para las cuales la señal es subumbral. Veremos que
la respuesta es óptima para una proporción intermedia de enlaces repulsivos,
y por lo tanto vamos a utilizar la expresión ”resonancia inducida por inter-
acciones competitivas”, en analoǵıa con los conocidos efectos de resonancia
estocástica y resonancia inducida por diversidad.

A continuación vamos a estudiar cómo las interacciones competitivas
afectan a la respuesta a las señales externas - publicidad - en el modelo de
formación de opinión de Deffuant et al. . Se trata de un tipo intŕınsecamente
diferente de sistema y, como tal, tanto el mecanismo de respuesta, aśı como
los resultados, son bastante diferentes. La presencia de interacciones com-
petitivas puede impedir la formación de grupos de agentes, cuya opinión se

ix



encuentra fuera de la cuenca de influencia de la señal externa. Vamos a
comprobar que una sociedad de mentalidad estrecha sólo puede formar un
consenso en respuesta a la influencia de la publicidad si los agentes interac-
cionan a través de una combinación de v́ınculos positivos y repulsivos.

Por último, vemos las condiciones para la sincronización con una señal
externa en un sistema de osciladores van der Pol, haciendo hincapié en el
hecho de que la probabilidad de enlaces repulsivos que desincroniza los os-
ciladores entre ellos, es la misma que es capaz de sincronizar todo el sistema
con un forzamiento externo.
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Resumo

O objectivo desta tese é responder à seguinte pergunta:

Será que a presença de interacções competitivas pode melhorar a
resposta dum sistema a um forçamento externo?

Sendo esta uma pergunta muito geral, optámos por verificar o domı́nio
de aplicação do fenómeno e explorar diferentes mecanismos em vários sistemas-
protótipo.

Começamos por abordar o efeito de interacções competitivas na re-
sposta a sinais débis, no caso de sistemas constitúıdos por unidades biestáveis
para as quais o sinal é sublimiar. Veremos que a resposta é óptima para
una proporção intermédia de interacções repulsivas, e portanto utilizarei a
expressão ”resonância induzida por interacções competitivas”, em analogia
com os conhecidos efeitos de resonância estocástica y resonância induzida
por diversidade.

Em seguida estudaremos o modo como as interacções competitivas
afectam a resposta a sinais externos - publicidade - no modelo de formação
de opinião de Deffuant et al.. Tratando-se de um tipo intŕınsecamente difer-
ente de sistema, tanto o mecanismo de resposta, como os resultados, são
distintos. A presença de interações competitivas pode impedir a formação
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de grupos de agentes cuja opinião se encontre fora da zona de influência
do sinal externo. Comprovaremos que uma sociedade de mentalidade es-
treita só pode atingir um consenso na resposta à influência da publicidade
se os agentes interagem através de uma combinação de ligações positivas e
repulsivas.

Por último, analisaremos as condições para uma sincronização com um
sinal externo num sistema de osciladores van der Pol, acentuando o facto de
que a probabilidade de interacções repulsivas que desincroniza os osciladores
entre si, é a mesma que é capaz de sincronizar todo o sistema com um
forçamento externo.
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Summary

Since few systems exist in isolation, a key question is how a system responds
to an environmental forcing. Whether we think about how the brain can
encode information, a fish detect food in muddy waters, or an advertiser
influence the market, this very general challenge spans different disciplines
and is dealt with by the adoption of different strategies. Nevertheless, those
strategies basically fall into one of two categories: either to increase the
strength of the external forcing, or to optimise the capability of the sys-
tem to respond to the signal. This last strategy is the object of this thesis:
specifically, we will show that extended systems that interact via a combi-
nation of attractive and repulsive links are able to optimise their response
to an external forcing, for some fraction of repulsive links. Thus, the title
Divide and Conquer in analogy with the ancient Roman strategy of control-
ling populations with a not so big army by dividing the subjects one against
another.

The thesis is divided in two parts, where the first part sets the back-
ground to understand and contextualise the original results that will be
presented in the second part. We start, in Chapter 1 by reviewing the ba-
sic characteristics of the systems that will be the object of the thesis, and
whose common characteristic is the possession of some form of threshold
that cannot be surpassed by weak signals.
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The second chapter places the thesis in a broader context of the effects
of disorder in the response properties of nonlinear systems subjected to weak
forcing. Indeed, this work is closely related to a very active research area
that emerged in the 80’s following the discovery of stochastic resonance, a
phenomenon by which noise cooperates with a weak forcing to raise it above
the threshold for detection, and two decades later, in 2006, of diversity

induced resonance, that firmly identified disorder as the key factor leading
to an enhancement of the response.

There isn’t an a priori reason to anticipate that there will be a single
mechanism of response enhancement through competitive interactions. We
chose to orient our research towards the exploration of the mechanism in
several systems with different characteristics. We wanted to find how broad
the area of application is, and whether there is a single general mechanism
or if, on the contrary, different systems exploit different routes to achieve
the same goal.

We begin by studying the effect of competitive interactions on the re-
sponse to external forcing, in the case of systems composed by bistable units
for which the signal is subthreshold. We will verify that the response is opti-
mal for an intermediate proportion of repulsive links, and thus the expression
”Resonance induced by competitive interactions”, that is the subtitle of the
thesis. In Chapter 3 we will establish the phenomenon in the prototypical
bistable continuous model where the phenomenon of stochastic resonance
was first discovered; and in Chapter 4 we study a discrete model of opinion
formation. We will then continue with two non-bistable models. The first,
in Chapter 5, is a modification of the Deffuant et al. model of opinion for-
mation to include repulsive interactions, and the second, in Chapter 6, is a
system of van der Pol oscillators.

Finally, the last chapter summarises the principal conclusions of our
results, and describes possible future research lines.
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Introduction





1

Systems with thresholds

This first chapter introduces the systems that will appear throughout
the rest of the thesis, and some of the approaches to deal with them. The
common feature of these systems is the possession of some form of threshold:
either clear-cut or soft, temporal or spatial, thresholds separate two qualita-
tively different behaviours. Talking about thresholds makes most sense with
respect to external forcing.

This property is characteristic for a large class of systems coming from
vastly different areas. We will begin by addressing three types of dynamical
systems - bistable, nonlinear oscillator and excitable -, and then we will
present two sociophysics opinion models.

1.1 Bistable systems

While linear systems can only have one - or none - stable states, nonlinear
systems are characterised by the possible existence of multiple equilibrium
states, periodic oscillations and even chaotic behaviour, which necessarily
leads to thresholds that separate different states. The simplest example of a
system with a threshold has two stable states, separated by a barrier that can
only be overcome by an external driving force. Bistability underlies many
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4 Chapter 1.

natural phenomena, such as chemical reactions [1], bacterial infections [2,3],
synthetic gene-regulatory network [4], some climate processes [5], among
others.

A typical Z-shaped curve (Fig. 1.1), illustrates the response of a
bistable system to an external signal S. Bistability is commonly associ-
ated with hysteresis, implying that the dependency of the response on the
signal intensity depends on the direction of change (arrows in the picture
1.1). When the stimulus grows beyond a threshold S = B, the system
switches from the state 1 to state 2; and when the stimulus decreases the
system remains in the same state, until the saddle-node bifurcation point is
reached when S = A, leading to a jump to the upper steady state. In case
the signal can not reach the value S = A the first switch is irreversible. The
region between S = A and S = B is characterised by the coexistence of two
stable steady states, plus an unstable state. In that region, the state of the
system depends on initial conditions and on the history of the system.

Signal

B
is

ta
bl

e 
va

ria
bl

e

Tipping point

State 1

State 2

Tipping point

Unst
ab

le

A B

SN 2

SN 1

Figure 1.1. A schematic signal-response curve, or bifurcation diagram, for a typical
bistable system with hysteresis. A combination of two saddle-node bifurcations leads
to the phenomenon of bistability where in a certain interval of the control parameter,
two stable states co-exist with an unstable one in-between. Bistable systems can be
driven to change states by external variables. The bistability interval exists for a
signal between S = A and S = B; if the signal can only take values in that interval
[A,B] the system cannot switch: we call such signal sub-threshold.



1.1. Bistable systems 5

1.1.1 Thresholds: tipping points

In Fig. 1.1, SN1 and SN2 are tipping points: once crossed, a regime shift
occurs, which may be impossible to reverse, in case there isn’t a strong
enough - or controllable enough - forcing. Hence, the detection of early-
warning signs of the approximation of tipping points has become a key goal
[6] in various areas like the climate [5], ecosystems [7], epileptic seizures [8]
or finance [9] where a regime change could lead to dramatic consequences.

A related challenge is how to control the shifts. The prototypical,
normal form, model for a bistable unit is given by:

dx

dt
= ax − bx3, (1.1)

where a and b are positive constants.

We can describe the relaxation to one of two stable states using the
concept of a potential [10]: left to itself, the system will be in one of the
states of lowest energy (Fig. 1.2).

∆V

t=T

t=T/2

t=2T

t=3T/2

Figure 1.2. The mechanical depiction of a bistable system imagines a ball rolling
into two different valley basins. A periodic subthreshold signal with period T =
2π/Ω alternately lowers or raises one of the potential wells without destroying them:
as a consequence the ball cannot cross to the other well.



6 Chapter 1.

Eq. 1.1 is then written as a relaxation into a potential,
dx

dt
= −∂V

∂x
,

where the potential is

V (x) = −a
x2

2
+ b

x4

4
(1.2)

with the minima located at xo = ±
√

a/b and the barrier height being ∆V =
a2/4b.

In order for the particle to cross the barrier there needs to be an in-
crease of energy, coming from an external source. We think about thresh-
olds when we think about some forcing that can drive the system through
it. Forced by a time-dependent signal, let’s say a periodic one, the Eq. 1.1
becomes:

dx

dt
= −∂V ′

∂x
= ax − bx3 + A sin(Ωt), (1.3)

where A is the amplitude of the signal, Ω its frequency, and the new potential
V ′(x) = −ax2

2
+ bx4

4
− Ax sin(Ωt). Fig. 1.2 illustrates the effect of a weak

signal. The potential is modulated by a sub − threshold signal, with its
minima being alternately raised or lowered relative to the potential barrier,
without loosing bistability: this means the system behaviour is basically
indifferent to perturbations, as there are only small intra-wells oscillations.

It looks like the only way to force a bistable system to switch states is
to find a strong enough driving. A main topic in this thesis concerns what
to do in case this is not possible.

1.2 Nonlinear oscillators

Bistable systems only oscillate between two states when they are subjected
to a sufficiently strong external periodic forcing. But oscillations are so
widespread in Nature - circadian clocks, the beating of the heart, seasonal
cycles, and many others [11] - that there arises the need to model intrinsic
oscillatory systems.



1.2. Nonlinear oscillators 7

The simplest oscillator model - a linear harmonic oscillator - has an
amplitude that depends on initial conditions, since linearity requires that if
~x(t) is a solution, so is A~x(t). This strongly limits its domain of applications,
as a variety of natural systems - like a beating heart - needs to oscillate with
a steady amplitude. In contrast, nonlinear oscillators can have an intrinsic
amplitude that is robust to perturbations. A paradigmatic example of a
nonlinear oscillator is a model [12] proposed in 1927 by the Dutch engineer
Balthasar van der Pol when studying electrical circuits to model the beating
of the heart. The van der Pol equation is:

ẍ = −x + µ(1 − x2)ẋ, (1.4)

where µ is a positive constant called the nonlinearity parameter, and µ(1 −
x2) is the position-dependent nonlinear damping term that distinguishes it
from the linear oscillator. The left panels of Fig. 1.3 illustrate the trajecto-
ries that result from this model.

-2

0

2

x

-2

0

2

x

0 50 100 150
t

-2

0

2

x

-2 0 2
x

-40

0

40

x

-10

0

10

x

-2

0

2

xµ=1

µ=10

µ=50

.

.

.

Figure 1.3. Trajectories (left) and corresponding limit cycles (right) for several
values of µ. Note that while the period grows with µ, the amplitude remains the
same. In the last case of large µ = 50 the transitions between the slow branches are
so fast as to be discontinuous, while as µ decreases the trajectories become more
similar to an undamped linear oscillator, that is recovered when µ = 0.
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For |x| > 1 the damping term is negative while for |x| < 1 it is posi-
tive, which results in the damping down of large amplitude oscillations and
pumping up of small ones. This leads to stable oscillations, reflected in
asymptotically stable closed trajectories on a phase plane, now called limit
cycles, as illustrated in Fig. 1.3. We also note that there is a clear distinc-
tion between a fast and a slow motion, and that the period increases with µ
(Fig. 1.3): this is expected since for larger µ the damping is amplified and
the oscillator spends more time in a slow branch when the damping term is
positive and less time moving to the other slow branch when the damping
is negative.

We can put the analysis on a firmer ground by noting that the van
der Pol oscillator is a special case of a Liénard system [11,13] , as described
by the equation ẍ = f(x)ẋ + g(x) By Liénard theorem, these systems have
a stable limit cycle surrounding the origin of the phase space provided the
following conditions are satisfied:

• g(x) is an odd function and positive for positive x: it is like a restoring
force.

• f(x) and g(x) are differentiable for all x,

• there is an odd function F (x) =
∫ x

0
f(u)du that has exactly one pos-

itive zero at x = a, is negative for 0 < x < a and positive/non-
decreasing for x > a, and F (x) → ∞ as x → ∞: damping is negative
at small x and positive at large x.

In case of the van der Pol oscillator, g(x) = x, f(x) = µ(x2 − 1)
F (x) =

∫ x

0
µ(u2 − 1)du = µ(x3/3 − x), and a =

√
3.

We can write the van der Pol equation 1.4 in a two-dimensional form
that highlights a fast and a slow motion, using the Liénard transformation
y = x − x3/3 − ẋ/µ:











ẋ = µ(x − 1

3
x3 − y)

ẏ =
1

µ
x.

(1.5)



1.2. Nonlinear oscillators 9

It is sometimes difficult or impossible to find explicitly the solutions
of a system, and that is specially true when the system is non-linear. The
behaviour of two-dimensional nonlinear models can be visualised by means
of phase-plane portraits, that offer a geometrical tool to understand quali-
tatively how systems evolve. The x-nullcline is the curve where ẋ = 0 and
it is given by the cubic curve y = x − 1

3
x3 as illustrated in Fig. 1.4, while

the y-nullcline - the curve where ẏ = 0 - is given by x = 0 and is simply
the y-axis. Their intersection at the origin of the (x, y) plane corresponds to
an unstable point. Far from the cubic nullcline, when x − 1

3
x3 − y ∼ 1, we

have ẋ ∼ µ while ẏ ∼ 1
µ
; thus the trajectory is basically horizontal and the

system is moving fast between the slow branches. When x − 1
3
x3 − y ∼ µ2

then both ẋ and ẏ are ∼ µ−1 and the system crawls along a slow branch.
Then the process repeats itself, as illustrated in Fig. 1.4. The entire process
corresponds to a limit cycle.

.

.

.

.A

B C

D

-1 1

y

x

x  -x31
3

Fast

Fast

S
lo
w

S
lo
w

Figure 1.4. Phase portrait of the van der Pol oscillator in Liénard (x, y) variables.
The two time scales are a defining characteristic of relaxation oscillators, referring
to the slow dynamics or relaxation along the slow branches. The blue curve depicts
the x-nullcline and the red curve the limit cycle.

For large µ we can neglect the time spent on the fast branches B − C
and D − A (Fig. 1.4). Then we can calculate the period from the time
travelling on the slow branches, and make explicit the dependence of the
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period of oscillations on µ, that we observe on Fig. 1.3:

TAB =

∫ B

A

dt =

∫ −1

−2

dy

dx

dx

dy
dt = µ

∫ −1

−2

(1 − x2)
1

x
dx = µ(

3

2
− ln 2). (1.6)

Since, for symmetry reasons, TAB = TCD, the total period is T ≈
µ(3 − 2 ln 2), neglecting the time spent in the fast motion regions TBC and
TDA.

It is useful to have this kind of dependence in mind when we examine
in Chapter 6 the response of a system of van der Pol oscillators to an external
signal, since, as we will see, the response of the system depends on its period
and therefore on µ.

1.2.1 Spatial and temporal thresholds

We saw in Section 1.1 that an external periodic signal modifies the potential
wells in a bistable system. A forced bistable system oscillates with the
external signal frequency: if the signal is weak, it oscillates within a well,
and only if the signal is strong enough - suprathreshold - will it be able to
induce inter-well oscillations (Fig. 1.5).

When we think of nonlinear oscillators, an additional requirement for
an influential signal is that its frequency is close to the oscillator intrinsic
frequency (Fig. 1.5). In the case of a strong enough signal and close enough
frequency, nonlinear oscillators can become synchronised with the driving
signal [11], adjusting their frequency to the driving frequency (middle panel
in Fig. 1.6). Van der Pol [12] thought that the heartbeat could be modelled
as a relaxation oscillator, and he was interested in understanding how its
rhythm could be stabilised in case of irregular beating (arrhythmias). His
studies on entrainment by an external signal were meant to mimic the heart
being driven by a pacemaker, and became the first systematic study of syn-
chronisation [11, 14]. This is a type of synchronisation - where the van der
Pol oscillator interacts with an external forcing whose frequency is not af-
fected by the interaction - that will concern us mostly in the thesis (Chapter
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6). However, we should note that van der Pol oscillators with different indi-
vidual frequencies are able to mutually synchronise, which is a characteristic
that sets them apart for linear oscillators that are thus inadequate to model
systems that exhibit collective synchronised oscillations.

Figure 1.5. Left: Schematic view of a generic Arnold tongue - the region of
parameters strength A and frequency Ω of the external force where synchronisation
occurs, for an oscillator with frequency Ω0. Right: Dependence of the observed
frequency ω on the external one (at a constant amplitude of forcing) exhibits a
synchronisation plateau.

When driven by an external forcing, the van der Pol oscillator can
display several types of behaviours, apart from synchronisation. A related
phenomenon to entrainment is quasiperiodicity (upper panel in Fig. 1.6),
that occurs when the forcing strength is fairly low. The intrinsic frequency of
the oscillator competes with the forcing frequency resulting in a time-varying
frequency and amplitude. Also, since the inclusion of a signal introduces
another dimension in the system, it can lead to chaotic trajectories for some
parameters, as seen on the lower panel of Fig. 1.6. In fact, in 1927 van
der Pol and van der Mark reported [15] that an ”irregular noise” was heard
at certain driving frequencies between the natural entrainment frequencies,
in what is now recognised as one of the first experimental observations of
deterministic chaos.
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Figure 1.6. The reaction of the van der Pol oscillator to an external forcing
depends on the strength of the forcing, on its amplitude, and on how close the
driving frequency is to the oscillator frequency.

While the threshold in a bistable system is a kind of spatial threshold,
here we have additionally a temporal threshold, and the challenge is to widen
the range of frequencies that can be entrained. When signals are fast they
need to be strong enough to overcome the positive damping term, and when
they are slow, they need to be able to postpone the jumping between slow
branches, so they coincide with its period. We will return to this question
on Chapter 6.

1.3 Excitable systems

Excitable systems share with nonlinear relaxation oscillators the existence of
fast and slow time-scales. The difference is that instead of jumping between
different states, when perturbed beyond a given threshold they make a long
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excursion in the phase space before returning to the original rest state. Dur-
ing that excursion time, there is an interval, called the refractory period,
where the system is relatively indifferent to perturbations.

These systems [16] appear near a bifurcation from a rest state to a
limit cycle, and are useful to model [17] certain chemical reactions, lasers,
biological tissues, forest fires, or - which is the classical example - neurons
that operate by communicating with other neurons when a signal exceeding
a given threshold results in a neuron firing.

Figure 1.7. Neurons work by receiving signals from other neurons through
connections called synapses. If those signals exceed a certain threshold the neu-
ron fires, generating an electrical impulse that sends a signal to other neurons.
Once a neuron fires, it must rest for several milliseconds before it can fire again.
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In this section, we will introduce the basic characteristics of two types
of excitable systems, by choosing the simplest examples, focusing in partic-
ular on their threshold or threshold-like behaviour.

1.3.1 Active rotator

A limit cycle - an isolated closed trajectory - is usually [17] the path followed
by an excitable unit during its firing state, while it is making an excursion
on the way back to the rest state. The existence of limit cycles requires
two dimensions, which can be harder to analyse. A way to circumvent this
problem is to describe the dynamics by a single phase variable, which is
generally a good option because the amplitude of the trajectory of a limit
cycle is usually less affected by interactions [17] than its phase.

Let us consider an active-rotator φ(t) [18], whose dynamics is given by;

φ̇ = ω − sin φ (1.7)

For ω ≤ 1 the system is excitable and the fixed points are ± arcsin ω,
corresponding to a stable point at arcsinω, and an unstable one at − arcsin ω,.
When ω = 1 the stable node collides with the saddle and a limit cycle is
born. At this point, for ω > 1, the system becomes oscillatory with a fre-
quency

√
ω2 − 1. This is a prototypical example of a system that exhibits a

saddle-node bifurcation on an invariant circle [19].

It is useful to rewrite the dynamics as a potential equation, φ̇ = −∂V (φ)
∂φ

with the potential V (φ) = −ωφ − cos φ (Fig. 1.8). We are interested in
the excitable regime, where a perturbation can induce a spike if it is large
enough to surpass the distance between the saddle-node and the stable point
that constitutes a threshold. That distance depends on the value of ω,
becoming smaller as ω grows, which is why we observe in Fig. 1.8 that a
weak perturbation can lead to repetitive firing when ω = 1 but not when
ω = 0.7. Finally, for ω = 1.1, the threshold has disappeared and the system
is oscillatory: a periodic driving can only change the firing frequency.



1.3. Excitable systems 15

-20

-10

0

V(φ)

-20

-10

0

V(φ)

0 5 10 15
 φ 

-20

-10

0

V(φ)

400
t

0

4
φ

0

4
φ

0

4
φ

 ω =1.1

 ω =1.0

 ω =0.7

Stable node Saddle
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regime of the active rotator depends on the frequency ω. When ω ≤ 1 the system
is in the excitable regime and a perturbation can induce a spike (red line) if it is
strong enough. When ω > 1 the system is oscillatory and the periodic forcing can
modify the frequency of oscillations.

1.3.2 The FitzHugh-Nagumo model

This model [20, 21] was proposed as a simplification of the more realistic
Hodgkin-Huxley model for neurons, by modifying the van der Pol system
1.5. The FitzHugh-Nagumo equation is:

ẋ = x − 1

3
x3 − y + I,

ẏ =
1

τ
(x + a − by). (1.8)

where a and b are parameters and the constant τ is responsible for the
separation of time scales: for τ ≫ 1 the y variable is slow and the x variable
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is fast. I plays the role of an injected current. Fig. 1.9 illustrates the
nullclines of the system, given by the cubic black curve and the straight
red line. As always, the intersection of nullclines corresponds to a fixed
point, and the point of intersection depends on how strong I is. In case the
intersection occurs in the middle branch of the cubic curve, the equilibrium is
unstable. When the current I increases beyond a critical point, an oscillation
appears, modelling the firing of a neuron (Fig. 1.9). This scenario - a limit
cycle that appears through the destabilisation of a fixed point - is called a
Hopf bifurcation [19].
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Figure 1.9. When I = 0.33 the y-nullcline intersects the middle branch of the x-
nullcline. The fixed point becomes unstable leading to repetitive spiking. We used
a = 0.7, b = 0.8 and τ = 13, so that ẋ ∼ 10ẏ and x is the fast variable. Compare
the figure with the van der Pol where a similar picture is observed.

1.3.3 Hard and soft thresholds

Studying neuronal firing patterns, Hodgkin identified two types of excitable
behaviours [22], that are associated with the bifurcations they undergo [23,
16]: a saddle-node bifurcation on an invariant circle, and a Hopf bifurcation.
The first case, corresponding to the active rotator, is called a Class I excitable
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system, and the second case, corresponding to the FitzHugh-Nagumo, is a
Class II excitable system 1.
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Figure 1.10. Upper panels: Schematic representation of the dependence on the
frequency of oscillations f on the external perturbation I, illustrating the difference
between the two types of excitable systems. Left: in a Class I excitable system the
firing frequency increases with the applied current, while the frequency of a Class
II (right) excitable system is relatively insensitive to the strength of the forcing.
Lower panels: The different dependency of the firing frequency on the intensity of
the current I is the signature of the two classes of systems.

Those two classes of excitable system display different reactions to a
perturbation, that are illustrated in Fig. 1.10. The case of Class I excitable

1Yet a third class consists of excitable systems that are unable to exhibit repetitive
spiking unless the injected current is very strong [16]
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systems is shown in the upper left panel: in these systems the trajectory
slows as the critical point is reached - a phenomenon known as critical slow
down - thereby allowing for oscillations with arbitrarily slow frequency, that
increases with the applied current I. On the right upper panel, we show
the case of Class II excitable systems: at the bifurcation point oscillations
with non-zero frequency appear, and the frequency is relatively insensitive
to the value of the current I. Therefore, the range of frequencies with which
a Class I excitable system can fire is considerably larger than that of a Class
II. (Fig. 1.10, yellow bar).

Besides the different dependencies on the firing frequency on the forc-
ing, the two classes of excitable systems have different types of thresholds.
The response of Class I model to a forcing shows an all-or-nothing behaviour:
either there is a firing with a given amplitude, or there is a decay back to
the stable point. In this sense, Class I models have a real threshold, whose
value is given by the distance between the saddle and the node. In contrast,
the amplitude of response of Class II models depends on the strength of the
perturbation. For weak pulses I = I0δ(t− t0) of the injected current the sys-
tem exhibits small-amplitude spikes, when trajectories follow the unstable
middle branch for some time, as observed in Fig. 1.11. Class II systems are
said to have a soft threshold. Nevertheless, they have a critical point that
can be well described as a threshold, where the sensitivity to perturbations
is much higher (see Fig. 1.9).
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Figure 1.11. The figure illustrates the absence of all-or-none firings in the
FitzHugh-Nagumo model, that doesn’t have a clear threshold. On the left panel
we show the phase portraits and on the right panel the corresponding spikes result-
ing from some values of the strength of the pulse I0δ(t − t0). Parameters: a = 0.7,
b = 0.8 and τ = 13.
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1.4 Sociophysics models

Up until now we have reviewed models whose main inspiration lied out-
side Physics domains: the van der Pol oscillator models the beating of the
heart and neurons are the classic prototype of excitable systems. The differ-
ent Natural sciences can find a common framework in nonlinear dynamical
systems studies, and this is an uncontroversial statement. We will take a
step further now, to venture into sociophysics models, and more specifically
opinion formation models.

In this era of heavy specialisation, where the frontiers between sciences
are carefully guarded by departments, official curricula and titles, it is easy
to forget that there has never been impermeable borders between the natural
and social sciences [24], nor each discipline is without internal divergences.

A recent area where the cooperation between natural and social sci-
ences has been successful is complex network studies [25, 26, 27, 28], and an
area that has always benefited from contributions from both fields is Statis-
tics [29, 30]. In fact, when the social sciences began to emerge as separate
academic disciplines in the nineteenth century, the first systematic stud-
ies consisted in a large part on statistical measurements of various social
processes, looking for the natural sciences to provide a model for empirical
inquiry, free of religious dogma or prejudices.

The use of statistics is part of the wider positivist philosophy of science,
that rejects speculation in favour of measurable empirical facts and cause-
effects relations. However, this standpoint encompasses a wide variety of
practices. Comte [31] (1798 - 1857) - arguably the first western philosopher
of Science - was a major proponent of positivism that still didn’t agree
that different objects of studies should be studied with exactly the same
tools, and didn’t appreciate such an heavy reliance on Statistics. He sought
to clarify the boundaries and methods of different sciences, and advocated
for a hierarchical unity of science, in the sense that each science should
encompass the methods of the one that appeared before, and go a step
further in a ladder whose ultimate destination was a to establish a Sociology
capable of coordinating the whole of knowledge and use it to further social
progress. Among the sciences, two stood up for signalling a transition to a
more perfect way of knowledge: Astronomy as the first science that was free
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of metaphysical contaminations, and Biology as concerned with an organic
whole, as Sociology should be. His ideas are clear in this quote [31]:

The first step to be taken in forming a positive philosophy is to classify the

sciences. The first great division we notice in natural phenomena is the division

into inorganic and organic phenomena. Under the inorganic we may include the

sciences astronomy, physics, chemistry; and under the organic we include the

sciences biology and sociology.
Comte

The recent discipline of Sociophysics [32, 33, 34, 35], in particular the
formulation of opinion models, is part of the broad mosaic of complexity
sciences [36], stressing the idea that a meaningful structure can emerge out
of different elementary interactions, without any external coordination. The
appearance of complexity science has in a sense promoted Physics - a branch
of Physics - to an organic science, driving it closer to the interests of Sociol-
ogy and Biology.

The micro/macro question - can a macroscopic structure emerge out
of individual interactions between people with different opinions without
external coordination? Is there some mesoscopic ingredient? - is an out-
standing problem that touches upon issues like free will and the capacity of
people to construct the social world, and in this sense it is related to the
agency/structure question debated by major modern sociologists, in partic-
ular in Europe [37,38,39].

The construction of an opinion model requires the following basic build-
ing blocks.

1. The parameters that characterise each agent. In the simplest case
the only attribute that characterises agents is an opinion. It can
be either discrete or continuous, and uni- or multi-dimensional. As
additional features agents can have different resistance/willingness to
change, thresholds of interaction, etc...

2. The definition of an interaction network. Agents can interact via
some particular topology, chosen independently of the opinions, or the
formation of a link can depend on the opinions in confrontation.
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3. The outcome of an interaction. Do opinions drift apart or do
agents compromise? Do they follow the majority as long as it is a big
majority, or do they follow a random neighbour?

4. The update rule. Are the opinions of all agents updated in the same
step? Is the update sequential or synchronous?

Just by playing with these options, it looks trivial to construct a wide
variety of models, and in fact the number of models is vast. [32,34,35]

However, the basic tenant of complexity is that a model is more than
the sum of its parts, so that interesting and unexpected results can appear
from different details. In this regard, the recourse to agent-based models
is an useful tool where sometimes the tension between the preference for
the elegance of minimalist models and the realism of very detailed ones is
manifested, which also carries a decision about the goals of research. The
contribution of Physics lies on its experience in this area, allowing it to
discard all irrelevant details, for instance using insights learnt from several
variations of the Ising model.

Models can be grouped in two big families, according to whether they
consider that the opinion can take a finite set of values, or that it is a contin-
uous real variable [40,41,42]. As examples of the models that treat opinions
as continuous we can cite the Deffuant et al. [41] and the Hegselmann-
Krause [42] models, and as examples of discrete models there is the Sznajd
model [43] and several Ising-type variations.

For the sake of concreteness, and since we will return to them later in
the thesis, we will review below two models. The first is a discrete model
where agents change their opinion to adopt the majority opinion, which
implies a simple kind of a threshold: we change opinions as long as a high
enough number of neighbours have a different opinion. The second model is
a continuous-opinion model where agents only interact with others as long
as their opinions differ less than a given threshold.
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1.4.1 A discrete model

A minimalist model of opinion formation [44], that incorporates the essential
ingredients of opinion formation under the presence of an external forcing
can represent the possible values of opinions in terms of two options (yes/no),
and an interaction rule among neighbours that is a majority rule.

Additionally, we include an external signal in the model, modelling
advertising, representing external factors that in a real society also affect
opinion evolution, like political propaganda, advertising, or even a changing
biological or economical environment.
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Figure 1.12. A process by the majority rule. The first yellow agent looks at its
neighbours: three regular (yellow links) and an additional random link (blue), and
adopts the sign of the majority. The second yellow agent doesn’t change because
the opinions of its neighbours are equally divided.

Let us consider a population of N individuals, which, at a given time
t, can adopt one of two possible values, µi = ±1, and evolve according to
the following dynamical rule: at time t one of the variables, say µi, is chosen
at random. The value of this variable is updated according to:

µi(t + τ) =











sign
[

∑

j µj(t)
]

w.p. 1 − |a sin(Ωt)|,

sign [sin(Ωt))] w.p. |a sin(Ωt)|,
(1.9)

(w.p. stands for “with probability”). In both cases, if the expression within
square brackets is equal to zero, the variable does not change: µi(t + τ) =
µi(t). The first case represents a weighted “majority-rule” in which the
opinion of the individual is determined by the sign of average opinion of the
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other agents j he interacts with. The second case represents the effect of an
external forcing of frequency Ω – the intensity a < 1 determines the rate at
which the signal influences the dynamics of the variable µi. The choice of
the time step τ = 1/N defines the unit of time as N updates.

In the global coupling case and a = 0, the only possible outcome of
these rules is an absolute consensus, whose value ±1 depends on initial
conditions. Again we encounter a bistable effective potential, where the
depth of the potential well is related to the number of units that share
the corresponding opinion. Unless the probability of interacting with the
external signal is very high, there isn’t any chance of being able to adjust to
environmental changes. Thus the idea to introduce some kind of disorder,
as we will see in Chapter 4.

1.4.2 A continuous model

The Deffuant et al. model [41] was introduced in the context of a proposal
about improving agri-environmental policies in the European Union. A cen-
tral assumption of the model is that agents only interact if their difference
in opinion is not greater than a given threshold, the so-called bound of con-

fidence ǫ. This homophily assumption [45, 46] intends to take into account
social psychology concepts like cognitive dissonance or just the confidence
in one’s own opinion.

We consider that an agent i, taken from a set of i = 1, . . . , N agents,
holds at time t an opinion xi

t expressing on a numerical scale his degree of
agreement on a particular topic. Opinions are a continuous real variable
that can take values on the interval [0, 1]: values close to 0 indicate a large
degree of disagreement, and values close to 1 a large degree of agreement
with the topic in question. At time t = 0, the opinions are independently
drawn from a uniform random distribution in the interval [0, 1]. At time
t two individuals, say i and j, are randomly chosen. If their opinions are
closer than the bound of confidence ǫ, |xi

t − xj
t | < ǫ, they become closer by

an amount proportional to their initial difference:

x
i(j)
t+τ = x

i(j)
t + µ(x

j(i)
t − x

i(j)
t ), (1.10)
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The parameter µ mainly determines the rate of convergence, and it is
often taken to be µ = 0.5, in which case agents compromise by adopting the
same position.
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Figure 1.13. A sketch of the Deffuant et al. rules, given a bound of confidence ǫ =
0.2. The last configuration with 3 final groups can not evolve any more because the
groups can not interact: their opinions differ by more than the bound of confidence.

The major result of the Deffuant et al. model is that when the bound
of confidence is low, we assist to a fragmentation of society into several
non-interacting clusters, each one having a different opinion.

This conclusion can be reached using one of the two basic approaches
to analyse the model: either to do agent-based Monte Carlo simulations
considering a given number of agents, or take the N → ∞ limit by consid-
ering density-based dynamics by means of a master equation [47,48], which
a traditional statistical physics tool. The model does not evolve determin-
istically, since at any given time the interacting individuals are randomly
chosen. Therefore, a given state X has to be described probabilistically, and
the changes of its probability P (X, t) at time t depend on the transition
probability from one state to another. Or:



1.4. Sociophysics models 25

dP (X, t)

dt
=

∑

X′( 6=X)

[w(X|X ′; t)P (X ′, t) − w(X ′|X; t)P (X, t)] (1.11)

where the flow from X ′ into X is assumed to be proportional to the proba-
bility P (X ′, t) of state X ′ and to the transition rate w(X|X ′; t) from X ′ to
X. This assumption that the transition rates depend only on the previous
state of the system is applicable to the Deffuant et al. model, which is a
Markov process.

The analysis of the master equation for the Deffuant et al. model was
the approach followed in [47], whose main conclusions we briefly review be-
low. Assuming with loss of generalisation that µ = 0.5, ǫ = 1 and opinions
can take values in the interval [−∆, ∆], the authors [47] began by the def-
inition of the fraction of agents P (x, t) dx whose opinion lies in the range
[x, x+dx] at time t. The distribution P (x, t) evolves according to the master
equation:

∂

∂t
P (x, t) =

∫ ∫

|x1−x2|<1

dx1dx2P (x1, t)P (x2, t)

×
[

δ

(

x − x1 + x2

2

)

− δ(x − x1)

]

. (1.12)

This dynamical rule conserves the total mass M0 =
∫

P (x, t)dx and the
mean opinion M1 =

∫

xP (x, t)dx, and the goal is to determine the nature
of the final state P∞(x) ≡ P (x,∞). The authors [47] find that when the
range of opinions ∆ is large enough the distribution of opinions evolves into
several non-interacting clusters, with the final distribution consisting of a
series of groups at locations xi with masses mi:

P∞(x) =

p
∑

i=1

mi δ(x − xi) (1.13)

This basically agrees with the simulation results, and in Fig. 1.14 we
illustrate the bifurcation diagram showing the location of clusters in the
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limit density versus the continuum of values of the bound of confidence ǫ.
The diagram results from the integration of the master equation [47], with
a transformation of variables as ∆ = 1

2ǫ
, since in simulations it is usually

the bound of confidence ǫ, and not the range of opinions ∆ that varies and
appears in plots, as we will see later in the thesis in Chapter 5.
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Figure 1.14. Bifurcation diagram of the Deffuant et al., after a numerical analysis
of the master equation of the model [47]. Figure reproduced from reference [40].

The numerical Monte-Carlo simulations don’t necessarily agree exactly
with the results of the master equation, due to finite-size fluctuations inher-
ent in simulations. For instance, the minor clusters at the extremes and
between major clusters that we observe in Fig. 1.14 often don’t appear in
agent-based simulations due to the small number of agents. This calls for
the need to develop analytical methods that can take into account the fact
that in social issues neither the infinite size [49] nor the asymptotic time
limit usually make much sense.

The Deffuant et al. model has been modified by testing variations
against all the major options. There are many possible extensions to this
model: for instance, we can modify the underlying network of interaction
[50], adopting some co-evolution rule; we can soften the bound of confidence
[51], assume heterogeneous bounds of confidence [52], or add noise [48].

We can also modify the homophily assumption, or include repulsive
interactions. The homophily hypothesis - the idea that individuals have a
tendency to associate with those with whom they share more characteristics
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- is a basic assumption of the model proposed by Axelrod [45], a mathemati-
cian (B.A) that upon turning into a political scientist (PhD) inspired many
of present day sociophysics endeavours. Closely related to homophily, is the
assumption that when individuals interact, their opinions have a tendency to
converge. Some of the most well-known classical sociological theories [37,38],
on the other hand, have conflict, negotiation or reflexivity at their core and
for them order is not equated with a state of absolute consensus, but rather
with some form of structure. In fact, the homophily assumption, although
it has some grounding in social studies [46], it is not all empirically justified
universally; and Axelrod’s question [45] If people tend to become more alike

in their beliefs, attitudes, and behaviour when they interact, why do not

all such differences eventually disappear? should be read as In case people

tended to become more alike in their beliefs, attitudes, and behaviour when

they interact, wouldn’t all such differences eventually disappear?.

In recent proposals of opinion formation models, namely in modifi-
cations of the Deffuant et al. model, there has been interest in including
the possibility of growing apart as a result of interaction, by adding repul-
sive links according to some rule. Jager et al. [53] interpret the bound of
confidence as a latitude of acceptance of opinions, implying a willingness
to move closer to those with whom we have some affinity and, accordingly,
they define a latitude of rejection. Drawing upon a social judgement theory,
they assume that opinions get farther apart if their difference is greater than
a given threshold. A somewhat similar reasoning was behind some recent
modifications of opinion models to incorporate repulsive links [54,55]. How-
ever, the confidence bound can also be interpreted as simply a threshold
for interaction, with no further implications on its outcome. Huet et al. [56]
apply the concepts of dissonance theory by considering two dimensions. The
rejection/attraction disposition on one dimension is conditioned by the dis-
agreement/agreement in another dimension. Regardless of their repulsive or
attractive disposition, agents only interact if their opinions are close enough,
the reasoning being that if an agent has an a priori rejection feeling towards
someone, they feel uncomfortable if their positions are too close.

Still, the reasons for rejection being the outcome of interaction are
many, and do not confine themselves to the opinions in confrontation, in
one or another dimension. Rejection can result from a rational discussion,
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when people realise that even though they share the same opinion, they do
it for contradictory reasons, or from the desire to distinguish oneself from
some individuals, to define a social status. In the present thesis, in Chapters
4 and 5, we model those many possible reasons as random, without consid-
ering another dimension, and we will show how they affect the reception to
external messages. This topic, the influence of mass media, has also been
the focus of several studies [57, 58], some of which addressed specifically
the influence of disorder in the form of noise or diversity on the efficient
spreading of propaganda [44,59,60]. The idea that disorder can enhance the
transmission of information may look strange, and in next chapter we will
tell how this idea originated.



2

Ordering role of disorder

To understand what we mean by disorder, imagine an ensemble of
many units. In case they are identical, evolve under exactly the same envi-
ronmental conditions, and are coupled in such a way as to induce a conver-
gence of behaviour, they will obviously follow together the same evolution.

But in real Nature, systems live in a noisy environment. Furthermore,
the existence of identical units is a mathematical abstraction, and the pres-
ence of repulsive links is not unusual. Surprisingly enough, some type of
order can be enhanced by all these three types of disorder. A system needs
to adapt itself to a changing environment, and some systems have some
kind of threshold, as we saw in the last Chapter 1. When those systems
are subjected to a sub-threshold forcing, they cannot display a significant
response.

In this chapter we are going to show how disorder can help, by raising
the signal above the detection level and therefore enhance the adaptation to
the environment. Specifically, we will present the phenomenon of stochastic
resonance and diversity induced resonance, by which noise or diversity can
enhance the response to an external forcing.

29
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2.1 Stochastic resonance

In what follows, we will present the main idea of stochastic resonance by
illustrating the basic mechanism in both a bistable and an excitable system.
For thorough reviews, see [61,62,63,64]. But first it is useful to clarify what
is meant by noise.

The implementation of diversity involves the definition of what can
be diverse and a choice of the type of diversity distribution [65]. Also, the
inclusion of competitive interactions implies decisions about the underlying
network and the type of repulsion and coupling. However, the terms diversity
and repulsive links are straightforward - even if their implementation is not.

Noise is a more ambiguous concept that entered the scientific arena
at the beginning of the XX century. As it is often the case of scientific
concepts, it did so at almost the same time by different independent routes.
In 1900 Louis Bachelier presented his PhD thesis Théorie de la Spéculation

[66], on modelling prices fluctuations in the French Stock Market. Arguing
that prices fluctuations were a sequence of uncorrelated random events that
should be described probabilistically, he formulated an equation for the drift
of prices that introduced the concept of random walk - a term that was to be
coined 5 years later by Pearson [67]. That same 1905 year, a foundational
paper by Einstein [68] marked the entrance of noise in Physics. Certainly
unaware of Bachelier work, he arrived at a similar formalisation, though his
interests were quite different: the same equation governing the drift of prices
could be applied to the drift of microscopic particles in water 1.

Shortly after Einstein’s paper, in 1908, Langevin developed an alter-
native approach interpreting the fluctuations of the position as the result of
two forces: a viscous resistance plus a fluctuating force independent of ve-
locity. While the viscous resistance follows Stokes law, the fluctuating force
depends on random factors and its time average is zero. The equation that
describes the motion of a particle is:

1Unfairly as it may be, the history of Science doesn’t record who had the first idea,
but those who are considered to have had a lasting impact, at a given moment. As the
history of noise is being rewritten, names like Thiele or Sutherland are coming to occupy
its place as earlier or contemporary proponents of some concepts [69]
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mẍ = −γẋ + αζ(t) (2.1)

where the stochastic term ζ(t) satisfies the properties of being zero on aver-
age and uncorrelated, or: < ζ(t) >= 0 and < ζ(t1)ζ(t2) >= δ(t2 − t1)

These formalisations came to place noise at the heart of many phenom-
ena as a label for what we don’t know, since it is too fast and complicated,
and the efforts in the following decades were devoted to formalise, describe,
and when possible control, confine and predict the action of noise, still con-
sidered mostly as an unavoidable nuisance.

That changed in 1981 with the discovery of the phenomenon of stochas-

tic resonance [70,71]. This is a somehow counterintuitive effect arising from
the cooperation between deterministic dynamics and dynamical disorder or
noise. By this effect, a system’s coherent response to a weak signal can be
optimally amplified by an intermediate level of noise. Initially proposed to
explain the periodicity of ice ages, [70, 71], it has broadened its focus to
include a vast amount of systems and situations, in particular in biological
settings [72].

Figure 2.1. In the beginning of the 80’s, the climate system was described by a
bistable dynamics. However, Ice Ages are phenomena that happen periodically,
and if the climate was indeed bistable, there had to be an external forcing to
induce switches between hot and cold. The only known time scale is the variation
in the eccentricity of the Earth’s orbit due to the Milankovitch effect. However,
these variations are exceedingly small to have a measurable effect. How to
explain the coincidence? The question that led to the discovery of stochastic
resonance was: how to explain the coincidence between the occurrence of the Ice
Ages, and the weak Milankovitch forcing that was too weak to induce switching?
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2.1.1 Stochastic resonance in a bistable system

The typical mechanism of stochastic resonance involves a bistable system
and a matching of time scales that occurs at intermediate levels of noise:
the half-period of the forcing, and the residence time inside a potential well,
that depends on noise according to Kramers rate.

Noise is traditionally introduced to represent the unknown, since noise
are fast random variations, whatever their origin. Therefore, we introduce
noise in Eq. 1.3 (with a = b = 1) that describes a forced bistable dynamics
and see what happens. The standard model that exhibits stochastic reso-
nance is given by a Brownian particle moving in a bistable potential driven
by a weak periodic forcing.

dx

dt
= x − x3 + Asin(Ωt) +

√
Dη(t) (2.2)

where η(t) is a Gaussian random variable with mean < η(t) = 0 > and
correlation 〈η(t)η(t′)〉 = δ(t − t′), and D is the noise strength.

Noise will lead to transitions between the two wells and in case its
strength is small compared with the height of the potential barrier, the rate
depends on the noise strength D, according to Kramer’s rate [73, 74], given
by:

W =

√

|V̈ (0)|V̈ (1)

2π
exp

(−2∆V

D

)

, (2.3)

where the dots denote double differentiation with respect to x and ∆V
is the energy difference between the maximum of the potential at 0 and the
potential minimum at 1.

When we introduce a periodic signal, the potential becomes modified
as V ′(x) = −x2

2
+ x4

4
−Ax sin(Ωt), and if Ax ≪ ∆V , the potential is unable

to destroy bistability (Chapter 1).

As the potential changes, the transition rate becomes accordingly mod-
ulated. Since Kramers formula is formulated for a time independent poten-
tial, this holds for the case where the external signal frequency is sufficiently
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low - Ω ≪ W -, which is known as the adiabatic limit of the time dependent
case.

Figure 2.2. A schematic illustration to explain the mechanism of stochastic reso-
nance. The potential wells represent stable attractors, and the ball, the state of the
system. The periodic signal introduces a bias in the shape of the potential, deepen-
ing one of the potential wells in turn. The ball moves from a well to the other under
the action of noise (the dashed arrow) when the barriers are lowered, that is, every
half-period.

In Fig. 2.2 we illustrate the basic mechanism of stochastic resonance.
If the level of noise is too low, there will be just a few hopping between
the two wells (Fig. 2.3, a). When the noise is too high, the system be-
haviour will be completely aleatory, with random hopping between the two
states. The simple, yet surprising, idea that underlies stochastic resonance
is that between these two extremes, there exists a level of noise for which
the cooperation between noise and forcing is optimal. This was observed
in the numerical experiments of the original works [70, 71], and was finally
understood in 1989 [75] as corresponding to a matching between the two
time scales involved: the half-period of the forcing, and the mean residence
time τ , that, being on average the inverse of Kramer’s rate - < τ >= 1/W
- depends on the level of noise. [73] When that happens, the period of oscil-
lations between the climate states matches the period of the signal, as seen
in Fig. 2.3, b) and c).
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Figure 2.3. The small periodic forcing synchronises the random switching from
one state to the other. Source: R. Benzi, Stochastic Resonance: from climate to
biology, eprint arXiv:nlin/0702008, 2007.

2.1.2 Excitable systems

Even though the idea of stochastic resonance was developed with bistability
in mind, the example above has shown the phenomenon to be rooted in
three basic ingredients: 1) a system with a threshold 2) a weak subthreshold
signal and 3) noise. In fact, the scope of stochastic resonance has developed
well beyond its original proposal, and has found some of the most interesting
applications in biological settings [72], and most notably in neuronal contexts
[76,77], usually modelled as excitable systems (Section 1.3).

Both bistable and excitable systems have a threshold that can be sur-
passed by noise at a given time-scale [78]. The signal periodically modulates
the threshold (Fig. 2.4), while a noisy excitable system can leave the rest
state with a noise-induced rate, doing it more easilly when the threshold is
smaller.
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WModulated threshold

Figure 2.4. A schematic illustration of the basic mechanism of stochastic resonance
in an excitable system. The threshold, given by the distance between the stable state
(black circle) and saddle (white circle), is modulated by the signal. The arrows signal
the times where the noise (represented in green) is able to surpass the threshold and
induce a firing.

Instead of counting transitions between states, the response of the sys-
tem is given by a train of pulses that happen when the modulated threshold
(see Fig. 2.4) is crossed:

x(t) =
∑

i

δ(t − ti), (2.4)

There are two differences in the response relative to the bistable case.
On one hand, the firing events get synchronised with the period of the signal,
not with the half-period. When noise surpasses the level of the periodic
modulated threshold (Fig. 2.4) a pulse is emitted. Since this happens every
period of the signal, the relevant time matching is between the noise-induced
transition rate W and the period of the signal.

Another difference [79] with respect to stochastic resonance in the stan-
dard bistable model is that we notice a double peak in the response. This
effect has been called double stochastic resonance and has its origins in the
fact that even in the absence of an external signal noise can induce a fre-
quency of oscillations in excitable systems [17]. When the signal frequency
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matches the noise-induced eigenfrequency a resonance occurs.

2.2 Measures

A number of measures have been proposed to indicate (Fig. 2.5) the optimal
response as a function of the noise level, such as the signal-to-noise ratio [80],
the residence time distribution [81], information theoretic measures [82,83],
or the spectral power amplification [84].

Figure 2.5. The figure illustrates a good measure of stochastic resonance, that
shows a maximum for a given value of D, in the x-axix. Namelly, it shows the the
power spectrum evaluated at the signal frequency for different values of the noise
amplitude D. In the inset we show power spectrum P (ω) for the optimal noise
amplitude: at the signal frequency, this measures exhibits a peak. Source: R. Benzi,
Stochastic Resonance: from climate to biology, eprint arXiv:nlin/0702008, 2007.

In the case of a periodic signal, a good measure of stochastic resonance
should exhibit a peak for the value of noise at which x(t) is oscillating with
the signal frequency. Therefore, it is natural to start with computing the
power spectrum P (ω):

P (ω) =
1

2πtmax

∣

∣

∣

∣

∫ tmax

0

dtx(t)e−iωt

∣

∣

∣

∣

2

(2.5)

The phenomenon of stochastic resonance manifests itself in a peak of
the power spectrum at the signal frequency Ω, for an optimal level of noise.
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If we want to quantify the phenomenon against various levels of noise, we
can, from the power spectrum, calculate the signal-to-noise-ratio (SNR)
as:

SNR =
P (Ω)

PN(Ω)
, (2.6)

where P (Ω) is the output power spectrum evaluated at the signal fre-
quency Ω, and PN(Ω) is the power spectrum of the noisy background.

In general, the contribution to the power spectrum of the intra-well
motion - the fact that potential minima vary with the time-dependent signal
- is negligible with respect to the power of the switching events between
the wells. For a vanishing noise strength the power PN(Ω) tends to zero,
as the system can no longer transition between the wells. Meanwhile, the
P (Ω), although small, is finite due the contribution of the intra-well motion.
Therefore, the SNR diverges. We can avoid this divergence by digitalising
the signal and neglecting the intrawell motion, or then we can simply use
another measure of resonance.

A measure that doesn’t suffer from the divergence problem is the spec-

tral power amplification factor [84], defined as the ratio of the output
to input power at the corresponding driving frequency. This measure as-
sumes that asymptotically the response of the system will oscillate with the
frequency Ω of the signal, being given by < x(t) >a s = x̄ cos(Ωt − φ). The
spectral power amplification R is:

R =
P (Ω)

PS(Ω)
= 4A−2

∣

∣〈e−iΩtx(t)〉
∣

∣

2
(2.7)

where 〈· · · 〉 is a time average. R is roughly proportional to the amplitude
of the oscillations of x(t), and since it depends on the driving period it can
be related to the synchronisation between output and input.

A more direct way to quantify the degree of synchronisation with the
signal is to simply compute the distribution of residence times in the
wells in case of bistable systems, or in the stable state in case of the excitable
system. In the adiabatic limit and in the unforced case the distribution of
the time spent on a metastable or rest state decays exponentially with t,
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reflecting the random switches induced by noise. A periodic signal leads to
a superposition of Gaussian-like peaks over the envelope of the exponentially-
decreasing distribution. The center of each peak is located at Tn = (n−1)TΩ,
where TΩ is the signal period and n = 1, 2, 3.... At the optimal level of noise
where stochastic resonance is observed there is an enhancement of the peak
corresponding to the signal half-period in the case of bistable systems or to
the period in the case of excitable systems, which means that the system
leaves the rest state with the periodicity of the signal.

In real life, many signals are not periodic [85] and measures based on
the Fourier spectra are not so relevant or applicable. In such cases, we can
use information theoretic measures such as the Fisher information.

As mentioned before, the concept of stochastic resonance has triggered
a wide extension of studies and applications well beyond climate studies,
in such diverse areas as lasers [80], SQUIDS [86], or neurons [76], just to
mention a few [61], and it has been found to play a role even in systems well
beyond the traditional setting of a bistable system subjected to a periodic
signal, to include excitable [87] or monostable [88] systems, non-periodic
forcing [85], etc.

Another, more recent, related line of research considers the role that
other types of disorder, such as quenched noise (identified with heterogeneity
or disorder), can play in producing a resonance effect in systems with many
units. Tessone et al. [89,90] have shown that in generic bistable or excitable
systems, an intermediate level of diversity in the individual units can enhance
the global response to a weak signal. This will be the subject of the next
section.

It was shown in reference [89] that diversity or heterogeneity, in the
form of quenched disorder, can play the same constructive role of noise as a
signal amplifier. The optimal diversity doesn’t preclude the existence of two
stable states in the unperturbed system, but changes its position and the
height of the potential barrier that separates them. The region of optimal
response coincides with a degradation of order, and the optimal response
corresponds to an increase in the amplitude of oscillations, and not to a
matching between two time scales.

The authors [89] considered two prototypical examples of a bistable
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and an excitable system, and in what follows we will look into more detail
at the bistable example, as the excitable case follows a similar reasoning.

2.3 Diversity induced resonance

As in the last section, we will review the effects of diversity in the response
of a forced bistable model.

Instead of a single unit, let us consider an ensemble of N globally
coupled bistable systems, whose dynamics is given by

ẋi = xi − x3
i + ai +

C

N

N
∑

j=1

(xj − xi) (2.8)

where xi(t), i = 1, . . . , N is the position of the i-th unit at time t and C is the
coupling strength. Diversity is related to the dispersion in the distribution
of the parameter ai that controls the relative stability of each individual
bistable state. We assume that the ai’s follows a probability distribution
function g(a) that satisfies 〈a〉 = 0, 〈ai aj〉 = δijσ

2, where the standard
deviation σ measures the diversity.

We will be interested in the macroscopic variable X(t) = 1
N

∑N
i=1 xi(t),

the average position of the units. In the globally coupled case considered
here, the coupling amongst units appears only through this macroscopic
quantity:

ẋi = CX + (1 − C)xi − x3
i + ai (2.9)

Averaging eq.(2.9) over all units, we obtain

Ẋ = X − 1

N

∑

i

x3
i (2.10)

As we see, diversity is no longer present in an explicit form in this
equation. We recover its influence when we express [91] the position of
each unit in terms of a deviation δi from the average position as xi = X +



40 Chapter 2.

δi. Introducing the variance of the deviations M = 1
N

∑

i δ
2
i , we relate

disorder and diversity when we compute the value of M by averaging over
the probability distribution of ai, as M(t) =

∫

da g(a) [x(t; a) − X(t)]2.

If we assume that δi are distributed according to an even distribution,
or, alternatively, that δi is small and we can neglect the third moment,
we get, using eq. (2.10), the equation for the macroscopic variable X that
describes a bistable system.

Ẋ = X (1 − 3M) − X3. (2.11)

The effective potential is given by

V (X) = −X2

2
(1 − 3M) +

X4

4
. (2.12)

and the equilibrium points are at X± = ±
√

1 − 3M .

As M increases, the system goes from bistable to monostable, passing
through a region of bistability that is characterised by a lower barrier height
and an approximation of the two potential wells, as shown in Fig. 2.6. The
influence of diversity on the response of the system to a weak external signal
can already be guessed. If M = 0, the units are completely ordered and a
weak signal can only induce small oscillations inside a well, as explained in
the previous chapter. When disorder is too high, namely for M > 1/3, the
potential becomes monostable and the response consists of small oscillations
within that potential well. By contrast, at an intermediate level of the
disorder M the potential is still bistable, but the potential barrier starts to
decrease (Fig 2.6, thereby turning the signal supra-threshold. Therefore, an
optimal response appears for an intermediate level of diversity, when there
is a good trade-off between the two consequences of diversity: the desirable
consequence of lowering the barrier, and the not so desirable consequence of
approximating the potential wells. For a given signal, the balance is achieved
when the barrier is low enough for the signal to become supra-threshold and
the potential wells are still sufficiently distant to elicit a big amplitude of
oscillations. Fig. 2.7 illustrates the coincidence between the transition order-
disorder and an increase in the response of the system that is at the heart
of the phenomenon.
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The effect translates itself in an increase in the amplitude of oscillations
of the macroscopic variable (depicted in bold line in the Fig. 2.8). When
there isn’t any disorder (upper panel Fig. 2.8) all the units execute small
oscillations within a well. When diversity is too high (lower panel in the
same figure) the units manifest all types of disorganised behaviour: some
remain within one of the wells, while others jump between the two: the end
result is that the average position oscillates around zero. It is in the middle
panel of Fig. 2.8 that the optimal diversity enables an almost synchronised
hoping between the two wells.
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Figure 2.6. The variation of the potential shape as disorder increases. For an
intermediate level of disorder, the potential is still bistable, but the wells are closer
and the barrier is lower. The optimal level of disorder corresponds to a balance
between a desirable low barrier and a not so desirable approximation of the wells.

Whereas in the case of stochastic resonance in a single unit system the
optimal noise is the one for which the rhythm of the system matches the
frequency of the signal, here the optimal diversity is the one that amplifies
the amplitude of oscillations, because once the stable states are reached,
the only source of movement in the system is the external forcing, and any
oscillation happens at its rhythm.

Therefore, a convenient measure of resonance evaluates the amplitude
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Figure 2.7. The resonance peak (lower panel) appears close to an order-disorder
transition (upper panel). Source: [90].

of oscillations at the frequency of the signal. As a way of quantifying the
coherence of the global response to a periodic forcing A sin(2πt/T ), we chose
the spectral amplification factor R, defined as the ratio of the output to input
power at the corresponding driving frequency Ω [84]:

R = 4A−2
∣

∣〈e−i2πt/T X(t)〉
∣

∣

2
(2.13)

where 〈· · · 〉 is a time average, and X(t) is the global response (system’s
magnetisation): X(t) = 1

N

∑N
i=1 xi(t).

Large values for R indicate that the global variable X(t) follows the
external forcing, while small values of R indicate a small influence of the
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Figure 2.8. The resonance corresponds to an increase in the amplitude of oscilla-
tions (middle panel). Source: [90].

forcing on the global variable. R is roughly proportional to the amplitude
of the oscillations of X(t): if R < 1, then the amplitude of the response is
less than that of the signal, and vice versa for R > 1.

2.4 Is diversity required at all?

The previous section was called diversity induced resonance, and the micro-
scopic explanation of the resonance relies on diversity itself, namely, on the
assumption that diversity assures that there will always be some units that



44 Chapter 2.

can respond to the forcing. When the units are identical (and both states
are equally stable for all units) the signal is sub-threshold and, because of
the coupling, all units remain in the same state. As diversity increases, the
signal becomes, for half of its period, supra-threshold for some of the units
and forces those units to jump from their less stable state to the other. In
the other half of the period, the signal becomes supra-threshold for a dif-
ferent set of units. The units which follow the signal pull the other units,
to whom they are attractively coupled, and the collective effect is that a
significant fraction of the units is able to respond to the external forcing.

Most interestingly, any source of disorder that fulls very generic re-
quirements such as leading to symmetric deviations around the average po-
sition of the system, should lead to the same resonance effect. Thus, disorder
induced resonance provides a theoretical framework that can encompass a
wide range of different sources of disorder, including noise in extended sys-
tems.

And yet we saw that macroscopically the relevant parameter that op-
timises the response is the parameter M , that simply measures disorder in
the position of the units, whatever its origin. In fact, in the derivation of
Eq 2.11 the only assumption was that either the deviations from the mean
field are so small that the third moment can be neglected, or, alternatively,
that they follow an even distribution. Not only does this make sense in the
particular case of an evenly distributed diversity parameter ai, but it is also
applicable to a wide range of situations that don’t imply any diversity. In
general this loss of entrainment can also be induced by noise (in the case of
extended stochastic resonance [92, 93]), competitive interactions, irregular
network of connectivity or by some other source.

To better compare the effects of stochastic and diversity induced reso-
nance, we focused here on a bistable system like we did in the last chapter,
but we stress that the same diversity induced resonance effect has been
found in different types of systems, such as excitable systems [89], or linear
oscillators [94].

Along these lines, the role of the heterogeneous complex network topol-
ogy in the amplification of external signals has been addressed in [95], and
Chen et al. [96] have shown how structural diversity enhances the cellu-
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lar ability to detect extracellular weak signals. The interplay between noise
and diversity in an ensemble of coupled bistable FitzHugh-Nagumo elements
subject to weak signal has been considered in [97]. The role of diversity
in heterogeneous excitable media was considered in [98] where the author
demonstrates that diversity in a parameter can cause the emergence of global
oscillations from individually quiescent elements in a system of van der Pol-
FitzHugh-Nagumo elements.

But generic as it is, the assumption of an even distribution or small
deviations from the mean field is not universally applicable. It cannot apply,
for instance, when we assist to the formation of many metastable states in
discrete systems, which can happen when there is frustration due to the
presence of repulsive interactions. Does this mean that the disorder induced
by competitive interactions is not suitable to get optimal responses, or does
it lead to responses with different characteristics? The remainder of the
thesis will be devoted to the resolution of this question.
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Part II

Original Research
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The presence of both repulsive and attractive interactions is not un-
usual in systems with many units. The existence of inhibitory and excitatory
connections in the brain neurons, or a society with friends and enemies are
examples of such systems. The emergence of a coherent behaviour in the
absence of forcing and in the presence of repulsive links was treated in [99].
There it was shown that one can obtain a more coherent behaviour, in the
form of synchronised pulsing, by adding an optimal amount of long-range
repulsive couplings in a mixture of excitable and oscillatory units described
by the Hodgkin-Huxley model. In the same reference, a similar improve-
ment of the internal coherence in an Ising model with a simple majority-
like dynamics in the presence of long-range repulsive links was also shown.
Also in [100], an intermediate amount of repulsive links was found to trig-
ger collective firing in an ensemble of active-rotators [18] in the excitable
regime. The combined effects of noise and variability in the synchronisation
of neural elements has been studied in [101], while reference [102] unveils
the general mechanism for collective synchronised firing in excitable systems
arising from degradation of entrainment originated either by noise, diversity
or other causes.

Additionally, as mentioned before, the fact that people’s opinions can
diverge as a result of interaction is a topic of increasing interest.

In this Part of the thesis, we will show how these repulsive links that
are present in so many systems can enhance the reception to an external
forcing.
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The φ4 model

Focusing on a double-well model, Perc et al. [103] studied the combined effect
of dynamic and static disorder, where static disorder was either diversity,
the presence of competitive interactions, or a random field. Namely, they
showed that the random presence of repulsive bonds decreases the level of
noise warranting the optimal response.

It is the purpose of this work to show that competitive interactions
can actually replace -not merely enhance- noise in its constructive effect.
We will see that competitive interactions can replace noise or diversity in
their constructive effect. We focus on the generic globally coupled bistable
system, and show that the addition of an intermediate fraction of repulsive
links can increase the sensitivity to an external forcing. In particular, we
numerically demonstrate that the response of the macroscopic variable to
an external signal, is optimal for a particular proportion of repulsive links.
Furthermore, we show that a resonance also occurs for other system param-
eters, like the coupling strength and the number of elements. Resorting to a
spectral analysis of the Laplacian [104] matrix, we locate the amplification
region, and unveil the mechanism of resonance.

The outline of this chapter is as follows: in section 3.1 we will intro-
duce the model; we show that there is an amplification and discuss how
the amplification mechanism is related to a break of stability in section 3.2;
and how we can predict the resonance peaks in section 3.3; Conclusions are
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drawn in section 3.4.

3.1 The bistable model

We consider the same system of N globally-coupled bistable units described
by real variables si(t), i = 1, . . . , N under the influence of a periodic forcing.

dsi

dt
= si − s3

i +
C

N

N
∑

j=1

Jij(sj − si) + A sin(2πt/T ), (3.1)

where t is the dimensionless time, C measures the coupling strength amongst
the different units and A sin(2πt/T ) is a periodic external signal with am-
plitude A and period T .

The interaction matrix Jij reflects the presence of attractive and repul-
sive interactions between the units. More specifically, we adopt the following
values at random:

Jij = Jji =

{

−1, with probability p,

1, with probability 1 − p.
(3.2)

The single-element case, N = 1, with added noise is the prototypical double-
well potential system for which stochastic resonance was first considered.
The case without repulsive interactions, p = 0, can still be described glob-
ally by a bistable potential (see next section) and, in the presence of noise,
has been widely studied as a model case for stochastic resonance in extended
systems [70]; it has also been considered, in the presence of a random field,
as a prototypical example for the diversity-induced resonance effect [89]. For
p > 0, the coexistence of attractive and repulsive interactions is character-
istic of a wide class of spin-glass-type systems [105].

We will focus on the macroscopic variable S(t) = 1
N

∑

i si(t), and use
as a measure of response the spectral power amplification factor [84], de-
fined as the ratio of the output to input power at the corresponding driving
frequency:

R = 4A−2
∣

∣〈e−i2πt/T S(t)〉
∣

∣

2
(3.3)

where 〈· · · 〉 is a time average.
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3.2 Signal amplification

It is convenient to analyse first the structure of the steady-state solutions for
the system of equations (3.1) in the non-forced case, A = 0. The dynamics

is relaxational
dsi

dt
= −∂V

∂si

[106], being

V (s1, . . . , sN) =
N
∑

i=1

[

−s2
i

2
+

s4
i

4
+

C

4N

N
∑

j=1

Jij(si − sj)
2

]

(3.4)

the Lyapunov potential. Therefore, the stable steady states are the config-
urations (s1, . . . , sN) which are absolute minima of V . If there are no re-
pulsive links, p = 0, the Lyapunov potential has just two equivalent minima
at si = +1 or si = −1, ∀i = 1, . . . , N and, hence, the macroscopic variable
will reach the stable asymptotic values S = +1 or S = −1, depending solely
on the initial conditions. Thus we have a typical situation of bistability.
As p increases, the absolute minima depart from S = ±1 and, furthermore,
new metastable minima of V appear. The dynamical equations (3.1) may
or may not get stuck in one of these minima, depending on initial conditions
and the particular realisation of the coupling constants Jij. We have used
throughout the paper random initial conditions drawn from a uniform dis-
tribution in the (−1, 1) interval, although we have observed the same type of
phenomenology when using other random, but still symmetric, distributions
such as truncated Gaussian or the Johnson family of distributions.

From our simulations we compute numerically the probability distri-
bution P (S) of the final values of S reached during the dynamical evolution
for different realisations of the coupling constants Jij and initial conditions.
This is plotted in Fig. 3.1. We can observe a second-order phase transition
as the average value 〈|S(t)|〉 vanishes for p > pc ≈ 0.44. One can interpret
these results in terms of an effective potential Veff(S) ≡ − ln P (S) which
has two equivalent absolute minima at S = ±S0(p), where 1 > S0(p) > 0
for 0 < p < pc, and one absolute minimum at S = 0 for p ≥ pc. The ef-
fective potential Veff presents many relative minima for all values of p > 0,
especially in the critical region p ≈ pc, a typical situation for the spin-glass
models [105].

We now turn on the forcing A > 0 and study the system response,
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Figure 3.1. We plot in a gray scale the stationary probability distribution P (S),
in the absence of external signal A = 0, coming from numerical simulations of
Eqs. (3.1). For better viewing, the distribution has been rescaled by its maximum
value at each p. The data show that at p < pc ≈ 0.44 the system presents two
equivalent absolute maxima for P (s), while there is only one absolute maximum
for p > pc. We note, however, that there are many relative maxima for all values
of p, specially around the region p ≈ pc. Other parameter values are: N = 200,
C = 8. The probability has been computed after averaging over 1000 realisations of
the couplings Jij and initial conditions drawn from an uniform distribution in the
interval (−1, 1). For the numerical integration we used a fourth-order Runge-Kutta
method with a time step ∆t = 0.1.
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as measured by the spectral power amplification factor R defined above,
Eq. (3.3). Consider first the case p = 0. For a small, sub-threshold, ampli-
tude A the macroscopic variable S(t) will just execute small oscillations of
amplitude proportional to A around the stable values S = +1 or S = −1.
As A increases beyond the threshold value Ao ≈ 0.4 the amplitude of the
forcing is large enough to induce large jumps of the macroscopic variable
from S ≈ −1 to S ≈ +1 and vice versa. This change of behaviour at Ao ap-
pears as a sudden increase in the value of R, as shown in the inset of Fig. 3.2.
As the same inset shows, similar behaviour is observed for 0 < p . pc: the
response shows a sudden increase for a particular value of the amplitude A
and then decreases monotonically. For p > pc, the response is very small
and almost independent on the value of A.

More interesting, and the main result, is the dependence of R on the
probability p of repulsive links, main plot in Fig. 3.2. We note that there
is an optimal probability of repulsive links that is able to amplify signals
whose amplitude would be sub-threshold in the case p = 0, i.e. A < Ao.
For suprathreshold signals, A > Ao, the presence of repulsive links does no
longer lead to enhanced amplification. As shown in the figure, the optimal
value for amplification is close to the critical value pc signalling the transi-
tion from bistability to monostability in the non-forced case. The optimal
amplification as a function of p can clearly be observed in Fig.(3.3) which
shows representative trajectories for p = 0 (small oscillations around the
value S = +1), p = pc (large oscillations between S ≈ +1 and S ≈ −1) and
p = 1 (small oscillations around S = 0).

The existence of an optimal value of the fraction of repulsive p for which
signal amplification is maximum is somehow reminiscent of the stochastic
resonance phenomenon. There are some important differences, however.
While in stochastic resonance, the response R shows a maximum as a func-
tion of period, resulting from the matching between Kramers’ rate and the
forcing half-period, in our case the same optimal disorder p amplifies re-
sponses to signals of every period, as shown in Fig. 3.4. When the signal is
slow enough, the system has time to respond to the fuller extent, going to
the absolute extrema of the potential, and the amplification factor reaches
a constant value, see inset of Fig. 3.4.

It is possible to reinterpret these results in terms of the effective po-
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Figure 3.2. Spectral amplification factor R versus probability of repulsive links p.
Inset: the influence of the amplitude A of the external forcing on the response R.
For suprathreshold amplitudes, A & 0.4, R decreases with A due to the denominator
A2 in the definition of the spectral amplification factor R. T = 300, N and C as in
Fig. 3.1.
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Figure 3.3. Representative trajectories of the macroscopic variable S(t). Note the
large amplitude of the oscillations in the intermediate case p = 0.44. The “signal”
is the periodic function A sin(2πt/T ). Values of N , C and T as in Fig. 3.2, A = 0.2.
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Figure 3.4. The influence of the signal period T on the response R. In the inset,
we see the response R reaches a constant value for slow enough signals. Values of
N , C and A as in Fig. 3.1.

tential Veff(S) introduced above. The periodic forcing can be seen, approxi-
mately, as a periodic modulation to the potential Veff −S ·A sin(2πt/T ). As
discussed above, the effect of the repulsive links is such that Veff(S) changes
from bistable at p = 0 to having many metastable minima at p ≈ pc and
a single absolute minimum for p > pc. Hence, the deep potential barrier
separating the S = ±1 solutions for p = 0 lowers under the effect of the
repulsive links. As a consequence, the modulation induced by the periodic
forcing is now large enough, and the global variable is then able to oscillate
from the minimum +S0(p) to −S0(p) and vice versa. As p approaches pc

a more complicated scenario appears. In this region the effective potential
presents already a rich structure with many metastable minima in the non-
forced case. Those minima can be modified or even disappear by the effect
of the periodic modulation. It is particularly illustrative to compare the
responses to a suprathreshold signal of amplitude A = 0.4 in the case p = 0,
and to a signal of amplitude A = 0.2 (which would be subthreshold in the
case p = 0) at the optimal fraction of repulsive links p = pc. In both cases,
the amplitude of the oscillations is approximately the same, as the system
makes large excursions from S ≈ −1 to S ≈ +1 and vice versa. However,
the shape of the oscillations is rather different, as shown in the upper panel
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Figure 3.5. We amplify some representative trajectories (upper panel), and count
the number of states through which the system moves in each trajectory (lower
panel). Values of T , N and C as in Fig. 3.2.

of Fig 3.5. In the p = 0 case, the transition from one minimum to the other
is rather fast (vertical portion of the dashed line), while in the case p = pc,
the transition is slower as the system seems to be spending more time in
intermediate states.

To determine what those differences reveal about the underlying ef-
fective potential, we have used a method [107] that allows us to detect the
number of states a system visits from an analysis of its time series. A typ-
ical example is shown in the lower panel of Fig. 3.5. We only detect two
states in the global variable S when p = 0, corresponding, as expected, to
the modulated bistable potential. By contrast, the slight irregularities in
the trajectory for p = 0.44, hardly visible by eye, correspond to several very
shallow potential wells. The system evolves through many states at the op-
timal probability of repulsive links, as shown in the lower panel of Fig 3.5.
This image explains why signals of every amplitude and period can be am-
plified for p ≈ pc. In this case, the system can access the many intermediate
states, covering a distance proportional to T and A, in case of very fast or
very weak signals.

The previous results show that the disorder induced by an intermediate
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Figure 3.6. Coupling-induced resonance. Main plot: the response R shows a
maximum as a function of coupling constant C. As shown in the insert, the same
maximum appears as a function of the localisation measure M , see section 3.3.
Values of N , T and A as in figure 3.1 and K = 0.2 in the insert.

level of repulsive links is an essential ingredient to get an optimal response
to the external forcing. This can be explained as, in the absence of forcing,
the metastable states correspond to a wide distribution for the values of si’s.
When the forcing is turned on, some units will be responsive to the signal,
and then they will pull others which are positively coupled to them. This
basic mechanism is further highlighted by the observation of a resonance
behaviour with both the coupling constant C and the number of units N .

The resonance with C and some representative trajectories are dis-
played in Figs. 3.6 and 3.7, respectively. In the weak coupling limit, the
units behave basically as independent from each other and, as the signal
amplitude A is subthreshold for a single variable, the overall response is
small. In the large coupling limit, the interaction term is too big to allow
an unit that could first follow the signal to depart from the influence of its
neighbours.

The resonance with the number of units N and some representative
trajectories is presented in Figs. 3.8 and 3.9. Since fluctuations in the number
of repulsive links decrease with N , a larger system requires a greater fraction
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Figure 3.7. Coupling-induced resonance, as revealed by the resonant trajectory at
optimal C = 11. Values of N , A and T as in Fig. 3.1.

of repulsive links to achieve the same level of disorder than a smaller system.
As a consequence, the response of a larger system is best amplified at a
higher probability of repulsive links. As the fraction of repulsive links must
not exceed the fraction of positive ones, there can be a limit on how large can
a system be, to be able to amplify a signal. The same behaviour, focusing
on the number of neighbours was found in a previous study of an Ising-like
network model [108].

3.3 Spectral analysis

We have already commented that the optimal probability of repulsive links
drives the system to a glassy phase. Anderson [109, 110] has proposed a
connection between a glass and a delocalisation-localisation transition, re-
lating the existence of many metastable states with a localisation of modes.
From this proposal, we retain the idea to work in the eigenspace of the in-
teraction matrix, and to look for the fraction of repulsive links where mode
localisation becomes significant. This approach has the virtue of not only
identifying the steady states, but also to shed light onto how the reaction
to perturbations is sustained and spreads along the system, depending on
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Figure 3.8. System-size induced resonance. Main plot: the response R shows a
maximum as a function of the number of units, that follows the same pattern as
the maximum M (K = 0.2) (inset). Since N decreases the influence of a single
neighbour, and C increases it, when the coupling intensity is larger, the optimal
system size increases. Values of T and A as in Fig. 3.1.
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Figure 3.9. System size induced resonance, as revealed by the resonant trajectory
at optimal N = 250. Values of T , A and C as in Fig. 3.1.
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the fraction of repulsive links. In this manner, we hope to locate the region
where multistability is expected, and also to understand the mechanism of
response to external perturbations.

Following [103], let us define the eigenvalues Qα and (normalised)
eigenvectors eα = (eα

1 , . . . , eα
N) of the Laplacian matrix [104] J ′

ij:

J ′
ij = Jij − δij

N
∑

k=1

Jkj, (3.5)

N
∑

j=1

J ′
ije

α
j = Qαeα

i . (3.6)

The effect of the competitive interactions can be described by the so-called
participation ratio of eigenvector eα, defined as PRα = 1/

∑N
i=1[e

α
i ]4. It

quantifies the number of components that participate significantly in each
eigenvector. A state α with equal components has PRα = N , and one with
only one component has PRα = 1. When PRα = 1 on a fraction f of
elements, and 0 elsewhere, then PRα = f , which justifies its name. More
precisely, we will define “localised” modes as the ones whose participation
ratio is less than 0.1N . Our first observation (Fig. 3.10) is that at the
optimal region p there is a significant fraction of positive eigenvalues, and,
of those, a significant fraction of the corresponding eigenstates are localised.
In this region, we will neglect the coupling between different modes. This
approximation allows us to look in more detail at what happens at the
optimal region, and in particular at the effect of the coupling strength C
and the number N of elements.

Let us focus first on the unforced system (A = 0), to see how the
presence of the disorder induced by the repulsive links affects a state config-
uration. We assume each unit i is initially at a given state so

i , chosen from
a random symmetric distribution and split the variables in the steady state
as si = so

i +xi, being xi the deviation from the initial condition. We express
xi in the eigenbasis of the J ′

ij matrix:

xi =
N
∑

α=1

Bαeα
i , (3.7)
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Figure 3.10. The participation ratio PRα is a measure of localisation; it estimates
the number of eigenvectors components contributing to the Qα eigenvalue. The
eigenvalues at both ends of the spectrum are localised for intermediate levels of
disorder. N = 200, results after 1000 independent runs.

Expanding Eq. (3.1) for A = 0, multiplying the resulting equation by
eα

i , summing over all elements i, and approximating averages of the prod-
uct of initial conditions and eigenvectors by the product of their individual
averages (e.g.

∑N
i=1 so

i e
α
i ≈

∑N
i=1 so

i

∑N
i=1 eα

i = 0), we obtain:

∑

β,γ,η

F βγηαBβBγBη +

(

K − C
Qα

N

)

Bα = 0, (3.8)

where

F βγηα =
N
∑

i=1

eβ
i eγ

i e
η
i e

α
i , (3.9)

K =
3

N

N
∑

i=1

(so
i )

2 − 1. (3.10)

Neglecting coupling between modes leads to F βγηα = 1/PRα if α = β = γ =
η and F βγηα = 0 otherwise. We then obtain the following equation for the
amplitude of the α-th mode:

B3
α + PRα

(

K − C
Qα

N

)

Bα = 0. (3.11)



64 Chapter 3.

According to this approximation, unless Qα > KN
C

, the amplitude Bα of the
mode α is zero, and any small perturbation vanishes. Otherwise, the mode
is said “open” and Bα takes one of the values:

Bα = ±
√

PRα

(

C
Qα

N
− K

)

. (3.12)

For intermediate amounts of disorder, some open modes begin to appear.
The final state of an unit is si = so

i +
∑N

α=1 Bαeα
i , and when the initial con-

ditions are random and the open modes α are localised, the system reaches
many metastable states, given all the possible combinations of individual
states. For this reason, we want to locate a transition to a region with a
significant number of localised modes.

To concretise, we define a measure M of localisation:

M =
N2

L

NON
, (3.13)

where NO is the number of modes α whose associated eigenvalue Qα is
greater than KN

C
, and NL is the number of those modes which, in addition,

are localised, i.e. PRα < 0.1N .

Recalling the definition of K (Eq. (3.10)), we see its value is related
to a choice of initial conditions, by the variance of so

i . Since we expect
multistability to emerge when the initial distribution is more or less uniform,
we present results in Fig. 3.11 for values of K ≈ 0.

At moderate levels of disorder, the localised nodes appear on the tails of
the spectra, Fig. 3.10. We confirm that the optimal probability of repulsive
links coincides with a maximal localisation of open modes in that region, as
identified by the peak in M (Fig. 3.11).

In a particular metastable state, the units are randomly distributed,
more concentrated near one of the potential wells. Observing the results
in Fig. 3.11 for K & 0, we see that we recover the dependence on C, and
that the peak in M still coincides with the optimal probability region. The
enhanced responsiveness to an external signal can thus be understood as a
consequence of mode localisation. Since units can be in different positions,
some will be able to answer the signal, and then - since the overall coupling
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Figure 3.11. Measure of localisation M: close to the optimal region there is an
increase in the fraction of localised open eigenstates. The small dependence of M
with K and C is as expected. Parameters: N = 200. Inset: A = 0.2, T = 300.

is attractive - pull the others. This is done in an incremental fashion, as
confirmed by the localised reaction to perturbations.

The same analysis is valid when we plot M as a function of C or N .
We notice a peak in M and accordingly the dependence of the response on
C (Fig. 3.6) and N (Fig. 3.8) shows a maximum for intermediate values
(insets Fig. 3.6 and Fig. 3.8). When C is small, even if the modes are
open, their amplitude Bα is weak, Eq. (3.12). A high fraction of repulsive
links, increasing the number of open modes, can overcome this situation to
a certain degree, allowing for resonances at a smaller coupling strength.

3.4 Conclusions

In this work, we have analysed the response to a weak period signal, of
a model composed by bistable units coupled through both attractive and
repulsive links.

Our main result is that the system collective response is enhanced by
the presence of an intermediate fraction of repulsive links. Hence, com-
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petitive interactions are taken as a source of disorder, as an alternative to
previous studies where disorder was induced by noise [61] or diversity [89],
and a similar amplification was verified.

We have chosen a very generic double-well model, and have shown that
the optimal disorder is the one that destroys the ordered system bistability.
The resulting multistable effective potential allows for the amplification of
very weak or fast signals. There is not a need to match specific levels of
disorder with specific frequencies. Having the optimal disorder, the system
becomes more sensitive to external signals of every kind. Furthermore, we
have shown that varying the number of elements or the coupling strength
in an ensemble of coupled bistable elements can improve the sensitivity to
an external forcing. These various ways to increase sensitivity make the
phenomenon less dependent on a fine tuning of the proportion of repulsive
links, which can be a positive feature in practical applications. Apparently,
when the system size becomes very large, it is difficult to get a resonance
effect, unless we increase the coupling strength by many times. Arguably,
this difficulty can be overcome by other types of network settings [100].

Finally, we have shown that the location of the resonance peaks can
be predicted by a spectral analysis of the Laplacian matrix. In heuristic
terms [104], the positive eigenvalues of the Laplacian can be seen to express
the contribution of the coupling term to the vulnerability of the system to
perturbations. We conclude that the location of the amplification region, for
a given system size and coupling constant, is reasonably independent of the
particular dynamical system. In broad terms, it corresponds to the point
where the positive eigenvalues of the Laplacian matrix become localised,
signalling a transition to a region where perturbations can accumulate in
an incremental manner. The more precise location would depend on the
particular dynamical system by means of a condition on open modes.

Competitive interactions are widespread in nature, notably in biolog-
ical systems. In those systems and others, there has been some studies
highlighting their role in achieving a coherent behaviour in the absence of
forcing: increasing synchronisation [99] or enabling a collective firing [100].
In the present study, we saw they can also help to enhance perception, some-
thing that can be potentially relevant in sensory systems.
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A discrete bistable model

We study an Ising model in a network with disorder induced by the presence
of both attractive and repulsive links and subjected to a periodic subthresh-
old signal. By means of numerical simulations and analytical calculations
we show that the global response of the system reaches a maximum value
for a given fraction of the number of repulsive interactions. The model can
represent a network of spin-like neurons with excitatory and inhibitory cou-
plings, or a simple opinion spreading model [99, 44], which is the language
we will adopt throughout most of the time in this chapter. In this context,
attractive/repulsive links represent friends and enemies.

4.1 Noise and diversity

Let us recall the model presented in subsection 1.4.1. We concluded that the
depth of the potential well where the population is entrapped is estimated
by (half) the number of people that shares our opinion, it seems like a good
idea to break consensus a little, by the introduction of some form of disorder.
In case individuals are somehow different, we can anticipate that a consensus
will be harder to reach. Tessone et al. [59] changed the interaction rule 1.9 to
dilute the social pressure of the neighbours by taking into account individual
preferences or biases towards one of the opinions. In their model [59], the
rule 1.9 is replaced by:

67
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(i) Select randomly one individual i. Its opinion at time t is modified as :

µi(t + dt) = sign





1

k i

∑

j∈n(i)

µj(t) + θi



 . (4.1)

The parameter θi represents the individual preference and is drawn
from a probability distribution g(θ), which satisfies 〈θi〉 = 0, 〈θi θj〉 = δij σ2.
According to this, the agent i only adopts the average opinion in its neigh-
bourhood n(i) if this average opinion overcomes its preference θi.

By resorting to numerical simulations and a mean-field approximation,
the authors [59] found that there exists an optimal value of the diversity σ
for which the response to a weak forcing takes a maximum value, and that
the mechanism is in everything identical to the diversity induced resonance
effect described in Chapter 2.

Yet another earlier attempt [44] to aid the propagation of the signal in-
volved the introduction of noise. Kuperman and Zanette [44] used the model
1.9 and included noise as a certain probability to change randomly from one
opinion to another. In the context of opinion formation models, noise might
represent flicker emotions, free will, or some other external factor [48]. The
main point is that now agents can change in a random fashion, not taking
into consideration any known factor in the model. Their aim [44] was to
uncover the influence of the network topology on the stochastic resonance
effect, thus building a bridge between stochastic and disorder induced reso-
nance. Namely, they observed that when the interaction network is regular,
the unperturbed system reaches a paramagnetic phase, and that the intro-
duction of some random long range interactions is necessary for the existence
of a ferromagnetic state, and as a consequence a bistable situation.

Being interested in stochastic resonance, they turned their attention
to this bistable situation enabled by small world networks, finding that as
the probability of small world increases, so does the potential depth and
as a consequence the strength of the signal needed to invoke a response.
Although they didn’t elaborate on it in detail, they hint at the possibility of
another type of disorder induced resonance, when mentioning the possibility
that very weak forcing could get a response when the population is restricted
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to local interactions, by the diffusive propagation that could be enabled by
the paramagnetic phase. As we will see in the rest of this chapter, this can
in fact be achieved by any kind of network as long as we include a mixture
of attractive and repulsive links.

4.2 Model

We consider a set of N spin-like (Ising) dynamical variables µi(t) which,
at a given time t, can adopt one of two possible values, µi = ±1. We
will sometimes use the language of a magnetic system, but our aim is quite
general and these states can represent, for instance, two different opinions
(in favour/against) about a topic, the state of a neuron (firing/not firing), or
several other interpretations [99,44]. The variables are located on the nodes
of a given network whose links represent interactions. We assign a weight ωij

to the link connecting nodes i and j and consider only the symmetric case
ωij = ωji (or an undirected network). According to the discussion above, we
let the weights take positive or negative values: ωij = 1 or ωij = −κ with
κ > 0. The neighbourhood of node i is the set V (i) of nodes j for which a
connecting link between nodes i and j exists.

The spin variables evolve according to the following dynamical rule:
At time t one of the variables, say µi, is chosen at random. The value of this
variable is updated according to:

µi(t + τ) =











sign
[

∑

j∈V (i) ωijµj(t)
]

w.p. 1 − |a sin(Ωt)|,

sign [sin(Ωt))] w.p. |a sin(Ωt)|,
(4.2)

(w.p. stands for “with probability”). In both cases, if the expression within
square brackets is equal to zero, the variable does not change: µi(t + τ) =
µi(t). The first case represents a weighted “majority-rule” in which the state
of the spin is determined by the sign of its local field hi(t) =

∑

j∈V (i) ωijµj(t).
The second case represents the effect of an external forcing of frequency Ω
– the intensity a < 1 determines the rate at which the signal influences
the dynamics of the variable µi. The choice of the time step τ = 1/N
defines the unit of time as N updates. We consider both regular lattices
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(with k neighbours) and random networks of the small-world type. The
latter are constructed according to the algorithm proposed by Watts and
Strogatz [111]. Denoting by q the rewiring probability (percentage of short-
cuts), the limit q = 1 corresponds to a random Erdös/Rényi-type network,
q = 0 is a regular ring-network and intermediate values of q define a small-
world network. We have also considered a square lattice in which a node is
linked to the k = 8 nodes of its Moore neighbourhood. In each case, links are
assigned a strength −κ with probability p or a strength 1 with probability
1 − p. In the case of a random network, the number of links (degree) ki

of node i is a random variable with probability Pki
and average 〈ki〉 = k.

Denoting by k+
i and k−

i respectively the number of positive and negative
links of node i, its degree is ki = k+

i + k−
i and 〈k+

i 〉 = (1 − p)k, 〈k−
i 〉 = pk.

It is worth noticing that, from the formal point of view, the majority-
rule is equivalent to a heat-bath stochastic dynamics in the limit of zero
temperature [112]. The Hamiltonian is H = −∑〈i,j〉 ωijµiµj (the sum runs

over all pairs of neighbours) and the majority-rule always leads to a con-
figuration with less or equal energy. If all the weights ωij are positive, the
ground states are µi = +1 or µi = −1, ∀i, and these ground states are
reached independently of the initial condition. If there is a fraction of nega-
tive links, the system is of the spin-glass family. The (in general unknown)
ground state can have many metastable configurations nearby and the use
of the majority-rule may trap the system in one of them.

As a way of quantifying the coherence of the global response to the
forcing, we chose the spectral amplification factor R, defined as the ratio of
the output to input power at the corresponding driving frequency [84], as
mentioned in Section 2.2:

R =

〈

4

a2

∣

∣

〈〈

m(t)e−iΩt
〉〉∣

∣

2
〉

, (4.3)

where 〈〈...〉〉 is a time average, m(t) is the global response (system’s magneti-
sation):

m(t) =
1

N

N
∑

i=1

µi(t), (4.4)

and 〈...〉 is an ensemble average over network realisations, initial conditions
and realisations of the dynamics.
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4.3 Simulation results
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Figure 4.1. The coincidence between resonance and order-disorder transition re-
gion. Upper panel: Modulus of the average magnetisation as a function of the
probability of repulsive links. In the regular networks, the existence of metastable
states reveals itself in a smaller magnetisation at p = 0. Lower panel: Spectral am-
plification factor R versus probability of repulsive links p. Parameters are: a = 0.15,
Ω = 2π

100
, κ = 1. In the main graph, N = 100 and symbols correspond to topolo-

gies: ring with k = 10 neighbours (◦), square lattice with k = 8 neighbours in the
Moore neighbourhood (�), and random networks with average number of neigh-
bours k = 10 and rewiring probability q = 0.2 (∗) and q = 1 (△). In the inset, we
chose the random network with q = 1, k = 10, and different curves correspond to
sizes N = 100 (△), 500 (⊳), and 1000 (▽).
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The main result is that there is a resonance effect, a maximum of the am-
plification factor R, at an intermediate value of the probability of repulsive
links p, as shown in Fig. 4.1, and that the resonance region coincides with a
order-disorder transition. In our case, the degradation of order has its origin
in the increasing importance of the inhibitory connections. This is clearly
seen in Fig.4.1, upper panel, where we plot the standard order parameter
m0 as a function of the probability p of inhibitory links. The optimal prob-
ability for resonance pc (location of the peak of Fig.4.1) is found near the
phase transition between the ferro and paramagnetic regions.

The existence of this maximum is also visible when looking at the am-
plitude of the oscillations of the global variable m(t) – Fig.4.2. For small
p, m(t) oscillates with a small amplitude (of order a) around a value close
to either +1 or −1. As p increases, one clearly notices that the amplitude
increases dramatically and m(t) oscillates around 0. As p increases even fur-
ther, the amplitude of the oscillations decreases but the global variable still
oscillates around 0. This resonance effect appears for all lattices considered,
regular or random, for all values of the rewiring probability q.
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Figure 4.2. Evolution of magnetisation in time (random network, q = 1, k = 10).
Other parameters are: N = 100, a = 0.15, Ω = 2π

100
, κ = 1.

The existence of this order-disorder transition and its relation to the
resonance effects are reproduced by a simple mean-field theory that we de-
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velop in some detail in the next section.

4.4 Mean-field approach

At each time step the magnetisation m(t) may change due to the modification
of a single variable µi. The following relation holds exactly for the ensemble
average m(t) = 〈m(t)〉:

Nm(t + τ) = Nm(t) + 〈µi(t + τ) − µi(t)|{µ(t)}〉 (4.5)

where {µ(t)} = (µ1(t), . . . , µN(t)) denotes the particular realisation of the
µi variables and 〈. . . | . . . 〉 denotes a conditional ensemble average. By iden-
tifying τ = 1/N and rearranging we get:

m(t + τ) − m(t)

τ
= 〈µi(t + τ) − µi(t)|{µ(t)}〉 =

−m(t) + 〈µi(t + τ)|{µ(t)}〉 (4.6)

We now identify the left hand side as the time derivative and use the dy-
namical rules given by Eq.(1.9) to write:

dm(t)

dt
= −m(t) + |f(t)| 〈sign[f(t)]|{µ(t)}〉 +

(1 − |f(t)|)
〈

sign





∑

j∈V (i)

ωijµj(t)





∣

∣

∣

∣

∣

{µ(t)}
〉

(4.7)

where we have used the notation f(t) = a sin(Ωt). Since the forcing f(t) is
independent of the state {µ}, then 〈sign[f(t)]|{µ(t)}〉 = sign[f(t)]. Moreover
|f(t)|sign[f(t)] = f(t). For the last term of the right hand side of this
equation we use the mean-field approximation:

∑

j∈V (i)

ωijµj(t) ≈





∑

j∈V (i)

ωij



 · m(t) (4.8)

where we replace the value µj(t) by the average value m(t).
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Now
∑

j∈V (i) ωij = k+
i − κk−

i = k+
i (1 + κ) − kiκ, and the mean-field

approximation can be rewritten as:

〈

sign





∑

j∈V (i)

ωijµj(t)





∣

∣

∣

∣

∣

{µ(t)}
〉

=

(−1) · Prob
([

k+
i (1 + κ) − kiκ

]

m(t) < 0
)

+

(+1) · Prob
([

k+
i (1 + κ) − kiκ

]

m(t) > 0
)

= 1 − 2Prob
([

k+
i (1 + κ) − kiκ

]

m(t) < 0
)

≡ G(m(t)) (4.9)

from where we obtain the desired mean-field equation:

dm(t)

dt
= −m(t) + f(t) + (1 − |f(t)|)G(m(t)) (4.10)

The function G(m) can be easily computed in terms of the cumulative prob-
ability function Fki

of the binomial distribution of the number of positive
links, given that the total number of links is ki. This is precisely defined as:

Fk(x) =
∑

k+<x

(

k

k+

)

pk−k+

(1 − p)k+

. (4.11)

In the case m > 0,

Prob
([

k+
i (1 + κ) − kiκ

]

m(t) < 0
)

=

Prob

(

k+
i <

kiκ

1 + κ

)

= Fki

(

kiκ

1 + κ

)

, (4.12)

while, for m < 0,

Prob
([

k+
i (1 + κ) − kiκ

]

m(t) < 0
)

=

Prob

(

k+
i >

kiκ

1 + κ

)

= 1 − Fki

(

kiκ

1 + κ

)

. (4.13)

By averaging over the distribution of the number of neighbours, we get:

G(m) = sign(m)
∑

ki

Pki

[

1 − 2Fki

(

kiκ

1 + κ

)]

(4.14)
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Pki
being the probability that a node has ki links. Within the spirit of the

mean-field approximation we assume that all nodes have the same number
of links ki = k and replace the above formula by:

G(m) = sign(m)

[

1 − 2Fk

(

kκ

1 + κ

)]

. (4.15)

In case of no forcing, f(t) = 0, the equilibrium value m0 of the magneti-
sation satisfies m0 = G(m0). A standard analysis of this equation predicts
a phase transition separating a regime of non-zero stable solutions ±m0 6= 0
from a regime in which the only solution is m0 = 0. The coexistence line
is m0 = 1 − 2Fk

(

kκ
1+κ

)

and the critical point occurs at Fk

(

kκ
1+κ

)

= 1/2.
In Fig.4.3 we plot the equilibrium magnetisation m0 as a function of the
probability p for fixed k. It is clear from this figure that the mean-field
approximation reproduces the loss of order that arises as the proportion p of
negative links increases, although the precise location of the transition point
is not well reproduced.

In Fig.4.3, lower panel, we plot the amplification factor computed after
a numerical integration of Eq.(4.10). Qualitatively, the results agree with
those of simulations presented in the previous section: there is a resonance
effect, i.e. the response shows a maximum as a function of p. The maximum
value is reached for a value pc, close to that signalling the order-disorder
transition. Furthermore, it can be noticed that the size of the amplification
region, defined as the set of values of p for which R > 1, is similar to the size
of the transition region, defined roughly as the set of values of p for which
the magnetisation satisfies m(p) < 0.5 and the maximum is achieved at a
value of p such that m(p) ≈ 0.2− 0.3. As the average number of neighbours
k increases, the size ∆p of this region decreases as k−1/2 and it disappears in
the limit k → ∞. Since the relative dispersion in the number of positive links
also scales as σ[k+]/〈k+〉 ∼ k−1/2, one is tempted to attribute the existence
of the resonance to the existence of such a dispersion, a fact already stressed
in the study of synchronised oscillations induced by diversity [100]. This is
supported by a modified version of the mean-field approach in which the
dispersion is strictly equal to 0. This can be achieved by using in (4.15) the
probability distribution that would arise if all nodes had the same number
k+

i of positive links, namely Fk(x) = 0 if x < pk and Fk(x) = 1 if x > pk.
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As shown in Fig.4.3, in this case the amplification region has disappeared
altogether.
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Figure 4.3. Upper panel: Modulus of the average magnetisation as a function of
the probability of repulsive links according to the mean-field theory for κ = 1. Lower
panel: Spectral amplification factor versus probability of repulsive links according
to the mean-field theory for a = 0.15, Ω = 2π

100
, κ = 1.

However, it should be noted that the response in the transition to the
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amplification region is not continuous in this mean field case. There is a
jump at a value p∗, such that R(p → p−∗ ) = 1 but R(p → p+

∗ ) > 1. As
discussed later, this discontinuity arises because, in the mean field scenario,
the dynamics is governed by a bistable potential. The onset of amplification
corresponds to the system being able to jump the potential barrier.

4.5 Mechanism

4.5.1 Microscopic point of view

We now give an explanation of some features of the observed resonance from
a microscopic point of view, i.e. analysing the evolution of individual values
of µi.

According to the rules (4.2), a chosen node takes the sign of the exter-
nal signal with a probability |a sin(Ωt)|, independently of the current system
configuration. To enhance resonance, there are two necessary requirements
after a node has changed its state: to maintain the perturbation in the next
time steps, and to spread it to its neighbours. The crucial issue is then how
the local configuration of nodes and links helps (or hinders) this ordering
process.

To spread a perturbation, it would be an advantage to have all-attractive
couplings; however, to maintain its state, the node cannot be too constrained
by its neighbours. With a high homogeneity of the neighbours states and a
positive connection with all of them, a perturbed spin would likely be forced
to go back to its original state next time it is selected. At the other extreme,
when all its connections are negative, a perturbed node is also very much
constrained by the state of its neighbours, the local field being maximal for
a local anti-ferromagnetic ordering. At an intermediate level of positive and
repulsive connections, we have the optimal state. It has a capacity to spread
a perturbation to the whole network, but constrains minimally a node that
has been perturbed. Due to the combination of attractive and repulsive
links, the local field around a node is close to zero. Therefore, if a node
changes its state, it possibly won’t be forced to return to its previous posi-
tion after consulting with its neighbours. On the other hand, it is easy to
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spread a perturbation: if a node had previously a zero local field, after one
neighbour has changed, the balance is broken, and it has to align with that
neighbour, if the connection is positive.

To illustrate this point we monitored the system’s response when the
signal is switched on and off, at regular intervals. The goal is to see to
what extent perturbations spread after the signal is switched off. These
perturbations take the following form: during one unit of time (N updates),
taken at regular intervals, the dynamics is such that the randomly chosen
nodes adopt the µ=1 state, with probability A = 0.15. As shown in Fig.
4.4, those perturbations die out almost immediately for p ≈ 0 or p ≈ 1 and
only for p ≈ pc are the perturbations able to spread during a finite amount
of time.

Figure 4.4. This image suggests that the step-by-step response we propose is a
reasonable mechanism. Their outreach of the perturbations depends on the prob-
ability of repulsive links. At the optimal probability p = 0.26, the net effect of
perturbations accumulates, but after the signal is switched off they don’t continue
spreading to the whole network.

This microscopic picture will help us to understand some of the ob-
served features. For example, in Fig. 4.5 we show that the amplification
region ∆p decreases when the number of neighbours k increases, whereas
pc tends to 0.5. Both facts agree qualitatively with the predictions of the
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mean-field theory. It is clear that for large k the condition of a local field
close to zero can only be satisfied for a probability of repulsive links near 0.5.
This is easily illustrated when one considers the case of p far from 0.5 and a
uniform magnetisation (at the peak of a signal’s cycle). Getting a local field
close to zero when the connectivity is high requires many neighbours flips.
Since the unit to be updated is chosen randomly at each time step, it is likely
that a unit is chosen twice before enough of its neighbours have been per-
turbed. On the other hand, p = 0.5 is the upper limit for the amplification
region, because a majority of positive links is necessary to have perturba-
tion spreading. As the proportion of repulsive links approaches 0.5, more
neighbours have a negative connection and they will exert, when perturbed,
an influence opposite to the signal.

Note that for the resonance to disappear we need formally the limit
k → ∞. In a finite network, the maximum value is k = N −1 and, as shown
in Fig. 4.5 for N = 201 and N = 1001, the resonance does not disappear
completely even for the maximum connectivity.
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Figure 4.5. Spectral amplification factor versus probability of repulsive links for a
random network with q = 1, a = 0.15, Ω = 2π

100
, κ = 1. Main graph uses N = 1001

while the inset shows the case N = 201.

As we did in the mean-field treatment, and in order to isolate the influ-
ence of competitive interactions from the disorder induced by the dispersion
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in the number of links, we also present in Fig. 4.6 results from random
networks when all nodes have exactly the same number of neighbours k and
the same proportion p of repulsive links [113]. At variance with the previous
results, an almost total reduction of the amplification region can be achieved
even for finite values of N , for large enough k. This shows that diversity in
the number of positive links is an important ingredient for the robustness
of the resonance effect, although that effect doesn’t require in general that
diversity.
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Figure 4.6. Spectral amplification factor versus probability of repulsive links for
a “no-dispersion” network in which all sites have the same number of positive and
negative links. Due to the particular way the network is constructed [113], only
values of p = k/N where the total number of neighbours per site, k, is an even
integer number are allowed. Parameters are N = 1001, a = 0.15, Ω = 2π

100
, κ = 1

(main graph) and N = 201 (inset). Note that the amplification region shrinks as k
increases. For comparison, we also include as dotted lines the results of Fig.4.5.

Why does dispersion matter? The precise mechanism is hard to grasp,
but it is certainly related to a degradation of order at local level. To de-
crease the chance of having perturbed neighbours driving several units in
the direction opposite to the signal, there have to be many nodes with a
clear majority of positive links. But as we saw above – assuming every node
had the same number of negative links – those units require many neigh-
bours flips, to maintain their local field close to zero. However, if the nodes
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are heterogeneous, an unit with a lower than average number of repulsive
links can profit from those neighbours that have many negative connections
to other nodes. Since those are more susceptible to changes, their presence
decreases the local field, thereby diminishing the need for many neighbours
updates. This result confirms the importance of diversity in making the
phenomenon more robust, but also shows that we can have an amplification
even without diversity.

4.5.2 Macroscopic point of view

In this subsection, we consider the explanation of the resonance from the
macroscopic point of view, i.e. we look at the behaviour of the collective
variable (magnetisation) m(t). We assume that the dynamics of this macro-
scopic variable in the no-forcing case, f = 0, can be described in terms of
relaxation in a potential function V (m). The absolute minima ±m0 of the
potential give the rest states which are separated by a potential barrier ∆V .
This picture has proved to be valid in other problems with diversity in the
parameters [89] and it certainly holds in the mean-field limit where, accord-
ing to the previous section, the dynamical equation is dm

dt
= − dV

dm
with a

potential given by:

V (m) =
m2

2
− M(p)|m| (4.16)

with M(p) = 1 − 2Fk

(

kκ
1+κ

)

running from M(0) = 1 to M(1) = −1.
Fig. 4.7, upper panel, illustrates the effect of repulsive links on the shape of
the potential, according to the mean field predictions. There are two minima
of the potential, m0 = ±M(p) for M(p) > 0, and a single minimum m0 = 0
for M(p) < 0, or p > pc, the critical point. For small p the barrier separating
the two minima is high and it can not be overcome by the effect of the weak
forcing f(t). The only effect of the forcing is a small oscillation around one
of the minima (chosen by the initial conditions). As p increases, the two
minima of the potential get closer to each other and the barrier separating
them decreases such that, at a particular value of p the forcing is able to
overcome the barrier and m(t) oscillates between the two minima ±m0. As
p crosses the critical value pc, the two minima merge at m0 = 0, the barrier
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disappears and the effect of the forcing is reduced again to small oscillations
around a single minimum.
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Figure 4.7. Comparison between the stable states predicted by mean field and
simulations. Upper panel: the effective potential defining the relaxational dynamics
according to Eq. 4.16, for different values of the probability of repulsive links p.
We considered the case of k = 100. Lower panel: Distribution of stable states at
the optimal probability pc = 0.25 in the case of an unforced random network with
q = 1, N = 100, k = 10, κ = 1 starting from three different initial conditions:
all spins equal to +1 (data set indicated as m(t = 0) = 1), all spins equal to −1
(m(t = 0) = −1) and spins take randomly the value ±1 (〈m(t = 0)〉 = 0).
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To apply this potential image beyond the mean-field approximation
we need to include an important modification. As discussed before, the
energy landscape is that of a spin-glass with many metastable states and
two absolute minima ±m0. As a consequence, in the no-forcing case, the
final state reached depends strongly on initial conditions. This is illustrated
in figure 4.7, lower panel, where we plot the probability distribution of the
final magnetisation. If the initial state is the ordered state µi = +1 (resp.
−1) ∀i, the final magnetisation is peaked near m = 1 (resp. −1). If the initial
state adopts µi = ±1 randomly, then the final magnetisation is peaked
around m = 0. This reflects the existence of many barriers separating the
metastable states from the absolute minima of the potential. When the
forcing is introduced, it has to be able to overcome all these intermediate
barriers. The final image is that of a particle moving in a “rugged” potential.
As p increases, the height of those barriers decreases and the forcing is able
to explore a larger fraction of the configuration space, but not necessarily
leading to trajectories ending in the absolute minima of the potential. This
can be seen in figure 4.8 where we show the effect of a forcing weaker than
that used in Fig.4.2. The magnetisation oscillates around a mean value that
drifts with time. If we enlarge the period of the forcing – Fig. 4.8, lower
panel – the oscillations become wider and the system has now enough time
to reach the equilibrium minima close to m0 = ±1.
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Figure 4.8. Upper panel: Evolution of the magnetisation following a weak signal
a = 0.08, Ω = 2π

100
, in the case of a random network, q = 1, k = 10, κ = 1.

The extreme values of the magnetisation coincide with the points where the driving
value changes sign, they don’t take always the same value. This nonstationarity is
explained by the influence of the random factors in our model. According to the
proposed mechanism, the system walks in multi-steps (Fig. 4.4. The amplitude of
the response depends on random factors, such as the sequence of perturbed nodes
and their different local fields and connectivities. When the signal is weak and fast,
these random factors influence the amplitude of the response, which explains the
nonstationarity. Lower panel: Same as Fig.4.8 for a slower forcing Ω = 2π

333.3
. If is

sufficiently slow, many nodes are perturbed, and at the end the system is able to
display the maximum possible response and reach the points m = ±1.
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The origin of the discrepancy in the results of simulations and mean
field lies in the approximation 4.8. When we consider a annealed version,
where disorder is not correlated in time, we can recover a bistable potential as
it is predicted by the mean field. In the annealed version, the neighbourhood
is fixed but the relationship matrix wij is redefined randomly at each time
step. In fact, this version could be more accurate to represent, for instance,
plasticity in the brain, or a society without personal prejudices: here people
are not always opposed to the position of the same neighbours. Another op-
tion is to allow for a transient time, when the connectivity changes randomly,
and then freeze the connections. This transient time with annealed disorder
is a way of averaging over the distributions of repulsive links, thereby making
the system less dependent on initial conditions. This scenario might model
a society where a diffusive animosity finally crystallises into entrenched posi-
tions of friends and enemies, or in another context, the known fact that brain
plasticity is higher in initial stages. Even though the microscopic mechanism
of resonance is the same in all the three scenarios, the macroscopic picture is
somewhat different. In the temporarily annealed scenario, the bimodal dis-
tribution of stable states in Fig. 4.9 suggests a bistable nonlinear dynamics.
We don’t show here the annealed disorder case, because it looks similar to
Fig. 4.9 . However, there is a difference: in the annealed disorder scenario
the system oscillates randomly between the potentials wells, whereas in the
temporarily annealed case, usually (not always...) a stable state is reached
when the population is not being forced by an external signal. Comparing
the lower panel of Fig. 4.9 with the upper panel of Fig. 4.8 we observe that
the response to very weak fast signals is much more pronounced when the
relationship matrix changes with time.

Just like the introduction of diversity in the number of repulsive links
made the response more robust against changes in the number of elements,
so does the introduction of some kind of stochastic disorder makes the system
more sensitive to weaker signals.
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100
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in the interaction matrix, q = 1, k = 10, κ = 1.
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4.6 Conclusions

We have used Monte Carlo simulations and analytical (mean field) calcula-
tions to investigate the response of a system of two-state units, with both
attractive and repulsive interactions and majority-rule dynamics, to a weak
periodic signal. For both regular and random networks, we have found that
competing interactions can enhance the system response – a kind of “divide
and conquer” strategy. In each case, a resonance was found for an optimal
percentage of negative links which depends on the model parameters. Ap-
plications include opinion dynamics and neuron networks but the model is
generic enough to predict that the same type of effect can be found in other
systems. We have carried out a detailed analysis for an opinion model first
introduced by Zanette and Kuperman [44] but we want to stress that the
“microscopic” details of the model are not essential for the resonance phe-
nomenon. In fact, we have considered other models with modified versions
of the updating rules and still the same main results hold. For instance,
instead of a sinusoidal time dependent probability of following either the ex-
ternal signal or the weighted majority, we have tried a constant probability
a. The dynamical rules are then modified to:

µi(t + τ) =











sign
[

∑

j∈V (i) ωijµj(t)
]

w.p. 1 − a,

sign [sin(Ωt))] w.p. a,

(4.17)

Another modification considers that the effect of the external influence is a
factor to be considered simultaneously with the majority rule. In this case,
the updating rule becomes:

µi(t + τ) = sign





1

ki

∑

j∈V (i)

ωijµj + asin(Ωt)



 (4.18)

In both modified versions we have confirmed our main result, namely that
there exists a value of the probability of repulsive links p for which the
response adopts a maximum value.

We have discussed in some detail the microscopic mechanism for the
amplification. We argued that the flexibility of the system to follow the



88 Chapter 4.

external signal requires that the local field seen by each unit is kept close to
zero and analysed how this condition might be achieved in some parameter
limits.

A macroscopic analysis, in terms of a relaxation dynamics in a bistable
potential, is able to explain the mean-field results. It is difficult to use
this description beyond the mean field treatment, due to the presence of
many metastable configurations. Because of their presence, a large response,
corresponding to oscillations around (symmetrical) absolute minima can be
obtained for a sufficiently slow forcing.

There are studies that point to the role network topology plays in syn-
chronisation or response to stimuli [114]. Analysing the effect of coupling
strength, degree distribution and other network characteristics on the coher-
ent response may shed some light on how the mechanism can be optimised.



5

Mass media reception in a
continuous opinion model

This chapter focus on the effect of repulsive interactions on the adoption of
an external message in an opinion model. With a simple change in the rules,
we modify the Deffuant et al. model to incorporate the presence of repulsive
interactions. We will show that information receptiveness is optimal for an
intermediate fraction of repulsive links. Using the master equation as well
as Monte Carlo simulations of the message-free model, we identify the point
where the system becomes optimally permeable to external influence with
an order-disorder transition.

5.1 Introduction

The discrete model we considered in the previous chapter suggested that a
society where its members interact via some repulsive links increases its re-
ceptivity to an external message for an intermediate probability of repulsive
links. Still, the model is very generic, and perhaps too vague. Therefore, we
will now study a more established representation os opinion formation. Car-
letti et al. [58] study the conditions for an efficient spreading of propaganda
in the Deffuant et al. model, and find that when the interaction threshold
is small, propaganda can only have local effects. In this work, we show this

89
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is not the case under the presence of repulsive links: when agents prefer to
have different opinions than some of their neighbours, consensus can be built
around an external message, even in close-minded societies.

In the previous bistable systems, the individual units have some stable
states that can only be left or accessed by overcoming a barrier that a weak
signal alone is not enough to surpass. Disorder cooperates with the signal by
inducing collective switches at the signal rhythm between the stable states.

The novelty of the present study lies on the identification of a com-
parable phenomenon - an optimal response to a message resulting from the
presence of disorder - in a system that does not have the usual ingredients.
An agent can adopt any opinion on an interval, not having an intrinsic pre-
ferred state. But as a result of the collective dynamics, opinions can be
fragmented into several non-interacting groups [41], some of which will be
beyond the message’s threshold of interaction. As we will see, it is the pres-
ence of repulsive links that enables agents to reach the basin of interaction
of the signal.

In the rest of the chapter, after defining the model and the correspond-
ing parameters, we present and analyse the results and summarise our main
conclusions.

5.2 Model

We consider that an agent i, taken from a set of i = 1, . . . , N agents, holds at
time t an opinion xi

t expressing on a numerical scale his degree of agreement
on a particular topic. The opinions take values on the interval [0, 1]: values
close to 0 indicate a large degree of disagreement, and values close to 1 a
large degree of agreement with the topic in question. At time t = 0, the
opinions are independently drawn from a uniform random distribution in the
interval [0, 1]. We assign a weight ωij to the link connecting agents i and j
and consider the symmetric case ωij = ωji (or an undirected network). The
weights take randomly positive or negative values: ωij = 1 with probability
(1 − p) or ωij = −1, with probability p.

The model is based on the rules introduced by Deffuant et al.: At time
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t two individuals, say i and j, are randomly chosen. If their opinions are
closer than the bound of confidence ǫ, |xi

t−xj
t | < ǫ, they converge or diverge

as

x
i(j)
t+τ = x

i(j)
t + µωij(x

j(i)
t − x

i(j)
t ), (5.1)

where the parameter µ mainly determines the speed of convergence or di-
vergence. We will adopt from now on the value µ = 0.5, which minimises
the transients. Note that as a consequence of repulsive interactions, this
evolution rule could allow opinions to leave the interval [0, 1]. To keep xi

t

in the interval [0, 1], we impose the extra adsorbing boundary conditions: if
xi

t+τ < 0, xi
t+τ = 0, and if xi

t+τ > 1, xi
t+τ = 1. By taking τ = 1/N , we define

the usual unit of Monte Carlo time as N updates.

To model the effect of advertising we add the rule that every T/τ agent-
agent interactions, the entire population interacts simultaneously with an
external message, or signal, S. That is, for every individual i, if |xi

t−S| < ǫ,

xi
t+τ = xi

t + µ(S − xi
t), (5.2)

where S is a constant in the interval [0, 1].

Note that the original Deffuant et al. model [41] with propaganda [58]
is recovered when p = 0.

5.3 Results

Figure 5.1 shows the simulations results for the number of agents whose
opinion coincides with the propaganda - the “followers”. We start our anal-
ysis by noting that the time evolution proceeds much slower when there is a
combination of positive and repulsive links, compare p = 0.30 with p = 0 and
p = 1. We would reach asymptotically a steady state in the limit t → ∞.
However, we have decided not to focus on those asymptotic values since we
argue that they can have no practical interest, as no social interaction can
persist for an infinite time. Instead, all time average results of this paper
refer to averages in the latest 20% of the time, or t ∈ [11200, 14000], an
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Figure 5.1. Time evolution of the fraction of followers. ǫ = 0.1, S = 0.1, N = 103,
T = 5. In the insets, we have a closer view of the p = 0.3 and p = 1.0 cases. The
vertical lines show the times where the signal was acting, and hence the number of
followers increases. Averages over 100 runs.

arbitrary choice, but we note that the qualitative results do not depend on
the chosen time interval.

In Fig. 5.2 we plot the average fraction of followers, as a function of
the probability of the repulsive links p and the bound of confidence ǫ. For
a given p, the adoption of the external message depends on the period T of
the signal, and on the the bound of confidence ǫ. As noticed in [58] for the
p = 0 case, when ǫ is sufficiently large, namely for ǫ > 0.28, the message
can spread to all agents. In contrast, when all interactions are attractive
and ǫ is small - a “close-minded society”, where agents only interact with
others whose opinion is very close - the message cannot convince the entire
population [58]. For ǫ < 0.28 and in the absence of advertising, opinions
are fragmented into several major groups [40] that don’t interact with each
other. Since some of the clusters will be outside the propaganda basin of
attraction, the external message can only have local effects [58]. In this
region, the presence of a fraction of repulsive links is crucial for the message
to spread to the entire population, as seen in Fig. 5.2. We also observe that
a low-frequency signal (Fig. 5.2, b)) can not convince the entire population
when there is a significant fraction of repulsive links, a point to which we
will return later (Fig. 5.4).
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Figure 5.2. Density plot of the fraction of followers as a function of the probability
of repulsive links p and the bound of confidence ǫ for messages of a) high frequency
(T = τ = 0.001) and b) low frequency (T = 1). The plots are the results of averages
over 100 runs in the case S = 0.1 (extreme message) and N = 103. Similar results
are obtained for other values of S and N , namely for S = 0.5 (moderate message)
for both N = 200 and N = 103.
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Interestingly, the fraction of repulsive links where consensus around the
signal starts to build, p ≈ 0.30, is remarkably independent on the specific
characteristics of the message, like its frequency and value. This suggests
that we must explore the effect repulsive interactions have on the system
in the absence of signal, to find out what changes at that probability that
can help the adoption of any kind of propaganda. In Fig. 5.3 we present
the results for the probability density function, P (x), of the agents opinions
coming from the numerical integration of the master equation [47,48] (details
in the Appendix D), and from Monte Carlo simulations of the propaganda-
free system. The master equation can be seen as the N → ∞ limit of the
Monte Carlo simulations approach: since those are done for finite N , there
are some small differences in the results coming from the two methods. At
p = 0, clusters evolve to consensus regions, whereas at p ≈ 0.30 a distinctive
pattern emerges in the distribution of opinions. Even though we can still
distinguish clearly several peaks corresponding to higher concentrations of
agents, the consensus inside a group is lost, and its boundaries are permeable,
falling under the basin of interaction of a neighbouring one, something which
turns out to be essential for optimal message reception, since it will allow
the entire population to interact with an external message.

However, the exposure to the message is only a precondition for follow-
ing it, a second requirement being to stabilise agents in its position. Agents
cease to negotiate when they share the same opinion, regardless of whether
their connection is repulsive. In case propaganda convinces agents to adopt
its message, the dynamics between those agents stops.

The number of followers can only increase if propaganda convinces
agents at a faster rate than the rate they disperse in its absence (insets Fig.
5.1). When the fraction of repulsive links becomes too high to stabilise a
low-frequency signal, the number of followers decreases, as we see in figs. 5.2
and 5.4. If the bound of confidence ǫ is large, and the signal frequency is
low, it is easier to form a consensus around the signal when there are few or
none repulsive interactions (Fig. 5.2, b), and Fig. 5.4, b)). When the signal
frequency is low and ǫ is small, the region of optimal reception of the message
shrinks until it coincides with the order-disorder transition (Fig. 5.2, b), and
Fig. 5.4, a)), where clusters are no longer consensus regions - facilitating
interaction with neighbouring ones- but can still be clearly identified - agents
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Figure 5.3. Density plot of the distribution P (x) of agents as a function of p in the
propaganda-free system for ǫ = 0.1 revealing a order-disorder transition at p ≈ 0.30.
a) steady state results of the master equation. b) simulations with N = 104 and
averaged over 100 runs, for t = 14000. For better viewing, in the simulation results,
the image was rescaled by dividing by the highest value at each probability and, in
the master equation results, we considered each value greater than 1 as 1, and each
value smaller than 0.1 as 0.1.
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don’t spread much, which facilitates stabilisation.

Figure 5.5 shows how agents distribute themselves in the opinion space,
as a function of p, when S = 0.1 and T = 2. We observe that when ǫ is small,
(Fig. 5.5, a)) and the value of p is below the order-disorder transition region,
the lack of followers reflects the formation of some groups that adopt an
opinion outside the message’s basin of attraction, and implies the permanent
rejection of the message by a significant fraction of the population. As
previously mentioned, when ǫ is large (Fig. 5.5, b)) and all interactions are
actractive, the message is adopted by the entire population.

By contrast, when p is too high to stabilize the signal, we don’t observe
the appearance of a plural society with well defined groups. Instead, most
agents can spend some time adopting the message, forming a cluster around
the propaganda, (Fig. 5.5) that has its support base being continuously
refreshed. In Fig. 5.6 we plot a typical trajectory for one agent: when the
probability of repulsive links is high, the agent changes its opinion constantly,
without going far from the propaganda position. This represents a situation
where a new level of opinion has been reached by most members of society,
and yet there is still negotiation around details. Meanwhile, the situation of
the few agents that don’t gather around the external message depends on
the type of society, as defined by its interaction threshold: for small ǫ (Fig.
5.5, a)), they constantly change their opinion over all the opinion range, and
are not beyond the possibility of still being convinced by the propaganda;
while for large ǫ (Fig. 5.5, b)) agents form a cluster in the extreme opposite
position, if the external message was also extreme.

5.4 Summary and Conclusions

In this work we have analysed the response to an external message, of a
social system represented by the Deffuant et al. model with a combination
of positive and repulsive interactions. We focused in more detail on the case
of a low confidence bound, or close-minded society, where the presence of a
given fraction of repulsive links is required for the entire population to adopt
the message.
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Figure 5.4. The fraction of followers as a function of p and T . As the period
T increases, it becomes increasingly harder for systems with a high probability of
repulsive links to follow the message. Parameters: a) ǫ = 0.1 and b) ǫ = 0.7. Other
parameters: S = 0.1, N = 103. Averages over 100 runs.
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Figure 5.5. Two-dimensional plot of the distribution of agents in opinion space, as
a function of p and with S = 0.1. Parameters: a) ǫ = 0.1 and b) ǫ = 0.7. For better
viewing the image was rescaled by dividing by the highest value at each probability.
Averages over 100 runs, N = 104, T = 2 and S = 0.1.
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Figure 5.6. Typical trajectory for one agent under signal influence with ǫ = 0.1
and other parameters as in Fig. 5.5.

In that small ǫ case, the region of optimal response to the signal starts
to build around an order-disorder transition region, that we identified re-
sorting to the master equation and simulation results of the propaganda-free
system. When the signal frequency decreases, this optimal region shrinks
until it coincides with the order-disorder transition point. The same co-
incidence was noticed in previous studies [89, 108, 115] showing an optimal
response induced by diversity or competitive interactions, and we conclude
that it is expected in extended systems where some of the units can be in
a state that is inaccessible to the external signal, whether it is because of
the existence of a potential barrier like in the previous works, or because of
a threshold of interaction. We saw that the presence of repulsive links and
consequent dispersion of opinions is a necessary condition for a collective
adoption of the message, by increasing the number of agents within t he
reach of propaganda. Below the transition region, we assist to the formation
of a plural society, because a substantial fraction of agents doesn’t interact
with propaganda.

We discussed results concerning an intermittent propaganda that has
always the same value S. We also tested the case of a sinusoidal propaganda,
and found the same enhancement of the response for a certain fraction of
repulsive links, that, not surprisingly, was harder to stabilise in the exact
signal position. Since, unlike in previous studies [89, 108, 115], agents don’t
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have preferred opinions between which they can oscillate, the time-varying
propaganda case corresponds simply to a very low frequency intermittent
message, that as we saw can only receive a significant response in the order-
disorder transition region.

It is not a surprise that a close-minded society with strict agreement
rules, or the paradigm of a very conservative society, is not open to outside
influences. What is not so expected is to find out that the presence of
repulsive links can in fact drive the population to form a consensus around an
external message, regardless of whether the message is extreme or moderate.
In this situation, and as a result of wanting to be apart, agents end up
together sharing the same opinion.

In this work we stress the importance that repulsive links have in the
dynamics the Deffuant et al. model. Further studies should address the
effect that repulsive interactions have in the dynamics of other continuous
opinion models with different interacting rules.
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6

Synchronisation induced by
repulsive interactions in the van
der Pol oscillator

We study a system of identical van der Pol oscillators, globally coupled
through their velocities, to see how the presence of competitive interactions
affects its synchronisation properties. We will address the question from
two points of view. Firstly, we will investigate the role of competitive inter-
actions, on the synchronisation among identical oscillators. Then, we will
show the presence of an intermediate fraction of repulsive links results in
the appearance of macroscopic oscillations at that signal’s rhythm, in re-
gions where the individual oscillator is unable to synchronise with a weak
external signal.

6.1 Introduction

Synchronisation, [11] or the ability of coupled oscillators to adjust their
rhythms, is a property that arises in many systems, from pacemaker cells in
the heart firing simultaneously as a result of their interaction, [116] to the
fetal heart rate adjusting its pace to maternal breathing, as an example of

101
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forced synchronisation. [117]

Typically, oscillators with different frequencies are able to synchronise
due to a strong enough positive coupling among units. However, interactions
in Nature are often repulsive and, surprisingly, it was found that under some
particular circumstances repulsive interactions can actually enhance syn-
chronisation: thus, the presence of negative links can prevent the instability
of the fully synchronised state when it compensates an excessive number of
positive links, [118] or its sparse presence can enhance synchronisation in
small-world networks. [99] Most interestingly - since it is not always de-
sirable to achieve a state of full synchronisation - the presence of repulsive
links can give rise to new forms of synchronisation, [119] that sometimes
can be described as glassy or glassy-like. [120, 121, 122, 123] Additionally,
the beam-forming abilities of a system of repulsively coupled Stuart-Landau
oscillators were considered in. [124]

So far, studies have mostly focused on non-identical phase oscillators,
and several coupling schemes have been chosen, such as local [125] or long-
range, [99] and purely repulsive [119] or assuming a competition between
repulsive and attractive. [126] Like in, [126] we want to isolate the effect of
different proportions of repulsive interactions by considering identical oscil-
lators. However, rather than establishing how full synchronisation becomes
unstable as the fraction p of repulsive links increases, [126] our focus will be
on the characterisation of the different configurations that emerge as p grows,
and its implications for signal transmission when the system is subjected to
an external forcing. Also, unlike [126] we will not consider phase oscillators,
but instead van der Pol oscillators, [12] which implies phase, amplitude and
frequency synchronisation are taken into consideration.

The establishment of the role of the coupling structure on synchroni-
sation, independently of the detailed specification of the nodes dynamics,
can rely on the study of the Laplacian matrix. [127, 104] We will identify
and characterise a transition region from synchronisation to desynchronisa-
tion by analysing the eigenmodes of the Laplacian matrix corresponding to
different proportions of repulsive links, adapting the formalism developed in
Chapter 3. [115,103]

The second part of the chapter will be devoted to explore the role of
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competitive interactions in the synchronisation of the system with an exter-
nal periodic signal. We will choose a signal whose frequency lies outside the
region of entrainment for an uncoupled oscillator, as well as for an all at-
tractively coupled system. This problem is closely related to the theoretical
framework of resonance studies that we reviewed in Chapter 2. In the latter
cases [115,108] it was found that an intermediate fraction of repulsive links
was able to amplify the response to an external signal, in bistable systems
where the external signal was be the only source of movement. In the present
case, an optimal response should correspond to an adjustment between the
intrinsic frequency of the oscillators and that of the external signal; as we
will see, that optimal response is achieved at an intermediate proportion of
repulsive links in the case of strong fast signals, whereas weak slow signals
are best responded when all the links are negative.

The outline of this chapter is as follows: in section 6.2 we will introduce
the model; we show that an increase of the proportion of repulsive links
leads to loss of synchronisation in section 6.3; and in section 6.4 we show
how the presence of repulsive links accounts for an enhanced response to
external signals; in section 6.5 we will briefly mention some extensions; and
conclusions are drawn in section 6.6.

6.2 Model

We consider an ensemble of van der Pol oscillators [12] {xi(t), i = 1, . . . , N},
globally coupled through their velocities ẋi, and subjected to an external
periodic forcing of amplitude A and frequency Ω. The dynamics is described
by:

ẍi = −xi + µ(1 − x2
i )ẋi +

C

N

N
∑

j=1

Jij (ẋj − ẋi) + A sin(Ωt), (6.1)

where the nonlinearity parameter µ is a positive constant and C is the cou-
pling strength.

The coupling between the oscillators i and j is given by the interaction
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term Jij and can be attractive or repulsive, according to a given probability
p.

Jij = Jji =

{

−1, with probability p,

1, with probability 1 − p.
(6.2)

The single van der Pol oscillator is the paradigmatic example of a
non-linear oscillator whose characteristics we have reviewed in Section 1.2.
It possesses a stable limit cycle as a result of its nonlinear damping term
µ(1 − x2

i ): for small oscillations, |xi| < 1, the system experiences negative
damping and the oscillations grow, while for |xi| > 1, the positive damping
causes the oscillations to decrease. Therefore, independently of the initial
conditions or small perturbations, its amplitude of oscillations reaches a
constant (equal to 2), while its detailed shape and period T depend on µ,
approaching T ≈ (3 − 2 ln 2)µ for large µ. In this case of large µ ≫ 1, the
oscillations are called relaxational and are characterised by the presence of
discontinuous jumps intercalated by periods of slow motion.

6.3 Desynchronisation among the unforced

oscillators, A = 0

We start by seeing how the coupling can affect synchronisation among the
oscillators, in the unforced (A = 0) system case. Having identical natural
frequencies, the oscillators would become phase-synchronised when all the
interactions are attractive. The presence of repulsive interactions might
desynchronise them, and the way it does so depends on the type of coupling
we choose. Namely, we can distinguish between reactive and dissipative
coupling, depending on whether the oscillators are coupled through their
positions or velocities, respectively. To get a feeling of the difference between
them, we start by giving an heuristic geometrical illustration of how the
coupling between two oscillators affects their dynamics, by the observation
of the phase plot in Fig. 6.1.

Two oscillators D and B (Fig. 6.1) repulsively coupled through their
positions change their oscillation amplitude as a result of their interaction,
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which can place them increasingly farther away from the region of fast mo-
tion, and eventually destroy the oscillatory motion. In Fig. 6.1 right panel
we plot two typical examples of trajectories of two individual oscillators and
their respective phase plot, for p = 0.40. We can observe a sometimes com-
plete destruction of the traditional shape of the Van der Pol limit cycle that
sometimes (inset of the same figure).
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Figure 6.1. Left panel: A zoom of the limit cycle, focusing on the slow motion
region. The arrowsheads indicate phase flows: single arrowheads indicate slow seg-
ments of the limit cycle while triple arrowheads indicate fast jumps. The arrows on
the oscillators D and B depict their interactions: a vertical arrow depicts a repulsive
interaction through velocities, and a horizontal one a repulsive interaction through
positions. Right panel: examples of two typical individual trajectories for p = 0.40
with reactive coupling, and respective phase plots, in a system with N=100, C=20.
µ = 10.

By contrast, the coupling through velocities preserves the essential
shape of the limit cycle, even when the number of repulsive links is very
high (Fig. 6.2). In case the proportion of repulsive links is not too high, the
main effect of this type of coupling between oscillators D and B (Fig. 6.1)
is to deform the slow motion region and sometimes drive the units closer to
the region of fast motion, where a weak stimulus could be enough to enact
a jumping to the other slow motion region.

Fig. 6.2 shows the trajectory (upper panels) and respective limit cycles
(lower panels) of two typical individual oscillators for some probabilities p
of repulsive links. In all cases, the essential characteristics of the van der
Pol oscillator, such as a steady amplitude and the existence of two time
scales, are preserved by this type of coupling, as it is reflected by the fact
that the stable limit cycles (Fig. 6.2, lower panels) maintain its basic shape.
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Having identical natural frequencies, when the coupling constant C is strong
enough the position of the oscillators becomes synchronised when all the
interactions are attractive. (Fig. 6.2, for p = 0). As the proportion of
repulsive links grows, both the amplitude and the phase of the oscillators
start to desynchronise (Fig. 6.2, p = 0.4). Finally, a further increase in
the proportion of repulsive links (Fig. 6.2, p = 0.60 and p = 1.0), drives
the system to a configuration where the global variable X(t) = 1

N

∑

i xi(t) is
zero, with several groups oscillating in anti-phase, with a decreased frequency
and an increased amplitude of oscillations: if we consider two groups with
the same size that are oscillating in anti-phase, it can be shown that their
amplitude becomes rescaled as a result of their interaction by a factor of
√

1 + C
µ

(Appendix E).

We can describe the last configuration characterised by a zero value of
the average position X(t) as a disordered situation at the macroscopic level.
To quantify this disordering role of repulsive links, we define, following, [94]
the complex variable zi = xi + iẋi, the average z̄ = 1

N

∑N
i=1 zi and the

variance of zi normalised by the average value of the modulus squared, σ2[zi]:

σ2[zi] =

〈

N−1
∑N

i=1 |zi − z̄|2

N−1
∑N

i=1 |zi|2

〉

, (6.3)

here and henceforth 〈· · · 〉 denotes a time average.

The normalised variance can take values between σ2[zi] = 1 for maxi-
mum disorder, and σ2[zi] = 0 when all oscillators are synchronised amongst
themselves. From this, we choose [94] a measure of order that reduces to
the Kuramoto order parameter [128] when all units oscillate with the same
amplitude:

ρ =
√

1 − σ2[zi]. (6.4)

As dispersion increases, ρ decreases from ρ = 1 to ρ = 0. As we show
in Fig 6.3, there is a clear synchronisation-desynchronisation transition for
an intermediate fraction of repulsive links, that does not depend much on
the coupling strength C.
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Figure 6.2. Trajectories (upper panels) and phase portraits (lower panels) of two
individual oscillators, for various probabilities p of repulsive links. Regardless of
initial conditions, the van der Pol oscillator reaches steady state oscillations with a
constant amplitude. In the lower panels we represent the corresponding limit cycles
in the phase plane of (x, ẋ): as p grows the distinction between slow and fast motion
becomes clearer which is manifested in the more abrupt angles in the limit cycles
for p = 0.6 and p = 1.0. N=100, C=20, µ = 10, A=0.
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To characterise desynchronisation further, it is useful to look into the
behaviour of the field that an oscillator feels as a result of the interaction
with other units. The average number of effective links F = 1

N2

∑

ji Jij, in a
given run can in general be different from the particular number an oscillator
has, fi = 1

N

∑N
i=1 Jij, given that the probability of repulsive links p follows

a binomial distribution with the corresponding variance. We want to know
if there is a correlation between the fraction of repulsive links an oscillator
has and its synchronisation with the overall majority. That is described by
the following quantity G:

G =

〈

1

N

∑

ji

ẋjẋi [fi − F ]

〉

=

〈

Ẋ
∑

i

ẋi [fi − F ]

〉

, (6.5)

being Ẋ = 1
N

∑

j ẋj the mean velocity. We observe that the order-disorder
transition region p ∼ [0.4, 0.45] we identify in the upper panel of Fig. 6.3, is
accompanied by an increase in the influence on an oscillator of its particular
coupling configuration, as signalled by the peak in G (Fig. 6.3, lower panel).
The oscillators with a higher than average number of repulsive links form a
loosely synchronised group in a different slow region than the one where the
majority concentrates.

The partial independence of the state of the oscillator on the global
configuration opens the possibility of the existence of several different global
states, and thus hints at the existence of metastable states. We can relate
this behaviour to the coupling structure, by the spectral analysis of the as-
sociated Laplacian matrix J ′

ij = Jij − δij

∑N
k=1 Jkj, [115] where δij is the

Kronecker’s delta. We begin by rewriting Eq. (6.1) as system of two equa-
tions that highlight a fast motion for the xi variable and a slow motion for
the yi variable:

ẋi = µ

[

xi −
1

3
x3

i − yi +
D

N

N
∑

j=1

J ′
ijxj

]

(6.6a)

ẏi =
1

µ
[xi − A sin(Ωt)] . (6.6b)

where D = C
µ
.
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.



110 Chapter 6.

We focus on Eq. (6.6a), letting the slow variable yi be a constant.
The Laplacian appears naturally in the coupling term, and we can see its
positive eigenvalues should help deviations from a given state along the x
variable. [115, 104] We now introduce the eigenvalues Qα and eigenvectors
eα = (eα

1 , . . . , eα
N) of the Laplacian matrix, with the normalisation condition

∑

i e
α
i eβ

i = δαβ.

N
∑

j=1

J ′
ije

α
j = Qαeα

i . (6.7)

Let us assume the state of a unit i is xo
i at a given time, where xo

i

is drawn from any symmetric random distribution. We perturb the initial
states as xo

i + si, and express si in terms of the eigenvalues and eigenvectors
of the Laplacian, so that si =

∑N
α=1 Bαeα

i . We aim to see how the interaction
with other units influences the reaction to perturbations.

We will assume for simplification that
∑N

i=1 xo
i e

α
i ∼∑N

i=1 xo
i

∑N
i=1 eα

i =
0, and that the modes are uncoupled. After expanding the equation in terms
of the Laplacian eigenvalues and eigenvectors, we then multiply the resulting
equation by eα

i and average over all elements, to find the evolution for the
amplitude of the α-th mode:

dBα

dt
= −1

3
B3

α + PRα

(

C

µ

Qα

N
− k

)

Bα, (6.8)

where k = 1
N

∑N
i=1(x

o
i )

2 − 1 is a quantity related to the variance of the ini-

tial conditions, and the participation ratio PRα = 1/
∑N

i=1[e
α
i ]4 is a classical

measure of localisation that estimates the number of oscillators that par-
ticipate significantly in a state eα: for a state localised on a fraction f of
elements, PRα tends to f . According to Eq. (6.8), unless Qα > kNµ

C
, the

amplitude of the mode Bα tends to zero, and any deviation from the initial
state vanishes. Otherwise, mode α is said to be an open mode.

In a precise way, we will define “localised” modes as the ones whose
participation ratio is less than 0.1N , and define a measure M of localisation

[115] as M =
N2

L

NON
, where NL is the number of open localised modes, i.e.

those satisfying PRα < 0.1N , and NO is the total number of open modes α.
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While for extreme probabilities p of repulsive links the number of possible
values for Qα is very restricted, we find that for intermediate levels of p
the distribution of Qα is broader and the eigenvalues at both tails of the
spectrum are localised: the upper panel of Fig. 6.4 illustrates this fact for
some examples of p.

In our regime of strong non-linearity, or µ ≫ 1, the time an oscilla-
tor spends on a fast motion is very close to zero; in such case we should
have k ≈ 0 and the condition for open modes can be fulfilled at low enough
probabilities of repulsive links. Of the open modes, those that correspond to
positive Laplacian eigenvalues facilitate the growth of perturbations, while
those that are negative inhibit it. We wish to identify a probability of repul-
sive links that makes the system flexible enough to sustain deviations from
the initial symmetric configuration, yet stable enough so that perturbations
don’t spread immediately throughout the entire system, as that is what we
observe at the transition region (Fig. 6.3 lower panel), where some oscilla-
tors are more loosely synchronised than others. We can anticipate [115] that
such situation corresponds to a localisation [109, 110] of positive Laplacian
modes.

As we see in Fig. 6.4, the peak in G, that signals the range of p where
there is an heightened dependence of the state of an oscillator on its coupling
structure (Fig. 6.3), coincides with a localisation of the positive eigenvalues
of the Laplacian. Those localised positive open modes are responsible for
keeping the loss of synchronisation within controllable limits.

6.4 Synchronisation with the external signal,

A 6= 0

In this section, we will see how competitive interactions affect the response to
an external periodic signal. Since in general there can be several frequencies
present in the output of the global variable X(t) = 1

N

∑

i xi(t), we say the
system is synchronised with the external signal when the highest peak in the
Fourier spectrum corresponds to that frequency.

When the natural frequency of oscillations coincides with the external
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Figure 6.4. Upper panel: we plot the participation ratio PRα for the Qα eigenval-
ues. As the probability of repulsive links p grows the eigenvalues become dislocated
towards higher values. The eigenvalues whose participation ratio is below the dashed
line are localised. Lower panel: the measures of localisation M, the measure of dis-
order G, and the spectral power amplification R, all have the maximum value at
roughly the same p. For better viewing, we multiplied M by 4, and G by 0.1 N=100.
In the case of M and k=0.2 we have C=20 and µ = 10.
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forcing frequency, synchronisation is achieved for vanishing A, and as the
two frequencies diverge, stronger forcings are needed to entrain the system.
We will call a signal strong when its amplitude is greater than the amplitude
of oscillation of the unforced van der Pol unit, and we will call it fast when
its frequency is higher than the natural frequency of the individual van der
Pol oscillator.

We will distinguish between strong fast and weak slow signals, because
the mechanism of synchronisation differs in the two cases, although, in both
cases, competitive interactions are required for an enhanced response.

6.4.1 Strong fast signals benefit from intermediate p

In Fig. 6.5 we plot the synchronisation regions and their relative strength,
as measured by the spectral power amplification factor [84] R, given by:

R = 4A−2
∣

∣〈e−iΩtX(t)〉
∣

∣

2
(6.9)

R is roughly proportional to the square of the normalised amplitude of the
oscillations of X(t) at the frequency Ω, being R < 1 when the amplitude of
oscillations of the forced system is smaller than the amplitude of the external
signal.

When p = 0, (Fig. 6.5, upper panel) the synchronisation region with
respect to the frequency Ω and amplitude A of the external signal has the
typical triangular-like shape seen on Arnold tongues. [11] An intermediate
fraction of repulsive links (p = 0.43, Fig. 6.5, lower panel) pushes the syn-
chronisation borders beyond the p = 0 values, allowing for synchronisation
of faster signals at weaker forcing.

Fig. 6.6 shows the steady-state trajectory of the macroscopic variable
X(t), for different probabilities p of repulsive links, and illustrates the fact a
certain proportion of repulsive links is required for the system to adjust its
rhythm to that of the external signal (Fig. 6.6, p = 0.40), whereas Fig. 6.7
confirms that this optimal response only occurs for an intermediate range of
the probability of repulsive links. It should be noted that when entrained,
the oscillators adjust their frequency while keeping their natural amplitude
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Figure 6.5. We plot the spectral power amplification R in the synchronisation
regions for p = 0 (upper panel) and p = 0.43 (lower panel). For better viewing, we
use a color code that saturates for R ≥ 2. N, C and µ as in Fig. 6.2.
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Figure 6.6. Time evolution of the macroscopic variable X(t) when the system is
forced by an external sinusoidal fast signal (lighter color) of amplitude A = 5 and
frequency Ω = 1.0, for several probabilities of repulsive links p. N, C and µ as in
Fig. 6.2.

(Fig. 6.6), therefore, the spectral amplification factor R is smaller than 1,
when A > 2. As expected, the more the natural frequency deviates from
the forcing frequency, the stronger the signal needs to be in order to entrain
the system: namely (Fig. 6.7), for a forcing frequency Ω = 1, the signal
strength needs to be A = 12 instead of A = 5, when the natural frequency
ω = 2π/T is ≈ 0.19 (µ = 20) instead of ≈ 0.39 (µ = 10).

To understand the significance of competitive interactions we recall the
results of the last section. The probability region where weak fast signals
can be entrained is signalled by the peak in the spectral power amplification
R, and coincides with the localisation region, as given by the peak in M
(Fig. 6.4).

This localisation, or controlled disorder, is crucial for an enhanced
response to fast signals, for it allows the amplitude of oscillations to be
deformed, varying slightly enough to place some oscillators closer to the
fast motion region, thus allowing a jump to another slow region under an
external forcing; but not so much that there is a risk they would trigger a
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Figure 6.7. Spectral power amplification, for C = 20, Ω = 1 and several system
sizes N , averages over 100 runs. We note that smaller systems become synchronised
at lower fractions of repulsive links, and are not so dependent on the precise fraction
of repulsive links. Additionally, we also observed (figures not shown) a resonance
with system size for different probabilities of repulsive links. This kind of dependence
has been explained elsewhere. [115]
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chain reaction, unless there is a permanent pulling into some direction - that
is, unless the signal is acting.

6.4.2 Weak slow signals benefit from very high p

In the previous section, we chose to measure the enhancement at the collec-
tive level, using the macroscopic variable X(t) in our measure of response R,
Eq. (6.9); that corresponded to a synchronisation with the external forcing
at the individual level: the greater the number of entrained oscillators, the
greater the response was.

We find a different situation when we subject our system to a very
weak slow signal with an amplitude that is smaller than 1, say A = 0.9. A
complete amplitude and frequency synchronisation with this forcing would
imply a fast motion, in the interval [−1, 1], without any intercalating period
of slow motion, thus basically destroying the defining feature of a relaxational
oscillator (Section 6.2). We find it impossible for such a weak signal to
entrain an individual oscillator. And yet, we observe that for a high enough
fraction of repulsive links (insets Fig. 6.8 and Fig. 6.9), there is a nearly
coincidence between the trajectory of the global variable X(t) and the forcing
A sin(Ωt), with an almost imperceptible phase delay. Therefore, the simplest
measure of entrainment, that falls to zero if there is a perfect synchronisation,
is:

D =

〈

[X(t) − A sin(Ωt)]2
〉

〈X(t)2〉 , (6.10)

The results plotted in Fig. 6.8 show how the synchronisation with the ex-
ternal signal as the fraction p of repulsive links mirrors the loss of synchro-
nisation seen in Fig. 6.3 for the unforced system.

Again, the mechanism has its roots on the disorder induced by the
presence of repulsive links. As we saw, after the transition region (Fig. 6.3,
p ≈ 0.45), the unforced system tends to adopt a configuration corresponding
to a zero value of the macroscopic variable X (Fig. 6.6, p = 0.6 and p = 1.0).
On the other hand, the forcing induces an asymmetry in the oscillations
favouring the time spent on the side of the signal’s extremum, as seen in
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Figure 6.8. Illustration of representative macroscopic trajectories: very weak slow
signal is best followed the more repulsive connections it has. Other parameters:
A = 0.9, Ω = 0.01. N, C and µ as in Fig. 6.2.

the lower panel of Fig. 6.9. Slight as this asymmetry may be, it is enough
to cause the superposition of the individual waves on the same side as the
signal’s extremum, while on the other side, the oscillations cancel each other
(see lower panel of Fig. 6.9 for p = 1.0). The total synchronisation of the
system in case p is zero or small, naturally prevents this phenomenon to
happen (see lower panel of Fig. 6.9 for p = 0.0).

6.5 Further applications: FitzHugh-Nagumo

The single uncoupled van der Pol oscillator can be transformed either into
a linear oscillator by taking µ = 0 or by replacing the nonlinear damping
term µ(1 − x2

i ), Eq. (6.1) by a constant; or into an excitable system - a
simplified FitzHugh-Nagumo - by adding a constant a such that |a| > 1 to
Eq. (6.6b). So, a first direct extension consists in a brief exploration of how
those transformations affect our results.

Not surprisingly, we didn’t find an enhanced response for linear os-
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Figure 6.9. The slower oscillation corresponds to the external signal while the
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we observe the synchronisation of the macroscopic variable with a signal that is
very weak and slow. Lower panels: we zoom, and plot two representative individual
trajectories. A = 0.9, Ω = 0.01. N, C and µ as in Fig. 6.2.
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cillators: both mechanisms of enhancement for slow and fast signals rely
on the existence of a slow motion region. This situation contrasts with
the case studied in. [94] In that paper, the authors studied a system of
linear oscillators with a distribution of natural frequencies. Defining as a
measure of diversity the variance of the natural frequencies, they found an
optimal response to an external signal for an intermediate level of diver-
sity. Interestingly enough, the enhancement of response also had its origins
in an intermediate level of disorder. However, the microscopic mechanism
was rather different: some oscillators had a natural frequency that resonated
with the signal’s frequency, and where able to pull the others due to the pos-
itive coupling. In our case, there isn’t any single oscillator whose frequency
can be entrained by the external signal.

On the other hand, the mechanisms we proposed should be applicable
to the FitzHugh-Nagumo model. Adding a constant a to Eq. (6.6b) the
system becomes:

ẋi = µ

[

xi −
1

3
x3

i − yi +
D

N

N
∑

j=1

J ′
ijxj

]

(6.11a)

ẏi =
1

µ
[xi − A sin(Ωt) + a] . (6.11b)

The interaction via competitive interactions can play the same role of
noise or diversity, thus enabling rhythmic excursions away from the fixed
point. The result shown in Fig. 6.10 bears some similarity with the phe-
nomenon by which we observe that the periodicity of oscillations becomes
maximally ordered for an intermediate level of noise, [129, 130, 131] diver-
sity, [132] or competitive interactions. [99, 133] In our case, however, and
like it was observed in [100] for the case of active rotators, we don’t observe
any oscillations at all unless some interactions are repulsive.

When we force the excitable system by a strong enough fast signal
(Fig. 6.5), it starts to oscillate even for p = 0, and for an intermediate
amount of repulsive interactions the main frequency of oscillations coincides
with the external signal (Fig. 6.5, p = 0.40).

On the other hand, when we force a system of FitzHugh-Nagumo ele-
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Figure 6.10. The trajectory of the global variable X for different fractions of
repulsive links p in the unforced FitzHugh-Nagumo system showing a similar phe-
nomenon to coherence resonance. Other parameters: a = 1.1, N, C and µ as in Fig.
6.2.

ments by slow weak signals (Fig. 6.5) we observe bursts with the periodicity
of the signal for p = 0, while for p = 1 the global variable roughly oscil-
lates along with the external forcing. Even though the periodicity of the
external signal is detected for all fractions of repulsive links, we can imagine
situations where we actually want to replicate the behaviour of the external
signal, and that is only possible when the fraction of repulsive links is large
enough.

Both of these results are expected taking into account the arguments
we gave for the van der Pol oscillator case.

6.6 Conclusions

We have shown that the presence of repulsive links in a system of globally
coupled van der Pol oscillators can enhance the response to an external
signal. This phenomenon is verified regardless of whether the signal is strong
and fast, or weak and slow, and it is in every case directly related to a
loss of synchronisation and the existence of a slow motion region, but the
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repulsive links. Other parameters: Ω = 0.01, A=0.9, and N, C and µ as in Fig. 6.2.
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microscopic mechanism of enhancement is different in each case.

From the point of view of a strong fast signal, the van der Pol oscillator
can be approximated by a bistable system, implying a threshold that is
regularly overcome with the help of an intermediate proportion of repulsive
links, by means of the deformation of the slow motion region. In the case
of very slow signals, the mechanism is associated with the tendentiously
anti-phase oscillations that occur when there is a majority of repulsive links.

In both cases, enhancement is directly related to a loss of full synchro-
nisation when the fraction of repulsive links increases. One can imagine that
a different coupling scheme might enhance or hinder the results we found,
since it is known that the network topology plays a role in synchronisation
properties. [134]
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Part III

Conclusions





7

Conclusions and Outlook

We have shown that the presence of competitive interactions can opti-
mise the response to weak signals, and gave as specific examples four different
models where the effect was verified.

Chapters 3 and 4 considered systems that were bistable in the absence
of repulsive links. The presence of an intermediate fraction of repulsive
links leads to the appearance of many multistable states separated by small
barriers for whom the signal becomes suprathreshold raising the possibility
of amplifying even very weak or very fast signals, with an amplification
proportional to the strength of the signal. Specifically, the conclusions of
each model are:

Chapter 3: The φ4 model

In this chapter we related the enhancement of response to the coupling
structure of the network, independently of the very detailed specification
of the model. We have shown that the optimal probability of repulsive
links is associated with a localisation of positive modes of the Laplacian
matrix, which enables a sustained reaction to perturbations. Additionally,
we verified and explained a resonance induced by the system-size or the
coupling strength.

Chapter 4: A discrete bistable model

127
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In this chapter, we studied a discrete model constituted by units that
can only take one of two values. Using Monte Carlo simulations, we verified
that when the system has the optimal fraction of repulsive links, the response
to external perturbations acquires a step-by-step characteristic. We also
investigated the role of the underlying network of interactions, showing how
the probability of repulsive links that enhances the response grows with the
number of units, and it is higher when the coupling is global.

We isolated the effects of competitive interactions, by considering diversity-
free networks. Additionally, we considered the cooperation between noise,
diversity and repulsive links, concluding that the presence of noise renders
the system more sensitive to perturbations, but also decreases the coher-
ence of the collective response, while the presence of diversity broadens the
amplification region.

The research then proceeded to two non-bistable models with a dif-
ferent implementation of a threshold. Those two systems are intrinsically
different from the ones discussed before, and as such both the mechanism
of response, as well as the results, are rather different. In the modified ver-
sion of the Deffuant et al. model, as well as in the system of van der Pol
oscillators, there isn’t a potential barrier to be crossed, and therefore the
distinction between sub- and suprathreshold signals can not be interpreted
in the same sense.

Chapter 5: Mass media reception in a continuous opinion model

We interpreted the discrete model described in Chapter 4 as an opinion
formation model, which suggests that in a society where individuals choices
are conditioned by the majority opinion of their neighbours, it is helpful to
include some fraction of repulsive interactions, in order for that society to
be receptive to external influences. That discrete model was very general,
and we wanted to confirm further that in a society the presence of repulsive
interactions can in fact help the transmission of a message. To that end, we
started from a more established model of opinion formation - the Deffuant
et al. model and modified it to include repulsive interactions.

This study allowed us to confirm and put on a firmer ground the idea
that in order for a close-minded society to build a consensus around an exter-
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nal message, its members should interact via a combination between positive
and repulsive connections. We clarified that an intermediate level of repul-
sive links is best suited to respond to several types of messages. However,
we also found that when the time intervals between the transmission of an
external message are sufficiently short, society can build a consensus around
it, provided the fraction of repulsive links is larger than a given number.
This means that even when all its members have a tendency to reject each
other’s opinion they can build a consensus around the external message. In
this case, at variance with the previous cases, it is not appropriate to talk
about resonance.

Another difference with previous models is that the order-disorder
transition that is found to coincide with the region of amplification for low-
frequency signals, is of a different nature than the one found in the previous
cases. There, order was equated with consensus. Here, order is equated
with a fragmented society with very well defined clusters, where there is
consensus inside a cluster.

Chapter 6: Synchronisation induced by repulsive interactions in the
van der Pol oscillator

The system of van der Pol oscillators is a paradigmatic example of a
model that exhibits synchronisation. This study further unveiled the coin-
cidence between the fraction of repulsive links that induced a particular loss
of synchronisation and the one that enhances the response to a weak signal.
Further, we have shown that in the case of fast signals the formulation devel-
oped in Chapter 4 could indeed be applied to this system with significantly
different characteristics but the same coupling matrix.

Besides a spatial threshold, this model has additionally a temporal
threshold which led us to propose a different mechanism in the case of fast
and slow signals. In the situation of very weak and slow signals, the collective
response is best enhanced the higher the proportion of repulsive links is, by
means of a mechanism that exploits a tendentiously anti-phase configuration.
Like in the previous Chapter 5 it is not always appropriate to talk about
resonance - only in case of fast signals.

To summarise, we found the same general effect - an enhancement of
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the response to weak signals by the presence of competitive interactions - in
different types of systems. In general, in all the studied systems, we found a
coincidence between a loss of order and an amplification of response. This
is a requirement that enables the crossing of different types of thresholds.
However, once this first requirement is satisfied, the different systems employ
different mechanisms of amplification, and accordingly can show different
optimal probabilities of repulsive links.

7.1 Future work

Future research should proceed along the two directions that we outline
below.

To establish the role of the Laplacian

We have shown that in the global coupled systems it is easy to predict
the location of the resonance peaks, just by identifying the proportion of
repulsive links that induces a localisation of positive eigenmodes. Exploring
this idea leads us to the consideration of the effect of the underlying network
in non-global coupling cases. Indeed, different topologies exhibit different
localisation properties and, as expected, the optimal probability depends on
the network, being lower when the coupling is not global.

The localisation measure we chose assumes implicitly that averaged
global quantities are enough to classify localisation properties. However, in
the case of networks with high clustering this kind of mean-field analysis
doesn’t hold. Also, in networks where the localisation properties vary ac-
cording to the units position in the graph, the situation is more complex:
that can be the case of scale-free networks, for instance. There arises the
need to try and find out if there is a more general measure of localisation
that applies to all networks, or even if the sole combination of localisation
and the presence of positive Laplacian modes doesn’t result in all cases in
an amplified response.

Practical applications

A second challenge is to find out whether the concepts developed in
this thesis in an idealised manner would work in more realistic and complex
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circumstances. For instance, it would be good to extract from the models of
opinion formation we proposed what is specifically new, and to device a way
to test it. This is a project underway, that is being done in collaboration
with sociologists.

These two directions outlined above - the definition of a precise measure
that enables us to predict the location of the resonance peaks according to
the topology of the network, and the implementation of a project to test
the consequences of the modified version of the Deffuant et al. model - are
already being followed by us.

Besides that, our work opens up wider perspectives about the role of
repulsive links in information processing in various systems, like the brain,
where a combination of positive and negative links is known to exist, but its
function hasn’t yet been fully established.
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Part IV

Appendices





A

Spectral Analysis

In this appendix I will give some details about the spectral analysis
calculations used in Chapter 3.

Let us assume the state of a unit i is so
i at a given time. Our goal is

to see how the interaction with the other units modifies this state.

We define the eigenvalues Qα and (normalized) eigenvectors eα =
(eα

1 , . . . , eα
N) of the Laplacian coupling matrix J ′

ij

J ′
ij = Jij − δij

N
∑

k=1

Jkj, (A.1)

N
∑

j=1

J ′
ije

α
j = Qαeα

i . (A.2)

with the normalization condition:

∑

i

eα
i eβ

i = δαβ (A.3)

The translation invariance of the system requires that:
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N
∑

j=1

J ′
ij = 0 (A.4)

We write the perturbations in terms of the eigenvalues and eigenvectors
of the Laplacian.

xi =
N
∑

α=1

Bαeα
i , (A.5)

Now let’s replace some terms in the equation 3.1 as:

N
∑

j=1

Jij(sj − si) =
N
∑

j=1

J ′
ijsj (A.6)

=
N
∑

j=1

J ′
ij(s

o
j + xj) (A.7)

=
N
∑

j=1

J ′
ijs

o
j +

N
∑

j=1

J ′
ij

N
∑

α=1

Bαeα
j (A.8)

=
N
∑

j=1

J ′
ijs

o
j +

N
∑

α=1

BαQαeα
i (A.9)

si = so
i + xi (A.10)

= so
i +

N
∑

α=1

Bαeα
i (A.11)

(A.12)
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s3
i = (so

i + xi)
3 (A.13)

= ((so
i )

2 + x2
i + 2so

i xi)(s
o
i + xi) (A.14)

= (so
i )

3 + (so
i )

2xi + so
i x

2
i + x3

i + 2(so
i )

2xi + 2so
i x

2
i (A.15)

= (so
i )

3 + 3(so
i )

2xi + 3so
i x

2
i + x3

i (A.16)

si − s3
i = so

i + xi − (so
i )

3 − 3(so
i )

2xi − 3so
i x

2
i − x3

i (A.17)

Expanding the right side of Eq.(3.1) for A = 0, multiplying the re-
sulting equation by eα

i , and considering the normalization condition A.3, we
get:

(so
i )e

α
i + xie

α
i − (so

i )
3eα

i 3(so
i )

2xie
α
i − 3so

i x
2
i e

α
i − x3

i e
α
i =

= (so
i )e

α
i +

N
∑

β=1

Bβeβ
i eα

i − (so
i )

3eα
i −

−3(so
i )

2
N
∑

β=1

Bβeβ
i eα

i − 3so
i





N
∑

β=1

Bβeβ
i





2

eα
i −





N
∑

β=1

Bβeβ
i





3

eα
i =

= (so
i )e

α
i +

N
∑

β=1

Bβeβ
i eα

i − (so
i )

3eα
i − 3(so

i )
2

N
∑

β=1

Bβeβ
i eα

i − 3so
i

N
∑

β,γ=1

BβBγeβ
i eγ

i eα
i −

−
N
∑

β,γ,η=1

BβBγBηe
β
i eγ

i eη
i e

α
i

We will assume that:

1

N

N
∑

i=1

so
i e

α
i ≈ 1

N2

N
∑

i=1

so
i

N
∑

i=1

eα
i (A.18)

Which is true in the limit of N → ∞
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Also:

N
∑

i=1

eα
i = 0 (A.19)

unless Qα = 0

Now let’s average over all elements, to find the evolution of a given
mode.

dBα

dt
= −

∑

β,γ,η

F βγηαBβBγBη +

(

C
Qα

N
− K

)

Bα, (A.20)

where

F βγηα =
N
∑

i=1

eβ
i eγ

i e
η
i e

α
i , (A.21)

K =
3

N

N
∑

i=1

(so
i )

2 − 1. (A.22)

If we neglect the coupling between modes, this approximation leads to
F βγηα = 1/PRα if α = β = γ = η and 0 otherwise. We then obtain the
following equation for the amplitude of the α-th mode:

dBα

dt
= −B3

α + PRα

(

C
Qα

N
− K

)

Bα. (A.23)

According to this approximation, unless Qα > KN
C

, the amplitude of
the mode Bα tends to zero, and any small perturbation vanishes. Otherwise,
the amplitude of the mode α tends to a steady state value:

Bα = ±
[
√

PRα

(

C
Qα

N
− K

)

]

. (A.24)

In this case, mode α is said to be an open mode.
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A method to detect potential
wells

In this appendix, I explain how we detected the number of states in Chaper
3, by adapting the method poposed in V. N. Livina, F. Kwasniok, and T.
M. Lenton, Clim. Past, 6, 77-82, (2010)

The method was developed to detect the number of states in geophys-
ical time series, which are have observational noise and often nonstationar-
ities. Therefore, the method [107] starts considering a stochastic Langevin
equation:

ż = −U ′(z) + ση, (B.1)

where U(z) is a potential function, σ is the noise level and η is a Gaussian
white noise with zero mean and unit variance. In the context of the original
work, the state variable z represents some large-scale climate variable like
temperature.

We assume a general polynomial potential:

U(z) =
L
∑

i=1

aiz
i, (B.2)

where the order L is even and the leading coefficient aL is positive for
eq. (B.1) to possess a stationary solution. The order of the polynomial
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controls the complexity of the potential (the number of potential wells),
with increasing values of L allowing more states to be accommodated: a
fourth-order polynomial can capture a system with two states (double-well
potential).

The number of system states is estimated by means of a polynomial
fit of the probability density function of the data. Suppose the system is
governed by eq. (B.1). The corresponding Fokker-Planck equation for the
probability density function p(z, t)

∂tp(z, t) = ∂z[U
′(z)p(z, t)] +

1

2
σ2∂2

zp(z, t) (B.3)

has a stationary solution given by (see [73])

p(z) ∼ exp[−2U(z)/σ2]. (B.4)

Given this one-to-one correspondence between the potential and the
stationary probability density of the system, the potential can be recon-
structed from time series data of the system as

U = −σ2

2
log pd, (B.5)

where pd is the empirical probability density of the data. This is estimated
using a standard Gaussian kernel estimator [135]. Then least-square fits of
− log pd (weighted with the probability density of the data with polynomi-
als of increasing even order L are calculated, starting with L = 2, until a
negative leading coefficient aL is encountered. The polynomial of highest
degree before first obtaining a negative leading coefficient is considered the
most appropriate representation of the probability density of the time series,
both locally and globally, avoiding overfitting of sampling fluctuations in the
probability density.

The number of states S in the system is then determined as

S = 1 +
I

2
, (B.6)

where I is the number of inflection points of the fitted polynomial potential
of appropriate degree L as described above. This definition takes into ac-
count not only the degree of the polynomial but its actual shape. We only
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look at even-order potentials with positive leading coefficient. These have
positive curvature both at minus and plus infinity. Thus, inflection points
can only occur in pairs (if any). Any potential has at least one state (with
no inflection points). Then we count one further state for each pair of in-
flection points. This can be either a real minimum (well) or just a flattening
in the potential (corresponding to degeneracies in the potential; definition
(B.6) accommodates both possibilities. The number of inflection points is
numerically given as the number of sign changes in the second derivative on
a fine enough mesh.

If necessary, the coefficients that determine the shape of the potential
are then estimated using the unscented Kalman filter (UKF). The method
was developed for the stochastic model with noise component and performs
polynomial fit of the histogram which is expected to be smooth (i.e. no dis-
crete peak). To detect the number of states in the φ4 model with competi-
tive interactions, we had to add a noise component to the model trajectories
to make the method applicable. Yet, to minimise the effect of noise, we
considered white Gaussian noise of small amplitude (0.01 of the trajectory
amplitude), which allowed us to ”fill” the histogram and make it suitable for
smooth polynomial fit. Note that adding noise can only hide a certain shal-
low well in the potential, but never lead to a false detection of non-existent
states, and therefore adding noise cannot lead to false detection of additional
states.
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C

The rewiring algorithm
mentioned in the Divide and
Conquer chapter 4

To settle the issue of whether the resonance phenomenon was induced by
variability in the number of repulsive links or not, we decided to construct
a network in which every agent had exactly the same number of positive
and of repulsive links. We did so, adapting the “local rewiring algorithm”
(S. Maslov, K. Sneppen, Science 296, 910 (2002)) to construct a random
network where every node has exactly the same number of links k and the
same proportion p of repulsive links – the “no dispersion” network.

In a network with N nodes each with 2k neighbours, there will be 2pk
repulsive links.

The network is constructed as follows: we start with a ring where each
of the N nodes has 2k nearest neighbours. Then we randomize the network
by repeating the elementary rewiring step: we select two links at random,
and rewire them by switching partners, excluding the appearance of multiple
edges. If we want a global coupled network, the randomised links will be
all repulsive, and we later add attractive links until everyone is coupled.
Otherwise, the first 2pk links in the ring to be randomised are repulsive,
and the rest (1-p)2k are attractive.
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Figure C.1. An illustration of the rewiring algorithm. A pair of directed edges A
→ B and C → D is randomly selected. These edges are then rewired in such a way
that A becomes connected to D, while C to B, provided that none of these edges
already exist in the network, in which case the rewiring step is aborted and a new
pair of edges is selected. The rewiring algorithm conserves both the in- and out-
connectivity of each individual node. Source: http://www.cmth.bnl.gov/ maslov/

————————-



D

Master Equation for the Deffuant
model with repulsive links

In this Appendix we present the derivation of the master equation whose
results were used in Chapter 5.

D.1 Model

Let’s remember the model in Chapter 5 for the case without propaganda.
We consider a set of N agents which, at a given time n, can adopt the opinion
xi

n, in the interval [0, 1]. We assign a weight ωij to the link connecting nodes i
and j and consider the symmetric case ωij = ωji (or an undirected network).
The weights take positive or negative values: ωij = 1 or ωij = −1, depending
on a given probability p.

At time t two individuals, say i and j, are randomly chosen. If their
opinions satisfy |xi

t − xj
t | < ǫ, they are updated according to:

• If ωij = 1

xi
n+1 = xi

n + 0.5(xj
n − xi

n),

xj
n+1 = xj

n + 0.5(xi
n − xj

n),
(D.1)
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• If ωij = −1,

xi
n+1 = xi

n − 0.5(xj
n − xi

n),

xj
n+1 = xj

n − 0.5(xi
n − xj

n),
(D.2)

We impose the condition that xi
n must remain in the interval [0, 1]: if

xi
n < 0, xi

n = 0, and if xi
n > 1, xi

n = 1.

D.2 The Master equation

The pdf Pn+1(x) reflects the contributions:

• (i) With probability 1 − p two individuals, say i, j, are chosen for
updating according to the basic evolution rule Eq. (D.1) and N − 2
variables remain unchanged.

• (ii) With probability p two individuals, say i, j, are chosen for updating
according to the evolution rule Eq. (D.2) and N − 2 variables remain
unchanged.

Pn+1(x) = (1 − p)
[

N−2
N

Pn(x) + 1
N

Ai
n+1(x) + 1

N
Aj

n+1(x)
]

+p
[

N−2
N

Pn(x) + 1
N

Ri
n+1(x) + 1

N
Rj

n+1(x)
]

. (D.3)

D.2.1 Attractive part

We call Ai
n+1(x) the probability that xi

n+1 adopts the value x at the step
n + 1. According to that rule, the evolution equation is:

Ai
n+1(x) =

∫

|xi
n−xj

n|<ǫ
dxi

ndxj
nPn(xi

n)Pn(xj
n)δ
(

x − xi
n+xj

n

2

)

+
∫

|xi
n−xj

n|>ǫ
dxi

ndxj
nPn(xi

n)Pn(xj
n)δ(x − xi

n), (D.4)
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And a similar expression for j.

Using δ(ax) = 1
|a|

δ(x), we have

δ

(

x − xi
n + xj

n

2

)

= δ

(

xi
n − (2x − xj

n)

−2

)

(D.5)

= δ

(

−1

2
(xi

n − (2x − xj
n))

)

(D.6)

= 2δ
(

xi
n − (2x − xj

n)
)

(D.7)

∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ

(

x − xi
n + xj

n

2

)

=

2

∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ
(

xi
n − (2x − xj

n)
)

=

2

∫

|x−xj
n|<

ǫ
2

dxj
nPn(2x − xj

n)Pn(xj
n) (D.8)

Then:

N − 2

N
Pn(x) +

1

N
Ai

n+1(x) +

1

N
Aj

n+1(x) =

N − 2

N
Pn(x) +

4

N

∫

|x−x′|<ǫ/2

dx′Pn(2x − x′)Pn(x′) +

2

N

∫

|xi
n−xj

n|>ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) (D.9)

Note also that:

∫ 1

0

dxi
ndxj

n =

∫

|xi
n−xj

n|<ǫ

dxi
ndxj

n +

∫

|xi
n−xj

n|>ǫ

dxi
ndxj

n (D.10)
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or:

∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) +

∫

|xi
n−xj

n|>ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) =

∫ 1

0

dxi
n

∫ 1

0

dxj
nPn(xi

n)Pn(xj
n)δ(x − xi

n) =

Pn(x) (D.11)

or:

∫

|xi
n−xj

n|>ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) =

Pn(x) −
∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) (D.12)

We now have the contribution of the attractive interaction to the Mas-
ter Equation:

N − 2

N
Pn(x) + 4

∫

|x−x′|<ǫ/2

dx′Pn(2x − x′)Pn(x′)+

2

N

[

Pn(x) −
∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n)

]

=

Pn(x) + 4

∫

|x−x′|<ǫ/2

dx′Pn(2x − x′)Pn(x′)−

2

N

[

Pn

∫

|xi
n−xj

n|<ǫ

dxj
nPn(xj

n)

]

(D.13)

D.2.2 Repulsive part

[

N − 2

N
Pn(x) +

1

N
Ri

n+1(x) +
1

N
Rj

n+1(x)

]

. (D.14)
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Note that:

Ri
n+1(x) =

∫

|xi
n−xj

n|<ǫ

0≤
3xi

n−x
j
n

2
≤1

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ

(

x − 3xi
n − xj

n

2

)

+

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
<0

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x) +

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
>1

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − 1) (D.15)

And a similar expression for j.

Using δ(ax) = 1
|a|

δ(x), we obtain:

∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ

(

x − 3xi
n − xj

n

2

)

=

2

∫

|x−xj
n|<

ǫ
2

dxi
nPn(3xi

n − 2x)Pn(xi
n) (D.16)

And the same for j.

Then we get:
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[

N − 2

N
Pn(x) +

1

N
Ri

t+1(x) +
1

N
Rj

t+1(x)

]

=

N − 2

N
Pn(x) +

4

N

∫

|x−xj
n|<

ǫ
2

dxi
nPn(3xi
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n) +

2

N

∫
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n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x) +

2

N

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
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dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − 1) +

2

N

∫

|xi
n−xj

n|>ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) (D.17)

Using again:

∫

|xi
n−xj

n|>ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) =

Pn(x) −
∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) (D.18)

We get:
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N
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N
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n+1(x)

]

=
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N

[

Pn(x) −
∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n)

]

(D.19)



D.2. The Master equation 151

And using:

∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − xi
n) =

∫

|x−xj
n|<ǫ

dxj
nPn(x)Pn(xj

n)(D.20)

One obtains the contribution of the repulsive part:

Pn(x) +
4

N

∫

|x−xj
n|<

ǫ
2

dxi
nPn(3xi

n − 2x)Pn(xi
n) +

2

N

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
≤0

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x) +

2

N

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
≥1

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − 1) −

2

N

∫

|x−xj
n|<ǫ

dxj
nPn(x)Pn(xj

n) (D.21)

D.2.3 The Master Equation

Finally the master equation becomes:
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Pn+1(x) =

(1 − p)[Pn(x) +
4

N

∫

|x−xi
n|<ǫ/2

dxi
nPn(2x − xi

n)Pn(xi
n)−

2

N
Pn

∫

|x−xi
n|<ǫ

dxi
nPn(xi

n)]+

p[Pn(x) +
4

N

∫

|x−xi
n|<

ǫ
2

dxi
nPn(3xi

n − 2x)Pn(xi
n)+

2

N

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
≤0

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x)+

2

N

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
≥1

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − 1)−

2

N

∫

|x−xj
n|<ǫ

dxj
nPn(x)Pn(xj

n)] (D.22)

or
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Pn+1(x) =

Pn(x) + (1 − p)[
4

N

∫

|x−xi
n|<ǫ/2

dxi
nPn(2x − xi

n)Pn(xi
n)−

2

N
Pn

∫

|x−xi
n|<ǫ

dxi
nPn(xi

n)]+

p[
4

N

∫

|x−xi
n|<

ǫ
2

dxi
nPn(3xi

n − 2x)Pn(xi
n)+

2

N

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
≤0

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x)+

2

N

∫

|xi
n−xj

n|<ǫ

3xi
n−x

j
n

2
≥1

dxi
ndxj

nPn(xi
n)Pn(xj

n)δ(x − 1)−

2

N

∫

|x−xj
n|<ǫ

dxj
nPn(x)Pn(xj

n)] (D.23)

Considering that ∆t = 1/N , and N → ∞, we replace:

(Pn+1(x) − Pn(x)) N =
∂P

∂t
(D.24)

and
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∂P

∂t
(x) =

(1 − p)

[

4

∫

|x−xi
n|<ǫ/2

dxi
nPt(2x − xi

n)Pt(x
i
n) − 2Pt

∫

|x−xi
t|<ǫ

dxi
tPt(x

i
t)

]

+

p[4

∫

|x−xi
t|<

ǫ
2

dxi
tPt(3x

i
t − 2x)Pt(x

i
t)+

2

∫

|xi
t−xj

t |<ǫ

3xi
t−x

j
t

2
≤0

dxi
tdxj

tPt(x
i
t)Pt(x

j
t)δ(x)+

2

∫

|xi
t−xj

t |<ǫ

3xi
t−x

j
t

2
≥1

dxi
tdxj

tPt(x
i
t)Pt(x

j
t)δ(x − 1)−

2

∫

|x−xj
t |<ǫ

dxj
tPt(x)Pt(x

j
t)]

(D.25)

D.2.4 Integration limits at the boundaries

• to prevent the final opinion to be smaller than 0

∫

|xi
t−xj

t |<ǫ

3x
j
t
−xi

t
2

≤0

dxi
tdxj

tPt(x
i
t)Pt(x

j
t)δ(x) =

∫ ǫ
2

0

dxj
t

[

∫ xj+ǫ

3xj

dxi
tPt(x

i
t)

]

Pt(x
j
t)δ(x)

(D.26)

because (see also Fig. D.1),

3xj = xi + ǫ =⇒ xj =
ǫ

2
=⇒ xj ∈ [0,

ǫ

2
] (D.27)

From this, we see that ǫ cannot be greater than 2
3
. Yet, the results

coming from the numerical integration of the Master Equation don’t
coincide with results from simulations, for large ǫ and p 6= 0, even if
they are smaller than 2

3
.
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Figure D.1. The case to prevent the final opinion to be smaller than 0. We give
several examples of the integration region, shown in blue dots, for different ǫ

• to prevent the final opinion to be greater than 1

See Fig. D.2:

∫

|xi
t−xj

t |<ǫ

3x
j
t
−xi

t
2

≥1

dxi
tdxj

tPt(x
i
t)Pt(x

j
t)δ(x − 1) =

∫ 1

2−ǫ
2

dxj
t

[

∫ 3xj−2

xj−ǫ

dxi
tPt(x

i
t)

]

Pt(x
j
t)δ(x − 1) (D.28)
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Figure D.2. The case to prevent the final opinion to be greater than 1. We give
several examples of the integration region, shown in blue dots, for different ǫ

D.2.5 The normalization condition

Defining the moments as Mk(t) =
∫

dxxkP (x, t) the normalization condition

is
dM0

dt
= 0,

∫ 1

0
dP (x,t)

dt
dx = 0.

Moments of the Master Equation for the attractive part

The Master Equation with deltas for the attractive part is:
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∂P

∂t
(x) =

∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)

[

2δ

(

x − xi
n + xj

n

2

)

− δ(x − xi
n) − δ(x − xj

n)

]

(D.29)

We multiply both terms by xk and integrate, noting that
∫

xkδ(x−a) =
ak. We obtain:

∂Mk

∂t
(x) =

∫

|xi
n−xj

n|<ǫ

dxi
ndxj

nPn(xi
n)Pn(xj

n)

[

2

(

xi
n + xj

n

2

)k

− (xi
n)k − (xj

n)k

]

(D.30)

So, if k = 0, then ∂M0

∂t
(x) = 0.

Moments of the Master Equation for the repulsive part

The Master Equation with deltas for the repulsive part has several terms:

This following term covers the entire region in Fig. D.3. If we integrate
to calculate the first moment, and consider that Pt(x

i
t)Pt(x

j
t) = AB (any

constant) and x ∈ [0, 1] we get:

−2

∫

|xi
t−xj

t |<ǫ

dxj
tPt(x

i
t)Pt(x

j
t)δ(x − xi

t) →

−2

∫ ∞

−∞

dx

∫

|xi
t−xj

t |<ǫ

dxj
tPt(x

i
t)Pt(x

j
t)δ(x − xi

t) →

−2AB

∫

|xi
t−xj

t |<ǫ

dxj
t

∫ ∞

−∞

dxδ(x − xi
t) →

−2AB(2ǫ − ǫ2) = −AB(4ǫ − 2ǫ2) (D.31)

Next we have the two terms coming from the boundary contributions:
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∫

|xi
t−xj

t |<ǫ

3x
j
t
−xi

t
2

≤0

dxi
tdxj

tPt(x
i
t)Pt(x

j
t)δ(x) →

∫ ∞

−∞

dx

∫

|xi
t−xj

t |<ǫ

3x
j
t
−xi

t
2

≤0

dxi
tdxj

tPt(x
i
t)Pt(x

j
t)δ(x) →

AB

∫

|xi
t−xj

t |<ǫ

3x
j
t
−xi

t
2

≤0

dxi
tdxj

t

∫ ∞

−∞

dxδ(x) →

AB(0.25ǫ2) (D.32)

∫

|xi
t−xj

t |<ǫ

3x
j
t
−xi

t
2

≥1

dxi
tdxj

tPt(x
i
t)Pt(x

t
t)δ(x − 1) →

∫ ∞

−∞

dx

∫

|xi
t−xj

t |<ǫ

3x
j
t
−xi

t
2

≥1

dxi
tdxj

tPt(x
i
t)Pt(x

t
t)δ(x − 1) →

AB

∫

|xi
t−xj

t |<ǫ

3x
j
t
−xi

t
2

≥1

dxi
tdxj

t

∫ ∞

−∞

dxδ(x − 1) →

AB(0.25ǫ2) (D.33)

Finally, the last term covers the entire region (Fig. D.3), excluding the
boundaries:
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∫

|xi
t−xj

t |<ǫ

0≤
3xi

t−x
j
t

2
≤1

dxj
tPt(x

i
t)Pt(x

j
t)2δ

(

x − 3xi
t − xj

t

2

)

→

∫ ∞

−∞

dx

∫

|xi
t−xj

t |<ǫ

0≤
3xi

t−x
j
t

2
≤1

dxj
tPt(x

i
t)Pt(x

j
t)2δ

(

x − 3xi
t − xj

t

2

)

→

2AB

∫

|xi
t−xj

t |<ǫ

0≤
3xi

t−x
j
t

2
≤1

dxj
t

∫ ∞

−∞

dxδ

(

x − 3xi
t − xj

t

2

)

→

AB(4ǫ − 2ǫ2) − AB0.5ǫ2 (D.34)

Summing the contribution from all the terms, we see the normalization
condition is verified:

− AB(4ǫ − 2ǫ2) + AB0.5ǫ2 + AB(4ǫ − 2ǫ2) − AB0.5ǫ2 = 0 (D.35)

D.2.6 Numerical integration of the Master Equation -

practical issues

We discretize the opinion range into M = 2000 boxes.

We implement δ(x) as a M , since it is the maximum allowed value.

We used a fourth-order Runge-Kutta method.

D.2.7 Strange Master Equation results

• Undetected clusters

The Master Equation approach has a known problem: when a δ func-
tion is reached, it looses accuracy, not detecting some clusters. The
position of those clusters, in simulations, is not precisely located.
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Figure D.3. Auxiliary figure to understand the areas of integration of the several
terms of the repulsive part

Shall we let the numerical integration evolve until it reaches a steady
state (with δ), or shall we control its running time by comparing results
with simulations?

• inaccurate for big ǫ

We saw the Master Equation is valid when ǫ < 2
3
. However, even for

lower ǫ (e.g.: ǫ = 0.5) the results become inaccurate when p 6= 0. This
is a consequence of the increasing influence of the boundary conditions.
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Some calculus concerning The
Van der Pol system

This appendix concerns some results of Chapter 6, so let’s begin by recalling
the model. We consider an ensemble of N van der Pol oscillators globally
coupled through their velocities, and subjected to an external periodic forc-
ing.

ẍi = −xi + µ(1 − x2
i )ẋi +

C

N

N
∑

j=1

Jij (ẋj − ẋi) + A sin(Ωt). (E.1)

The interaction matrix Jij reflects the presence of attractive and repul-
sive interactions between the units. More specifically, we adopt the following
values at random:

Jij = Jji =

{

−1, with probability p,

1, with probability 1 − p.
(E.2)
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E.0.8 The system

Let’s transform it into a two-dimensional form that highlights a fast and a
slow motion:



















ẋi = µ(xi −
1

3
x3

i − yi) +
C

N

N
∑

j=1

Jij (xj − xi)

ẏi =
1

µ
[xi − A sin(Ωt)] .

(E.3)

Indeed, by differentiating the first equation of the system E.3 we arrive
at Eq E.1,

ẍi =
d

dt

[

µ(xi −
1

3
x3

i − yi) +
C

N

N
∑

j=1

Jij (xj − xi)

]

= µ(ẋi − ẋix
2
i − ẏi) +

C

N

N
∑

j=1

Jij (ẋj − ẋi)

= µ

[

ẋi − ẋix
2
i −

1

µ
xi +

A

µ
sin(Ωt)

]

+
C

N

N
∑

j=1

Jij (ẋj − ẋi)

= µ(1 − x2
i )ẋi − xi + A sin(Ωt) +

C

N

N
∑

j=1

Jij (ẋj − ẋi) (E.4)

E.0.9 The anti-phase solution

Our simulation results show that when the probability of repulsive links p is
greater than the probability associated with the transition region (Chapter
6) several groups oscillating in anti-phase are formed. We want to know how
the proportion of oscillators in phase and anti-phase is divided in a given
group.

In case there are two groups, a group 1 with xi = ai and group 2 with
xi = −ai how many oscillators will be part of each group?



163

Let’s say n oscilators share the position of group 1. The interaction
of the oscillator i with this groups is given by xj − xi = ai − ai so it is
zero. Concerning the N − n oscillator that are in the opposite position, the
interaction of i with them is −2ȧi. The equation for the group 1 is:

äi =

= −ai + µ(1 − a2
i )ȧi +

C

N
[−p(N − n)(−2ȧi) + (1 − p)(M − n)(−2ȧi)] =

= −ai + µ(1 − a2
i )ȧi +

C

N
(−2ȧi)(N − n − 2pN + 2pn) =

= −ai + µ(1 − a2
i )ȧi + C(1 − n

N
)(−2ȧi)(1 − 2p) =

= −ai + µ(1 − a2
i )ȧi + C(1 − n

N
)(2ȧi)(2p − 1) =

(E.5)

And the second group is

−̈ai = ai + µ(1 − a2
i )−̇ai +

C

N
[−p(n)(2ȧi) + (1 − p)(n)(2ȧi)] (E.6)

= ai − µ(1 − a2
i )ȧi +

C

N
(2ȧi)(n − 2pn) (E.7)

= ai − µ(1 − a2
i )ȧi + C

n

N
(2ȧi)(1 − 2p) (E.8)

(E.9)

Considering the two groups:

{

äi = −ai + µ(1 − a2
i )ȧi + C(1 − n

N
)(2ȧi)(2p − 1)

−̈ai = ai − µ(1 − a2
i )ȧi + C n

N
(2ȧi)(1 − 2p).

(E.10)

If this is true, then:

n

N
= (1 − n

N
) =⇒ n =

N

2
(E.11)
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E.0.10 How repulsive links modify the amplitude of

oscillations

Again, let’s consider two groups. The presence of repulsive links leads to
the formation of several groups oscillating in anti-phase.

{

äi = −ai + µ(1 − a2
i )ȧi + C(1 − n

N
)(2ȧi)(2p − 1)

−̈ai = ai − µ(1 − a2
i )ȧi + C n

N
(2ȧi)(1 − 2p).

(E.12)

Making bi = ai

A

Ab̈i = −Abi + µA2(1 − b2
i )Aḃi (E.13)

b̈i = −bi + µA2(1 − b2
i )ḃi (E.14)

By this formula we recover the familiar van der Pol equation with an
amplitude of oscillations |bi| = 2, and

µA2 = µ + 2C(1 − n

N
) (E.15)

Therefore, the amplitude of oscillations is |ai| = A|bi|, and when µ = 10
and C = 20, ai = 3.4.

In this derivation we assumed the oscillators where divided in two
groups with an equal number of elements in each group.

E.0.11 The measure G

We define a measure G to quantify the influence of the fraction of repulsive
links a particular oscillator has on its overall synchronisation with the other
elements.

The strongest it is the synchronisation among oscillators, the higher it
is the value

∑

ji ẋjẋi. The average number of repulsive links in a given run



165

is given by F = 1
N2

∑

ji Jij, while the particular fraction of repulsive links

an oscillator has, fi = 1
N

∑N
i=1 Jij, can be different from the mean given that

the probability of repulsive links p follows a binomial distribution.

Therefore we arrive at:

G =

= N

[

1

N

N
∑

i=1

[

1

N

N
∑

j=1

Jij
1

N

N
∑

j=1

ẋjẋi

]

− 1

N2

∑

ji

Jij
1

N2

∑

ji

ẋjẋi

]

=

=
1

N

N
∑

i=1

[

fi

N
∑

j=1

ẋjẋi

]

− 1

N
F
∑

ji

ẋjẋi =

=
1

N

N
∑

i=1

[

fi

N
∑

j=1

ẋjẋi

]

− 1

N
F
∑

ji

ẋjẋi =

=
1

N

∑

ji

ẋjẋi [fi − F ]

(E.16)

When is this measure zero? When fi is uncorrelated with
∑

ji ẋjẋi,
that is, when the synchronisation of an element with the other oscillators
doesn’t depend on its fraction of repulsive links. This quantity is also zero
when diversity in the form of a variance in the probability of repulsive links
doesn’t exist. This suggests that diversity is required to achieve this new
form of synchronisation.
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[102] C. Tessone, A. Scirè, R. Toral, P. Colet, Theory of collective firing induced
by noise or diversity in excitable media, Phys. Rev. E 75 (1) (2007) 016203.

[103] M. Perc, M. Gosak, S. Kralj, Stochastic resonance in soft matter systems:
combined effects of static and dynamic disorder, Soft Matter 4 (2008) 1861.

[104] P. N. McGraw, M. Menzinger, Laplacian spectra as a diagnostic tool for
network structure and dynamics, Phys. Rev. E 77 (2008) 031102.



174 Bibliography

[105] E. A. P. Young, Spin glasses and random fields, World Scientific, Singapore,
1997.

[106] M. S. Miguel, R. Toral, Stochastic effects in physical systems, in Instabilities

and Nonequilibrium Structures VI, eds. E. Tirapegui, J. Martńez and R.
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Awarded Fellowships

1. 2005 - Fellowship for Scientific Research, by Foundation for Science and
Technology (FCT) - Centro de F́ısica do Porto, Theoretical Physics
Unit at the University of Oporto

2. 2006 - Fellowship for Doctoral Degree, by Foundation for Science and
Technology (FCT), Portugal

179



180 Curriculum

Research Lines

• Nonlinear and Statistical Physics

• Interdisciplinary applications

Summer Schools

• 2005 - Dynamics of Socio-Economic Systems: A Physics Perspective,
Physikzentrum Bad Honnef, SPG, Germany, 18-24 September

• 2009 - Climate Variability and Climate Change: Estimating and Re-
ducing Uncertainties, Visegrad, Hungary, 8-17 June

Publications

1. T. Vaz Martins, R. Toral, M.A. Santos, Divide and Conquer: Reso-
nance Induced by Competitive Interactions, European Physical Jour-
nal B 67, 329-336 (2009)
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