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Abstract: We report on the existence, stability and dynamical properties
of two-dimensional self-localized vortices with azimuthal numbers up to 4
in a simple model for lasers with frequency-selective feedback. We build the
full bifurcation diagram for vortex solutions and characterize the different
dynamical regimes. The mathematical model used, which consists of a
laser rate equation coupled to a linear equation for the feedback field, can
describe the spatiotemporal dynamics of broad area vertical cavity surface
emitting lasers with external frequency selective feedback in the limit of
zero delay.
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1. Introduction

Fundamentalinterest in self-localization and the potential of dissipative solitons for informa-
tion processing applications has driven recent research on self-localized states in semiconductor
lasers [1]. Because of its compactness and extensive use in the information and telecommunica-
tion industry, the most studied system is the Vertical Cavity Surface Emitting Laser (VCSEL).
There are several arrangements in the literature based on VCSELs that display self-localization.
The more common are VCSELs with a holding beam [2], VCSELs with external optical feed-
back [3], coupled cavities of two VCSELs [4], and lasers with saturable gain and absorption
[5, 6].

Different types of transverse self-localized states have been observed in the various config-
urations. First, cavity solitons (CS) in the holding beam systems, which are characterized by
the presence of amplitude oscillations in their tails [2]. Second, found in systems with phase
invariance, are single peak “fundamental” solitons with monotonic exponentially decaying tails
[3, 4, 5, 6]. Thirdly, self-localized vortices have been recently observed experimentally in two
coupled broad area VCSELs [7]. Such vortices, characterized by a phase singularity in their
center, have been predicted in a large number of systems, both dissipative and conservative
(see [8, 9] for models of lasers with saturable absorption and gain, [10, 11] for cubic-quintic
Ginzburg-Landau models, [12] for coupled equations with quadratic nonlinearity, [13] for cou-
pled equations with saturable nonlinearity, and [14] for a review).

In this work we report on the existence and stability of vortices in an arrangement consisting
of a VCSEL with frequency-selective feedback. For simplicity, we assume undelayed feedback,
corresponding to a monolithic or closely-coupled laser-feedback structure. Recent theoretical
[15, 16] and experimental [3] work on this system has focused on the the “fundamental” soliton,
which has been characterized theoretically and experimentally demonstrated. At difference with
the above-mentioned phase invariant model systems our system is perhaps simpler, allowing
even for some analytical treatment in the cubic approximation to the saturable nonlinearity
[17, 18]. It also offers the opportunity to easily include the effects of delay in the feedback loop
[15, 16], as well as the ability to control the frequency, polarization and spatial structure of the
feedback light.
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This opens the possibility of using the orbital angular momentum (OAM) of self-localized
vortices in VCSELs for new applications beyond the proposed use of cavity solitons as bits for
all-optical memories. In particular, they could be used as “optical spanners” to rotate micro-
objects [19, 20]. This is curently implemented using Laguerre-Gauss modes or specially de-
signed computer-generated holograms [21]. The creation of a semiconductor laser able to gen-
erate vortices would provide a cheap and compact device to perform this task. In addition, there
are also interesting ideas about the use of quantum properties related to the OAM [21].

2. Model

We consider here a simplified version of the model used previously in [16], namely, we assume
a very short external feedback loop. Such simplification is in agreement with the experimen-
tal aim to miniaturize the scheme [3], creating monolithic “microcavity soliton lasers”. This
approximation should have little effect on the existence of vortex solitons [18], but will, nat-
urally, affect their dynamics and stability. Specific effects of delay will be an interesting topic
for future work. As in previous work [16], we eliminate the population dynamics. Thus, with
elimination of the delay, our model consists of a set of two equations for the evolution of the
transverse distribution of the intracavityE(x,y, t) and feedbackF(x,y, t) fields:

∂E
∂ t = −κ(1+ iα)(E− µE

1+|E|2
)− i∆⊥E +F + iωsE,

dF
dt = − 1

2T F +σ 1
2T E,

(1)

whereκ is the decay rate of the field in the cavity,α describes the nonlinear frequency shift,
µ is the pump current normalized to be 1 at the threshold of the solitary laser,∆⊥ = ∂ 2

∂x2 + ∂ 2

∂y2

is the transverse Laplacian describing diffraction,ωs is the frequency detuning of the solitary
laser (at threshold of the axial mode) with respect to the central frequency of Lorentzian filter
[22], which is taken as reference frequency,σ is the feedback strength, and12T is the filter
bandwidth. Our aim is to show that this system supports stable vortex solitons. In the absence
of delay, the stability analysis of 2D self-localized states reduces to solving a linear eigenvalue
problem.

3. Vortex excitation

Two-dimensional (2D) vortices can be excited in roughly the same parameter range as that
where the fundamental CS is stable [15]. To do so we use an initial condition which resembles
the field structure of known vortices, of the formE(x,y) = A(r)eimϕ . Herer is the radial co-
ordinate,ϕ is the azimuthal angle andm the azimuthal number in a polar coordinate system
centered on the input vortex. Using initial conditions such thatA(r) → 0 atr = 0 is helpful for
a faster approach to the vortex soliton, although direct integration can give vortex solutions for
a very broad choice of initialA(r) function, see for example [10].

We could excite stationary stablem= 1,2 vortices by choosingA(r) to correspond to a ring
of radius and thickness approximately equal to the width of the fundamental (m= 0) soliton.
Figure 1 illustrates the coexistence of the three lowestm self-localized states. Each of these
structures was checked to be stable and, for the chosen distances between them, the interaction
is so small that no significant changes are observed after integrating for a time up to four orders
larger than the relaxation time of the system. For larger initialm and ring radius (see Figure 2
and [12]) we were able to excitem= 3,4 vortices. Further details about the observed vortices
are presented in Fig. 2, where transverse sections of the amplitude (in semi-logarithmic scale)
and the phase are shown for states withm going from 0 to 4. The slope of the exponential
decay of the amplitude is almost identical for all self-localized states while the vortex radius
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Fig. 1. Coexistence of the fundamental soliton and vortices withm= 1,2: (a) the stationary
transverse amplitude distribution; and (b) the instantaneous distribution of real part of the
field. Black (white) corresponds to the minimum (maximum) value. Here1

2T = 2.71ns−1,
ωs = 250

2π ns−1, α = 5.0,σ = 60ns−1, κ = 100ns−1, andµ = 0.66.
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Fig. 2. Transverse sections through the center of stable self-localized states. (a) Amplitude
in semi-logarithmic scale, and (b) phase. Parameters as in Fig. 1. Dots correspond tom= 0,
circles tom= 1, asterisks tom= 2, triangles tom= 3, and crosses tom= 4.

increases with the azimuthal number (Fig. 2a). The phase distribution of them = 0 soliton
has one extremum in the center. For vortices there are three extrema, one of which is in the
center (singular point), the other two corresponding to the maxima of the amplitude profile. As
expected for aneimϕ phase distribution, odd-mvortices have aπ-discontinuity in the singular
point, while for evenm the phase is continuous (Fig. 2b).

4. Bifurcation diagram of self-localized states

In the above simulations the frequency of the field for steady state solutions is independent
of the spatial coordinates. To build bifurcation diagrams, therefore, we seek single-frequency
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solutions of the formE = E0(x,y)eiωt , F = F0(x,y)eiωt . Substituting into Eqs. (1), we can
reduce the system to the following equation forE0:

AE0 +B
E0

1+ |E0|2
+∆⊥E0 = 0, (2)

where we have introduced the auxiliary coefficientsA andB, which are easily expressed as a
function of the parameters [15]. We solve Eq. (2) using a Newton method. As an initial guess,
we use self-localized vortex solutions obtained from the direct integration of the full model (1).
These form an array ofN by N complex values (N= 64 was used for most simulations, while
some results were checked withN = 128,256,512). We need one more condition, since solution
of (2), on discretization, involves 2N×2N+1 real coordinates, representing the complex field
E0(xi ,y j) and the unknown frequencyω. As such a condition, one can fix the free overall phase
of the solution, by requiring at each iterationphase(Enew(x0,y0)) = phase(Eprev(x0,y0)), where
(x0,y0) can be chosen arbitrarily.

Changing the value of the current parameter (µ) in small steps we build the whole bifurcation
diagram of each solution. The results corresponding tom = 0,1,2 are presented in figure 3,
which shows the total power as a function of the input pump. This quantity clearly distinguishes
between the states with different vorticity. All three branches terminate at the same current
values, marked by linesA andB in (Fig. 3). As in previous work [15], theE = 0 “off” state
is unstable betweenA andB, and so any soliton, or vortex soliton, is necessarily unstable in
that range. In Fig. 4 we show some additional features of the branches presented in Fig. 3. For
comparison, we include in Fig. 4 data for the homogenous lasing states which also bifurcate
from (A,B) [15]. The maximum intensities|Emax|

2 of vortices withm = 1,2. . . are almost
indistinguishable (see also [10, 12]), therefore we present in Fig. 4a only the results form= 0
andm= 1. The frequencyω of m= 0 state is always similar to the frequency ofm= 1 state.
We show their dependence onµ in Fig. 4(b). The frequencies for highermare almost identical
to m= 1. The size of the self-localized states tends to infinity at the bifurcation points (see Fig.
4c for m= 1 vortex or [15] form= 0 soliton), while the peak intensity simultaneously tends
to zero (Fig. 4a). Interestingly, the self-localized states always have finite power. As shown in
figure 3, the power does not vanish even as the bifurcation points are approached.

5. Stability of self-localized states

Having established the existence of vortex solitons, we now examine their stability. As men-
tioned, we are dealing with a simplified model, with no feedback delay and with elimination
of carrier dynamics, so our stability results can only be relevant to systems for which these
are adequate approximations. Considering perturbations to the intracavity and feedback fields
of the formE = (E0 +δE)eiωt , F = (F0 +δF)eiωt , and substituting into Eq. (1), we obtain,
after linearizing, an eigenvalue problem̂M~e = λ~e to determine the stability of the solutions.
The elements of matrix̂M depend on the steady stateE0, F0 and the parameters of the system,
and~e = [δE(xi ,y j),δF(xi ,y j)] is a vector containing the values of the perturbationsδE and
δF at each discretization point. In contrast to other works [8, 11], we solve here the full 2D
problem. For the fundamentalm= 0 soliton there is only a drift instability, signaled as point
M in Fig.3. This instability is displayed in movie (Fig.3,Media 1). The resulting drifting soli-
tonswere already studied in [15, 16] for the case of finite feedback delay. We note that this
drift instability exists even at zero delay time, in contrast to the case studied in [23] where drift
instability required the addition of a delay.

We show here that the drift instability also occurs for vortex solitons, under approximately
the same conditions as for fundamental soliton. In particular, the restingm= 1 vortex is stable
between pointsC1 andM1 in Fig. 3, and bifurcates into a stable self-moving vortex at pointM1,
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Fig. 3. Bifurcation diagrams of self-localized states withm= 0,1,2. Total power as a func-
tion of the pump currentµ . Other parameters are as in Fig. 1 and symbols as in Fig. 2.
Instabilities below bifurcation pointsM and M1 are illustrated in movies (Media 1) and
(Media2) correspondingly. Other labeled dots are explained in Section 5. Dash-dotted ver-
tical linesA,B indicate the bifurcation points of the homogeneous solutions.
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Fig. 4. Additional features of them = 0 (dots), 1 (circles) branches presented in Fig. 3:
(a) maximum intensity; (b) frequency; and (c) radius of them= 1 vortex ring (in arbitrary
units); as a function of the pump currentµ . Dashed thin lines represent the homogeneous
steady states. Dash-dotted vertical linesA,B indicate the bifurcation points of the homoge-
neous solutions.
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Fig. 5. Dependence on pump current of instability growth rates for them= 2 vortex soliton.
The real part of the relevant perturbation eigenvalues is plotted for that part of the upper
m= 2 branch in Fig. 3 for which theE = 0 state is stable, i.e. betweenB andC2. The thin
line indicates the mode with bifurcation pointG1 in Fig. 3. The real part of this mode is
shown in lower-right inset, and the corresponding dynamical evolution in (Media 3). The
medium-thicknessline indicates the mode with bifurcation pointG2 in Fig. 3. The real
part of this mode is shown in middle inset, and the corresponding dynamical evolution in
(Media 4). The thickest line indicates the mode with bifurcation pointG3 in Fig. 3. The
real part of this mode is shown in the upper-left inset, and the corresponding dynamical
evolution in (Media 5).

asshown in movie (Fig.3,Media 2). This seems to be the only instability for them= 1 vortex
soliton between the saddle-nodeC1 and the background instability atB.

The m = 2 vortex has a richer instability behavior. As the currentµ is decreased from its
saddle-nodeC2 it is stable until the pointG1 shown in Fig. 3, but it then undergoes several
different instabilities as the pump current is further decreased. Fig. 5 shows the growth rates
of the unstable modes, as a function ofµ , over the range (B,C2). There are three important
modes, all with very different spatial structures, leading to qualitatively different dynamics.
Interestingly, each of these three modes has the largest growth rate over a finite current range,
within which it will dominate the dynamics when them= 2 vortex is subjected to a random
perturbation. The first instability, at bifurcation (pointG1 in Fig. 3) seems to be a “splitting”
mode, which leads to a complex rotating self-localized structure (Fig. 5,Media 3), similar to
thebound states of twom= 1 vortices reported in [8, 9]. The second mode is a drift mode. It
becomes undamped atG2, and is the most unstable mode over a range of currents somewhat
belowG2. The drifting vortex seems to remain unstable to “splitting”, however, and undergoes
a secondary instability leading to a structure similar to that in (Fig. 5,Media 3), but more
complex, with the appearance of an additional rotation axis (see Fig. 5,Media 4). The third
mode,which becomes undamped atG3, leads to fission of them = 2 vortex, yielding two
drifting m= 0 solitons (see Fig. 5,Media 5).
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6. Concluding remarks

This article addresses the question of existence and stability of localized vortices in cavity
soliton lasers by analyzing a simple model based on an experimentally-implemented VCSEL
with frequency selective feedback. We have been able to excite vortices with azimuthal numbers
up to four in a parameter region close to that where fundamental cavity solitons exist in this
model. By means of a Newton method we have built the bifurcation diagram of these vortex
solitons and have proved their stability over finite ranges of pump current. We have observed
different instabilities for solutions with different azimuthal indices. In particular, form= 2 we
have identified three potentially unstable modes with different structures, which lead to very
different dynamical evolutions.

Of course the stability and dynamics of vortex solitons in more complex and specific systems
than those described by our model will inevitably be different. For example, we already found
that the drift instability can be suppressed by introduction of a finite carrier decay time [16]. It
will be an interesting and important task to establish the stability properties of vortex solitons in
more detailed models including carrier dynamics and/or delay. Nevertheless, our results provide
an essential and fundamental base for comparison with such models, and in particular for the
identification and understanding of instability mechanisms.

The observation of self-localized vortices in broad area VCSELs promises to enhance the
understanding of stability and interaction of nontrivial, high-order self-localized states and pro-
vides a compact and efficient way to generate vortices. The generation of these spatial structures
has potential applications beyond the envisaged use of cavity solitons as bits for optical infor-
mation processing. In particular, VCSELs working in a regime where self-localized vortices
are formed could be an intense and compact source of light with orbital angular momentum.
This opens the possibility of realizing optical spanners that could be integrated into compact
optoelectronic devices.
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