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Resumen

La presente tesis cubre varios aspectos de investigaciéon que han
sido motivados inicialmente por cuestiones relacionadas con pro-
cesos biolégicos. Por un lado investigamos, desde un punto de
vista matematico de la teoria de sistemas dindmicos, un modelo de
absorcién que es de amplio uso en farmacologia. El estudio de las
propiedades de absorcién es un paso importante en el proceso del
desarrollo de farmacos. Nuestro resultado aporta conocimiento so-
bre un modelo de absorcién en concreto que puede mejorar el trabajo
experimental al simplificar el proceso de andlisis de los resultados.
El estudio lleva a una solucién aproximada del modelo que permite
predecir fAacilmente las observaciones del experimento para un
amplio rango de pardmetros. Ademads la solucién puede ser usada
para estimar la dispersiéon de la eficacia entre la poblacién, cono-
ciendo la diversidad en sus pardmetros fisiolégicos entre diferentes
pacientes.

La accion de un farmaco esta sujeta a los diversos procesos dindmi-
cos que ocurren dentro del cuerpo. Por ejemplo, se sabe que los
niveles de una variedad de hormonas en el cuerpo humano y de
otros mamiferos muestran cambios periédicos sincronizados con el
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ritmo de 24 horas. Estos cambios pueden modificar (aumentando o
disminuyendo) la accién de un farmaco. Los ritmos diarios de las
funciones corporales, los denominados ritmos circadianos de activi-
dad, estan controlados por un reloj maestro situado en una regién
concreta del cerebro (el niicleo supraquiasmatico). Alli unas veinte
mil neuronas estan acopladas entre si y reciben la informacién sobre
la luminosidad proveniente de los 6rganos visuales, cuyo cambio
informa sobre el comienzo de un dia nuevo. Las neuronas respons-
ables de la generacion de oscilaciones internas, y en tltima instancia,
del acoplamiento de la actividad al ritmo externo, se han estudiado
mucho en la tltima década. Se ha mostrado que neuronas aisladas
pueden exhibir oscilaciones con periodos muy dispersos entre ellas.
Nosotros estudiamos cémo diferentes niveles de dicha dispersién
facilitan o dificultan la sincronizacién del conjunto con la sefial
periédica que viene de los ojos. Hemos mostrado como la diversi-
dad lleva el conjunto a la “muerte de las oscilaciones” (“oscillator
death”) y cémo eso causa una mejora de la sincronizaciéon. Este
resultado muestra un posible mecanismo por el que la diversidad,
que ocurre de manera natural en los sistemas biol6gicos, puede
ser un ingrediente fundamental para el funcionamiento 6ptimo del
organismo.

El sistema matematico que forma la base de estas oscilaciones bio-
quimicas tiene un alto numero de variables y ademds aparecen de
manera altamente no lineal. Sistemas abstractos con propiedades
controladas tienen la ventaja de ser tratables con métodos analiti-
cos en una manera que permite analizarlos por completo. De esta
manera se pueden aprender detalles que estdn escondidos en el
abanico de posibles comportamientos en un sistema bioquimico
muy complejo. El modelo de “rotores activos” (“active rotators”) es
un simple sistema que puede mostrar conducta excitable u oscila-
toria. Si las frecuencias propias de un conjunto de rotores activos
estan distribuidas aleatoriamente se puede observar un régimen
coherente donde el sistema global entra en el estado oscilatorio a
pesar de que una parte de los elementos estdn en el estado ex-
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citable. La transicién a las oscilaciones globales a causa de diver-
sidad tiene propiedades similares a las de las transiciones de fase
conocidas de la termodindmica y fisica estadistica. Hemos estu-
diado las propiedades criticas y la dependencia con el tamafio de
sistema, mediante simulaciones numéricas extensivas. La criticali-
dad de dicha transicién muestra comportamientos inesperados por
un sistema en el que el acoplamiento global pareceria implicar una
conducta de campo medio. En particular, los exponentes criticos
de escala con el tamafio no coinciden con los de campo medio. La
destruccion del régimen de oscilaciones globales se manifiesta en
otra transicién de fase. Hemos identificado el orden de la transicién
y encontrado condiciones en las cuales la transicién es de primer
orden.

Para un estudio mds profundo de transiciones de fase inducidas
por diversidad decidimos investigar otros modelos prototipicos de
transiciones de fase térmicas o inducidas por ruido. Hemos reem-
plazado los términos de caracter térmico, es decir fluctuaciones
temporales, por un pardmetro de distribucién aleatoria. Refinamos
un método eficiente de tratar sistemas de ese tipo que nos permite
obtener ecuaciones aproximadas que describen el comportamiento
global. Dada subaja dimensionalidad, se pueden estudiar mediante
métodos propios de la teorfa de sistemas dindmicos las ecuaciones
aproximadas. Asihemos obtenido el diagrama de fases para el mod-
elo Ginzburg-Landau con diversidad aditiva y multiplicativa y para
el modelo candnico de transiciones inducidas por ruido. Hemos
comparado la solucién dada por el método aproximado con la res-
olucién de los modelos dentro del limite de campo medio. En los
dos (Ginzburg-Landau aditivo y modelo canénico de transiciones
de fase inducidas por ruido) el andlisis de escala con el tamafio de
sistema nos ensefia que las transiciones muestran exponentes criti-
cos parecidos a los de los rotores activos. El resultado analitico
que hemos obtenido para el modelo de Ginzburg-Landau aditivo
comprueba que pertenece a la clase de universalidad de campo
medio, pero se aprecia una violacién de la relacién de fluctuacién-



disipacion que interpretamos en términos de un hamiltoniano efec-
tivo en la que los términos de campo externo no aparecen en la
manera usual.
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“If you ever get close to a human
And human behaviour
Be ready be ready to get confused

There’s definitely definitely definitely no logic
To human behaviour
But yet so yet so irresistible

And there’s no map to human behaviour

They're terribly terribly terribly terribly moody
Then all of a sudden turn happy

But, oh, to get involved in the exchange

Of human emotions

Is ever so ever so satisfying

And there’s no map
And a compass wouldn’t help at all” — Bjork: Human Behaviour (Debut, 1993)
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Chapter 1

Preface

The present thesis covers various topics that range over different
aspects of scientific research. On one end there is the specific anal-
ysis of a precise form that models some experimental observations.
A good theoretical understanding of the mathematics that describe
the observations can be a guide to the experimentalist and help es-
timate the validity of the measurements. On the other end there
are abstract models whose relation to physical systems seem far but
they are prototypic for a broad range of different systems and the
drawn conclusions tend to be quite general. Depending on the ab-
straction and on the simplifications in use the distinction between
both ends might not be sharp. The ordering of the research results
presented in part II of this thesis somehow reflects the seamless
transition from one end to the other. To introduce the reader into
the context of the genuine results we provide introductory material
in the chapters of the present part I.



CHAPTER 1. PREFACE

Part I, the introduction

After first giving an overview of the arrangement of the thesis here
we will go on to chapter 2 where the general aspects of dynamical
systems are shown. In the beginning we will explain the main con-
cept and the properties like fixed points, stability and bifurcations
of dynamical systems. This will be of use in some cases of the thesis
where we were able to give dynamical equations for the average
behaviour that can be analysed with a typical bifurcation analysis.
Then we will introduce noise into dynamical systems in general
and present typical examples of the consequences of stochasticity.
Furthermore we will see how diversity, as time independent ran-
dom differences in the local dynamics, can be responsible for a
qualitative change in the system. Some well known examples are
presented which mark the territory of the forthcoming results. A
phase transition is a collective phenomenon that arises purely from
the interaction of many similar elements and is not present in the
isolated system. It is the sudden change of a system from an "or-
dered’ to a "disordered’ state or vice versa. We will explain the main
characteristics of such transitions and show known examples.

After having set up the mathematical framework that came to use
in the presented research we want to use chapter 3 to provide the
biological background that is the base for two of the presented
results. The chapter starts with the demonstration of the dynamics
of enzyme reactions where a non reactive molecule, the enzyme, has
to be present and bound, to facilitate the reaction. In this way, as we
will see in the chapter, they are formally ubiquitous on biochemical
processes from gene expression to transport across membranes.
We will show an example of the influence of noise on biochemical
processes and examples of biochemical oscillators. Thereafter we
summarise the constitution of the cell membrane and some possible
transport processes across the membrane.
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Part ll, the results

The investigation that led to this thesis started with an interest in
the description of biological systems. We started investigating two
different systems: on one hand we were interested in mathematical
models that are used by pharmacologists to estimate the absorption
properties of pharmaceutics when ingested orally, i.e. those who are
usually though the mono cellular layer of the intestinal wall. Our
ambition was to give a deeper understanding of the model which
could then help to state more precisely the conditions and the limits
of an experiment. A transformation of the original system and an
adequate approximation allow us to give an analytic solution of the
equilibrium concentration and of the experimentally relevant efflux
ratio. These functional dependencies give access to predictions for
the propagation of errors and of the sensitivity of an experiment
with respect to the different parameters. The results we obtained
are presented in chapter 4. They comprise a direct contribution to
the practical considerations in the process of drug development.

On the other hand we began working with a model that is a de-
scription of the daily pacemaker (the circadian clock) in mammals.
The pacemaker is a region in the brain where coupled neurons send
a periodic signal in synchrony with the day-light pattern. Rather
than working with the latest models which describe many details
known from the experiments, we were interested in how the diver-
sity in these kind of biochemical oscillators in general affects the
ability to synchronise with the light rhythm. We could show how
the right amount of diversity leads to a better synchrony with the
light rhythm as the slight differences lead the global system into the
state of oscillator death where they are easier to entrain. We are
confident that these results, presented in chapter 5, hold for other
variations of the original model.

The main essence of many observation in nature can be described
by an abstraction to a mathematical model which has the advantage
that conclusions drawn from the model hold for different observa-
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CHAPTER 1. PREFACE

tions. The difficulty is to identify correctly the observed quantities
with the variables of the model and to not oversimplify the model.
The many variables for the chemical species in the circadian model
hinder a complete solution of the problem. In chapter 6 we inves-
tigate a set of coupled one dimensional excitable systems which
can be in an excitable or an oscillating regime. We coupled many
active rotators with diverse intrinsic frequencies, such that some
are excitable and others oscillatory. We found that the right amount
of diversity induces coherent oscillations of all elements. The cre-
ation of this state as well as its destruction by too much diversity
happen through a phase transition, much in the sense of magnetic
systems, which can be of first or of second order depending on the
distribution of the random parameters.

This led us to focus on abstractions of magnetic systems where an
intrinsic bistability allows large coupled systems to be either in a
globally ordered state or in a disordered state. The behaviour of
classical phase transitions has been studied before in many differ-
ent physical models. In most of them the thermal fluctuations con-
tribute a random element to the system. We analysed some of the
known models and added diversity to their local dynamics instead
of using thermal fluctuations (at zero temperature, so to speak).
Without the fluctuations the equations become deterministic and a
system that comes to halt once will not start moving again. Again,
globally ordered and disordered phases have been found and the
transitions from one to the other have properties known from the
classical systems. However, as these systems are fundamentally
different we found differences from the classical case. Namely the
critical exponents, describing the system’s behaviour close to the
transition point, are different than expected. The results of this
investigations are presented in chapters 7 and 8.

Like at the end of every chapter, where we summarise the respective
main results, we will give general conclusions and an outlook onto
possible further studies in chapter 9, at the end of the thesis.



Chapter 2

Dynamical systems

2.1
Introduction

The history of dynamical systems, which are governed by mathe-
matical equations that describe the evolution of a system in time,
goes back to the late 17th century when both G. W. Leibniz and
I. Newton independently developed infinitesimal calculus. In-
finitesimal calculus made it possible for Newton to derive Kepler’s
laws of the planetary motion from Newton’s own principles of
forces and motion. Later, in the 19th century, J. C. Maxwell cor-
rectly identified the relations between the electric and the magnetic
field, another dynamical system that gave a great insight into the
nature of light.

If one wants to use a dynamical system to model some observations
it is crucial to specify the state variables and the underlying rules. It
needs thorough work and intuition, but depending on the focus and
on the separation of relevant from irrelevant factors the resulting
model might be a good or a bad description of the observed world.
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By adequately identifying the dynamic variables and the rules of the
system one obtains a mathematical model describing the temporal
evolution of it. Many mathematicians, physicists, engineers and
computer scientists have devoted their passion to shed light on
ways to treat this formalism.

The basic mathematical concepts of dynamical systems is the fo-
cus of this chapter. We begin section 2.2 with an introduction of
the mathematical language used in this thesis for the description
of dynamical systems. It is far from complete and we restrict the
considerations to differential equations. The section presents the
analysis of the basic behaviour, the long term evolution, and some
words about numerical solving techniques. Section 2.3 introduces
the concept of noise into dynamical systems. Here, noise is under-
stood as a rapidly fluctuating force term that is characterised by a
probabilistic description in which averages over time: the mean and
standard deviation, as well as temporal correlations play an impor-
tant rule. Probabilistic predictions of the outcome of an experiment
is the focus of study in systems under the influence of noise and
we will see some explanatory examples. The collective behaviour
of a large number of interacting variables that are governed by
the same set of dynamic equations is presented in section 2.4. We
will see basic concepts that are necessary for the understanding of
these macroscopic effects not visible in the microscopic equations.
A quantity that, although fixed in time, is randomly chosen at the
beginning of an experiment, is usually called quenched noise, dis-
order or diversity. If no ’classic’, or thermal, noise is present then
the underlying equations become deterministic, i.e. the outcome
is completely determined by the initial conditions. However, since
one part (or more) of the equation is different in every trial one
would have to ask for the probability of some result to occur. Ques-
tions arising for this kind of systems are put forward in section 2.5
of this chapter.



2.2. BASIC CONCEPTS

2.2
Basic concepts

Dynamical systems refer to equations describing the evolution of
a system with time. One of the properties that distinguishes the
different types of dynamical systems is the way time is described:
it can be a continuous or a discrete process. On one hand there
is the discrete measuring of an animal population size in a given
area from year to year, on the other hand we have the example of
Kepler’s laws, where position and motion of the planets change
continuously with time. The set of equations describing discrete
systems are called difference equations or recurrence equations.
A general form in one dimension could be written like:

X1 = f) . (2.1)

The state x of the system at time ¢ + 1 is given by some function f of
the state at time f. Continuous systems are described by differential
equations. It is common to write:

x(t) = f (x(8), 1), (2.2)

where it is the infinitesimal change of state x at time ¢, written X(f) =
%, which is determined by the function f of the state x at time ¢.
Both, difference and differential equations share some similarities,
in language and properties. Throughout this thesis we will be
concerned exclusively with differential equations. In this sense the
following considerations will refer only to systems of latter type.
A profound analysis of difference equations with applications can
be found in dedicated textbooks like the one by Kelley & Peterson
(2001) or by Cull et al. (2005).

In a more general form the system’s state is described by a set of
N variables, rather than just one. Then this N-dimensional system
is given by the state vector (or phase point) X () = (x1(t),- -+, xn(t))
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CHAPTER 2. DYNAMICAL SYSTEMS

and the vectorial function f(¥(f),t). The space in which the ¥ are
defined is called the phase space and the function along which a
given phase point X evolves is called the trajectory based in xg. In
some cases it is possible to write down explicit solutions of Eq. (2.2),
i.e. a functional description of the trajectories. Many textbooks, for
example Boyce & DiPrima (2001), are concerned with the analytic
solution of differential equations. In such a case one knows exactly
in which state a system will be at any given time for any given
initial condition. In section 4.2 of the chapter about the absorption
processes of pharmaceuticals we were able to find an appropriate
reduction of the model for which a closed analytic solution can be
given. Without such a solution one can still get an insight into the
behaviour of the system by analysing the structure of the underlying
equations. To this end it can become useful to find a function V (¥, t)
such that:

fi(a?,t):—ava(;’t) Vi=1,...,N, (2.3)

called the potential of the dynamics (San Miguel & Toral 2000). If it
exists, then one talks about the f; as forces, in analogy to the New-
tonian dynamics, although these do not necessarily refer to forces
in the sense of mechanics. From now on only explicit dependence
on time of the forces will be denoted by ﬁ(a?, t), in all other cases we
simply write fi(X).

In the case that a closed solution to Eq. (2.2) does not exist or is
not known, which is usually the norm in physical sciences, one will
have to use other means to get some insight into the system. One
way is to ask for the system’s behaviour on the long run. This will
be addressed in the following.

2.2.1 Fixed points and stability

When the state of an observed system does not change through time,
the dynamical system is said to be in a fixed point, equilibrium, or

10
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in the steady state. We will use the common notation x* for these
points of the phase space. That the state does not change means,
that the left hand side of Eq. (2.2) is zero:

HE@)=0 Vi=1,...,N. 2.4)

Consequently, all phase points which do not fulfil Eq. (2.4), are not
constant in time, they are changing. The trajectories can, but do not
have to, end in one of the fixed points. If all trajectories starting in
the vicinity of a fixed point tend towards it, the fixed point is called
asymptotically stable. If, on the other hand, the trajectories depart
from the point it is an unstable fixed point. If the point attracts
trajectories from some directions but repels them from others it is
called a saddle. Often, by simply drawing the respective potential
or forces of the system, the fixed points and their stability can be
identified easily (for an example, see figure 2.1).

A mathematically rigorous decision about the stability of a point
can be made by considering the linearised equations near the fixed
point. Let 5(t) = x(t) — x* be a phase point at a small distance away
from a fixed point, a small perturbation. Its trajectory is given
by the dynamic equation (t) = %, where x* is constant, and
therefore itis o(t) = %(t) = f(x(t)) = f(x*+5(t)). To obtain a linearised
equation we can now use the TAyLOR’s expansion of f around x* and
write 0(t) = f(x*) + 0(t) f'(x*) + O(5(t)?). By definition f(x*) = 0.
Quadratically small terms O(5(t)?) can be neglected if f”(x*) == 0
so that we obtain the approximate equation for the evolution of the
perturbation:

&(t) = 6(t)f'(x"), 2.5)

from which we can conclude that the distance 6(f) of a trajectory
close to a fixed point will exponentially decrease to zero with time
if f'(x*) < 0 and it is therefore a stable fixed point. If it is f’(x*) > 0
then the distance grows exponentially with time and the fixed point
is unstable. The sign of f’(x*) marks the stability (as is seen in the
example of figure 2.1) and its magnitude is a marker for how strong

11
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N V(N)

0 1
N N

Figure 2.1: Example for a geometric analysis of a dynamical
system: the parameter free logistic equation N(t) = N(¢) (1 —
N(t)), a simple growth model, where the growth rate of a
population decreases linearly with the population size. It
is easy to see in the left panel, that for N* = 0 and N* =1
the growth rate is zero. These are the two fixed points of
the system. Populations larger than one have a negative
effective growth and decrease towards N* = 1. Populations
between 0 and 1 have a positive growth and will increase.
N* = 0 itself is a fixed point, but any initial value close to
zero but larger will have an increasing trajectory. The point
N* = 0 is unstable, whereas N* = 1 is asymptotically stable.
The potential V(N) = N3/3 — n%/2, shown in the right panel,
displays a local minimum at N* = 1 and a local maximum at
N*=0.

the point attracts or repels trajectories. In the case that it is exactly
zero a nonlinear analysis is needed to determine stability.

Systems with dimensions larger than one are linearised by the use
of the Jacobian matrix 7, .. x,. The resulting equation

5

() = Ty () () (2.6)

describes an asymptotically stable (or unstable) fixed point if the
maximum real part of all eigenvalues is negative (or positive).
Imaginary parts different from zero indicate an oscillatory behaviour.

12
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2.2.2 Bifurcations

If a dynamical system has a parameter, say p, that can change the
number of fixed points or the stability of a fixed point, then this
change is called a bifurcation. y is called the bifurcation parameter
or control parameter and the value where the change occurs is the
bifurcation point. Different underlying dynamics lead to different
scenarios of bifurcation, the simplest are those in one-dimensional
systems with one independent parameter. A nice textbook with a
thorough view on bifurcations is the book by Strogatz (1994). The
diagrams that we will see here, the bifurcations scenarios, will re-
turn when we analyse low dimensional differential equations that
describe the averaged quantities of large coupled systems in chap-
ter 7.

Saddle-node bifurcation

In systems that display a saddle-node bifurcation a change in the
control parameter creates two fixed points or destroys them by a
collision of a stable and an unstable steady state when the parameter
is varied in the other direction. At the bifurcation point the steady
state is attracting from one side and repelling from the other. A
prototypic model, that is one with only polynomial force terms,
that displays this behaviour can be written as:

x=y+x2. (2.7)

If u < 0 then the right hand side of (2.7) is zero for x* = ++/—p.
Furthermore it is f’(x*) < 0 for the negative solution and f’(x*) > 0
for the positive solution. In u = 0 we find x* as the only solution
and for y > 0 we find none. The geometric analysis of the complete
system is shown in the first row of figure 2.2.

A somewhat special kind of saddle-node bifurcation can be ob-
served, when the phase space is a closed set, like the points on a

13
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Saddle-node: dx/dt =

unstable

stable

u<0 u=0 u>0

stable

- unstable U

y<d u=0 p>0

T @ T

Supercritical pitchfork: dx/dt = px - x3
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Figure 2.2: Geometric analysis of one-dimensional bifurca-
tions discussed in the text. The derivatives x are drawn
versus the position x for a control parameter below, at and
above the bifurcation point (from left to right). The bifur-
cation diagrams in the column to the right show the fixed
point x* versus the control parameter. Stable solutions are
drawn with a thick line, unstable solutions with a dashed
line. (figure adapted from Tessone 2005, p. 8).



2.2. BASIC CONCEPTS

circle. The difference to a “normal” saddle-node bifurcation lies in
its trajectories. Those which in an infinite space would diverge to
infinity, will now be attracted into the stable fixed point. This can
lead to interesting behaviour as a trajectory resting in the stable state
can be perturbed over the unstable state and will return to the sta-
ble state via an excursion on the cycle. This saddle-node bifurcation
on an invariant circle (SNIC) will play a role in the considerations
of chapter 6. The normal form is the theta model (Ermentrout &
Kopell 1986), the dynamics of the phase variable 0 are governed by:

o(t) (1 —cosB(t)) + I(1 + cos OB(t)) (2.8)

1+I+(I—-1)cosB.

This could be understood as a simple one-dimensional model for
the spiking of a neuron. In this case I would be considered as a
time-dependent input current. Here, however, we want to restrict
ourselves to the simple form and take I as the control parameter of
the bifurcation. If I > 0 then Eq. (2.8) has no fixed point and the
phase grows continuously. For I < 0 two fixed points exist, a stable
and an unstable equilibrium which are born at I = 0. As it becomes
clear from the schematic of the bifurcation in figure 2.3 the dynamics
for I < 0 are always approaching the stable equilibrium but if a per-
turbation out of it is large enough to overcome the threshold of the
unstable fixed point, then the trajectory shows the large excursion
along the limit cycle.

Figure 2.3: Saddle node bifurcation on an invariant cycle.
Based on the theta model, Eq. (2.8).
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Transcritical bifurcation

At a transcritical bifurcation the number of fixed points does not
change but its stability does. The prototypic form is:

X =pux-— X2, (2.9)

Easily we see that x* = 0is a solution of the fixed point condition (2.4)
for any given u and it follows from f’(x") = y — 2x* that x* = O is
stable if u < 0 and unstable otherwise. A second solution exists
at x* = y whose stability is opposite to that of the first solution: it
stabilises when u changes from negative to positive. The geometric
analysis and the bifurcation diagram are shown in the second row
of figure 2.2.

Superctritical pitchfork bifurcation

Pitchfork bifurcations are known in two types and can occur in sys-
tems with a certain symmetry. For example the polynomial equation
for dynamics undergoing a supercritical pitchfork bifurcation

X =pux-— x° (2.10)

is invariant under a change of x — —x. Again x* = 0 is a fixed point
and, again, it changes from stable to unstable (compare f'(x*) =
—3x%). In contrast to the transcritical bifurcation, for u < 0 no other
steady state can be found whereas for u > 0 two additional fixed
points exist: x* = ++/u. Both are stable. The bifurcation diagram
explains why it is called a “pitchfork’ bifurcation (see geometric
analysis in third row of figure 2.2).

Subcritical pitchfork bifurcation

The second kind of pitchfork bifurcation is called subcritical and
has the same symmetry as the last example, x — —x, but the cubic
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term acts destabilising:
X=pux+ . (2.11)

The non-trivial steady states x* = ++/=p exist only for u < 0 and
are unstable, accompanying the stable solution x* = 0. At values
u > 0 where the non-trivial solutions disappear, the origin becomes
unstable (see forth row of figure 2.2).

It is possible to add a stabilising term to Eq. (2.11) without breaking
the symmetry:

X = [,Lx+x3 -x. (2.12)
In contrast to system (2.11), in this equation the origin is the only
equilibrium for x < y’ < 0. At u’ two pairs of fixed points are born at
a saddle-node bifurcations, whose unstable branches decrease and
vanish at p = 0. The stable branches grow away from x = 0. See the
fifth row of figure 2.2. Now a trajectory in x = 0 can be perturbed
either weakly and relax back into the origin or strong enough to
relax into a different equilibrium state.

Hopf bifurcation

The systems treated so far in this section were one-dimensional. A
system state in two dimensional phase space can do more than just
grow or shrink, it can come back to a state visited before and close
the trajectory. A closed trajectory is called a limit cycle when all
neighbouring trajectories are not closed, i.e. they are either attracted
or repelled by the limit cycle.

A Hopfbifurcation is the creation of a limit cycle out of a fixed point.
It can be understood by considering a dynamical system in polar
coordinates of the following form:

Fo= r(y—rz) (2.13a)
¢ = 2m. (2.13b)
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r*

tabl

n

n<o0 pn>0

Figure 2.4: Hopf bifurcation. Bifurcation of the radial com-

ponent r shown to the left. For p < 0 the origin is the only

stable equilibrium, all trajectories spiral into it with constant

angular momentum ¢ (middle). Values u > 0 result in the

unstable point »* = 0 and the stable solution r* = /u. All

trajectories which do not start in the origin spiral towards
the limit cycle (right).

The dynamics of the radial and angular coordinates (+, ¢), withr > 0,
are independent from each other and therefore can be analysed
separately. The angular velocity ¢ is constant, so a phase point will
rotate around the origin with constant velocity.

The dynamics of the radial component, Eq. (2.13a), is identical to
the prototypic pitchfork bifurcation, Eq. (2.10). We recall the results
from the pitchfork bifurcation now with r confined to be positive:
u < 0leads to a stable steady state at #* = 0 and u > 0 results in an
unstable origin plus the stable equilibrium r* = /fi.

The interpretation of these results in the two-dimensional plane
shows a phase point rotating around the origin with a constant an-
gular velocity. The distance to the origin approaches the fixed point
of Eq. (2.13a). Therefore in the case of i1 < 0 all trajectories will spiral
into the origin whereas in the case of u > 0 the trajectories spiral
towards the limit cycle at * = /i (see figure 2.4). The Hopf bifur-
cation is the mechanism through which biochemical oscillations, as
presented in section 3.3, arise and it is the way how oscillator death
due to diversity is introduced into the circadian pacemaker cells of
chapter 5 which enhances the ability of the system to synchronise
with a perdiodic signal.
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2.2.3 Solving differential equations numerically

So far we were able to derive analytic expressions of special solu-
tions that reveal where the system ends up after very long times.
When neither a full functional solution of Eq. (2.2) nor a fixed point
solution can be found one has to fall back to approximative nu-
merical methods. Two different classes of approximate algorithms
have been used throughout the thesis. When the actual dynamical
behaviour is of interest, rather than just the fixed point, or when
there are many different fixed points and one wants to know how
different initial conditions evolve one would use integration algo-
rithms like a forth-order Runge-Kutta method. This method can
become very costly when the time scales and the system size are
very large. In cases where only the fixed point is of importance
many root finding methods to solve the fixed point equation (2.4)
are known. If a fixed point exists and convergence can be assured it
might be much faster than integrating the dynamical equations for
long times.

2.3
Noise induced phenomena

The dynamical systems of interest in section 2.2 were all determin-
istic: a selected initial condition always evolves along the same
trajectory. Many observations in nature seem to lack this property,
for example it has not been possible to predict neither the exact
moment at which a radioactive atom spontaneously decays nor
the exact place of a small particle immersed in water after some
time. While the mechanism that controls the spontaneous decay is
of quantum mechanic origin, the unpredictability of the particle in
water originates in the “uncountable” number of deterministic colli-
sions the particle is subjected: a precise, deterministic, description of
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this so called Brownian motion would require the formulation and
solution of the equations of motion for every single water molecule
in the system and full knowledge of the initial conditions. Instead
one can ask for probabilities, rather than precise predictions, and
base the reasoning on statistical properties.

2.3.1 A random process

Brownian motion has played a central role in the investigation of
random processes and it seems natural to use this model to intro-
duce random processes. In the year 1827 Robert Brown observed
pollen floating in water under his microscope. The velocity of a par-
ticle of mass m submerged in a fluid should be damped with force
that can be approximated by Stokes” law of friction F(t) = —av(t).
The equation of motion for such a particle without any additional
forces reads:

mo(t) = —av(t). (2.14)

The solution of above equation is well known. It tells us, that a
particle of initial velocity vy will transfer its kinetic energy to the
fluid and the velocity decays exponentially as v(t) = voe™"/*. How-
ever, this is not what Robert Brown observed: “While examining
the form of these particles immersed in Water, I observed many of
them very evidently in motion...” (Brown 1828, page 162)

The transfer of kinetic energy is due to the many collisions the par-
ticle will receive along its way. In this sense Eq. (2.14) is valid only if
the mass of the particle is large. If the mass is small enough that the
collisions alter the position macroscopically then the force has to be
modified to account for them. One could argue that the collisions
act as a small additional random force, sometimes accelerating the
particle, sometimes decelerating it. Then the equation of motion
reads:

o(t) = —yo(t) + 0&(t), (2.15)
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with y = a/m. This stochastic differential equation is called a
Langevin equation and &(#) is called Langevin force or the noise
term, o is the noise strength or diffusion constant and —yv(t) the
drift.

Since the average velocity (v(t)) should obey the deterministic form,
Eq. (2.14), it is assumed that the average over the Langevin force is
Zero:

&)y =0. (2.16)

Furthermore we assume that the collisions with different molecules
are independent and that the collision time is small compared to the
relaxation time 7 = 1/y, therefore we can write:

(EBEE)) =o(t-1t). (2.17)

The Langevin force defined in such a way is called white noise.
The velocity of the particle, described by Egs. (2.15-2.17), will vary
from system to system since the random term &(t) varies as well.
Therefore, instead of looking for a solution to Eq. (2.15) one can ask
for the probability P(v) = W(v) dv that the particle’s velocity is in the
interval (v, v + dv). The probability density W will depend on time
t and the initial distribution, its evolution can be described by the
respective Fokker-Planck equation (see for example Risken 1989):

IW W) o*PW

VT T2
Derivations of the Fokker-Planck equation can be found in many
textbooks for example the books by Risken (1989), Gardiner (1985)
or van Kampen (2007). A full integration of this particular equa-
tion (2.18) can be achieved by an appropriate change of variables
but the solution will not be presented here. The stationary solution
of Eq. (2.18) recovers Maxwell’s distribution of velocities. What we
want to notice here is that the Fokker-Planck equation is a determin-
istic partial differential equation that describes how the probability
density of the underlying stochastic dynamical system, here the
velocity of a Brownian particle, evolves in time.

(2.18)
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In the following we will present some examples, where the pres-
ence of stochastic elements in the dynamical systems can introduce
drastic changes in their behaviour. Firstly we show how the intro-
duction of noise can change the stability and number of equilibrium
solutions, not unlike the phenomenon of phase transitions in statis-
tical mechanics. Then we elaborate on the possible changes of the
dynamic behaviour due to an intermediate level of noise.

2.3.2 Noise induced transitions

Consider the dynamical system of the Verhulst equation
3() = p(t) - (e, (2.19)

which originally goes back to a model proposed for the growth of
biological populations but can be obtained from other problems too.
For example the chemical Schlogl reaction (Schlogl 1972):

A+X = 2X
B+X — C, (2.20)

where an autocatalytic reaction (the first step) interacts with a sink
mechanism of the product X (the second step), can be expressed
in the form of Eq. (2.19) when the concentration of species A and
B are kept constant and C is removed from the system by the ex-
perimentalist. It can be shown that, under the so-called mean-field
approximation where correlations are neglected, the population x(f)
of product X follows Eq. (2.19). In section 2.2 we have seen that
Eq. (2.19) undergoes a transcritical bifurcation, i.e. a stable fixed
point turns unstable and an unstable fixed point gets stable (see
fig. 2.2, second row). In the present case, where X is a chemical
substance or the size of a population, it has to be x(t) > 0, Vt, there-
fore the trajectories approach x* = 0 for u < 0 and x* = u otherwise,
perturbations from the steady state return in the characteristic time

ut
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If we now consider the case that the environmental fluctuations,
the perturbations, act on the parameter y with a time scale faster
then u! then we will find an example of the remarkable effects
which noise can have on dynamical systems: the stationary solution
obtains qualitatively different forms, depending on the strength of
the fluctuations. As we have done with the friction in the model
of Brownian motion we will replace the parameter by a sum of a
constant term and a varying term u(t) = u + 0&(t) with £(t) defined
in the sense of the Langevin force, Egs. (2.16) and (2.17). Now we
can write the stochastic equation:

X(t) = px(t) — x(t)* + ox(E(t) - (2.21)

By following an appropriate calculus * the respective Fokker-Planck
equation can be obtained:

IW(x,t) = —0y [(yx(t) —x(t)? + %zx(t)) W(x, t)] + o—zaxxx(t)ZW(x, £).

2
(2.22)

The analysis of the above equation and of the boundary conditions
of the process reveal three possible regimes. Consider that the limit
x — oo acts like a natural boundary, i.e. it is not reached even in
t — oo and the process therefore will not explode. The other end of
the state space, x = 0, changes its properties depending on the value
of u: for negative u it represents an attracting boundary, i.e. it will
be attained in the asymptotic limit f — co. Furthermore, the drift
and diffusion terms at x = 0 are both zero. As a consequence the sta-
tionary distribution Wy (x) for u < 01is a delta-distribution such that
all probability is concentrated at zero. At u = 0 the picture changes,
as the lower boundary becomes natural and is no longer attracting.

“The different interpretations of an integral of a random term (namely the Ito
calculus or the Stratonovich calculus, see (Risken 1989), (Gardiner 1985) or (van Kam-
pen 2007)) can lead to different Fokker-Planck equations. In the presented case both
interpretations lead to the same qualitative result, thus we limit our considerations to
the Stratonovich interpretation.
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W (x)
A

Figure 2.5: Sketch of the stationary probability density for

the stochastic Verhulst model: u < 0 (dotted curve), 0 < u <

0%/2 (dash-dotted curve) and p > 0?/2 (continuous curve).

The curve changes from a delta distribution at x = 0 over a

monotonously decaying distribution to a distribution with a
single maximum at x # 0.

Although the most probable value in the stationary state, the maxi-
mum of W(x), is still x = 0 it is not attained by any sample path, so
that some probability has 'leaked” out of the delta-distribution to the
side (compare the dotted and the dash-dotted curves in figure 2.5).
The third regime is observed when p > 0%/2, where the maximum
of Wg(x) is no longer in x = 0. It changes abruptly to u — ¢/2 such
that the stationary distribution is now decaying to both sides of the
maximum. A continuous curve sketches this case in figure 2.5.

The dynamical system of Eq. (2.19) shows two noise-induced tran-
sitions, one at 4 = 0 and another one at g = ¢2/2. The mean and
variance of the population in the stationary state for u > 0 follow
from the solution W, of Eq. (2.22) as:

()

((x =)

The change of the stationary probability distribution at y = 0 is
not reflected in the mean and variance. However, it can be seen,

f‘” xWe(x)dx = u (2.23)
0
ho?/2. (2.24)
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that for u = 02/2 the standard deviation /{(x — (x))?) and the mean
coincide, a result which can be interpreted as follows: for values
0 < u < 02/2 the fluctuations dominate over autocatalytic growth
and extinction is the most probable outcome”. For larger values of u
the autocatalytic growth overcomes the fluctuations and a non-zero
population size is most probable.

The transition of the behaviour in the Verhulst-system with fluctu-
ating parameter at y = 02/2 is already present in the deterministic
case. At u = 0 the fixed point x = 0 gets unstable and a new solution
appears. The noise term only shifts the transition towards larger
values. A thorough introduction into noise-induced transitions, a
complete analysis including the stationary solution and the Fokker-
Planck equation considering both Ito and Stratonivoch calculus for
the Verhulst model and other systems with more profound modifi-
cations of the macroscopic behaviour of a dynamical system under
the influence of fluctuations can be found in (Horsthemke & Lefever
1984). Other effects of fluctuations on dynamical systems, that do
not change the fixed point but rather the dynamical behaviour, will
be introduced in the following.

2.3.3 Resonance effects

When an oscillator is periodically fed with energy and the driving
period is close to (one of) the intrinsic period(s) of the oscillator,
the whole system is said to be in resonance. If the oscillator’s
damping is small enough then even very small amplitude driving
lets the oscillator accumulate energy and lead to high amplitude
oscillations. Common examples of this effect include the guitar’s
body that resonates with the vibration of a string or the centre of
mass of someone sitting on a swing and moving the legs back and

“Note that the value x = 0 is never achieved due to the natural boundary of the
continuous system but population size will fall below any given e. Therefore, if x
were discrete, distinction would be observed.
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forth. These systems show oscillatory behaviour even in the absence
of a periodic forcing, when energy is only applied once.

Benzi et al. (1981) proposed and showed that a system which simply
dissipates a one time energy supply can show resonances to oscilla-
tory forcing of small amplitude. The effect they termed stochastic
resonance and it has attracted a lot of attention ever since.

Stochastic resonance

To characterise this effect various measures have been proposed.
The signal-to-noise ratio (SNR) is a notion from the formalism of
data analysis. It interprets the forcing as an input signal and com-
pares the system’s reaction to its noisy background. To this end one
starts by defining the power spectral density of the signal:

S(w) = f ” T x(t + T)x(H))dT, (2.25)

00

which is the Fourier transform of the correlation function {x(t + 7)x(f)),
the average over noise and over the initial phases of the input. For
unforced stochastic systems it should be a continuous function de-
caying with large frequencies. In the case that a periodic force drives
the system it is expected that S(w) is the sum of a background spec-
trum Sy(w) and delta spikes at multiples of the driving frequency.
The signal-to-noise ratio is the proportion of the power in the output
spectrum at the driving frequency to its background activity at that
frequency (Gammaitoni et al. 1998):

Q+Aw

lim S(wydw . 2.26
SN(Q) A0 Jo-Aw @ (220

SNR =

An alternative approach that will be used in chapter 5 is the spectral
power amplification (Jung & Hanggi 1991) which compares the
output power p,, to the power of the input signal p;,. In the case of
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an harmonic driving Ag cos(Qt + ¢) the output power is pi, = A3
and then the spectral power amplification reads:

. Q+Aw
Pout lima,—0 fQ_JrAw S(w)dw
=—-= Yy . (2.27)
Pin Tt 0

The spectral density can be expressed with the Fourier series of the
correlation function, then the limit in Eq. (2.27) reduces the integral
to the first Fourier coefficient M;:

71/Q)
Q f ()ye "t

21 n/Q

CAgMP 4 ?

| MRS (2.28)
AF A

In this form it is a measure that is readily accessible and it has been
applied to calculate resonance effects in the numerical simulations
of chapter 5.

A generic model that exhibits stochastic resonance and that was
proposed by Benzi et al. (1981) can be constructed when we consider
a stochastic extension of the prototype model for the supercritical
pitchfork bifurcation in the bistable regime (Eq. (2.10), p = 1) and
apply a time periodic forcing to it:

2(t) = x(t) — x(5)> + Ag cos(Qt + ¢) + V20&(t). (2.29)

Ap and Q) denote the forcing’s amplitude and frequency respectively,
¢ its initial phase. Without any forcing, Ay = 0, the particle’s
position will fluctuate around one of the two minima x,, = +1 of the
time independent double well potential:

__ 1. 1,

Vix) = 2x + 4x (2.30)
and occasionally a large perturbation will make the particle jump
over the barrier into the other minimum. The jump rate will depend
on the noise intensity and the form of the potential, an approxima-
tion was given first by Kramers (1940), a review on the widespread
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uses of this result was written by Hanggi et al. (1990). The jump rate
reads: , AV
rg = ——ex (——) . (2.31)
Vo P\
The precise form of the potential is approximated by the height of
the barrier AV = V(0) — V(x,,). A high barrier or low noise results
in few jumps whereas a low barrier or high noise provokes many
jumps.

When the periodic forcing is switched on, Ay # 0, then the poten-
tial becomes time dependent, V = V(x,t). The forcing breaks the
symmetry of the potential as it periodically rises one minimum and
lowers the other and vice versa after half a period. This favours a
jump towards the lower lying minimum, hence it leads to a period-
ically modulated jump rate. If the average waiting time Tx = 1/rx
is about twice the period of the signal then it comes to a resonance
between the statistic jumps and the periodic rocking of the potential.

If we consider only the jumps between minima and ignore the local
dynamics we can straightforwardly imagine a model of just two
possible states, +x,,, with periodically changing jump rates. This
simplified system is the first for which a full analysis of the stochastic
resonance was achieved (McNamara & Wiesenfeld 1989). In this
case, the SNR in leading order reads:

2
SNR = n(Aof’”) rx (2.32)
(o)
~ AV (2.33)

An example of the SNR in dependence of noise strength, accord-
ing to Eq. (2.33), is shown in the left panel of Figure 2.6. The SNR
grows with rising noise strength and passes through a maximum
to then decline with large noise strengths. The maximum marks
the stochastic resonance, the noise strength where the output is
best ‘seen” against the background noise. Interesting in this result,
and differing from the classic understanding of resonance, is the
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Figure 2.6: left: Signal-to-noise ratio for a particle in a

discrete two-state potential with weak periodic forcing,

Eq. (2.32), and parameters Aox,, = 0.1. right: Spectral power

amplification, Eq. (2.34), for three different driving frequen-
cies.

independence of the driving frequency Q: any frequency will res-
onate. A look at the spectral power amplification 1 of the two-state
model (see, e.g. Anishchenko et al. 2007)

2,4
drixy,

= — 2.34
a2(4rk +?) 2:34)

n

shows that a maximum exists for all frequencies (compare figure 2.6,
right). The maximum in the SNR and in 1 do not coincide. After
reaching the maximum in the SNR a higher noise strength yields
more power in the output signal, however the noise background is
higher as well which means that the SNR is going down where the
spectral power still is rising.

The field of stochastic resonance is well-known by now and the
effect has been found experimentally in a large variety of systems.
They range from physical systems like Schmitt triggers and ring
lasers over chemical systems like the Schlogl reaction to biological
systems like sensory neurons, ion channels or animal behaviour (see
Anishchenko ef al. 2007; Gammaitoni et al. 1998, and therein).
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Coherence resonance

The main ingredient for the appearance of ordered behaviour in the
scope of stochastic resonance is the external forcing whic lies out-
side of the system. We now want to consider a situation where noise
enhances the coherence of oscillatory modes already present within
the system. The first reports on that effect concerned enhancement
of limit cycle oscillations near the Hopf bifurcation by Ebeling et al.
(1986) or for limit cycles that (dis-)appear via a saddle-node bi-
furcation (Gang ef al. 1993; Rappel & Strogatz 1994). In the work
by Pikovsky & Kurths (1997) this effect was studied on excitable
systems and the phenomenon was termed coherence resonance,
although the technically more correct term of stochastic coherence
was coined by Zaikin et al. (2003).

Typically an excitable system has one stable fixed point and an un-
stable fixed point nearby. Small perturbations of the resting system
are damped out but a perturbation large enough to pass the unsta-
ble fixed point lead to a return via a large excursion in phase space,
usually called a pulse, a spike or firing. After a pulse the system
is in a refractory state for a while, in which perturbations do not
lead to a new pulse. The precise form of the excursion is largely
independent on the strength of the perturbation.

The system of choice in (Pikovsky & Kurths 1997) is a reduced form
of the Fitzhugh-Nagumo model, which reads:

ex(t) - x(3i3 -

()

x(f) y(t)
x(t) +a+a&(t). (2.35)

It can be thought of as a model that imitates the generation of action
potentials in nerve cells, lacking the complexity of more biological
models such as Hodgkin-Huxley type models or others (see, e.g.
Izhikevich 2007). The small parameter € < 1 separates fast dynam-
ics, x(t), from slow ones, y(t). Egs. (2.35) have a limit cycle when
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Figure 2.7: Coherence Resonance: for intermediate noise

values the jitter is low. Less noise lets the activation time ¢,

dominate the spike interval, therfore R = 1. At higher noise

the fluctuations Var(t,) ~ 0%(t,)* dominate the jitter and it is

R ~ 0. Compare Eq. (2.36). Here we have set (f,) = 1 and
(t,) = exp(1/0?).

la| < 1 or show excitable dynamics with one attracting fixed point if
la| > 1. In the excitable regime one observes noise induced pulses
whose frequency and regularity depend on the noise strength.

The time between subsequent pulses, the interspike interval t;g;, is
composed of the activation time f, it needs for a pulse to be generated
and the time it takes for an entire excursion in phase space, t,. On
average the activation time can be estimated by Kramers rate (2.31),
(t,) ~ exp(const/c?), and its fluctuations by Var(t,) ~ (t,)*. For a uni-
form velocity along the excitation the average excursion time (f,) is
only weakly dependent on the noise amplitude but it fluctuates with
Var(t,) ~ 0%(t,)*. The phenomenon of coherence resonance becomes
clear by looking at the normalised fluctuations of the interspike
interval (or jitter):

Var(t t)? + 02({t,)?
R= Var(ts) N V(ta)? + 02(t,) ‘ (2.36)
(tst) (ta) + (te)
Figure 2.7 shows a hypothetical curve of the jitter versus the noise
strength, where we have set (t,) = 1 and (f,) = exp(1 /0?). Low
values of R resemble a highly ordered pulse sequence whereas high
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values of R are a consequence of unordered spiking. In the low
noise limit ¢, dominates the time between pulses and the jitter is
R =~ 1. High noise lets t, decrease dramatically such that its con-
tribution to the interspike interval is negligible. It is dominated by
t and the jitter grows with R ~ o(t,)"/2. In between both regimes
coherence resonance is found: R(o) passes through a minimum and
the correlation time through a maximum, both signatures of a more
regular spiking behaviour.

2.4
Collective phenomena

So far we have read about isolated dynamical systems governed
by a set of differential equations. They can be used, for example,
to describe chemical reactions (see chapter 3) or particle transport
processes (chapter 4) or to describe the classical motion of objects
with interacting forces. In several cases, however, the system under
study is composed by a very large number of variables (degrees of
freedom) in constant interaction. This is for instance the case for
the atoms forming a gas or as well for the more abstract systems we
investigate in chapters 6, 7 and 8. In such a situation, a dynamical
system’s approach (which reduces to solve Newton’s equations) is
computationally unaffordable as there are of the order of 10% units
and it is analytically intractable for the collisions between particles,
which introduce nonlinear interaction terms into the dynamics.

On the other hand, as we will see in the above mentioned chap-
ters and in the somewhat "smaller” system of coupled neurons in
chapter 5, the behaviour that multicomponent systems evidence as
a byproduct of the interaction between many individual dynamics
cannot be inferred from the behaviour of a single unit in many cases:
itis a purely collective phenomenon that arises due to the nonlinear
interactions. As a matter of fact, collective phenomena are ubig-
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uitous in nature: from the bird and fish flocks to the stock market
evolution, from the large scale weather or the turbulent behaviour of
a fluid to the brain activity, all are multicomponent systems whose
units interact locally and nonlinearly and whose global behaviour
is an emergent and collective property of the system.

Alternative paths to describe the phenomenology of such systems
are needed, ways that connect the microscopic dynamics, i.e. the
dynamical systems, with their global emergent properties. This
is indeed the framework of statistical mechanics, whose guiding
motif is to connect the dynamics of each variable (the so-called
microphysics) with the system’s global behaviour through a sta-
tistical description. In such a framework, global variables (such
as the pressure, the volume, or the global magnetization in a ma-
terial, or the average speed in a bird flock, to cite some) allow
several microscopic states with equivalent global variables. Ac-
cordingly, global variables (that describe collective behaviour) are
quoted macrostates, and the number of different microstates that
lead to the same macrostate is a measure of the probability of a
system to evidence a given global property. Macroscopic determin-
istic laws arise insofar some macrostates appear with a probability
that differs from 1 by terms of order N='/2 (being N the number of
variables).

2.4.1 Phase transitions: generalities

An important example of a collective phenomenon is the dramatic
change in the macroscopic state of a system when a certain parame-
ter (control parameter) is smoothly varied: one says that the system
has evidenced a phase transition, where the different macroscopic
states are called different phases.

A system will always tend to minimize its energy and maximize
its entropy in order to reach a thermodynamic equilibrium, what
in the language of statistical mechanics corresponds to the min-
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imisation of its free energy (incidentally, the free energy is derived
from the Hamiltonian of the system, which encodes the local dy-
namics of each variable, therefore connecting microphysics with
macroscopic behaviour). By changing a control parameter (such
as temperature or in general an intensive variable) the thermody-
namic system will evolve into a new equilibrium state. A phase
transition takes place when such equilibria are related for instance
to different sets of symmetries. Such is the case in the solid-liquid
transition of water: below the freezing temperature Ty ~ 0°C, the
equilibrium state (i.e. the state minimizing the free energy) is such
that molecules arrange in a hexagonal crystal with discrete rota-
tional symmetry (ice), whereas above T the equilibrium state has
continuous rotational symmetry, corresponding to a liquid phase.
Of course other evidences than symmetry changes can take place
in phase transitions, and the classification of such transitions has
received several descriptions. The distinguishing feature of most
phase transitions is the appearance of a non-zero value of an order
parameter, i.e. a macroscopic variable which is non-zero in the
ordered phase (or equivalently, the lower symmetrical phase) but
identically zero in the disordered (highly symmetrical) phase. The
natural order parameter of a multicomponent system is not always
straightforwardly found and in some cases it is not even an observ-
able. Examples of order parameters include the difference in the
density between phases (solid-liquid-gas transitions), the net mag-
netization (ferromagnetic transitions), or the degree of orientational
order (liquid crystals) to cite a few.

If the order parameter suffers from a discontinuity in the vicinity
of a phase transition, it is named first order, and both phases are
in equilibrium at the transition. An example is the solid-liquid
transition of water, where the density evidences a discontinuity at
the freezing temperature Ty = 0°C. If, on the other hand, the order
parameter vanishes continuously then the transition is suspected
to be second order or continuous: the state of both phases at the
transition is the same. Note at this point that as the order parameter
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vanishes in the transition, it can serve as an expansion parameter to
describe the nature of the transition, as will be shown in forthcoming
chapters.

The change of stability of a certain phase is a collective phenomenon
since it arises from the interaction among the elements. A proper
connection between the microscopic dynamics and the macroscopic
observables is obtained from the principles of statistical mechanics.
It starts by defining the Hamiltonian # of the system, which corre-
sponds to the total energy and describes the evolution of the system
on a microscopic scale according to its internal and external inter-
actions. It is usually impossible to obtain even a numerical solution
to that Hamiltonian of a high number of variables necessary to de-
scribe the phase transition, say the boiling of a litre of water. To
overcome this difficulty, statistical mechanics aims at the statistics
of such a system and obtains solutions for macroscopic variables
as a statistic consequence of the interaction of a large number of
elements. One considers a large (virtual) ensemble of systems in
different microstates representing the same macrostate. This leads
to the partition function

Z= fexp(—ﬁ(H), (2.37)

where = 1/kT and k is Boltzmann's constant and T the tempera-
ture. The partition function allows to derive all macroscopic prop-
erties of the system, such as the free energy

F = —kTIn(Z). (2.38)

With the definition of the free energy the distinction between first
order and second order transitions can be made more rigorous: If
a first derivative of the free energy shows a discontinuity then the
transition at that point is named first order. The jump of the entropy,
S = —9F /dT, corresponds to a latent heat, energy that is applied
(or freed) when the system passes from one phase to the other. The
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change in energy does not result in a change of the macroscopic
observables. If, on the other hand, the first derivatives are contin-
uous but the higher derivatives are discontinuous or infinite, then
the transition is named as higher order, continuous or critical tran-
sition. This corresponds to a divergence of the susceptibility and
correlation length. Interestingly, the magnitude of the discontinuity
is unimportant in terms of the classification of the phase transition.
In the next section we provide a quick overview of the most impor-
tant features of second order phase transitions, namely their critical
behaviour and the universality of their critical exponents.

2.4.2 Criticality and universality at second order phase
transitions

In the last section we have argued that second order phase transi-
tions evidence discontinuities in the second derivative of the free
energy, corresponding to divergences of the susceptibility and cor-
relation length. Interestingly, data from multiple experiments and
results from exactly solvable models have shown that several ther-
modynamic quantities can be described by a set of power laws in
the vicinity of the critical temperature. The theory of critical phe-
nomena states that near the critical point, the order parameter m,
the susceptibility x, the specific heat C and the correlation length
&, which is defined through the exponentially decreasing correla-
tion function I'(r) = (p(0)p(r)) ~ r Texp(—r/&) of some microscopic
quantity p at locations with distance r, vary as:

m ~ e, (2.39a)
x ~ lel7, (2.39b)
C ~ eI, (2.39¢)
E ~ eI, (2.39d)
where we used the definition of a reduced temperature:
e=1-T/T.. (2.40)
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At the critical temperature T, itself two more relations can be found.
The order parameter m varies with its conjugate field H as

m ~ HY? (2.41)
and the correlation I'(r) varies with distance as
I(r) ~ r @20, (2.42)

with d being the dimension of the system.

The constants denoted by small Greek letters are called critical expo-
nents. The sign in the exponents of above relations can be reasoned
with thermodynamic arguments that can provide relations between
the exponents. The definitions of the thermodynamic properties
show that the six exponents are not independent of each other.

It turns out that, whereas the critical temperature T, depends sen-
sitively on the details of the microscopic interactions, the critical
exponents are to a large degree universal, depending only on a few
fundamental properties such as dimensionality or symmetries. Ac-
cordingly, two systems undergoing a second order transition can
be very different in context but share the same critical exponents:
one says that both systems belong to the same universality class
and hence share similar behaviour near the transition. Examples
of different universality classes include the 2D and 3D Ising, the
3D XY, the 3D Heisenberg or the 2D g-state Potts, where the names
characterize the simpler models of each class.

A first approximative theory to derive the critical behaviour in the
vicinity of second order transitions was introduced by Landau, and
is based in the concept of a mean field. Conceptually speaking,
the main idea of a mean field theory is to replace all interactions
in a N body system to a single body with an average or effective
interaction. A first step is therefore to state an effective, coarse-
grained Hamiltonian. In order to describe the phenomenology be-
hind a second order (ferromagnetic) transition, by making use of
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arguments based solely on locality and symmetries, Ginzburg and
Landau introduced such an effective Hamiltonian. Then, a very
simple expression for the free energy can be estimated from this
Hamiltonian through a mean field approximation, that essentially
assumes that the free energy is analytic and shares the same sym-
metries of the coarse-grained Hamiltonian. Critical exponents can
be found accordingly, yielding values f =1/2,y =1, =0,v=1/2,
0 = 3. While the Landau theory turns to be wrong quantitatively
speaking (essentially, the mean field approximation removes the
presence of fluctuations, which become very important close to the
critical point), mean field theory is always a good starting point for
analysing different systems undergoing second order transitions, in
order to gain analytical understanding of the specific phenomenol-
ogy (concretely, the theory makes specific predictions for what kind
of non-analytic behaviour one should see when the underlying free
energy is analytic.) Landau theory turns to be correct when the di-
mensionality of the system is large enough (larger than the so called
upper critical dimension), since in this situation fluctuations are
not that relevant. For lower dimensionalities, a rigorous derivation
of the critical exponents requires the renormalization group theory.
This theory as well provides justification for using the absolute value
of the reduced temperature in Egs. (2.39), (2.41) and (2.42), which
effectively means that the exponent is the same if one approaches
the transition from one side or from the other side. Renormalisation
group theory proved that this indeed is the case.

2.4.3 Finite size scaling

The singularities in the thermodynamic functions in a critical point,
and the associated power law scaling, are only well defined in the
thermodynamic limit, and therefore do not hold in finite systems
due to finite-size effects. For instance, in finite systems the correla-
tion length cannot diverge, simply because the system is not infinite.
Indeed, it can be argued that no singularity can take place in finite
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systems since in that case the partition function, the free energy,
the average energy and others are analytic functions of the inverse
temperature § and so do not have singularities at finite temperature.
Accordingly, one finds that close to the transition, the correlation
length is no longer a diverging quantity, but rather is of the order
of system length L. The theory of finite size scaling (Cardy 1988;
Ferdinand & Fisher 1969; Fisher & Ferdinand 1967) tells us how to
modify the power laws in (2.39) and (2.41) in order to take into ac-
count (and accordingly, how to detrend) these finite size effects that
remove true criticality in finite systems. Consider a d-dimensional
euclidean system with linear size L. Then the susceptibility x (which
diverges with the correlation length as &/¥ in the infinite system)
follows

x =&"E/L), (2.43)

where ¢(u) is a scaling function, with the property that lim, P (u) =
const. Now, since the correlation length itself scales with the reduced
temperature as £ ~ |e|™, one finds that the (finite size) scaling for
the susceptibility is

x =L e), (2.44)

where ¢ is another scaling function. A plot of x versus T will be
peaked around T = T, + voL /", with a width v;L"/ and height
L. Thus, assuming the validity of the finite-size scaling hypothe-
sis, studies of finite systems of different sizes (i.e. a so called finite
size analysis) can give information about the critical exponents of
the infinite system (for mean field analysis where the system size
is characterized by the number of variables N, one assumes homo-
geneity and therefore N = L9). This theory can be derived heuris-
tically using again the renormalisation group, and systematically
through field-theoretic renormalisation group.
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2.4.4 A phase transition induced purely by noise

We have seen that under certain conditions a change of tempera-
ture or of some external field can make a collective system undergo
a phase transition with special characteristics like the critical expo-
nents. In addition we have seen how a random force term in isolated
dynamical systems yields a tremendous change of the equilibrium
state. As we will be investigating phase transitions in collective sys-
tems under the effect of quenched noise in chapters 6, 7 and 8, we
want to present now a kind of prototype model for phase transitions
induced purely by the presence of a noise term.

Consider dynamics in a regular lattice of dimension d where the
local steady state of an uncoupled element varies continuously with
the noise term &(t,7), defined as in section 2.3:

x(t,7)

—x(t, 7)1+ x(t, 712) + (1+x(t, 7)) 0&(t,7) (245)

V()
ox

N

t,r

Figure 2.8 shows, for a better understanding, some instantaneous
potentials V(x) for given values of £. In this case of uncoupled
elements the average position (x(t)) in an ensemble approaches zero
for long times. However, on short time scales the dynamics favour
non-null values such that (x(f)) initially grows away from zero.
This means, as van den Broeck et al. (1997) argue and show, that
the “destabilisation” of the zero solution can be responsible for the
formation of local ordered regions if the elements are coupled to
their neighbourhood N(7):

£(t,7) = —x(t, 7)1+ x(t, 7)) + (142, 7)) 0(t, 7)

+% Y Gt ) - x(t, 7).

77eN(7)

(2.46)
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Figure 2.8: Local instantaneous potential for the dynamics of
Eq. (2.45) for £ < 0 (solid line), & = 0 (dotted line) and & > 0
(dashed line). The steady state varies continuously with &.

The ordered regions might subsequently grow, i.e. for a sufficiently
high coupling constant C the system exhibits a phase with broken
symmetry in the steady state (x) # 0 for intermediate values of
noise strength 0. Numerical calculations at the phase transitions
show that typical criticality is observed: the fluctuations of the
order parameter rise according to a power law with system size
and the critical exponents suggest that the model belongs to the
universality class of Ising models.

25
Diversity in collective dynamical systems

We have seen in section 2.2 how the value of a single parameter can
change significantly the stationary solution of a dynamical system
and in section 2.3 how the stationary solution is changed when the
strength of a rapidly fluctuating force term is varied. In both cases
we were looking at uncoupled systems and only in section 2.4 the
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interest went for systems with a large number of coupled variables.
As one possible source of the rapidly fluctuating forces we iden-
tified the collisions of particles due to their thermal motion which
corresponds to a linear stochastic term in the microscopic equations.

Scientists in the seventies of the 20th century started to consider
magnetic systems with impurities or heterogeneity. This results in
varying interactions instead of (or apart from) a fluctuating force.
As the impurities do not change in time, or in a time scale much
slower than the spin dynamics, they are usually called by the term
quenched disorder. When the variations are applied to the local
interactions between the elements the systems are called spin glass
systems, in the case of a varying coupling to the external field one
talks about random field Ising-models. A wealth of literature has
addressed the phenomenology behind spin glasses and random
field models including phase diagrams, ageing and other dynamical
behaviour and comparison with their equilibrium counterparts (see
Calabrese & Gambassi 2005; Crisanti & Ritort 2003; Young 1998, and
references therein).

Quenched disorder is not limited to the interaction terms. Interact-
ing oscillators could have diverse natural frequencies or biological
cells in an absorbing tissue could have different volumes. Many
different causes for heterogeneity are possible. If the microscopic
dynamics lack a time dependent stochastic term, i.e. they are de-
terministic, the system can be understood as a zero temperature
system in terms of statistical mechanics. Quenched noise systems
without any time dependent noise term are the main scope of this
thesis. In the following we will see some exemplary results from
recent studies of non magnetic systems.

2.5.1 Diversity-induced resonance

If we remember the case of stochastic resonance we stated that a
(overdamped) particle in a double-well potential can amplify an
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input signal of low amplitude when subjected to the right amount
of noise. The prototype (as given in Eq. (2.29)) has a polynomial
potential of fourth order, a sinusoidal input signal and an additive
stochastic force term. By considering a large number of bistable
systems coupled through the mean position of all particles Tessone
et al. (2006) discovered the ability of diversity to enhance the sys-
tem’s answer to a periodic signal. The dynamics:

N
. C .
Xi=x;— x? +1i + N ;(xj — x;) + Ao sin(Qt), (2.47)

differs from Eq. (2.29) in two aspects: First, we now have N elements
coupled to each other with a coupling strength C and, second, the
stochastic force term is replaced by an additive force n; which is
constant in time. The extra forces are chosen randomly from a
probability distribution that satisfies the conditions (7;) = 0 and
minj) = 6i102. The variance ¢ of that distribution is referred to as
diversity.

It was found by Tessone et al. (2006), that the spectral power amplifi-
cation of the input frequency (Eq. (2.34)) passes through a maximum
with respect to the diversity, meaning a maximal response to the ex-
ternal signal for intermediate values of diversity, an effect analogue
to that of stochastic resonance. It is not limited to bistable systems.
In the same work the authors analysed the response of coupled
excitable systems to an external signal. To this end they coupled
a number of Fitzhugh-Nagumo systems (Eq. (2.35)), replaced the
stochastic force term by a constant force taken randomly from a dis-
tribution and added the periodic signal in the slow variable. Again
a spectral power amplification was found for intermediate diversity
levels. In a later work Toral et al. (2009) showed the possible am-
plification of a sinusoidal forcing in coupled linear oscillators with
diversity in the natural frequencies.
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2.5.2 Diversity-induced effects without forcing

In section 2.3 we have seen resonance effects caused by a stochastic
force term in the presence and in the absence of an external forc-
ing. The same effects have been observed in systems without a
stochastic term. The diversity-induced effect described above is a
reaction to an external periodic forcing, therefore more similar to
stochastic resonance. We will now summarize two examples, one in
an electronic system, the other in a biological, for which it has been
shown theoretically that an enhancement of coherence can happen
due to the presence of intermediate levels of diversity without the
presence of any periodic forcing. In this sense it is similar to the
reported effect of coherence resonance.

The Chua circuit is an electronic circuit consisting of a few elements
that exhibits chaotic behaviour and can be modelled by a set of three
differential equations. By changing the inductance of the compo-
nents the circuit can be brought into a regime where the trajectory
jumps chaotically between two domains of a chaotic attractor. If one
considers only the residences in the two domains of the attractor
one can define ajitter in the sense of Eq. (2.36). Chen & Zhang (2008)
showed that the jitter passes through a maximum with respect to the
introduced diversity, which means that the diverse elements lead
the system from the chaotic regime to more or less regular jumps
between the domains. Only a very high diversity brings the system
back into a chaotic state.

The second example we will present here is quite different from the
one before as it considers a spatially extended model. Goldbeter
et al. (1990) proposed a minimal model to explain calcium oscilla-
tions induced by a signal transmitter. The signal transmitter InsP3
(the principal phosphorus storage in many plant and animal tissues
as well as in microorganisms) can trigger calcium oscillations by the
interplay of calcium released from an InsP3 sensitive calcium pool
which in turn triggers the release of calcium from an InsP3 insensi-
tive calcium pool. The work has gained considerable attention. A
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large number of cells with calcium dynamics in the sense of Gold-
beter et al. (1990), arranged on a regular two-dimensional lattice and
with diversified InsP3 saturation constants, have been investigated
by Gosak (2009). The mean of the saturation constant is set to a value
such that the single system is in a steady state, just below the Hopf
bifurcation. The interaction between the cells is achieved by letting
the calcium diffuse across the cells. Obviously a zero diversity leads
the whole system into a steady state. However, a perturbation can
trigger a calcium spike and in this way a distributed variation of the
saturation constant acts like a distributed perturbation. As a conse-
quence a rising diversity brings the extended system from a steady
state into a state of coherent spiral waves which are destroyed for
higher values of diversity where only fractions of wave fronts ex-
ist. A well defined spatial correlation function shows a pronounced
maximum for intermediate diversity values, again underlining the
ability of noise or diversity to induce coherent behaviour.

2.5.3 Synchronisation of diverse Kuramoto oscilla-
tors

When different things happen at the same time then the events are
said to be synchronous. In an ensemble of oscillating elements the
investigation of synchrony among them is a huge field that has
attracted a lot of interest. A model for synchronising oscillators that
was analysed extensively was presented by Kuramoto (1975, 1984).
As itis the base for the investigations of chapter 6 we want to collect
the main features of the original Kuramoto oscillators here. They are
phase oscillators with random frequencies that are coupled to each
other through the sine of their phase differences. The dynamical
variable is the phase ¢ and its dynamics is governed by:

N
Gilh) = i+ Y Ky sin (1) = pi(t)) (2.48)
j=1
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For a vanishing coupling matrix K;; a single element simply rotates
with a constant angular velocity. To see what happens in the coupled
case it is instructive to consider the easiest case where coupling
between all elements is equal: K;; = K/N,Vi,j. This reduces the
model to a mean-field coupled one. When defining a complex
order parameter as

N

p(t)e () _ Z 10 (t), (2.49)

j=1

which can be understood as the position of the centre of mass of
all oscillators, then it becomes obvious how the local dynamics gets
coupled to the global phase W(t):

bi(t) = w; + Kp(t) sin (W(¢) — Pi(1)) (2.50)

Now it is interesting to ask for the overall behaviour when the
intrinsic frequency is taken from some probability distribution g(w).

If the centre of mass, Eq. (2.49), is close to the unit circle (p(t) = 1)
than we know that the single units are concentrated close to an-
other whereas a vicinity to the origin (p(t) = 0) means that the
oscillators are spread out widely along the circle. The first case is,
where all oscillators have the same phase 0;(t) = W(t), Vi is called
global synchronisation. In between the extremal situations partially
synchronised behaviour is observed. An analytic view of synchro-
nisation in coupled Kuramoto oscillators is obtained by supposing
infinite system size, N = oo, and calculating the probability density
P(6, w, t) to find an oscillator with frequency w at time ¢ at the phase
0. For a symmetric distribution g(w) = g(-w) Kuramoto (1975)
found that a non-trivial order parameter, i.e. p # 0 arises for K > K,
with K, = 2/[rg(0)]. Kuramoto (1975) found not only the critical
coupling strength but could give the solution of the order parameter

in case a Lorentzian distribution g(w) = ;brimz is used. It is then (for

large times t):
p = V1-(K/K); (251)
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it grows with an exponent of § = 1/2 (see section 2.4.2), as it could
be expected for the mean field approximation. This supercritical
bifurcation turns into a subcritical in the case that g”’(0) > 0. Stability
of the synchronised state was analysed by Strogatz et al. (1992). A
complete review of the Kuramoto model in the presence of noise,
extended models and numerical methods for their treatment as well
as applications can be found in (Acebrén et al. 2005).

2.6
Summary

This chapter has been written in an attempt to pave the way to
the understanding of the results in the forthcoming chapters of
part II. It is concerned with the basic mathematical and physical
concepts known to the science of dynamical systems and nonlinear
dynamics. It starts with a short and fairly general introduction to
differential equations as a possible representation of a dynamical
system, section 2.2. Different terms, such as the steady state and its
stability, bifurcations, forces and their corresponding potentials are
introduced. We show ways to analyse the behaviour of dynamical
systems.

Subsequently, in section 2.3, the notion of stochastic processes is
introduced by means of the well known example of Brownian mo-
tion. We sketched how a qualitative change of an equilibrium state
can arise due to an additional random force with the example of
the chemical Schlogl-reaction. Then we have summarised reso-
nance effects that can be caused by noise: remarkable observations
in stochastic dynamics, that have attracted a lot of attention since
the eighties of the 20th century and are called stochastic and co-
herence resonance. Here an intermediate level of noise enhances a
weak external signal (stochastic resonance) or enhances an intrinsic
oscillatory mode without external forcing (coherence resonance).
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Effects that arise solely from the interaction of a high number of
dynamical systems are found in the section 2.4 about collective
phenomena. These effects include the observation of phases that
are fundamentally different in their symmetries. The transitions
between phases can be classified according to the way the order
changes from one phase to the other. Universal properties (criti-
cal exponents) are explained and the method of finite-size scaling,
which allows the estimation of critical exponents in the thermody-
namic limit, is introduced. The section closes with an example of a
phase transition that is induced by the presence of a random force
term.

Collective phenomena in diverse systems, i.e. systems that owe
their randomness to time independent noise, are presented in sec-
tion 2.5. Here the interacting elements possess some property that
is randomly distributed along the population but does not change
with time. Resonance effects, similar to those observed in stochastic
dynamical systems, may arise with the 'right amount’ of diversity:
the switching in a bistable potential in resonance with a periodic
driving; regular jumps between two domains of a chaotic attractor
without a periodic forcing; induction of coherent spiral waves and
synchronisation of phase oscillators with diverse natural frequen-
cies.

We will now proceed with the introduction of the more biological
background, both introductory chapters together mark the context
of the chapters of part IL.
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Chapter 3

Applications in biochem-
istry

3.1
Introduction

Some of the chapters further down study nonlinear processes that
are observed in a biological context. Deterministic and stochastic
dynamical systems, as well as collective phenomena are concepts
presented in chapter 2 that all can be observed in many different
essential processes of living systems. The variety of studied fields
is huge, they range from the description of organism abundance
in predator-prey relationships (Hoppensteadt 1982), the active and
passive motion of agents like animals, plankton or pollen, within
moving media (Okubo & Levin 2001) or the electrochemical poten-
tials in neurons (Izhikevich 2007).

In chapter 4 we will study the absorption of pharmaceuticals across
a layer of intestinal cells. The drug molecules have to pass two cell
membranes which are loaded with pumps that keep the molecules
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CHAPTER 3. APPLICATIONS IN BIOCHEMISTRY

out. It is the aim of section 3.4 to formulate the main properties of
cell membranes and the main ways of possible transport.

The synchronisation of biochemical oscillations that master the daily
rhythms of mammals is investigated in chapter 5. There, many oscil-
lators are coupled among themselves and with an external light. The
oscillations are the result of a periodic regulation in the expression
of a gene which is what section 3.3 is going to introduce. It explains
shortly the process of protein synthesis from DNA, presents an ex-
ample of the influence of noise and shows biochemical oscillators
that are based on the regulation of gene expression.

Both, gene regulation and some membrane transporters, can be
approximated by the dynamics of enzyme reactions. To understand
why these processes are so similar in their dynamics we will start
this chapter with an introduction to enzyme reaction in section 3.2.

Textbooks that cover the presented topics from a biological perspec-
tive are for example (Nelson & Cox 2000) or (Alberts et al. 2002). A
profound mathematical perspective of some of the processes and
many physiological applications can be found in (Beuter et al. 2003).

3.2
Enzyme reactions

The micro-organism yeast has been used by humans for thousands
of years to bake bread or ferment alcohol. With the invention of the
microscope at the beginning of the 17th century it was possible to
actually see yeast cells. It took until 1850, when Louis Pasteur (1822-
1895) proved that alcoholic fermentation is conducted by living
yeast. He went as far as postulating that alcoholic fermentation is
in fact inseparable from the “live” in the yeast, a vital principal as
a reason for the fermentation. However, Eduard Buchner (1860-
1917) discovered that yeast extract, a substance free of any living
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3.2. ENZYME REACTIONS

organism, is able to ferment sugar into alcohol, thus pure chemical
reactions of molecules are responsible for the reaction. His work
on fermentation processes was honoured with the Nobel Prize in
Chemistry in 1907. The molecules responsible for facilitating the
fermentation process were called enzymes.

The first enzyme to be isolated and crystallized was urease, a
molecule catalysing the hydrolysis of urea, in 1926 by James B. Sum-
ner (1887-1955). Urease is a protein, a polymer of amino acids, and
with the exception of some catalytic RNA molecules all enzymes
are proteins with molecular weights between 12000 and more than
one million atomic mass units. Thousands of different enzymes
have been identified and catalogued, some of them requiring only
integrity of their amino acids, others rely on the presence of inor-
ganic ions or of more complex substructures called coenzymes. The
principle of all enzymes is catalysing a chemical reaction, i.e. they
lower the activation energy necessary for the two or more molecules
to react. The substances before reaction are called substrates, the
substances at the end of the reaction are called products.

The existence of catalysts is essential for living systems. Many re-
actions, relevant for example for food digestion, nerve signalling
or motoric action, are very slow under normal biological condi-
tions. By binding the substrate molecule(s) to the active site of the
enzyme an enzyme-substrate complex is formed. It provides an
environment which energetically favours the reaction and thus ac-
celerates the rate of production. A schematic view of the function
of enzymes is depicted in figure 3.1, where an imaginary enzyme
catalyses the breaking of a metal stick.

3.2.1 Simple kinetics

If we now look at a very simple enzymatic reaction, where one
substrate molecule S binds to the enzyme E which then decays into
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Figure 3.1: The breaking of a stick (top row, from left to
right): A metal stick (the substrate) is first bent to an inter-
mediate state. Then it breaks (product). The energy diagram
(on the right) shows the energy barrier of the intermediate
state. The broken stick has less free energy than the original
one. The catalysed breaking of a stick (bottom row, from
left to right): The enzyme has a binding site formed like
the intermediate state of the stick. It is equipped with lit-
tle magnets which lower the free energy of the intermediate
state (enzyme-substrate complex, ES). Energy diagram on
the right. (adapted from Nelson & Cox 2000, page 252)
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one product P plus an uncombined enzyme, one might write

S+E=ES=P+E. (3.1)

In 1913 the two scientists Maud L. Menten (1879-1960) and Leonor
Michaelis (1875-1949) published a famous work on the function of
invertase (or saccharase) (Michaelis & Menten 1913). Invertase is an
enzyme, found for example in yeast, which catalyses the breakdown
of sucrose. What Menten and Michaelis postulated and reasoned
was the following: the reaction starts with the relatively fast com-
bination of the complex

kq

S+E ES (3.2)

k4

and is followed by a rather slow decay into the product and the
enzyme
ka

ES P+E. (3.3)

k_»

By assuming a high energy barrier for the combination of a product
with an enzyme the backwards rate k_, can be neglected. In this way
one can write down a set of differential equations for the dynam-
ical variables s(t), e(t), c(t) and p(t), resembling substrate, enzyme,
complex and product concentration respectively:

§(t) = koic(t) — kis(t)e(t) (3.4a)
et) = (ko +ko)e(t) = kis(De(t) (3.4b)
ét) = —(kot +ko)e(t) + kus(Be(t) (3.4¢)
pe) = kaclt) (3.4d)

After a short time of rapid complex building the rates of complex
formation and breakdown will be in a steady state of flow, leading

53



CHAPTER 3. APPLICATIONS IN BIOCHEMISTRY

to a constant concentration c(t) meaning é(#) = 0. The sum of bound
and unbound enzyme molecules is constant c(t) + e(f) = ¢y and
one can eliminate e(f) in (3.4c). The steady state concentration of
complexes is

B eos(t) _ eos(t)
O=h+ gl s+ K "

and Ky is called the Michaelis-Menten constant. When this equation
is substituted into the dynamics of the product one finds:

s(t)

o koeos(t)
p(t) WUZXS(t) + Km 7

=<K, -V

(3.6)
which is a form that can easily be compared with an experiment.
For large substrate concentrations the production velocity saturates
at V.. whereas low substrate concentrations lead to velocities of
ViaxS/Km. The constants Kp; and V), have been determined for
many enzymes. A graphical analysis of the parameters can be
achieved by plotting the production rate p versus the substrate con-
centration (Michaelis-Menten plot) or by plotting the reciprocal of
both sides of Eq. (3.6) (Lineweaver-Burk plot):

1 K 1
- = + . 3.7
P VmaxS Vmax ( )

A scheme of how both methods are applied can be seen in left and
right panel of figure 3.2.

3.2.2 Enzyme cooperativity

The kinetics we have seen until now refer to reactions with sin-
gle substrate molecules only. When the enzyme has more than
one binding site for the substrate one talks about cooperativity. It
comes in different flavours: Positive cooperativity is when the first
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Figure 3.2: A Michaelis-Menten plot of an enzyme reaction.
The maximal production rate v,,,, can only be approximated
since it is reached at infinite substrate concentration. The
Michaelis-Menten constant K,, is the concentration at which
the production rate is half its maximum (left panel). The dou-
ble reciprocal Lineweaver-Burk plot allows determination
of V,uux to a higher degree of accuracy than the Michaelis-
Menten plot (right panel). (figures adapted from Wikipedia
2010a,b).

substrate bound to the enzyme increases the binding rate for the
next substrate molecule, negative cooperativity is the opposite case
and in independent cooperative enzymes no influence on the bind-
ing rate by previously bound molecules is seen. Depending on the
number of binding sites different dynamics are observed. For two
binding sites we can write:

k1 kz
S+E SE—>P+E (3.8)
k4
ks kg
S+SE S;E—>P + SE (3.9)
k-3

Asbefore we assume a large substrate concentration (so s(t) = const)
and a “quasi-steady-state” where complex production is equal to
its decay: %[SE](t) = %[SZE] = 0 (flow equilibrium). This means
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eg = [SE] + [S2E] + [E]. From this we obtain:
[ka Az + kys(t)] eos(t)

PO = A + Aas(h) + 567 (310
with
p=ftRe g, =tk 3.11)
kr ks

This is a general result. Let’s have a look at some examples.

Example: independent binding sites

Independent means that the binding rates are not influenced by the
number of bound molecules. Since the first molecule to come has
two sites to choose from and dissociation can start with either one
of the two bound molecules we have:

ki = 2k;
ks = 3k, (3.12)
hence A, = 4A1 and
. _ 26()](25(1’)
p(t) = I 50 (3.13)

The reaction velocity of an enzyme with two independent binding
sites is twice that of an enzyme with one binding site.

Example: positive cooperativity

In this case the binding of the first molecule favours the binding
of the second, so the rates are k3 > ki, which is approximated by
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the limits k; — 0 and k3 — oo and the product AjA; = const. Asa
consequence the production rate of Eq. (3.10) reduces to:

s(t)?

PO= Vo KO8 507

(3.14)

Example: higher numbers of binding sites

When there are more than one binding site the derivation of the
production velocity yields:

) = Vi

—_— 3.15
max H:lzl Al + s(t)” ( )

This is called the Hirr-equation (Hill 1910). The production rate
shows a sigmoid shape as a function of substrate concentration.

We see that by now the investigation of enzymatic reactions can
look back on a 100 years of history. It is a wide field and the
kinetics presented here treat only the simplest cases. The production
rates of many enzymes, called allosteric enzymes, are controlled
by molecules (the ligands) other than the substrate. In this case the
kinetic equations above have to be altered.

In an example of a biochemical oscillator further down (section 3.3.2)
we will make use of a reaction rate modeified in a simple way to
model an allosteric enzyme. A review on the kinetics of cooperative
and allosteric enzymes was written by Ricard & Cornish-Bowden
(1987), a more recent, comprehensive and accurate enzyme kinetic
theory can be found in many modern textbooks.
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3.3
Gene expression
and biochemical oscillators

The central dogma of molecular biology is a simplified explanation
of protein synthesis from their genes. Although it is now known
to be a far more complex process it can be reduced to four main
processes. The first step is called transcription, the duplication of
the information stored within the nucleobases of the DNA. This is
achieved by the enzyme RNA-polymerase which copies the genetic
code into a messenger RNA (mRNA) molecule. Since the amount
of genes is not changing, the rate at which translation happens can
be assumed to be constant. When the completed mRNA finds its
way to one of the many ribosomes then the ribosome translates the
mRNA piecewise into the complete protein by chaining together
the amino acids in the right order as it is coded in the mRNA
and therefore in the DNA molecules. If one thinks of the very high
number of ribosomes but limited number of mRNA then it is a valid
assumption that the translation rate is proportional to the number
of mRNA molecules. The image has to be completed by taking into
account that the degradation of both, the mRNA and the protein.
As a whole the central dogma can be written down as a number of
reactions with different reaction rates:

kr

np —— r+1lp (3.16)
rkp

np —— rp+l (3.17)
rYR

rp —— r=1p (3.18)
pyp

Lp —— rp-1, (3.19)
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Figure 3.3: Sketch of the central dogma of molecular biology.

The gene is part of the DNA (left) and transcribed to the

mRNA (middle). Then the protein (right) is translated from

the mRNA. Both, the mRNA and the protein, decay with a
given rate.

where p, kp and yp denote the protein number, production and
decay rate and r, kr and yr the respective quantities for the mRNA
(see figure 3.3). The whole idea goes back to the ideas of Francis
Crick (Crick 1970), co-discoverer of the DNA molecule structure.

This model is very simple as it does not account for the interaction
of various genes or proteins. Apart, a modern, more precise, de-
scription of protein synthesis has to include the intermediate steps
of mRNA maturation and posttranslational modification of the pro-
tein into the active molecule. With molecule numbers being integer
numbers and their changes given by (average) reaction rates (s™),
Egs. (3.16-3.19) refer to a stochastic dynamical system with a discrete
phase space. Stochastic in nature it will not be possible to predict
exact numbers of molecules in the cell. As usual one has to rely
on probabilities. In the following section we will present a steady
state solution and a remarkable conclusion from the central dogma
of molecular biology.
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3.3.1 Noise suppression by negative feedback

As pointed out the protein synthesis is a stochastic process so one
can only ask for probabilities or mean values. Under above as-
sumptions of a single gene transcription without any interaction the
steady state probability has been given in (Thattai & van Oudenaar-
den 2001). It turns out that the mRNA distribution in equilibrium
is that of a Poisson distribution: (r) = kg/yr and o?[r]/(r) = 1. Tt
is only dependent on the mRNA production and decay rates. The
resulting number of proteins is:

kr kp
= —— 3.20
P NS, (3.20)
kp
a?[p] VR kp
= 1+ ~1+—. 3.21
») Ty, G20

The approximate value for the normalised fluctuations, Eq. (3.21),
is a result from the observation that typical lifetimes of mRNA is
larger than that of proteins, thus the ratio yp/yr = 0. We see that
the protein’s normalised fluctuations are larger than 1 which means
that the distribution is broader than a Poisson distribution. That
would result in very large fluctuating molecule numbers.

We pointed already out that the central dogma as described above
is a simplified version of what is going on in reality. It is very well
known, that proteins can regulate the expression of genes, both
positively or negatively. If a given protein acts upon its own gene
one talks about autoregulation. It has been shown that in regulatory
network of E. coli the majority of feedback circuits are negatively (or
repressively) autoregulated circuits (Thieffry et al. 1998). A negative
gene regulation (see figure 3.4) can be modelled by a modification
of the mRNA production rate kz. One possibility to do so is that
we assume that the unregulated rate is decreased linearly by the
presence of protein p: ki = kr(1 — ep). The factor € is a measure for
how strong the inhibition is. Using this rate in the system of protein
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Figure 3.4: Negative gene regulation. The standard of gene

expression (as in fig. 3.3) is extended by an inhibition of

transcription, denoted by the arrow ending in a bar over the

rate kg, due to the presence of protein molecules. The result
is that the fluctuations of the process are decreased.

synthesis one finds the following result:

1
P = <P>om
= (pho—ep)g +O@E) (3.22)
for the regulated mean protein number and
o?[p] e kp+7y
=1+ - —— = 4O 3.23
) T I e(p)oyp v (€) (3.23)

VR
for its fluctuations. Here (p)¢ denotes the unregulated protein num-
ber, Eq. (3.20), so we can see that the negative autoregulation shifts
the mean to smaller values and reduces the width of the distribution.
The fluctuations of protein molecule number is reduced.

Although the fluctuations can be reduced by autoregulation, the
gene expression is an inherently noisy process, mainly due to the
low molecule number in cells. A lot of experimental studies have
shown the stochasticity in gene expression and they have investi-
gated the different sources of it (see for example the works by Elowitz
et al. (2002), Ozbudak et al. (2002) or Blake et al. (2003)).
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3.3.2 Biochemical oscillators

Observations of oscillatory behaviour are ubiquitous in biological
systems. Reported time scales and levels of organisation range
from milliseconds in the periodic discharge of neuron membrane
potentials via seconds in the beating of a heart, tens of minutes in
the oscillating transpiration and water uptake of the cereal grain
oat to the various hours of the periodic spore release in fungi (for
a collection of data see Rapp 1979). Even longer time scales can be
observed in mammalian hormone levels oscillating over weeks or
mating activities over years. It is therefore of large interest to study
the mechanisms leading to such behaviour.

Probably the first biochemical oscillation identified experimentally
is the periodic conversion of sugar to alcohol, called glycolysis, re-
ported by many studies in the 1960s in yeast cell extract (see e.g.
Pye & Chance 1966) or in yeast cell populations (Gosh ef al. 1971).
It can be understood when looking at an intermediate enzymatic
step that donates phosphorus from an ATP molecule to the reaction
and thus produces an ADP molecule, which in turn activates the
enzymatic reaction. The corresponding reaction network prototype
of two chemical species, as seen in figure 3.5, leads to the Substrate-
Depletion Oscillator: a constantly supplied substrate Y turns with
help of an enzyme into product X at a low rate. The rate is substan-
tially increased by the binding of product molecules to the enzyme
(see section 3.2). We will use a Hill equation to modify the reaction
rate of Y — X thinking of two binding sites for the ligand. With an
appropriate transformation one can derive dimensionless equations
for the rescaled concentrations of the chemical species (Tyson 2002):

2 2
H) = v e -x0) T

M) = k—x(t). (3.24b)

- x(1), (3.24a)

In the remaining parameters v stands for the reaction rates of the
fully activated enzyme, €?v is the rate in absence of the product.
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1

source Y X sink

Figure 3.5: The reaction network of a Substrate-Depletion

Oscillator where the product X activates its own production.

The more X is present, the faster is its production until Y

is reduced faster than it is (constantly) fed into the system.

Without Y no more X is produced and its concentration goes
down.

The rate at which the substrate flows into the system « is the pa-
rameter with which we will control the reaction. Both, v and x are
normalised by the rate at which the product X is cleared from the
reaction. Variable z(t) is the sum of substrate plus product.

With a short algebra one obtains the steady state

) ) 1+x32
¥=x and z' = K—V(ez et (3.25)
Stability of the equilibrium is only assured for very large or very
small values of x, intermediate inflows of substrate lead to an un-
stable steady state and the creation of a stable limit cycle through a
Hopf bifurcation (page 17). See figure 3.6 for example trajectories.

With just two variables the presented system is one of the simplest
models capable of oscillatory trajectories. Others can be found but
we want to go on to a three dimensional system as it is the basis
for modelling the oscillations of cells that work as pacemaker in
animals and plants.

3.3.3 The Goodwin oscillator
The oscillator named after Goodwin (1965, 1966) is based on proteins

that can inhibit their own synthesis. In this idea the translation
and activation of the protein follows a linear production rate and
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Figure 3.6: Trajectories of a Substrate-Depletion oscillator.
Product X (continuous line) and the sum of product plus
substrate Z. For intermediate substrate inflow « stable os-
cillations can be observed. Small values for x leads to a
continuous approach of the equilibrium (left panel, note
the extended time span), whereas too large inflows lead to
damped oscillations around the steady state (right). Param-
eters: v = 1.0,e = 0.05. The curves were obtained from
numerical integration of Egs. (3.24).

degradation. The transcription rate of mRNA is, however, a term
that saturates at zero with rising protein concentration. Figure 3.7
displays the reaction network, a set of equations could read:

. 1

X(t) = 1-}-—Z(t)p - bX(t) ’ (326&)
gty = bx(t)—y®), (3.26b)
() = b(y(t)—z() . (3.26¢)

In this dimensionless form variable x represents the mRNA concen-
tration, y the protein concentration and z that of the activated pro-
tein. For simplicity we assume here that the linear parameter b, b > 0
is equal in all three equations. Then it turns out that the steady state
x] = x; = x3, the fixed point of the equation 1/(1 + (x)) = bx" desta-
bilizes through a Hopf bifurcation for bx* < (p — 8)/8. It shows us
that, since x is a positive number, oscillatory behaviour requires a
minimal value for the binding cooperativity p, that is p needs to be
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Figure 3.7: Reaction network of the Goodwin oscillator. The

transcription of mRNA (X) is suppressed by the presence of

the activated protein (Z). The unprocessed protein Y is not
active in the inhibition of mRNA transcription.
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Figure 3.8: Trajectories of mRNA (X), unprocessed (Y) and
activated protein Z for parameters in the oscillatory regime:
p=9,b=10"

bigger than 8. Goodwin wasn’t aware of that, it was Griffith (1968)
who did this analysis and writes that Goodwin “now considers his
result (oscillations with p = 1, N.K\) to have arisen erroneously out
of errors in the analogue simulation which he employed” (page
207). A typical oscillatory trajectory of Egs. (3.26) can be seen in
figure 3.8. It can be shown that the minimal exponent p decreases
when more chemical species are involved. That is, for example, if
the chain of figure 3.7 is extended with a fourth species then one
can find a limit cycle already for p > 4 (Tyson 2002).

This kind of oscillator plays a major role in the modelling of the
pacemakers for the rhythmic activity of animals and plants. In-
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vestigation of the per gene in Drosophila and the discovery of its
essential role in generating circadian (nearly daily) rhythms has
led to remarkable advances in the understanding of the underly-
ing molecular mechanisms of biological clocks. A model for per
transcription and translation has been put forward by Goldbeter
(1995) and is the base for many subsequent works. In chapter 5 we
will analyse a model for the pacemaker neurons in mammals that
is based on the Goodwin oscillator. It is, however, made up of two
activating and one inhibiting regulation.

3.4
The cell membrane and transport processes

In chapter 4 we will analyse a specific model for the absorption
of drugs across a mono-cellular layer of epithelial cells into the
blood stream. As the substance enters and leaves the cells it has to
pass twice a cell membrane. To prepare the reader with the needed
understanding of the biological processes this section introduces the
main aspects of the cell membrane and the mechanisms that lead
to an interchange of substances or information between the inside
and the outside of a living cell. It is kept phenomenological as the
details of the interactions, the consequences of the thermodynamic
principles, can not be presented here and the reader is referred to
the literature.

3.4.1 Historical notes

The biological cell is the basic unit of all known organisms: both
unicellular or multicellular. Knowledge of cells as such starts with
microscopic observations. Robert Hooke (1635-1703) published a
book called Micrographia in 1665 where he gave account of his obser-
vations with various lenses where he, among other things, described
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cork as he saw it under his microscope (fig. 3.9). The elementary
units of the structure he called cells.

N

Figure 3.9: Cork oak cells and mimosa leaves. Robert Hooke,
Micrographia, 1665. (taken from Wikipedia 2010d).

If we look at a living cell from the outside, we basically see a closed
and more or less rigid container with selectively permeable walls
and macromolecules sticking out of it. These walls are called cell
membranes. (Cells with a different outermost cover, the cell wall,
are not relevant within the scope of this thesis.) When we go into
the container, into the cytoplasm, we can see that one group of cells
holds smaller containers, the organelles, made of the same kind
of membrane. Cells of this group are called eukaryotes and form
the base of animals, plants and fungi. Cells without membrane-
bound containers, like those of bacteria, are called prokaryotes. The
macromolecules sticking out of the membrane are called membrane
proteins. Some are docked onto one side of the membrane, others
penetrate it from one side to the other. The membrane proteins are
used to communicate the cytoplasm with the outer world.

The plasma membrane defines the periphery of the cell and it sep-
arates its content from the environment. Nowadays it can be iso-
lated from other cell constituents by centrifugal techniques and then
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chemically analysed. Its composition turns out to vary between
kingdoms, species, tissues and cell types but among all known kind
of cells certain structural similarities and therefore properties are
shared: Biological membranes are impermeable to most polar and
charged solutes and permeable to nonpolar compounds, probably
their most remarkable and important feature.

At the end of the 19th century, before the dawn of electron mi-
croscopy, it was hypothesised, that a living cell is an electrolyte
surrounded by a membrane, impermeable to ions. It was lead
by the discovery that lipid-soluble molecules pass easily into cells
(see Robertson 1981, and therein). Hugo Fricke measured the elec-
tric capacity of red blood cell membranes around the year 1925.
He supposed that the membrane is formed by a thin oil film and
calculated its thickness to 3.3nm (Fricke 1925). A great deal of un-
derstanding biomembranes was achieved by studying lipids and
the monomolecular films they form on surfaces in the years before
Fricke’s findings.

Lipids are a class of molecules found in organisms which are not
soluble in water. They are either hydrophobic, which means they
arerepelled by water, or consist of both a hydrophilic and lipophilic
part, thus combining “water-loving” and “fat-loving” properties
in one molecule. The latter are called amphiphilic and are, as
we will see in a few paragraphs, the key to understanding the
biomembranes.

Amphiphilicity of some of the lipids was deduced by measuring
the thickness and the surface tension of oil films in confined areas
on water surfaces (Devaux 1932; Rayleigh 1890, and therein). The
surface tension goes through a sharp transition when measuring
its dependence on oil film thickness. Irving Langmuir (Langmuir
1917) interpreted this observation as a transition from a phase where
the molecules are randomly arranged on the water to a phase of a
closed structure, with the polar heads in the water and the nonpolar
carbon chains in the air. It is known now, that the amphiphilic
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constituents of the cell membrane are mainly phospholipids, where
the hydrophilic head is a phosphate group and the hydrophobic tail
a number of hydrocarbon chains.

In the same year when Fricke published his observations on red
blood cells, Gorter and Grendel did an interesting experiment, as
well with extracted red blood cells. They measured the cells” sur-
faces and then separated the membrane from the plasma with wash-
ing techniques. When they measured the amount of molecules con-
tained in the membrane they found that it is “exactly sufficient to
cover the total surface of the chromocytes [red blood cells] in a layer
that is two molecules thick” (Gorter & Grendel 1925, pg. 439). A
remarkable conclusion if one considers the modern view of the cell
membrane, as we present in the following subsection and depict in
figures 3.10 and 3.11.

3.4.2 A modern view on the cell membrane

These classical experiments, the use of electron microscopy and
thermodynamic considerations lead to what is known as the fluid
mosaic model (Singer & Nicolson 1972). Expenditure of free energy
is necessary to transfer nonpolar molecules into water and likewise
to transport polar, or ionic, molecules from water into a nonpolar
medium. The same can be assumed for the respective groups in
amphiphilic molecules. Therefore a number of phospholipids sub-
merged in water can minimise the free energy by forming various
structures. Cylindrical molecules for example can minimise energy
by aligning in two layers side by side, with the nonpolar tails point-
ing at each other and the polar heads being surrounded by water
(see figure 3.10, left). Such planar layers are studied experimentally
by meeting the boundary conditions with a rigid wall between two
compartments (see for example Winterhalter 2000). Without the
conditions the edges are in contact with water and the bilayer sheet
is therefore unstable. When the bilayer closes on itself due to local
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curvature it can form a stable vesicle, called liposome (fig. 3.10,
middle). They can enclose other aqueous solutions. Other phos-
pholipids, with a rather wedge shaped geometry, can build a closed
structure around nonpolar substances. These structures are called
micelles (fig. 3.10, right).

Figure 3.10: The three main structures amphiphilic

molecules can form in an aqueous solution: a homogeneous

bilayer (left); a closed bilayer forming a separate volume

within the aqueous solution called liposome (middle); wedge

shaped molecules can form a stable structure by what is

called a micelle (right), (pictures adapted from Wikipedia
2010c)

A large variety of phospholipids has been found and the compo-
sition of the membranes varies among the species, cell types and
tissues and even between the inner and outer leaflet of one and the
same membrane. Apart from the phospholipids other components
have been found as part of the biological membranes: large proteins
whose total weight can be up to four times the total weight of the
lipids (Korn 1969). They are held in place by interactions between
the hydrophobic part of the lipids and the hydrophobic transmem-
brane domains of the protein. Depending on the exact form and the
length of the hydrophobic domain the proteins can be present only
on one side or can span the lipid bilayer (see figure 3.11). Different
functions of the proteins have been identified. Some can provide
identification of the cells from the outside, others provide signal
transduction between the inside and the outside of the cell. The
proteins that transport substances actively or passively across the
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membrane are subject of section 3.4.3. Tight junctions are a class of
membrane proteins that span not only one cell membrane but two
membranes of two neighbouring cells, thus creating a rate-limiting
barrier to diffusion of solutes that holds the adjacent cells firmly in
place. Tight junctions are expressed, for example, in the epithelial
cells of the small intestine (see Mitic & Anderson 1998, and therein).

Figure 3.11: Schematic view of proteins embedded in the

lipid bilayer. Some are present only on one side, others span

the entire layer. A great range of functions have been iden-

tified, from active and passive transport through cell iden-

tification to signal transduction, (adapted from Wikipedia
2010e).

In an experiment with a cell that was combined artificially, one
half from a human cell and the other half from a mouse cell, it has
been observed that the membrane proteins spread along the surface
and intermix completely after about 40 minutes (Frye & Edidin
1970), such that mouse proteins and human proteins are distributed
equally. This means, that under physiological conditions the mosaic
of lipid and protein units move around freely and the bilayer is in a
fluid state. The transition temperature from a fluid to the crystalline
state depends on the composition of the membrane. Saturated
fatty acids pack well into the crystalline state whereas the kinks
in the unsaturated fatty acids hinder the crystallisation, therefore
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the proportion of saturated and unsaturated phospholipids (and the
content of other molecules) controls the liquidity and the transition
temperature of the membrane. It has been shown that, for example,
E. coli bacteria can adjust the membrane’s composition depending
on the temperature during the growth process. As a result the
fluidity of membranes from bacteria grown at low temperature is
about the same as that of bacteria grown at high temperature (Marr
& Ingraham 1962). In spite of their liquidity the membranes form
a reliable container for the cell constituents. The shape of a cell is
determined by the local elasticity of the membrane (Sackmann 1994)
as a consequence of minimisation of free energy. Elasticity can be
controlled by the distribution of different lipids in the membrane
and the presence of embedded proteins.

The cell membrane isolates the cytoplasm from the outside of the
cell. Its structure allows only lipophilic and small, uncharged
molecules to pass through. Only a flow equilibrating a concen-
tration difference is thermodynamically possible. The transport of
other substances or the creation of gradient required for the cellular
processes are facilitated with the help of transporter proteins.

3.4.3 Transporter proteins

Molecules or ions that cross the membrane via transporter proteins
can do so either passively, without the expenditure of energy along
their electrochemical gradient, or actively. Various mechanisms that
provide energy to cell processes are known: absorption of light,
oxidation reactions, the electrochemical gradient of a substance and
the hydrolysis of ATP. Some of the known transporters are rather
selective on the transported substances.
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Aquaporins

An example of passive transport are water pores. Due to the
hydrophobic part of the phospholipids, water molecules diffuse
through the membrane at a very low rate. In the 1950s and 60s,
observations of water permeabilities of different cells led to the con-
clusion that some membrane protein has to act as a water pore,
enhancing permeability significantly. Peter Agre identified such
a pore for the first time and his work on the nowadays so-called
aquaporins was honoured with the Nobel Prize of chemistry in
2003. Some aquaporins conduct only water, others are known to
let pass other small molecules, for example CO, or glycerol. How-
ever, all aquaporins have in common that they are impermeable for
charged species, especially protons, thus maintaining an existing
electric potential. The traffic in the water pores can be regulated by
different mechanisms, such as the presence of hormones or certain
levels of pH. A recent review of aquaporin structure and function
can be found in (Gonen & Walz 2006) and therein.

lon interchange

The electric potential and the resultant possibility of a flow of charge
across the membrane is crucial for a variety of processes in an organ-
ism, such as the signalling in neurons or the contraction of muscles.
The potential is built up with the help of ion transporters, trans-
membrane proteins that pump ions against their gradient across the
membrane. They gain the necessary energy either by hydrolysis of
ATP or by the transport of another ion along its respective gra-
dient. The action potentials, rapidly rising and falling membrane
potentials, that play a central role in cell-to-cell communication of
neurons, in the contraction of muscle cells and in the insulin release
of beta cells, are a consequence of opening ion channels. Opening
(and closing) of such a channel can be controlled by the membrane
potential itself (voltage-gated ion channels, e.g. for sodium (Mar-
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ban et al. 1998)) or by the binding of a ligand. An example of such a
ligand is the neuro-transmitter Acetylcholine whose binding to the
according receptor results in the opening of the channel (Miyazawa
et al. 2003). An introduction to channels can be found in a book
by Aidley & Stanfield (1996). It covers the function and structure of
ion channels, as well as the investigation techniques and the effects
of drugs, toxins or genetic mutations on the proper functioning of
ion channels within the body.

ABC transporters

Another important role in the transport across membranes is played
by the ATP-binding cassette transporters (ABC-transporters). They
belong to a huge protein superfamily that is found across species
from prokaryotes to eukaryotes (Jones & George 2004). They con-
sist of a transmembrane domain and a nucleotide-binding domain.
Most of them have the transmembrane domain composed of twelve
subunits (‘a-helices’) that embed the protein in the membrane (see
figure 3.12). The a-helices are heterogeneous in structure and their
precise form and winding determines the substrates that the pro-
tein is affine to. It is believed that the change between two protein
confirmations can translocate the substrate across the membrane
and a net flux into a preferred direction is achieved by differences
in the binding affinity of the inward and outward facing confirma-
tion (Rees et al. 2009). The energy is provided by the hydrolysis
of ATP to ADP at the nucleotide-binding domain or ATP-binding
cassette.

This large class of transporters is an important part of physiological
processes. On one hand, they can provide essential nutrients to the
cell and, on the other hand, they can expel toxics out of it. This
means that many antibiotics and anticancer drugs will not reach
the place of action in time, as we will see in chapter 4. There we
will also see why the transport dynamics are such that they can
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Figure 3.12: Schematic view of an ABC-transporter with its
twelve a-helices that penetrate the inner and outer leaflets of
the cellular membrane.

be approximated with enzymatic dynamics in the way shown in
section 3.2 of the present chapter.

3.4.4 Other means of transport

For completeness we want to present shortly two other transport
mechanisms. One of them is a consequence of the remarkable prop-
erties of the cell membrane: two membranes can undergo fusion
without losing any of the integrity of the membranes. For example
a vesicle, a closed phospholipid bilayer enclosing an aqueous solu-
tion, can combine with the cell membrane and release its content
into the cytoplasm, the membrane of a sperm cell unites with that of
the egg or some viruses infect a cell by docking onto the membrane.
On the other hand, organelles within the cell can enclose proteins or
lipids into a vesicle and thus transport the load to other organelles or
to the cell membrane to release its content to the outside of the cell.
We see, membrane fusion is central to many biological processes.

The other transport does not refer to substances in the chemical
sense. In the beginning of this section we named the exchange
of information, and although information can be exchanged by a
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flux of ions or neurotransmitters, some membrane proteins are only
transporting information. Receptor enzymes are embedded in the
membrane with a ligand-binding domain on one side of the mem-
brane and a domain with an active site of enzymatic reaction on the
other. This means that a bound ligand changes the conformation
of the protein and has a result on the other side of the membrane
without any actual substance flow. A widely studied example of
such a receptor enzyme is the insulin receptor which plays an es-
sential role in the glucose equilibrium in higher organisms (Ward
& Lawrence 2009).

3.5
Summary

The intention of this chapter is to get the reader closer to the con-
ditions that govern the biological processes analysed in chapters 4
and 5. A fundamental ingredient is the saturating dynamics that is
known from enzyme reactions, which are presented in section 3.2.
The same formulas can be used to express the regulation of genes
that are enhanced or blocked by the presence of certain proteins and
to express the dynamics of transporters that are embedded in the cell
membrane to pump chemical compounds molecule by molecule.

In the beginning of section 3.3 we have a short glance at a simplified
dynamical system describing gene expression and show how gene
regulation can be introduced into the model to suppress fluctuations
in the process. It then follows a description of how biochemical
oscillations can arise from the regulated expression of genes. This
kind of oscillators is used in chapter 5 to model the neurons that
regulate the daily rhythms in mammals.

An overview over the constituents of the cell membrane is presented
in section 3.4. It firstly shows how a stable membrane can be formed
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to enclose aqueous solutions, which in the end is responsible for the
formation of the isolated cell as a living unit. Its chemical com-
position allows only certain molecules pass through. All others,
wanted or unwanted, have to pass through specialised channels.
The channels are either openings that allow passive passage to cer-
tain substances or molecular pumps that transport material under
the usage of energy in a specified direction, even against the gradi-
ent. A coarse classification of the different channels based on their
functioning is presented. The section is thought to set the mind
for chapter 4, where a tightly bound mono layer of epithelial cells
is the barrier for drugs to get into the body and ABC transporters
accompany the passive transport.
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Chapter 4

Compartment models in
drug absorption

4.1
Introduction

The research presented in this chapter was initiated by a coopera-
tion with pharmacologists from the University of Valencia (Mari-
val Bermejo Sanz, Vicente Casab6-Alés y Isabel Gonzélez Alvarez)
within the BioSim network. The BioSim network was established
by the European Commission and initiated in 2004.

“The main objective of the Network is to demonstrate
how the use of modern simulation technique through a
deeper and more qualitative understanding of the un-
derlying biological, pathological and pharmacological
processes can lead to a more rational drug development
process, improved treatment procedures, and a reduc-
tion in the needs for animal experiments.” (BioSim 2010)
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Drugs are substances that alter the bodily functions when absorbed
into the organism, pharmaceutical drugs are intended for medical
diagnosis, cure, treatment or prevention. Apart from a fundamental
interest in understanding the basic mechanisms by which a drug is
assimilated by the human body and how it unfolds its desired ac-
tion, the kinetics of drug absorption is also a topic of much practical
interest. Detailed knowledge of this process, resulting in the pre-
diction of the drug absorption profile, can be of much help in drug
development stage (Eddershaw et al. 2000; Zhou 2003). To this end,
several kinetic models for drug absorption within the body have
been established (see e.g. Yu & Amidon 1999). The main focus of
this chapter lies on the detailed analysis of a previously developed
model of drug absorption, belonging to the category of the so-called
three-compartment models (Kramer et al. 1974; Skinner et al. 1959).
The presented case deals with three compartments connected in a
row, allowing passive, diffusion-like exchange of substances among
adjacent volumes. Between two of the three compartments an ad-
ditional, non-linear transport is active.

In the first section of this chapter we will briefly introduce the cell
culture experiments used in experimental pharmacology to measure
absorption properties of new chemical compounds. Subsequently
a short overview of compartment models, used to study the flow
and accumulation of substances in different parts of the body, is pre-
sented. Then we focus on the peculiarities of antibiotic absorption.

In section 4.2 we will define the used model precisely and provide
an analytical solution to an (adequate) approximation of the model.
The approximative method facilitates the analysis of the absorption
characteristics as a whole, without requiring repetitive numerical
integration of the differential equations and allows a fast and easy
insight into how physiologically meaningful parameters influence
quantities available from experiment in three-compartment models.

The method will be applied to a special form of non-linear flux,
where the transporter protein is described by MicHAELIS-MENTEN
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dynamics. The results are compared with absorption experiments
of a selected broad spectrum antibiotic (section 4.3). Most of the
results from sections 4.2 and 4.3 were published in (Komin & Toral
2009). The chapter closes with some concluding remarks and an
outlook in section 4.4.

4.1.1 Oral absorption pathway

To get the desired drug into the body, a variety of methods with dif-
ferent advantages and disadvantages are known. For most patients
oral application is probably the most accepted form, it is usually
painless and can be taken by the patient itself at his or her home,
without the need of a specialised person or sophisticated facilities.

Orally administered drugs are mainly absorbed by the small intes-
tine; they are mediated upon by a variety of processes (Hunter &
Hirst 1997). The inner wall of the small intestine is lined with ep-
ithelial cells, so the drug passes from the lumen (the inner, intestinal
volume) through the epithelial cells and the lamina propria into the
blood stream in the capillaries (fig. 4.1 (left)). On its way it can be
metabolised, transported away from the tract where absorption is
possible or accumulate in organs other than those of treatment.

Due to the tight junctions, which are rows of transmembrane pro-
teins embedded in both membranes of neighbouring epithelial cells
to connect them with each other, only very small and hydrophilic
molecules can pass along the contact of two neighbouring cells (this
is called the paracellularroute). Therefore transport along this path-
way is very small except for when a modulator of tight junctions is
present. If the compound has the appropriate physical and chemical
properties it can cross the cell’'s membranes passively (transcellular
passive diffusion). These compounds may be substrate for intra-
cellular metabolism and they are more likely to be substrate for
efflux transporters, extracting them from the cell back into the in-
testine. However, the transcellular passive way (limited by efflux
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Figure 4.1: Left: Schematic view of a section of an intestinal

wall. Epithelial cells with microvilli and a capillary embedded

in the lamina propria. Middle: Sketch of the epithelial cells

when seeded on a filter. Right: Simplified mathematical

model of three compartments, as used in the text, with an
efflux pump indicated on the apical side.

transporters) is the main route of absorption for orally taken drugs.
In other cases transcellular absorption can be mediated by naturally
occurring carriers which normally transport vitamins or nutrients.
A rather seldom pathway in adult small intestine absorption is via
endocytosis, where the transported material is coated with part of
the cell membrane on one side, incorporated into the cell and then
released from the cell on the other side.

In this chapter we will be concerned with the transcellular pathway
that is limited by efflux transporters.

4.1.2 In vitro experiments and compartment models

Much experimental activity aimed at analysing the kinetic aspects
of the process of drug absorption has been pursued recently. For
better control, a variety of in vitro methods of drug absorption have
been developed (Balimane ef al. 2000). The limiting barrier in the
transcellular pathway is the layer of epithelial cells. To measure
the absorption of a given substance in a large range of external
conditions (overall drug amount, presence of other substances etc.)
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it comes handy that epithelial cell cultures can be seeded in a mono-
layer, forming the contact surface between two chambers (fig. 4.1
(middle)). The concentrations of a substance can then comfortably
be measured over time in both chambers.

Two of the well-known cell lines used in drug absorption experi-
ments are Caco-2 cells (Artursson & Borchardt 1997; Artursson et al.
2001) and MDCK cells (Irvine et al. 1999). Caco-2 cells were de-
rived from a human colon carcinoma. After they are seeded they
differentiate into an “...highly functionalized epithelial barrier with
remarkable morphological and biochemical similarity to small in-
testine columnal epithelium.” (Irvine et al. 1999) (p. 28). The MDCK
cell line was derived from canine kidney cells and as well differen-
tiates into epithelium and forms tight junctions. Both cell lines are
used to asses transport properties of new developed compounds.
The main disadvantage of the well characterised human Caco-2 cell
line is its relatively long growth period, limiting the throughput
of screened compounds and/or conditions. MDCK cells are faster
growing and thus allowing for a reduction of culture time, cost and
effort (Irvine et al. 1999). A downside of both of these cell lines is
that they are seeded on a flat surface, whereas the intestine forms
folded walls with much higher surface area than just the inside of
a tube. As a consequence only high permeability drugs are well
represented by this model, whereas the permeability for low per-
meability drugs is underestimated when compared with in vivo
values (Artursson et al. 2001).

When the monocellular layer is seeded on a semipermeable mem-
brane it is in contact with the liquids above and below and allows
mass flow from one side to the other. In the next section we will
go into the details of the used compartment model and describe
the assumptions necessary to obtain it. Before we want to have
a few words about the general concept of compartment models.
In pharmacology these models are used to break systems of drug
action down into smaller units. A number of compartments are
connected with each other in different ways and the mass flux of
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Figure 4.2: Comparison between catenary (left) and mammil-

lary (right) compartment models. Arrows between chambers

1..n depict the mass flow between them. Degradation within

a chamber is symbolised by the small arrow pointing up.

The single arrow pointing into the first chamber represents
the introduction of the substance into the system.

a given substance through the system is the object of interest. The
models can be split into classes according to their topology. The
catenary models (from ’catena’, latin word for ‘chain’) are compart-
ments connected in a row whereas the mammillary models have
a central compartment with others surrounding it (fig. 4.2). A mix
of both types is possible as well. A different form of classification
is concerned with the level of abstraction, i.e. that if the compart-
ments correspond to a well defined volume in the organism the
model is said to be physiological whereas other models, where no
such correspondence exists, are called mechanistic models (Holz &
Fahr 2001).

The considerations in section 4.2 will concern a purely catenary
model. A distinction between physiological and mechanistic model
isnot necessary, the presented method applies to both classes. How-
ever, the experimental work we have chosen to compare our theory
with (section 4.3) is about a physiological one.

4.1.3 Antibiotics and the multidrug transporter

Antibiotics are drugs which are used to treat bacterial infections.
There is a huge variety of different antibiotics, they can be synthetic,
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Figure 4.3: Structure of antibiotic CNV97100

of natural origin or semi-synthetic, where a natural compound is
chemically modified. Some are active against a broad spectrum of
bacteria, others only against a narrow spectrum. Infectious diseases
are the second major cause of death worldwide but the use of an-
tibiotics results inevitable in the development of resistant bacterial
strains. Only persistent discovery of new compounds can fight the
problem of ever new resistant bacteria (von Nussbaum et al. 2006).

A family of synthetic, nowadays broad-spectrum, antibiotics are the
quinolones, also sometimes called fluoroquinolones. Since their
first generation in the 1960’s they developed from being effective
in a very limited spectrum (predominantly anti-Gram-negative) to
a broad-spectrum antibiotic which, in most cases, can be applied
orally (Ball 2000). The novelty about this family of substances is its
direct inhibition of DNA synthesis (Hooper 2001). Ciprofloxacin
is a fluoroquinolone patented in the 1980’s and still in wide use
for a variety of indications. It is particularly, but not only, effec-
tive against Gram-negative bacteria. It exists as an oral as well as
intravenous formulation (Davis et al. 1996). A new ciprofloxacin
derivative (CNV97100, see fig. 4.3) is the subject of the absorption
study (Gonzalez-Alvarez et al. 2005) and we will use it to apply the
method developed in this chapter.

Typical absorption experiment places different amounts of the in-
vestigated drug on either side of the cell culture. By measuring
the amount on the receiving sides the apparent permeabilities can
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be derived. In the CNV97100 experiment a pH of 7.0 was used in
both the apical chamber (which resembles the lumen) and the baso-
lateral chamber (oriented away from the lumen) to avoid any bias
due to ionisation effects. If the pH were different in the two cham-
bers it would be necessary to include these effects into the model
by estimating the fraction of ionised and non ionised compound
and to model separately the permeation of both species in both di-
rections in each chamber. The unstirred water layer had not been
considered to be the limiting diffusion step, an assumption justified
by taking into account the molecular weight and the lipophilicity
of CNV97100. This had been checked experimentally in situ in
rats (Bermejo et al. 1999) and in vitro in Caco-2 cells (Bermejo et al.
2004). As a consequence the three compartment model was chosen
to be an adequate picture of the underlying processes.

Absorption of many drugs (Raviv et al. 1990) is seriously limited
by P-glycoprotein (P-gp), the so-called multidrug transporter. This
particular protein is expressed on the apical membrane of intesti-
nal epithelium cells (Ruiz-Garcia et al. 2002; Troutman & Thakker
2003a,b). The molecule to be transported must bind with the protein
and will then be “flipped” (Hunter & Hirst 1997) onto the other side
of the membrane, where it is no longer available for the “reaction”.
This makes its dynamics similar to enzyme reactions and is often
represented by the sigmoid shape of a MicHAELIS-MENTEN-reaction
rate (Michaelis & Menten 1913):

SVmQc/Vc
Ky +Qc/Ve ™

Vum determines the maximal reaction velocity, S is the surface area
and K}y is the concentration for which the velocity extends halfway
towards the maximum. In this case of an intracellular binding site,
the relevant variable is the concentration Qc/V ¢ around the binding
site of the transporter, inside the cell.

J(Qc) = 4.1)

In other cases, the efflux pump possesses an extracellular binding
site. Consequently, transport is determined by the drug concen-
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tration, Qa/Va, in the apical compartment and the corresponding
MicHAELIS-MENTEN expression is:

SVMQa/Va

J(Qa) = Koi+O0n/Va "

4.2)

Both situations will be considered in this thesis. For reasons of
simplicity, we have considered that the efflux pumps depend on
concentration on one of the two sides of the membrane (Gonzélez-
Alvarez et al. 2005; Ruiz-Garcia et al. 2002). However, new results
suggest that the transporter binding site for the molecule is inside
the inner leaflet of the membrane (Hennessy & Spiers 2007). If
we consider the space inside the phospholipid bilayer to be an
additional volume with two permeable walls on either side, the
concentration in that volume would be between those in the adjacent
volumes.

4.2
Three compartments, one non-linear flux

Compartment models describe the behaviour of solutions or emul-
sions in connected volumes by analysing the molecule flux between
them and all sources and sinks. They are used to explain data
from absorption experiments. When applied to drug absorption in
above mentioned cell culture experiments, some specific simplifi-
cations can be made. In the following work it is considered that
two volumes (e.g. gastrointestinal lumen and blood plasma in vivo
or apical and basolateral chamber in vitro) are connected through a
third, in vitro the cellular, volume. The absorbed substance should
have low lipophilicity such that the unstirred water layer can be
neglected. Furthermore it is assumed that the compound does not
ionise and that the concentrations in the different intestinal cells of
the mono-layer are equal (which is exact only if all cells have the
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same parameters). With these assumptions the absorption can be
seen as a transport from one large volume to another through a
third (the cellular) volume (Gonzalez-Alvarez et al. 2005). Figure
4.1 (right) sketches the simplifications of the model. There is no
spatial dependency and molecules can pass through the two cell
membranes. The overall amount of drug molecules is considered
to be constant, a hypothesis that assumes a closed system and that
metabolism does not occur. For an in vitro experiment of short
duration this is a reasonable assumption.

Passive transport across the membrane is mediated, to a first ap-
proximation, by the concentration gradients according to Fick’s law
(Fick 1855), which specifies a linear relation between the flux of par-
ticles and the concentration gradient. When passive absorption is
accompanied by energy-consuming efflux transporters, it is repre-
sented by a non-linear function term in kinetic transport equations.
A variety of transporter types could be involved in the absorption
of the molecules. In our work we consider that the non-linear trans-
porters are present only on one (the apical) cell membrane, but
our results could be extended directly to the case that those trans-
porters are located on the basolateral membrane (or even in both
membranes). Incorporating both linear and non-linear terms, the
time evolution of the amount of diluted molecules (Q4,c/p) in the
three compartments can be described as follows:

de/;(t) _ +C1AC( 3_2 _ %) LT (4.3)
dQ{;(t) _ —CZAC(% _ 3_2) T —Cles (% - %) (4.3b)
s oa(-R) 40

Q = Qu+Qs+Qc (4:3d)

where equation (4.3d) stands for conservation of the overall molecule
number, Qp. The indices denote the corresponding compartment
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4.2. THREE COMPARTMENTS, ONE NON-LINEAR FLUX

(Apical, Cellular, Basolateral), V a,c/p are the respective volumes. The
apical, cellular and basolateral concentrations are given respectively
bya =Qa/Va, c=Qc/Vcand b = Qp/Vg. The passive, linear, dif-
fusion terms are proportional to the concentration difference, being
Clyc and Clcp the clearances indexed with their respective mem-
brane index. In the equations, J represents the non-linear contribu-
tion due to specific efflux transporters. Asitis an energy-consuming
process, this can happen both along or against the gradient.

The conservation law Eq. (4.3d) reduces the number of independent
variables from three to two concentrations. In other words, the
system described by first-order differential equations (4.3) only has
two degrees of freedom, which implies that it can be replaced by a
single differential equation of second order. In the next section we
will show that it can be put into the form:

¥ =-T(x)x+ F(x). (4.4)

Variable x represents a rescaled concentration in one of the compart-
ments (the cellular compartment if J depends on Q¢ and the apical
compartment if J depends on Q,); the speed, %, and acceleration,
%, are, respectively, the first and second derivatives of x with respect
to a rescaled time s, and I'(x) and F(x) are functions to be described
below. A qualitative understanding of these dynamics can be had
by acknowledging that the previous equation corresponds to the
equation of motion (NEwTon’s second law) for the position x of a
particle of unit mass upon which a force F(x) and a friction, pro-
portional to the particle speed x act. The force F(x) and the friction
coefficient I'(x) contain all of the parameters of the system as well
as the particular form of the non-linear flux.

4.2.1 Model transformation

The conservation law (4.3d) allows the elimination of one of the
three equations of the set (4.3a-4.3c). We have chosen to eliminate
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CHAPTER 4. MODELS IN DRUG ABSORPTION

either Q4 or Qc, depending on whether the non-linearity depends
on Q¢ (intracellular binding site) or Qa (extracellular binding site),
respectively. More precisely: if J = J(Qc), we define the di-
Qc(t)
VeN

normalisation constant with units of concentration to be specified
Qa(h)
VAN’

. The initial drug concen-

where N is a

mensionless normalised concentration x(t) =

later; in the other case, when J = J(Q4), we define x(t) =

In both cases, we also define y(t) = QB( )

tration Cy = Qp/V; (being Vi = V4 or V; Vg according to whether
the drug is initially loaded on the apical or the basolateral volume,

respectively) is also rescaled to ¢g = %. We finally define a rescaled

) . . . Cl )
dimensionless time variable s = —<2¢. Tt turns out that, with these

B
definitions, the resulting two-degree system can be written in the
common form:

dx(s)

x(s) = s = anx+apy+a+ jx) (4.5a)

oy dy(s)

y(s) = s = anXx +axy+ax, (4.5b)
Vg

with j = Cl—j (Q#) in one case, and j = CZ j (Qc) in

the other. The dlmensmnless constants a;; depend on the clearances,
volumes, overall concentration, as specified in table 4.1.

By differentiating x(s) with respect to s using Eq. (4.5a) and, in the
resulting expression, replacing #(s) by Eq. (4.5b) and y(s) by its
isolation from Eq. (4.5a), we get the form (4.4):

X¥=-T'(x)x+ F(x), (4.6)
with friction coefficient I'(x) and force F(x) given by:
I'(x) =Ty - (), F(x)=a-px—axnjkx). 4.7)
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4.2. THREE COMPARTMENTS, ONE NON-LINEAR FLUX

I'y, @ and p are dimensionless, positively-defined constants, whose
relation to the coefficients a;; are also detailed in table 4.1.

4.2.2 Approximate solution

If we now introduce the potential function V(x) from which the

av
force derives as F(x) = ———, the evolution of x can be visualised as

the relaxation of a ball rolling downwards within a well of shape
V(x) under the combined effects of gravity and friction. It is known
from mechanics that the particle will eventually stop at the mini-
mum of the potential (stable equilibrium state) and that relaxation
towards this final state will proceed via damped oscillations or
monotonously, depending on the relative strength of the friction
and potential contributions. Figure 4.4 visualises this ball-in-a-well
approach. For very general non-linear transporters, including the
MicHAELIS-MENTEN form used in section 4.3, the corresponding po-
tential function V(x) displays a single minimum, although its ex-
act shape depends both on the linear and the non-linear terms in
Egs. (4.3).

If the potential V(x) has a single minimum, the equlibirum value x,;,
we can approximate it by a parabola around this minimum V(x) =

2
Vg + 5V (x - xeq) . We will call V}; = . Furthermore, we also
approximate the friction coefficient I'(x) by its value at equilibrium
[ey = T(xey). The resulting linear differential equation ¥ = —I'¢x —

w*(x — x¢y) has the solution (Boyce & DiPrima 2001):
x(s) = Cre™/™ + Coe™/™ + x, 4.8)

with time constants:

T = 2 and 7, = 2 (4.9)

Loy = A[T% — 42 Tey + T2 — 402
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Table 4.1: Coefficients for equations (4.5) using parameter values from (Gonzalez-Alvarez
et al. 2005). Values are given for intracellular binding (J = J(Qc)) and for extracellular
binding (J = J(Qc¢)). Only parameter y depends explicitly on the exact form of 7, here the
according MicHaEeL1s-MENTEN form was chosen.

Parameter INTRAcellular numerical EXTRAcellular numerical
Vs , Clac (Vs 4 V Clac (Vs , V
a ~ g (2 + )] -213.8 —ge (R + ) -173.1
1% Clac V. Clac V]
v (Lo G w) 2098 ST 204
a3 e J2iLeg 2.200x10°V,Co | GEpiler | 2.220x108VC
an 1 1 |<|M -27.10
- -1 -1 - @Im + : -41.65
s 0 0 Copt 3.604x108V;Cy
SVu V SVu V.
y - Qama <|m -79.41 anmz <|w 2.930
To - —ap = «|m + mw|\mm A«|m + mv +1 214.8
o A120723 — A13A422 = %\MM M\\WWM Co NNNOXHO@<~OO
m ai1dzy — apdyr = MW|MM SM\M\n Q\b + Vg + <ﬁv 423.6
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xV

Xy
Figure 4.4: Visualisation of the particle-potential picture.
The position of the “ball” represents the concentration which
will eventually end up in the minimum. The exact shape of

the potential depends both on the linear and the non-linear
terms in Eqgs. (4.3).

The coefficients C; and C, are determined by the initial conditions x
and X, the latter being determined through Eq.(4.5b) by x and y, as
Xo = anXo+anyo+aizj(xo). The resulting formulas are summarised in

table4.2. The initial values xp and yy depend on the particular model

_ Qct=0) _
=~ =0

This latter value, in turn, has to be adjusted

used. For example, for intracellular binding we have x

and v = Qp(t=0)

VsN
according to where the drug is loaded: for apical loading vy = 0,
while for basolateral loading vy = If—; Note that 7; and 7, will be

complex if [y < 2w. In this case the system would relax to the
steady state by performing damped oscillations. However, for the
values of the parameters drawn from experiments, this case does
not arise, 71 and 7, are positive real numbers and the decay to the
equilibrium state is governed by real exponentials.

The time evolution of y can be obtained by a direct integration of
the linear equation (4.5b):

y(s) = e™* []/o + fo ds’ e~ (a21x(s") + az3) (4.10)
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Table 4.2: Coefficients of dimensionless solution Egs. (4.8)

and (4.11).

(::1 (xo — Xeg t T2 (ﬂ11x0 +anlo + a3 + 7/11350)) T‘I'T_sz
Cz X0 — xaL - C1
D 111Gy

! axTy + 1
D 11 G1
~2 anT +1
D yO_yeq_Dl_DZ

which yields
y(s) = Dle—s/ﬁ + Dze—s/rz + Dse—s/fs + Yeg - (4.11)

with a new time constant:

1
T3 = —— 4.12
3= (4.12)

and coefficients Dy /2/3, Whose relation to other constants is detailed
in section 4.3, where an explicit form of efflux is analysed. The
evolution of z(s) is obtained by means of the conservation law. It is
worth recalling that the time scales in real units are

Vs B
= —"T,13 = —13. 4.13
b= (4.13)

4.2.3 Interpretation
By treating the original model in the way we described above we

obtained a linear equation ¥ = —I';jx — w*(x — Xq). It describes the
damped pendulum of frequency w. Its corresponding solution, as
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4.2. THREE COMPARTMENTS, ONE NON-LINEAR FLUX

found in many elementary books of mechanics, can be written as the
sum of exponential functions of time (Egs. 4.8 and 4.11). When the
change of variables is undone and the third solution obtained via
the conservation law, then we can write the solution of any mass-
conserving, three-compartment-model, independent from the exact
form of non-linearity, as:

Qu) = QU -Ajeh — Ape !l — Azl (4.14a)
Qp(t) = Qf —Bie /" —Bye™" — Bye!/hs (4.14b)
Q) = QF —Cie™/ — Coe/t — Cae® (4.14¢)

where 11, f, and t3 define three time-scales and fo, Q;q and Qgg are
the equilibrium asymptotic quantities of the diluted substance in
each compartment. These and the constants (A/B/C)q/2/3 adopt
different expressions, depending on the non-linearity. If given a
specific expression for the non-linear transport terms and numerical
values for the parameters, one can calculate the above constants and
compare the result with the numerical integration of the non-linear
system (4.3) or with experimental data. This explicit type of solution
for a MicHAELIS-MENTEN flux ] constitutes one of the main results of
this chapter and is the basis for the subsequent analysis. In section
4.3 we will carry out this program explicitly for the model and data
taken from (Gonzélez-Alvarez et al. 2005).

Experimentally, it is rare to measure the complete variation of Qa(t),
Qp(t) and Qc(t) with respect to time. A typical experiment (Bali-
mane et al. 2004; Faassen et al. 2003; Gonzdlez-Alvarez et al. 2005;
Lentz et al. 2000; Ruiz-Garcia et al. 2002) starts by placing an initial
concentration Cy of a drug in either the apical or in the basolateral
dQ/dt

SCy ’
with Q(t) the amount of material on the receiving side, is measured
in both directions and the values are compared.

compartment. The so-called apparent permeability PPF =

The explicit solution, Egs. (4.14), identifies three different charac-
teristic time scales, {1, t, and t3, within the evolution of these con-
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centrations. Each one of them separates well defined regimes in
the evolution of the concentrations: if time is much smaller than
the characteristic time scale, the corresponding exponential term
comes close to being linear; it changes exponentially at times close
to it and is almost constant at much larger times. This information
helps the experimenter to decide if the chosen sampling interval
is adequate or not. Furthermore, it is mathematically possible to
observe oscillatory behaviour in the presented system, if one of the
t12,3 is complex.

We would like to stress that our way of approximating the problem
has allowed us to identify these natural time scales and to find their
relationship to other constants that are experimentally accessible.
It appears that in many cases (one example in the next section and
table 4.3) one time-scale (t;) is much smaller than the interval be-
tween measurements. Measurements of the apparent permeability
are usually carried out within a time frame of between 15-30 min
and a couple of hours (Gonzélez-Alvarez et al. 2005; Lentz et al. 2000;
Yamashita et al. 2000), whereas t, seems to be of the order of a few
minutes. Hence, measurement times satisfy t > t, and the expo-
nential term e /%2 can be neglected. Analysis of the experiments
(Gonzalez-Alvarez et al. 2005) indicates that transport is mediated
by transporters with an intracellular binding site. In this case, and
according to table 4.3, both t; and t3 are much larger than the mea-
surement times, allowing us to perform the linear approximations
et/ ~ 1—t/t; and e"/ ~ 1 —t/t5 to obtain explicit expressions for
the apparent permeability:

1 (A1 A
wp _ 1 3
P i ( ? + e ) (4.15)

in the case that the drug is initially delivered in the basolateral side,
and

1 (By B;
P = — (—1 + —) 4.16
4B SCo\t 13 (4.16)
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4.3. APPLICATION TO MICHAELIS-MENTEN TRANSPORT

when the drug is delivered in the apical side. It seems that even in
the case of very fast-absorbing drugs (tested for permeabilities such
as those in (Korjamo et al. 2007)) times are well separated into those
of around an hour and those of less than a minute (data not shown).
However, when it occurs that the time scales are all of a similar
order, one can easily extend Eqgs. (4.15) and (4.16) by the required
term.

4.3
Application to MicuarrLis-MEeNTEN type trans-
porters

Our mathematical treatment of the evolution equations has pro-
vided us with explicit expressions for the evolution over time of
the amounts Qa/pc(t), Egs. (4.14), and the apparent permeabilities,
Egs. (4.15) and (4.16), for a three-compartment model with a non-
linear flow. This section we want to use to apply the findings from
above to a selected absorption study (Gonzalez-Alvarez et al. 2005),
where the non-linear flux can be expressed by MicHAELIS-MENTEN
dynamics, as indicated in section 4.1.

Firstly we will carry out the necessary transformations explained in
section 4.2 to the model with the explicit form of non-linear trans-
port function J. Then, by comparing theoretical predictions with
the full results of numerical simulations of the evolution equations,
we will show that our approximate treatment has a range of validity
that covers typical experimental situations. Next, once this validity
has been established, we will use our approximation to make com-
parisons to experimental data from above mentioned study. We
will investigate how large is the influence of single parameters in
the model on the quantities measured in absorption experiments.
From this we can derive how errors in the parameters propagate
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Figure 4.5: Continuous line: Original potential Eq. (4.20),
dashed line: approximated parabola. For different amounts
of loaded drug. Differences are of the order of the line width.

to the final result. The section closes with a possible extension of
the non-linear flux, considering that part of the substance does not
diffuse but stay bound in the cell.

4.3.1 Coefficients in case of MicHaErLIs-MENTEN efflux
transporter

Finally, when we undo the changes of variables we obtain coeffi-
cients as given in table 4.5 and together with Eq.(4.9) we derive Egs.
(4.14).

The second derivative with respect to x is:
azy

(1 + xeq)2 .

The approximated and original potentials are drawn in figure 4.5 in
the case of apical loading of a system with intracellular binding site.
From this figure, it can be seen that the parabolic form constitutes an
excellent approximation for a wide range of initial concentrations
Co.

V" (xe) = =B+ 4.17)

This presentation has so far been very general. In the case of the
MicuaELs-MENTEN form for the non-linear efflux transport function
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g, formulas (4.1) or (4.2), we identify Ky as a characteristic con-
centration and simply adopt the normalisation constant N' = K.
Therefore the current is

X

1+x

j@ =y (4.18)

where y is shown in table 4.1. The friction coefficient and force are:

I'(x) =Ty - Y 7 F(x) =a—px —yax (4.19)

1+x
Note that the initial concentration Cy is contained only in o and that
the influence of the efflux transporter is found completely in y. Iy,
a and f are independent of the location of the pump. The values
used for numerical calculations are taken from (Gonzélez-Alvarez
et al. 2005) and can be seen in table 4.4.

1+x

dV(x) . .
7 derives is:

The potential from which the force F(x) = —
V(x) = (—a + yaxn)x + ‘gxz —vyapIn(l +x). (4.20)

The equilibrium concentration x,; is the minimum of the potential,
obtained by setting the force in Eq.(4.19) equal to zero. In the present
case of a MicHAELIS-MENTEN type non-linearity, the solution is ob-
tained without using any further approximations or simplifications
other than stated for the original model:

a—B—yan+ \Jhap + (@ — B — yan)?
28 '
Inserted into (4.5b) the equilibrium value for y(s) is the solution of

7(s) = 0:

Xeqg = (4.21)

21Xeq + 23

Yeg= ——7— (4.22)
axn
Through the conservation law one gets z;:
Qo | £ Vs

Zeq - VZN - xequ - yequ ’ (423)
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where, to unify notation, we have labelled the volumes” meaning
Vi = Ve and V; = V, for intracellular binding, and V, = V4 and
V, = V¢ for extracellular binding.

4.3.2 Concentration evolution and binding site loca-
tion

We obtained expressions for the equilibrium amounts Qi‘q/B ,c and
the constants (A/B/C)1/2/3) for non-linear transporters of the Micua-
ELIS-MENTEN type, in cases of transport mediated by both intracel-
lular and extracellular binding. The corresponding expressions are
summarised in table 4.5 of the Appendix as a function of parameters
of the model. Using the numerical values of those parameters as
derived in the absorption study of reference (Gonzalez-Alvarez et al.
2005), we can extract precise numerical values for the equilibrium
amounts Q;q/B e and the constants (A/B/C)q/2/3). Those numerical
values are also listed in table 4.5. Finally, the numerical values of
the time constants t; /3 are listed in table 4.3. Using these numerical
values, extracted from a real experiment and thus corresponding to
a case of interest, we now proceed to check the accuracy of our ap-
proximation. To this end, we plotted in figures 4.6 (for two different
initial conditions) the results of the direct numerical integration” of
Egs.(4.3) and our approximation, Egs.(4.14). The most noticeable
feature is that, at the scale of the figures, the two approaches are
nearly indistinguishable and, in fact, the difference is of the order
of the thickness of the lines. We conclude that our treatment pro-
vides a simple, yet very precise, expression for the evolution of the
amounts Q,p/c(t) and can be used instead of the less transparent
numerical integration of the equations.

Table 4.3 lists the apparent permeabilities and the resulting efflux

ratios, P‘;plf Pffg , as obtained from Eqs.(4.15-4.16) in the cases of in-

“For this numerical integration we used a fourth-order Runge-Kutta algorithm
with a time step of 1s.
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Figure 4.6: Time evolution of concentrations on either side of
the cells and inside. Dotted line: Numerical integration of full
dynamical system (Egs. 4.3). Continuous line: Explicit expres-
sion of approximate solution (Eqs. 4.14). Parameters taken
from (Gonzélez-Alvarez et al. 2005), intracellular binding site
with MicHAELIS-MENTEN dynamics (4.1) is considered. (top)
Initial concentration Cy = 7500uM, applied on the basolat-
eral side. (bottom) Initial concentration Cy = 50uM applied
apically. (left) Evolution over ¢t = 1004, (right) Amplification
of the first hour.
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ternal and external binding site and different initial concentrations.
The analysis of the three time scales t1/5/3, listed in the same table,
shows that f, is well below the time of the first measurement (30min)
for all cases studied and the duration of experiment (f ~ 2 h) satisfies
t < 11, t3, hence validating the approximations that led to Eqgs.(4.15-
4.16). The same analysis justifies the validity of the linear fit used
in the experimental studies to extract the apparent permeabilities
from the data. To avoid overloading the text with too many results,
we have omitted the time scales for basolateral loading since they
are of similar order.

Table 4.3: Time scales (when loaded apically) and apparent
permeabilities predicted for different initial concentrations
and different models (internal/external binding site).

PP

CO binds t tr t3 P’gj}; P:ng Pﬂi;::)
AB
(uM) (B (min)  (h) (ems™)  (cms™)

7500 int 123  6.38 23.6 6.70x10"°  6.37x10™° 1.05
ext 119 6.67 0.567 | 6.80x10° 4.12x10° 1.65

5000 int 125 627 236 6.73x10°  6.26x10°° 1.07
ext 119 6.67 0.567 | 6.86x10° 3.97x10° 1.73

1000 int 13.5 5.59 23.6 6.88x10° 557x107° 1.24
ext 125 6.70 0.567 | 7.18x10°% 3.10x107° 2.32

50 int 13.8  4.90 23.6 7.10x10° 4.88x10° 1.45
ext 157 6.73 0.567 | 6.94x10°° 2.07x10~° 3.35

To end the comparison with experimental data, we plot the results
of the CNV97100 study in figure 4.7, superimposing on the data a
line with a slope equal to the apparent permeability from table 4.3
(multiplied by SCy). If the antibiotic is loaded apically (top row in
fig. 4.7) the prediction of the model is good for all initial concentra-
tions. If the loading is basolateral (bottom row); the prediction for
low initial concentration underestimates the measured slope. As a

104



4.3. APPLICATION TO MICHAELIS-MENTEN TRANSPORT

consequence, the predicted efflux ratio differs from experiment at
lower concentrations, which makes a more detailed analysis of this
difference necessary. The MicuatLIs-MENTEN kinetics used seem to
provide an insufficient representation of P-gp efflux at lower initial
concentrations when loaded basolaterally. The model underesti-
mates the pump’s efficiency in a basolateral to apical set up. We
stress that our approximate solution still yields very accurate results
for the apparent permeabilities and that this observed difference is
a direct consequence of the model or the parameters used. To make
this point clear, we have plotted the result of the numerical integra-
tion of (4.3) for the lowest concentration of 50uM in figure 4.7. The
deviation from the experimental data is clearly observable in the
case of basolateral loading of the drug. Considerations of other ef-
flux pathways in the P-gp transporter protein are found for example
in (Acharya et al. 2006).

4.3.3 Parameter dependence

Once we had determined the validity of our approach, we wished
to use the explicit expressions to determine the dependence on the
system parameters of some quantities which are of experimental
interest. Here lies one of the strengths of our solution: In figure
4.8 we plot the characteristic time scale for absorption t;, the equi-
librium concentration ratio on both cell sides be,/a.; and the efflux
ratio P‘gjf /Pffg as a function of the clearances Clyc and Clcg, the
pump parameters Vs and Ky and the initial concentration of drug
Co. Analytic formulas give access to these results much easier than
repetitive integration throughout parameter space plus extracting
the data from the resulting trajectories.

Again, for reasons of simplicity, we have limited our presentation to
the case of a secretory pump located apically with intracellular bind-
ing site; the best model according to analysis by (Gonzalez-Alvarez
et al. 2005). As observed in this figure, an increase in the initial con-
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Figure 4.7: Antibiotic’s concentration on the receiving side.
(Top: drug loaded in apical compartment, bottorm: basolateral
loading.) Experimental values are from CNV97100 study.
The solid line’s slope is the prediction from the theoretical
solution (shown in table 4.3) for intracellular binding, which
was considered to be the model of best fit. The dashed line in
the graphs on the right shows the numerical integration of
the full system (4.3).
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centration Cy implies a decrease in the characteristic time #; from
a finite value to a minimum value, limiting t; to a certain range.
Raising Cy increases the equilibrium concentration ratio be,/a.;. Al-
though this ratio varies significantly, steady concentration in the
basolateral site, b,;, shows a good linear dependence with Cy (not
shown in the figure). Note that the efflux ratio P}}; /P also de-
creases with increasing initial concentration, a feature supported by
the experimental data, although the theoretical values deviate from
the experimental results at low concentrations, a fact already dis-
cussed in the previous section. The clearance Clcp of the membrane
where the pump is not situated has no influence on the equilibrium
concentration and efflux ratios, but an increase of Clcg decreases the
characteristic time t;, indicating a faster transport of the drug. On
the other hand, an increase in the clearance Clac of the cell mem-
brane where the pump is located has the effect of decreasing the
efflux ratio and increasing the equilibrium concentration ratio. For
large initial concentrations, Cy = 7500uM, the characteristic time t;
shows interesting behaviour with Clsc since it first increases and
then decreases, indicating very slow drug absorption for some in-
termediate values of the clearance.

At large concentrations, the three quantities analysed show small
dependence with respect to the pump parameters Vi and Ky, since
the corresponding curves are almost flat. This makes it difficult to
extract from the data accurate values of the pump parameters at
those large concentrations. This suggests that lower concentrations
would allow for a better experimental determination of the pump
parameters - a practise used by experimentalists - however, we have
to take into account, as discussed above, that the accuracy of the
model might worsen with decreasing concentration. In the graph,
we have included negative values for Vj;, which is equivalent to a
change in the flow direction of the pump.
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Figure 4.8: Secretory pump, intracellular binding site -
Top and middle: equilibrium concentration ratio (basolat-
eral/apical) and characteristic time (both for apical loading),
bottom: efflux ratio P¥ /P}". Dependence on V) and Ky
(transporter parameters) and clearances Clc/cp. Continuous
line: Cy = 7500uM, dot-dashed line: Cy = 50pM. On the very
right: dependence on initial concentration Cy. Arrows on
top mark the experimentally derived value. (Values for the
respectively fixed parameters taken from table 4.4.)

108



4.3. APPLICATION TO MICHAELIS-MENTEN TRANSPORT

4.3.4 Error propagation

Apart from the considerations above, the analysis of parameter
dependence is the first step towards examining the propagation of
errors into the experimentally available quantities. For example
it is clear from figure 4.8 (third and fourth column), that small
differences in Clyc would be nearly unnoticed, due to the rather flat
curve around its measured value (marked by the black arrow on
top of the figures). On the other hand a small change in Clc yields
a big variation of time scale t;. We want to use an example to make
this clear. Again we will use parameters derived in the CNV97100
absorption study and evaluate in which way a change in parameter
influences the measurable quantities. This can be imagined as the
variability in different sample cultures.

The distribution f; of a value x in function of the distribution f, of
the parameter « is given by:

da(x)

) = fule)| =5

. (4.24)

Knowing the distribution of value x, the mean value of x is defined
by:
X2
(x) = f xfr(x)dx . (4.25)

Alternatively, if this integration cannot be solved, one uses Eq. (4.24)
and writes:

a(x2)
(x) = f x(a) fa(a)de . (4.26)
a(xr)

Correspondingly one can also compute in a similar way the second
moment (x?) and the standard deviation . Due to the nonlinearity
it is not always easy to derive explicit expressions but having found
the parameter dependencies before, above integrations are easily
done numerically up to arbitrary precision.
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Figure 4.9: The mean basolateral concentration (left) and its
relative error (right) in the case of 7500uM loaded apically,

depending on the relative error of Clsc. A Gaussian distri-
bution of clearance was assumed.

Now we use the parameter set from Gonzalez-Alvarez et al. (2005),
as done before. We chose an experimental set up (apical loading,
Co = 7500uM) and the “model of best fit” (apical pump, intracellular
binding) and can calculate for example the equilibrium concentra-
tion, or rather its distribution, on the receiving side. Figure 4.9
shows the mean value and the relative error versus the relative er-
ror of Cl,c, the clearance of the apical membrane. Clearly one sees
that the mean value itself is biased towards lower values by a (sym-
metric) error in the clearance. The relative error of the by, is a rising
function with the remarkable feature of a range of very high slope.
At a diversity in the clearance of about 30% the rise of the concen-
tration’s error is much higher than for other values. How large the
diversity of the cell membrane’s clearance is, is not the concern of
this work but it allows to estimate the reasons for fluctuations in
measurements.

4.3.5 Michaelis-Menten with cellular retention

To account for the amount of drug which retains bound in the cell
and is not available as substrate anymore, Korjamo et al. (2007) used
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an additional constant K which rescales the intracellular concentra-
tion. In this case the dynamical equations (4.3a-4.3c) and the flux
definition (4.1) become

deAt(t) C iCle ( % % _ %) + T (4.27a)
dQc(t) _ _~ (Qcl _Qa)_
dt B CIAC(VCK VA) J
1
Cleg (%E _ %) (4.27b)
dQp(t) Qcl Qp
Al CZCB(V_CE - _B) (4.27¢)
SVMEE+
g = - AiVQ; K; (4.27d)
Ve K

When our transformation is applied to this system (here only intra-
cellular binding is considered), the matrix element a,; is multiplied
with a factor 1/K and the same factor rescales the parameter y. With
these changes the obtained results can be used. We will not go into
much detail but the efflux ratio (ratio of (4.15) to (4.16)) as the value
of main interest to the experimentalist has been calculated. For a
parameter set as derived in the CNV97100 study one sees a lower-
ing of the whole curve for rising retention (fig. 4.10). Retention of
values smaller than one would raise the curve, but this is not rea-
sonable. The curve does not change its shape much. We conclude
that this extension of the three-compartment model is not good for
a better fitting to the experiment.
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Figure 4.10: Efflux ratio versus initial concentration for dif-

ferent retention constants (K = 1, 1.1, 1.3, from top to bottom).

The rest of parameters is taken from the CNV97100 experi-

ment (table 4.4). K = 1 represents the case with no retention

like in fig. 4.8, bottom, right. The experimental values are
overlaid

4.4
Conclusions

Three-compartment models are widely used in drug absorption
studies. The one treated here consists of a linear part, represent-
ing passive absorption (for example through cell membranes), and
a non-linear part which models other means of transport, such as
ABC-transporter proteins embedded into the cell membrane. In this
work we have shown a way to transform this model into the picture
of a ball in a well (fig. 4.4), which is a general form of equations
facilitating analysis of mathematical structure. The lowest point of
the “well” gives the value of the equilibrium concentration after
saturation of the process. With an adequate approximation, one
can derive the absorption profile as the sum of three exponentials
and identify their characteristic time scales dividing the process
into phases of linear change, non-linear fluxes and saturation. In
the phase of a near-linear profile we can provide explicit expres-
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sions for the apparent permeability, a quantity usually measured
in experiments.

These are general results which we used on a showcase system,
where the non-linear transport is described by a MicHAELIS-MENTEN
profile - a common model of transporter proteins (Mizuarai et al.
2004; Sharma et al. 2002; Volk & Schneider 2003). The approach
presented in this thesis make efflux ratio and time scales accessible.
Both apical and basolateral drug loading can be treated by changing
the initial conditions; we furthermore considered the possibilities
of intracellular as well as extracellular binding sites. We analysed
the importance of each physiological parameter in a wide range of
values.

The presented results may contribute to a better understanding of
the absorption process and to explain the variability of the obser-
vations in identical experimental setups from a more fundamental
basis. Knowledge of parameter dependencies, a fundamental anal-
ysis of errors (confidence interval) and their consequences becomes
possible. This has been left aside for later studies. The most promis-
ing experimental setups can furthermore be predicted by treating a
newly proposed model in the same way.

A consideration which might be of interest to pharmacology is an
104

efflux J of Hill type, kaj-—x“’ with exponents a > 1. This formula is

used to describe cooperative binding. Other possible fluxes could
be analysed always if assumptions of a closed system with three
compartments are fulfilled.
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Table 4.4: Experimental parameters drawn from (Gonzélez-
Alvarez et al. 2005) used for the calculations.

Parameter Measured Value
Clac 14.49 x 10°cm® /s
Clcp 3.528 x 1073cm3/s

Vum 6.17 x 10~%mol /(cm?s)
Ku 0.376mol /cm®
S 4.2cm?
Va 2cm®
Vg 3cm®
Ve 0.0738cm®
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Chapter 5

Entrainment of coupled cir-
cadian oscillators

51
Introduction

Circadian rhythms are light-dark dependent cycles of roughly 24
hours present in the biochemical and physiological processes of
many living entities (Reppert & Weaver 2002). In mammals the
main mediator between the light-dark periodicity and the biologi-
cal rhythms is formed by two interconnected suprachiasmatic nu-
clei (SCN), located in the hypothalamus. These nuclei form the
so called “circadian pacemaker" and contain about 10.000 neurons
each (Moore et al. 2002; Reppert & Weaver 2002).

The main property of the SCN is that their activity displays self-
sustained oscillations in synchrony with the external forcing im-
posed by the light-dark cycle. The exact mechanism leading to
this behaviour has been the subject of intense research. It has been
shown that, when taken individually, neurons produce oscillations
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with a constant period ranging from 20 to 28 hours (Honma et al.
2004; Welsh et al. 1995). The oscillatory behaviour originates in
a regulatory circuit with a negative feedback loop. The relevant
question is how this individual oscillatory behaviour translates into
common, global, oscillations of the SCN activity synchronised with
the external light stimulus.

It has been shown that the origin of the oscillatory activity of the
circadian pacemaker at the global level resides on the interaction
between the SCN neurons. Coupling between cells in the SCN
is achieved partly by neurotransmitters (Hastings & Herzog 2004;
Honma et al. 2004) and it is by means of those neurotransmitters that
external forcing by light influences the neuronal synchronisation.
For example the vasoactive intestinal polypeptide (VIP) has been
shown to be necessary in mediating both the periodicity and the
internal synchrony of mammalian clock neurons (Aton et al. 2005;
Maywood et al. 2006; Shen et al. 2000). Therefore, a model of coupled
and forced neurons appears quite naturally as responsible for the
circadian rhythms. Along these lines, an interesting mechanism has
been put forward recently by Gonze et al. (2005) and by Bernard et al.
(2007). They proposed that synchronisation to the external forcing
is facilitated by the fact that interneuronal coupling transforms SCN
into damped oscillators which can then be easily entrained.

In this chapter we show that the presence of some level of hetero-
geneity or dispersion in the intrinsic periods of the oscillators (Her-
zog et al. 2004; Schaap et al. 2003) can improve the response of the
coupled neuronal system to the external light-dark forcing. The
proposed mechanism for the improvement of the neuronal syn-
chronisation under external periodic forcing bears some similarities
with the one proposed in (Bernard et al. 2007; Gonze et al. 2005) in
the sense that the oscillators are brought to a regime of oscillator
death (Ermentrout 1990; Mirollo & Strogatz 1990), but in our case
this regime is induced by the presence of heterogeneity. Once this
regime has been reached, the damped oscillators are more entrain-
able by the external forcing than the self-oscillating neurons with
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different periods, or the synchronised oscillatory state which ap-
pears in the strong coupling regime but with a period larger than
the individual neuronal periods.

To be more specific, we will assume that the periods of the individual
neurons are random variables drawn from a normal distribution.
We will then analyse the global response of the system to the light-
dark cycle periodicity as a function of the interneuronal coupling
strength, external forcing amplitude and neuronal heterogeneity.
We show that the presence of the right amount of dispersion in the
periods of the neurons can indeed enhance the synchronisation to
the external forcing.

Period dispersion arises as a consequence of the cellular hetero-
geneity at the biochemical level, which is an experimentally well
observed fact (Aton & Herzog 2005; Honma et al. 2004). It can act in
either physiological or pathological conditions. An example of the
latter is the diversification of antigenic baggage present in tumor
cells that makes them more difficult to be recognised and captured
by the defense mechanisms and therefore more prone to migrate
and develop metastasis (Gonzalez-Garcia et al. 2002). Our results
show that some level of disorder can be of help when synchronising
neuronal activity to the external forcing. Although counterintu-
itive, it has been unambiguously shown that the addition of various
forms of disorder can improve the order in the output of a large va-
riety of nonlinear systems. For example, the mechanism of stochastic
resonance (Gammaitoni et al. 1998, 2009) shows that the response of
a bistable system to a weak signal can be optimally amplified by
the presence of an intermediate level of dynamical noise. Stochastic
resonance is not a rare phenomenon; it has been repeatedly shown
to be relevant in physical and biological systems described by non-
linear dynamical equations (Gammaitoni et al. 1998, 2009). In large
systems with many coupled elements, noise is responsible for a
large variety of ordering effects, such as pattern formation, phase
transitions, phase separation, spatiotemporal stochastic resonance,
noise-sustained structures, doubly stochastic resonance, amongst
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many others (Garcfa-Ojalvo & Sancho 1999). All these examples
have in common that some sort of order at the macroscopic level
appears only in the presence of the right amount of noise or disorder
at the microscopic level. Furthermore, it has been proven that noise
may play a constructive role in nonlinear systems, by enhancing
coherent (periodic) behaviour near bifurcations and phase transi-
tions (Neiman et al. 1997; Pikovsky & Kurths 1997). Here we in-
troduce non-negligible random heterogeneity (so-called quenched
noise) into the periods of all neurons. Numerical simulations sug-
gest that the results are valid as well when the quenched noise is
introduced into other model parameters. A different approach is
the consideration of intracellular stochastic variability due to low
molecule numbers (Forger & Peskin 2005) or both variability and
heterogeneity.

Close to our work is the study by Ueda et al. (2002), where the
effect of fluctuations in neuron parameter values is assessed and
it is shown that the coupled system is relatively robust to noise.
Previous theoretical studies have addressed the effect of noise on
genetic oscillators (Becskei et al. 2005; Steuer et al. 2003; Thattai
& van Oudenaarden 2001), and some have proposed an ordering
influence of noise on circadian clocks at the single cell level in cases
where neither light intensity nor coupling strength by themselves
can synchronise the system. Collective phenomena induced by
heterogeneity in autonomous, non-forced systems, have also been
discussed in the literature. For example de Vries & Sherman (2001)
and Cartwright (2000) have shown that collective bursting or firing
can appear in excitable systems and a general theory of the role of
heterogeneity in those systems has been developed by Tessone et al.
(2007). We refer to the collective response in systems of non-linear
oscillators subjected to the action of an external forcing representing
the day-light cycle.

The chapter is organised as follows. In section 5.2 we will describe in
detail the model of circadian oscillators and the methods we use. It
is a coupled extension of the original Goodwin oscillator (Goodwin
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1965) as developed by Gonze et al. (2005). In section 5.3 we analyse
the system response to the periodic external forcing, as a function
of the external forcing amplitude, coupling strength and neuronal
diversity or heterogeneity. By simulating numerically the governing
differential equations we identify the range of these parameters for
which the extended system oscillates in synchrony and entrained
to the external light period. We describe the mechanism through
which the neuronal heterogeneity favours the synchronisation with
the external forcing and analyses the combined influence of the
coupling strength, neuronal heterogeneity and light amplitude on
the stability of the linearised system of coupled oscillators. We
show that a mean variable in this model exhibits a transition from a
rhythmic to an arrhythmic dynamics (the so-called oscillator death
(Ermentrout 1990; Mirollo & Strogatz 1990)). Concluding remarks
are found in section 5.4.

5.2
Model and methods

5.2.1 The circadian pacemaker

As stated in the introduction, our aim is to consider the role that
the heterogeneity in the population of neurons plays in the global
response of the SCN to an external oscillating stimulus. To this end,
we consider an ensemble of coupled neurons subject to a periodic
forcing. Each of the neurons, when uncoupled from the others and
from the external stimulus, acts as an oscillator with an intrinsic
period. Heterogeneity is considered insofar the individual periods
are not identical, but show some degree of dispersion around a mean
value. For each one of the neurons in the SCN we use a four-variable
model proposed by Gonze et al. (2005), which is based originally
on the Goodwin oscillator (Goodwin 1965), to describe circadian
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oscillations in single cells (see as well section 3.3). The variables
of the model are as follows: The clock gene mRNA (X) produces
a clock protein (Y), which activates a transcriptional inhibitor (Z)
and this in turn inhibits the transcription of the clock gene, closing
a negative feedback loop. The mRNA X also excites the production
of neurotransmitter V, which in the coupled system will be then
the responsible of an additional positive feedback loop. In order
to overcome the high Hill coefficients required for self-oscillations,
Gonze et al. replaced the linear degradation by nonlinear Michaelis-
Menten terms. This leads to the system of equations:

4
%{ - K%Iilz4 _V2K2}j' X’ 12
T = bX-w T (5.1b)
2z k5Y—v6K62T, (5.10)
‘Z_‘: = kX- VSKSLH,, (5.1d)

which, depending on parameters, might produce oscillations in a
stable limit cycle. Using the values vi = 0.7 nM/h, v, = vy =
Ve =0.351’1M/h,1/8 = 11’1M/h,K1 :Kz :K4 :K6 =K8 = 1IIM,
ks = ks = 0.7/h, k7 = 0.35/h, the period of the limit cycle oscillations
is T =23.5h.

For the complete model, we take N neuronal oscillators, each one
of them described by four variables (X;, Y;, Z;, V;),i = 1,...,N, satis-
fying the above evolution equations. Heterogeneity in the intrinsic
periods is introduced by multiplying the left-hand-side of each one
of the equations (5.1) by a scale factor 7;. Hence, the intrinsic period
T; of the isolated neuron 7 is 7;T. The numbers 7; are independently
taken from a normal random distribution of mean 1 and standard
deviation ¢. Since the periods must be positive, in the numerical
simulations we have explicitly checked that, for the values of o
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considered later, 7; never takes a negative value, which would be
unacceptable. The standard deviation ¢ will be taken as a measure
of the diversity. A value of ¢ = 0.1 for example corresponds to a
standard deviation of 10% in the individual periods of the uncou-
pled neurons, close to the observed variation of periods in a range
between 20 and 28 hours.

Two additional factors influence the dynamics of single cell oscilla-
tions: forcing by light and intercellular coupling. Both are assumed
to actindependently from the negative feedback loop and are added
as independent terms in the transcription rate of X (Gonze et al.
2005). Light is incorporated through a periodic time-dependent
function L(t), which can be realised in various forms. In the ma-
jority of the presented results we have used a sinusoidal signal,

L(t) = 22 (1 +sinwt). In some cases, for comparison and to simu-

late different day lengths of duration tje,, we have used a square
Lo, if (t mod 24h) < tlight
0, otherwise
oscillates between the values L(t) = 0 and L(t) = Ly with a period
21t /w = 24h.

wave L(t) = . In both ways the signal

Coupling between the neurons is assumed to depend on the con-
centration F of the synchronising factor (the neurotransmitter) in
the extracellular medium, which builds-up by contributions from
all neurons. Under a fast transmission hypothesis, the extracellular
concentration is assumed to equilibrate to the average, mean-field,
cellular neurotransmitter concentration, F = & YN, Vi. The result-
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ing model is:

axX; K{ X KF
. - _ L) (5.2
g Miirz PR+ Keke THO 62
ay; Y,
Ti i = k3Xl V4 K4 n Yll (5.2b)
az; Z;
Ti Frllie ksY; —vg Kt 7/ (5.2¢)
v, V;
LW k7Xz Vs Kg n Vl , (52d)
1 N
Fo= 2 v, (5.2¢)

with v, = 0.4 nM/h, K. = 1 nM.

There is experimental evidence supporting the assumption of a
chemical (rather than electrical) mechanism of inter-cell commu-
nication among SCN neurons as a synchronisation factor and, in
fact, mechanisms other than neurotransmitters or electrical cou-
pling for the SCN communication have been suggested (e.g. by van
den Pol & Dudek (1993)). Furthermore, more realistic modelling
which takes into account all variables known to participate of the
negative feedback loop has been introduced. These models may
include up to 10 variables and corresponding equations for each
single cell (Bernard et al. 2007).

It seems, however, that in order to get understanding of the SCN dy-
namics, a sufficient tool is the 4 variable model described above. In
fact, the synchronisation of damped oscillators is independent from
the particular intracellular model used and as discussed by Bernard
et al. (2007), this system, the model developed by Leloup & Gold-
beter (2003), and other simple negative feedback oscillators have
similar synchronisation properties. In this chapter we have decided
to use the simpler 4-variable model although most of our results
would also be valid in the more complex 10-variable model.
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A model close to that of Egs. (5.2) has been used by Ullner et al.
(2009), where the authors investigate how the interplay between
fluctuations of constant light and intercellular coupling affects the
dynamics of the collective rhythm in a large ensemble of non-
identical, globally coupled oscillators. In their case, however, an
inverse dependence of the cell-cell coupling strength on the light
intensity was implemented, in such a way that the larger the light
intensity the weaker the coupling.

5.2.2 Measures of synchrony and entrainment

Due both to the effect of coupling and of forcing, the neurons might
synchronise their oscillations. There are several possible measures
of how good this synchronisation is. Here the interneuronal syn-
chronisation will be quantified by the parameter of synchrony p,
defined as

_ | [ESVi) —P(t)]2> ) < "Ry >
. \/1 < Zfil Vi(t)z B %Zfil Vi(t)z ’ (53)

where (...) denotes a time average in the long-time asymptotic
state. The parameter p varies between a value close to 0 (no syn-
chronisation) and 1 (perfect synchronisation, with all neurons in
phase, Vi(t) = V;(t),¥i,j). It is important to note that even if the
neurons synchronise perfectly their oscillations, the period of those
oscillations does not necessarily coincide with the mean period T
of the individual oscillators or with the period 27t/w of the external
forcing. In fact, in the unforced (no light) case, the period of the
common oscillations (for the set of parameters given before and a
dispersion of ¢ = 0.05 and coupling K = 0.5) is approximately equal
to 26.5 h whereas the period of the forcing is 2rt/w = 24 h and the
mean period of the individual uncoupled oscillators is T = 23.5 h
(Gonze et al. 2005).
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Besides the previous measure of synchronisation amongst the os-
cillators, we are also concerned about the quality of the global re-
sponse of the neuronal ensemble to the external forcing L(t). A
suitable measure of this response can be defined using the average
gene concentration,

1 N
X(t) = 5 ), Xilo), (5.4)
i=1

and computing the so-called spectral amplification factor or re-
sponse order parameter R (see page 27 of chapter 2),

4 ,
R= o ke xep| - (5.5)

Risnothing but the normalised amplitude of the Fourier component
at the forcing frequency w of the time series X(t). We will show that,
under some circumstances, the response R will increase with the
intrinsic diversity o and that the period of the oscillations at the
global level coincides with that of the external forcing, these being
the main results of this chapter.

5.3
Results

The synchronisation properties of the set of circadian oscillators is
influenced by the amplitude of the external forcing L, the coupling
strength K and the diversity in the individual periods ¢. The role
of the first two has been studied by Bernard et al. (2007), Becker-
Weimann et al. (2004) and Gonze et al. (2005). In this section we focus
on the heterogeneity of neuronal periods and analyse the combined
influence of Ly, K and ¢ on the different parameters quantifying
interneuronal synchronisation and response to the forcing.
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Figure 5.1: Synchrony order parameter p (see Eq. (5.3)). Val-
ues are coded in colour levels, and displayed as a function
of Ly and o for several values of K. Data from numerical
simulations of N = 1000 neurons with dynamics ruled by
Egs. (5.2a-5.2e). Synchrony among the neurons (yellow re-
gion) is favored by strong or very weak light intensity Lo,
low diversity o and large coupling K. The thick black line
is the linear stability limit discussed in section 5.3.1 (see also
Fig.5.7).
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Figure 5.2: Main parameters used for characterising the syn-

chronisation of circadian oscillators as a function of the vari-

ance o. (a) the synchrony parameter p; (b) the mean T of the

individual periods T;; (c) the response order parameter R; (d)

the maximum real part of the eigenvalues of the linearised
system.



Square wave light (K=0.6, L =0.005)
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Figure 5.3: Characterisation of synchrony for a light signal of
square wave form. The synchrony parameter p, the mean T
of the individual periods T; and the response order parameter
R (from top to bottom) measured for square wave stimuli of
various day lengths (t;;; = 8h, 12h and 16h, from left to
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Fig. 5.1 shows colour plots of the parameter of synchrony p as a
function of the diversity ¢ and the light intensity Ly, for different
values of the coupling strength K. High values of the light inten-
sity Lo favor interneuronal synchrony. Also in agreement with its
intuitive disordering role, high neuronal diversity leads to a low
synchrony parameter p in several parts of the diagrams. However,
there is a region of values of Ly € [0, L,u4x] for which there is a non-
monotonous dependence of the synchrony order parameter with
respect to the diversity. This can be seen more clearly in panel (a)
of Fig. 5.2 where we plot p as a function of diversity o for fixed
values of K = 0.6 and Ly = 0.005. p first decreases by increasing o
within the interval 0 < o < 0.05, but then it develops a maximum.
The range of values of Ly for which this non-monotonous behaviour
is observed depends on the coupling constant K: the larger K, the
larger L.

As stated before, the fact that neurons synchronise amongst them-
selves does not mean that they synchronise to the forcing by light.
To study this point, we have computed the individual periods T;,
i=1,...,N, of the oscillators in the ensemble. In those cases in
which the concentrations do not oscillate with exact periodicity, we
still define the period as the average time between maxima of the dy-
namical variables. In Fig. 5.4 we plot the mean value T = & YT
as a function of ¢ and L for different values of K. As the dispersion
in T; is small, it turns out that T is close to the period of the average
variable X(#).

Although, by construction, individual neurons have periods that
fluctuate around T = 23.5 h, it turns out that the period of the
resulting synchronised oscillations that occur in the unforced but
coupled (Ly = 0, K > 0) case, increases with increasing coupling K.
For example, T ~ 30 h for K = 0.6, mostly independent of the value
of 0. As the forcing sets in, at low values of the coupling strength,
the mean period is now T = 24 h for all values of Ly and o. As
the coupling between neurons increases, larger values of Ly and/or
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Figure 5.4: Colour level plots of the mean of the individual

periods T of 1000 neurons under forcing at 24h cycle for the

system of Egs. (5.2a-5.2e). High light intensity Ly and high

diversity o assures entrainment of oscillations to external

frequency (blue region). Increasing coupling enlarges the

region (yellow) of oscillations at a period larger than that of
the driving force.
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o are needed in order for the mean period to coincide with that of
the external forcing. An important feature that emerges from these
plots is that for low light intensity it is possible to achieve a mean
period of 24 h by increasing the neuronal diversity. For example, in
the areas at the left of the different panels of Fig.5.4, or in panel (b)
of Fig.5.2 corresponding to the case K = 0.6, while identical neurons
have periods of ~ 30 h, increasing o induces an adjustment of the
period to 24 h. The transition between T = 24 hand T # 24 h
is rather sharp, specially for large K. This is a clear manifestation
that diversity indeed is able to improve the response to the external
forcing.

A complementary perspective on this constructive role of diversity
is attained looking at spectral amplification factor, R, from Eq. (5.5).
This is a normalised measure of the amplitude of the oscillation of
the neuronal system at the frequency of the daily forcing. Figures
5.5 and 5.2(c) show that there is a region in parameter space in
which the system response to the periodic light forcing displays a
maximum value as a function of diversity o. In fact this maximum is
very large as compared with the R value at zero diversity, so that one
can say that one of the most noticeable effects of a non-vanishing
neuronal diversity is to give the system the capacity to respond
efficiently to the 24h forcing in situations of small or no response at
this frequency in the absence of diversity (the non-diverse neuronal
ensemble could be oscillating at a different frequency, as revealed
by high values of p). In summary, it is possible to largely improve
neuronal synchronisation to the daily-varying light input by taking
o close to an optimal value. Too small or too large diversity will not
yield an optimal response at this frequency, although the response
is generally larger than for zero diversity.

An external signal of square wave form and with different day
lengths lead to similar results. As can be seen in figure 5.3 the
response R to the external signal passes through a maximum at a
intermediate value of diversity. The mean period and the synchrony
parameter behave as in the case with a pure sinusoidal as the driving
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Figure 5.5: Colour plots of the spectral amplification factor

R as defined in Eq. (5.5) in logarithmic scale. Too high light

intensity Ly and too much diversity o lower the response of

X to the external frequency. This also happens for low light

and low diversity (where the neurons oscillate at a frequency

# 24 h, see Fig. 5.4). Between both limits R passes a local
maximum.

force. Furthermore, the qualitative result is independent of the
chosen day length.

5.3.1 Diversity-induced oscillator death

Why does an increase in the diversity of the oscillators lead to an
improved response to the external forcing? We argue that the main
effect of the increase of the diversity is to take the oscillators into
a regime of oscillator death (Ermentrout 1990; Mirollo & Strogatz
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1990) in which they can be easily entrained by the varying part
of the forcing. To understand this mechanism (in the sinusoidal
case) we first split the forcing into a constant (the mean) and a

Ly L
time varying part: L(t) = EO + 70 sin(wt). Taking only the constant

part, L(t) = %, Figs. 5.6(a)—(c) show that the oscillators go from

self-sustained oscillations to oscillator death, i.e. the amplitude of
the self-sustained oscillations decreases, as ¢ increases. Once oscil-
lators are damped, they would respond quasi-linearly to periodic
forcing, at least if this forcing is not too large, and linear oscillators
always become synchronised to the external forcing, independently
of their internal frequency. This is consistent with what is seen in
figures 5.6(d)—(f), where the neurons in the case of low heterogeneity
oscillate synchronously with each other, but their common period is
larger than the one of the light forcing. Only when diversity brings
the neurons to oscillator death can all of them be entrained to the
period of the forcing signal. The mechanism is related to the one
discussed by Gonze et al. (2005) and Bernard et al. (2007), but here
we stress than neuron heterogeneity, as opposed to internal neuron
parameters and couplings, is enough to damp the collective neuron
oscillations and bring the system to a non-oscillating state where it
can be more easily entrained. It is interesting to note that it has been
shown experimentally for fruitflies that only a subset of the pace-
maker neurons sustain cyclic gene expression after changing the
laboratory light conditions to constant darkness, whereas the oscil-
lations of the other pacemaker neurons are damped out (Veleri et al.
2003). Although this does not reveal the mechanism by which the
oscillations die out it suggests that some of the circadian oscillators
do indeed work in the damped regime, at least in Drosophila.

An alternative way of checking this mechanism based on diversity-
induced oscillator death is by analysing the stability of the steady state
of the system of Eqs. (5.2a-5.2e) when considering a constant forc-

ing L(t) = ?0. The numerical calculation of the fixed point of the
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Figure 5.6: Figures (a), (b) and (c) represent the time-

dependent amplitude of the V; variable for a few selected

neurons in the presence of constant light and increasing o,

while Figures (d), (e) and (f) represent the amplitude of the

same neurons with sinusoidal light and increasing o. The

thin line on the bottom of the graphs is the external light
signal. K = 0.6.
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dynamics is greatly simplified by the fact that the concentrations of
the biochemical variables are the same for each one of the N neurons
irrespectively of their specific value of 7;. The system (5.2a-5.2e) is
linearised around this steady state and the eigenvalues of the stabil-
ity matrix computed for several realisations of diversity parameters
7;. In each case, the positive or negative character of the real part
of the eigenvalue with the largest real part indicates the instability
or stability, respectively, of the fixed point solution. In Fig. 5.7 we
plot the mean of that maximum real part of the eigenvalues aver-
aged over various realisations of the time scales 7;, for N = 200
coupled neurons, as a function of Ly and o, and different values of
the coupling K (see also panel (d) in Fig.5.2). In every diagram we
can see that low diversity or low forcing yield an unstable steady
state (yellow region). This is where self-sustained oscillations are
observed. A thick black line in the contour plots indicates a zero real
part. The relevance of this line separating positive from negative
maximum average eigenvalues is more apparent when we note that
it also delimits regions of interest in Figs.5.1, 5.4 and 5.5.

In summary, increasing the diversity or the (constant) forcing term
decreases (on average) the maximum eigenvalue of the coupled
system and thus a Hopf bifurcation (see page 17 of chapter 2) can
be crossed backwards, so that self-oscillations disappear. When
applying the periodic external forcing on the system formed by
self-sustained neurons, coherence with the external frequency is
difficult to achieve because there is the competing effect of mutual
neuron synchronisation to a different frequency. However, when
the periodic external forcing is applied on the system of damped
neurons, they all synchronise to the external forcing, and thus with
each other since this is the only dynamical regime available to forced
damped oscillators (if forcing is not too strong to excite further
resonances). Increased coupling strength increases the range of
unentrained self-oscillations.

Oscillator death by diversity is not particular to this system. Mirollo
& Strogatz (1990) analyse a large system of limit cycle-oscillators
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with mean field coupling and randomly distributed frequencies.
They proved that when the coupling is sufficiently strong and the
distribution of frequencies has a sufficiently large variance, the sys-
tem undergoes “amplitude death”. In their approach the oscilla-
tors pull each other off their limit cycles, which is translated into a
stable equilibrium point for the coupled system. Thus, this mecha-
nism suggests that the quenched noise we introduced in the system
“pushes apart" the limit cycles of the different neurons, so that their
competition enlarges the range of parameters where fixed point
behaviour is stable.

A qualitative argument explaining the diversity-induced oscillator
death in our system of coupled neurons goes as follows: We know
from Gonze et al. (2005) that a single oscillator can switch from a limit
cycle to a stable steady state by adding a constant mean field (the
term containing F in (5.2a) but with time-independent F) of sufficient
strength to Eq. (5.1a). A constant light forcing term has the same
effect (see the zero coupling case in fig. 5.7). Furthermore we have
observed that the amplitude of the oscillations decreases with rising
diversity (compare figs. 5.6), but the mean does not change. In a
system with low diversity we have large oscillations of F around that
mean value. If this value, taken as a constant, determines a stable
steady state, then we argue that the large oscillations lead the system
into unstable regions, whereas, by increasing ¢ the amplitude is
decreased and the concentrations do not leave neighbourhood of
the stable fixed point, thus finding themselves damped all the time.
This is a possible mechanism for the diversity-induced oscillator death
phenomenon.
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54
Conclusions

In this chapter we have analysed the role of diversity in favoring
the entrainment of a system of coupled circadian oscillators. We
introduce non-negligible heterogeneity in the periods of all neu-
rons in the form of quenched noise. This is achieved by rescaling
the individual neuronal periods by a scaling factor drawn from a
normal distribution. The system response to the light-dark cycle
periodicity is studied as a function of the interneuronal coupling
strength, external forcing amplitude and neuronal heterogeneity.

Most of the cases of order induced by heterogeneity or noise carried
out so far (Gammaitoni ef al. 1998, 2009; Pikovsky & Kurths 1997;
Tessone et al. 2006, 2007; Toral et al. 2009; Ullner et al. 2009) emphasise
the fact the diversity directly improves oscillator synchronisation.
In our case the mechanism is rather different. Diversity does notim-
prove system synchronisation directly. This is achieved indirectly,
by a leading first to a diversity-induced stabilisation of the fixed
points of the neurons forming the system. Once steady concen-
trations are asymptotically stable, it is much better entrainable by
the external forcing, so that the damped neurons adapt easily to
the external forcing (and then, in addition, they appear as synchro-
nised between them). The synchronisation arises therefore not as
a result of a direct diversity-induced neuronal synchronisation but
indirectly, as a result of the diversity-induced oscillator death. Our
results indicate therefore that the right amount of heterogeneity
helps the extended system to respond globally in a more coher-
ent way to the external forcing. In addition to the robustness of
the results against use of different types of forcing (see figure 5.3)
we have checked that resonances in the responses to the external
forcing and matching of the circadian period to the external forc-
ing appear in more complex models, such as the 10-variable model
of (Bernard et al. 2007) with diversity in the time scales 7;, or the
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4-variable model of Gonze et al. (2005) with heterogeneity in all the
reaction rate parameters v;. We expect that a similar behaviour will
be found in similar models of non-mammalian clocks like those
of Drosophila (Smolen et al. 2004), Arabidopsis (Locke et al. 2005),
Neurospora (Heintzen & Liu 2007) or Cyanobacteria (Dong & Golden
2008).

Of course, it is an open question whether the observed diversity in
the periods of the neurons of the SCN has been tuned by evolution in
order to display a maximum response to the 24 h dark-light natural
cycle. A detailed experimental check of our predictions would
require to be able to vary the amount of diversity. In this sense we
suggest the possibility of using chimeric organisms (Low-Zeddies
& Takahashi 2001) to introduce diversity in a controlled way.
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Figure 5.7: Colour plots of the maximum real part of the av-
erage eigenvalues of system of Egs. (5.2a-5.2¢), as a function
of ¢ and Ly, at different values of K. Increasing ¢ or in-
creasing Ly changes this quantity from positive to negative,
i.e. transforms the self-sustained neurons into damped neu-
rons by stabilising their constant concentrations fixed points.
Rising the coupling enlarges the region of self-sustained os-
cillations. Averaged from 10 realisations of heterogeneity in
200 neurons.



Chapter 6

Coherent firing in coupled
active rotators

6.1
Introduction

In some cases, a dynamical system with many variables depends
on a set of parameters which, although fixed in time, are randomly
distributed according to a given probability distribution. The out-
come of the system, although deterministic, depends on the actual
realization of the set of parameters. The influence of this so—called,
depending on the context: quenched noise, static disorder, hetero-
geneity, variability, diversity, impurities, etc. has been the subject
of many investigations. In the last years, some emphasis has been
given to identifying those situations in which the presence of the
quenched noise induces some sort of macroscopic ordering, such as
phase transitions (Buceta et al. 2001), patterns (Buceta & Lindenberg
2003); improves the global response to an external forcing (Tessone
et al. 2006) or enhances synchrony of firing units (Tessone et al. 2007).
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Due to the complexity of the problem, analytical treatments are usu-
ally very difficult to be carried out in full detail and most results
rely on extensive numerical simulations. However, a recently intro-
duced technique named “order parameter expansion” (de Monte &
d’Ovidio 2002; de Monte et al. 2004, 2005, 2003; Komin & Toral 2010;
Silva et al. 2006) offers a simple approximate way of analyzing the ef-
fect of the random quenched terms in the dynamical equations. The
approximation scheme allows the reduction of the large number of
coupled differential equations for the microscopic variables to just
a few effective equations for the relevant macroscopic dynamical
variables: the mean values and dispersions from the mean.

It is the purpose of this chapter to apply the order parameter ex-
pansion technique to the study of the active rotator model (Acebrén
et al. 2005; Kuramoto 1975; Strogatz 2000) under the influence of
static disorder in the natural frequencies. Previous work (Bulsara &
Zador 1996; Shinomoto & Kuramoto 1986; Tessone et al. 2007; Toral
et al. 2007) has shown the somewhat paradoxical result that interme-
diate levels of disorder at the microscopic level induce macroscopic
order which manifests itself in a synchronous, or coherent, firing
of the units. Although very sophisticated treatments of this model
do exist leading to analytical solutions in some particular cases (La-
fuerza et al. 2010; Ott & Antonsen 2008, 2009) (and we will refer to
them later in the chapter) a particular simple analysis was devel-
oped in (Tessone et al. 2007), where the authors used an expansion of
the dynamical equations of the model up to first order in the devia-
tion of the quenched variables from their mean value and identified
a self-consistency equation which had to be solved numerically. The
order parameter expansion used in the present article expands con-
sistently this analysis up to terms of second order, thus reaching a
higher accuracy. The resulting closed system of three differential
equations reproduces the ordering abilities of quenched noise in
this system and, furthermore, predicts a sharp transition back into
the disordered state where no macroscopic order is observed. In
general the study of synchronization between oscillatory systems
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is of interest in a variety of research fields, ranging from climatol-
ogy (Jevrejeva et al. 2003) to electronics (Bezruchko et al. 2003) and
from neurology (Neiman et al. 2007) to physiology (Sosnovtseva
et al. 2002). Existing analytical methods for involved models, like
the self-consistent theory, are usually very difficult to carry out. The
presented approximate method gives an intuition about a system’s
dynamics. With its use the change of the nullclines due to diver-
sity in the Fitzhugh-Nagumo model (Pérez et al. 2010) and phase
transitions induced by diversity (Komin & Toral 2010) have been
investigated.

The article is organized as follows. First, in section 6.2, we will
define the active rotator model and summarize its main properties.
Macroscopic observables that describe the collective behaviour are
introduced. Then, in section 6.3, the approximation method is ap-
plied and conclusions about steady states are drawn. In section 6.4
we present numerical results that support the previous findings and
use the theory of finite—size scaling to determine some of the critical
exponents characterizing the transitions. The chapter closes with
concluding remarks in section 6.5.

6.2
Model

Let us consider a system of globally-coupled active rotators (Ku-
ramoto 1975), defined by a set of angular variables ¢;(t), i=1,...,N
which evolve according to the dynamical equations:

N
$i(t) = w; — sin(i(t)) + % ; sin (¢(5) = i(t)) - 6.1)

C is the coupling constant. The so-called natural frequencies w; are
quenched noise, i.e. random variables independently drawn from

143



CHAPTER 6. COUPLED ACTIVE ROTATORS

a probability distribution g(w) with mean (w). The variance of the
distribution, ¢2, is a measure of the dispersion of natural frequen-
cies amongst the oscillators and measures the degree of intrinsic

disorder. We will refer to ¢ as the “diversity".

For uncoupled units, C = 0, a value of |w;| > 1 results in a rotating
behaviour for ¢;(t). The actual period of rotation is \/i;__l and
the direction of rotation depends on the sign of w;: clockwise if
w; < 0 and anti-clockwise otherwise. If |w;| < 1, then unit i is
in an excitatory regime. In this case there are two fixed points
(one stable and the other unstable) located at the two solutions of
¢: = arcsin(w;). When a perturbation is such that it makes variable
¢; to cross over the unstable fixed point, the subsequent dynamics
returns to rest again in the stable fixed point through a full turn
of ¢; on the unit circle (a “spike” or a “pulse”). This is the typical
behaviour of an excitable system (Lindner ef al. 2004).

When the coupling is active, C > 0, the dynamics of each unit is
influenced by the others which act, effectively, as a perturbation. As
a result, individual spikes can be generated. Those spikes can be
independent of each other or, alternatively, the units might spike
with some degree of synchrony. It is of interest to characterize the
global behaviour of the system in order to identify the region of
parameter space for which synchronized spiking occurs. To this
end one usually defines a complex variable which represents the
centre of mass of all rotators (Kuramoto 1984):

z

p(He™ D = — Z 90 = (V) (6.2)

j=1

Henceforth, (---) denotes an average over the N units. The Ku-

ramoto order parameter p = p(f), where the overline denotes an av-
erage with respect to time, differentiates between fully synchronized
(p =1,ie. ¢i(t) = ¢;(t), Vi, j) and desynchronized oscillators (p ~ 0).
When pis close to 1, one still needs to distinguish the rest state where
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all oscillators are equally constant in time from the coherent firing
regime where the units are oscillating synchronously. Amongst
other possible measures, one can use the order parameter intro-

duced by Shinomoto & Kuramoto (1986) as C = | p(t)et® — p(t)ei‘y(t)‘,
which is different from zero only in the case of synchronous firing.
Alternatively, and this is the approach followed here, one can mea-
sure the average angular speed of the time evolution of the global
phase W(t). In the rest state, W(t) is time independent and the
angular speed is zero, whereas in the coherent firing regime, W(t)
increases with time and the angular speed adopts a non-zero value.

It has been shown that the system of coupled active rotators displays
a disorder-induced transition from the global rest state to synchro-
nized firing (Bulsara & Zador 1996; Shinomoto & Kuramoto 1986;
Tessone et al. 2007). Higher levels of disorder lead the system again
into unsynchronized firing. The disorder can be produced by the
existence of diversity amongst the natural frequencies (Toral et al.
2007) (as it is the case of interest here), by the presence of noise terms
in the dynamical equations, by the existence of competitive interac-
tions, heterogeneity in the network of connectivities (Tessone et al.
2008) or any other origin. A general theory to explain this transition
has been developed in (Tessone et al. 2007), while an exact treatment
in the case of disorder in the natural frequencies has been carried
out in (Lafuerza et al. 2010; Ott & Antonsen 2009). In the next sec-
tion we present a simplified treatment of this problem in terms of
the order parameter expansion. This allows us to derive equations
for the macroscopic variables as a perturbative expansion, assum-
ing small fluctuations. This simple approach is able to predict the
main features observed in the numerical simulations. Furthermore,
it provides an analytic expression for the critical noise intensities in
the large coupling limit.
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6.3
Method

6.3.1 Derivation of the dynamical equations

As stated in the introduction, our goal is to use the order parame-
ter expansion method to obtain evolution equations for the global
phase W(t), defined in Eq.(6.2), and its fluctuations, defined as suit-
able moments of the variables €;(t) = ¢;(t) — W(f). As it will turn
out the dynamics of the global phase at lowest order coincide with
the local dynamics. When coupling the units to a mean-field the
dynamics of the global phase become coupled to that of the fluctua-
tions Q,(t) ~ (ej(t)z) and the weighted fluctuations W(t) = (€;(t)0,),
where we write 0; = w; — {w) for the deviation of the local natural
frequency from the mean. The fluctuations (3, and W have to be
taken into account at same order, to obtain a consistent set of equa-
tions. The precise derivation of the approximate dynamical system
goes as follows.

We first notice that according to the definition of €; and using
Eq. (6.2), a simple calculation leads to

() = MO (cos g(t) + 1sin€i(t)) = p(te™ . (6.3)

Since p(t) has to be a real number we find that <sir1 € j(t)> = 0 and
p(t) = {cose(t)). As a consequence we can rewrite Eq. (6.1) as:

Gi(t) = w; — sin(p(t)) — C <cos ej(t)> sine€;(t). (6.4)

If we now take the time derivative of (6.2) one can identify real and
imaginary parts and find the identity

W(t) (cose;(t)) = ($;(t) cose;(t)) , (6.5)
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where we substitute ¢;(t) as given by Eq. (6.4) and obtain an equa-
tion for W(t) as a function of <cos ej>, <cos2 €j>, <sir1 €jCos €j> and
<6]- cos €j>. If we now expand these four terms up to second order
around ¢€; = 0 we are left with:

Y = (w) — Qu(t) sin W(t). (6.6)
(o)
T

We determine its dynamics by writing (Q(f) = — <éj(t)ej(t)>, using
&(t) = ¢i(t) — W(t), and replacing ¢; from Eq. (6.4) and W from
Eq. (6.6). Expanding the resulting expression up to second order
around €; = 0 we arrive at:

Here we have identified the dynamical variable Q,(f) =1 -

Qo = -W(t) +2(cos W(t) + C) (1 — (b)) , 6.7)
where the third dynamical variable W(t) = <€j(t)6j> allows us to
close the set of equations. It obeys dynamics given by W(t) =
<e'j(t)6]-> and is found in the same way as above:

W =62 — (cos W(t) + C) W(t), (6.8)

where we made use of the definition <6?> = o2

The set of equations (6.6) for the global phase and (6.7-6.8) for the
fluctuations, is the result of the order parameter expansion applied
to the oscillator ensemble defined by Egs. (6.1) and is the basis for
further analysis. The errors are of the order O (<67€}“>) ,n+m=3,
or higher. As a consequence, Eq. (6.6) is more accurate than the
corresponding equation W = (w)/p — sinW + O(<65>) obtained
in (Tessone et al. 2007). Note that this last equation simply iden-
tifies p as the threshold for excitability. In our case, the full sta-
bility analysis is more involved as (),(t) is considered to be a vari-
able of time. The Shinomoto-Kuramoto order parameter can be
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approximated by carrying out the appropriate time averages of

(=~ 'Qz(t)e"‘l’(f) - Qz(t)ei‘l’(f)I + O((e*))e¥® but, as stated above, we
will use a different order parameter. In the next subsection we will
determine the fixed points of the system (6.6-6.8) and their stability.

6.3.2 Phase diagram

The fixed points (W*, (25, W*) of the system of equations (6.6-6.8)
must satisfy:

(wy = QsinV¥”, (6.9)
o2
Q= 1-—, (6.10)
2(cosW* + C)
* 02
w cosW*+C’ (6.11)

Graphically, the coordinates W* of the fixed points correspond to
the intersections of the function Q}(W") sin (W*) with the horizontal
line representing (w). As shown in figure 6.1, it turns out that, for
fixed (w) and C the amplitude of the oscillatory rhs of eq. (6.9) is
a function that first decreases continuously with ¢ until eventually
reaching its lowest value to then increase continuously for larger
o (see figure 6.2). Therefore there exist two limiting values of the
diversity o, and o, such that two solutions are found whenever
0 < 0. or 0 > o.. A linear stability analysis shows that in this case
the global phase behaves as an excitable system, with one of the
solutions corresponding to a stable and the other to an unstable
fixed point. If, otherwise, o € (0., 07) there will be no fixed points
and the global phase will rotate in time, signalling the existence of
coherence firing in the global system. The linear stability analysis
also shows that the stable and unstable fixed points, found in the low
and high noise limits, collide and disappear when the maximum of
the right-hand-side of Eq. (6.9) coincides with (w). This is a so-called
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Figure 6.1: Graphical analysis of the solutions of the equation

(@) = (1 - m)sir\ (W) = Q(W) sin (V") for C = 4.0
and o = 0.5,3.0,7.5 (dashed, dotted, dash dotted). The hori-
zontal line marks (w) = 0.97. Note that the line correspond-
ing to 0 = 3.0 does not cut the horizontal line, thus no stable
steady state exists for this value of o, whereas two solutions

exist for the other values of 0.

SNIC bifurcation (saddle-node on an invariant cycle, see page 15).
The steady states in the macroscopic equations (6.6-6.8) at high and
at low values of ¢ are caused by different underlying microscopic
dynamics: whereas individual rotators are moving at high levels of
noise, they are all at rest in the low noise limit.

The phase diagram identifying regions of synchronized global firing
can be obtained from the existence of solutions to equations (6.9-
6.11) as discussed above. In general, this has to be performed nu-
merically, but to an arbitrary degree of accuracy. Results for the
case that the mean of natural frequencies is (w) = 0.97 are shown in
figure 6.3. It can be observed that a minimal coupling intensity is
needed to introduce a possible state of coherent firing. In the large
coupling limit, C >> 1, it is possible to derive analytical expressions
for 0. and 0. Neglecting cos W* in the denominator of the right
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Figure 6.2: Maximum of the rhs of eq. (6.6) for C = 4.0 as
continuous line and (w) marked as dashed line. When the

curve of the maximum lies above the dashed line a fixed
point solution exists. Otherwise not.

hand side of Eq.(6.10), the necessary condition [(w)| < €2} leads to

oe CV2+/1—(w), (6.12)
o = CV21+(w). (6.13)

In this approximation, the width of the interval (o, 07), where the
system fires synchronously, grows linearly with C. This means that
an intermediate level of coupling is needed to support a synchro-
nized firing state. The dependence on (w) of the second transition
is rather small for (w) ~ 1. The interval collapses for {(w) = 0. The
resulting approximate phase diagram for large coupling values is
marked with dashed lines in figure 6.3. We conclude that the order
parameter expansion correctly identifies the diversity induced tran-
sitions that occur at the critical points o, and o... As shown in figure
6.3, it also allows the determination of the value of o, with a reason-
able accuracy, although o7, is grossly overestimated, when compared
against the numerical simulations (see section 6.4) or the analytical
treatment of (Lafuerza et al. 2010) using a Gaussian distribution
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Diversity, 6

Coupling strength, C

Figure 6.3: Phase diagram: Fixed points of Egs. (6.9-6.11)
(for {(w) = 0.97) exist below and above the two continuous
lines (gray region). In between no fixed points exist and the
global phase rotates, i.e. the individual rotators oscillate in a
coherent manner. Approximate values of the critical diver-
sity for C > 1 according to Egs. (6.12,6.13) are plotted with
dashed lines. Symbols show values taken from numerical
simulations of the set of Egs. (6.1) with a Gaussian distribu-
tion. The dotted line marks the approximate solution of the
critical diversity given in (Lafuerza et al. 2010).

g(w;) for the natural frequencies. As an example, for (w) = 0.95
and coupling C = 4, the numerical solution of Egs. (6.9-6.11) yields
a critical noise intensity of 0. = 1.269, whereas the approximate
solution, Eq, (6.12) yields o, = 1.265. This is to be compared with
the value 0. = 1.272 obtained from the exact treatment given by La-
fuerza et al. (2010) based on recent developments by Ott & Antonsen
(2008, 2009).

From the microscopic point of view, one could argue that the de-
struction of coherence at high noise values is due to the coexis-
tence of individual oscillators rotating at opposite directions, as they
would certainly be present for many general distributions g(w) of
natural frequencies. However, the only requirements we have made
on the distribution g (w) is that its first and second moments are well
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defined. Therefore, according to our treatment, the existence of ele-
ments rotating in both directions can not be the only responsible for
the transitions. To analyze this issue, we have considered that the
individual frequencies were drawn from an exponential distribu-
tion g(w;) = e~/ / (w), for w; > 0 such that all natural frequencies
w; would be positive. In this case the variance ¢? and the mean
(w) are not independent of each other, as they satisfy 0 = (w) and
there is only one parameter in the distribution. Replacing 0 = (w)
in Egs. (6.12) and (6.13) we obtain

oe c(Ver+2-q) (6.14)
o, = c(Va+2+0), (6.15)

as the limits of the zone for which synchronized firing exists. The
phase diagram for this exponential distribution has been plotted in
figure 6.4. As it is a special case of the general distributions consid-
ered above, the qualitative image is the same: an intermediate value
for the intensity of the quenched noise is required to induce a state
of coherent firing, while a too high intensity destroys it. As in the
case of Gaussian distribution of natural frequencies, the qualitative
picture agrees with the exact treatment and the numerical simula-
tions. The lower critical point o, is also given with a reasonably
degree of accuracy, but the upper critical point is overestimated,
again compared with the numerical simulations or the analytical
treatment of (Lafuerza et al. 2010).

To end this section, we note that, for a general distribution g(w),
a very large diversity satisfying ¢ > o}, will never induce another
SNIC bifurcation into a new state of coherent firing. With this
observation one would expect that distributions g(w) with infinite
variance, as is the case for a Lorentzian distribution, would never
show a regime of synchronized firing. This is in agreement with the
detailed theory of (Lafuerza et al. 2010) only for (w) < 1. In the case
(w) > 1, however, the complete theory predicts that oscillators rotate
coherently for low diversity and incoherently for high diversity.
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Figure 6.4: Phase diagram for the exponential distribution of

natural frequencies which satisfies ¢ = (w). As in figure 6.3,

fixed points of Egs. (6.9-6.11) exist below and above the two

continuous lines (gray region). Approximate values of the

critical diversity for C > 1 according to Egs. (6.14-6.15) are

plotted with dashed lines. Symbols show numerical simula-
tions with exponential distribution.

In summary, and in agreement with more involved treatments of
the coupled active rotator model, the order parameter expansion
scheme predicts a transition into coherent firing and out of it, in-
duced by the exclusive presence of quenched noise. The only as-
sumptions we made on the frequency distribution to derive the
results are the existence of well defined first and second moments.
In the following section we present numerical simulations of the
full system, Egs. (6.1).

6.4
Numerical simulations

In the previous section we demonstrated that for very low and very
high values of ¢ the system (6.6-6.8) is in a steady state characterized
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by W = Q, = W = 0, whereas for intermediate values the global
phase W is not constant. This reproduces, in a simple manner, the
prediction of the existence of this intermediate level of disorder for
which the system fires synchronously and shows the validity of the
order parameter expansion applied to this model. In this section,
we will present results of numerical simulations of the full system
of coupled equations (6.1). Our goal is to show that the transitions
occurring at o, and o, show all the features of true phase transitions
and can be characterized, besides by the vanishing of the order pa-
rameter, by a divergence of the fluctuations. The divergence, as
usual, is smeared out by finite size effects and it is possible to carry
out an analysis in terms of finite size scaling with the number N of
rotators (Cardy 1988). Furthermore we want to compare the macro-
scopic behaviour of systems with symmetrically distributed natural
frequencies and systems with only positive frequencies. Namely,
Gaussian distributions are used in the first case and exponential
distributions in the second.

As order parameter, m, quantifying the collective firing regime we
have chosen the time average of the slope of the global phase m =

Y. This is expected to vanish for small, ¢ < ¢, and large 0 >
o, disorder and be non-zero in between. In the figures we plot
the ensemble average {m), and the normalized fluctuations xy =
N
a2
realizations of the random noise terms and initial conditions. We
present separately the results for Gaussian and for exponentially
distributed frequencies.

[((m2>) - ((m))Z], where {---) denotes an ensemble average over

6.4.1 Gaussian distributed frequencies

The natural frequencies w; are drawn from a Gaussian distribution
of mean (w) and variance 0. In figure 6.5a we present the results for
different values of the mean frequency (w) as a function of the noise
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intensity 0. One can see that for small o the order parameter {m)
vanishes or, equivalently, that the global phase is constant indicating
that all oscillators are in the rest state. When reaching the critical
value o, the global phase W(t) starts to rotate, i.e. W(t) ~ m # 0. This
is the regime of synchronized firing where a macroscopic fraction
of the oscillators fire in synchrony. Increasing the diversity over the
second critical value o7, the global phase W is constant again. This
is the phase where all units fire in a desynchronized manner. As
predicted by Eq. (6.13) the second transition is relatively constant
regarding small changes in (w) when it is close to one.

The precise numerical determination of the location of the transition
points ¢, and o/ is hindered by the finite size effects. We have
found that the location of the maximum of the fluctuations of m can
give us a good estimator of the transition points, as it is relatively
constant with system size, see figure 6.5b. The results for different
values of the coupling strength C are indicated with symbols in
the phase diagram, figure 6.3. The first transition is predicted with
high accuracy whereas the second transition is highly overestimated
by the order parameter expansion. Another feature predicted by
the order parameter expansion, namely the existence of a minimal
coupling necessary for inducing coherent firing, is indeed observed
in the simulations. The discrepancy between the predicted o, and
the observation is a consequence of the large diversity as there
the omitted higher order terms become relevant. We note that the
solution of the fixed point equations (6.9)-(6.11) can be obtained with
arbitrary precision and for the calculation of the phase diagram we
assured a sufficient convergence of the result.

In the vicinity of both transitions at . or o/, the ensemble fluc-
tuations x of the order parameter diverge with system size. As
figure 6.6(a) shows, the maximum value x..x(N) scales as N° with
c = 0.65 + 0.03 at the first transition and ¢ = 0.61 + 0.07 at the
second. Interestingly enough, the values of the critical exponent
at both transitions seem to be consistent with the value ¢ = 2/3
observed in a phase transition induced by quenched noise in a
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Figure 6.5: Simulation results for Gaussian distributed w;’s:
a) The order parameter {m) for C = 4.0 and various values
of {(w). The location of the second transition changes little by
small variations in {(w) if it is close to one. Simulations were
done with N = 102400. b) Ensemble fluctuations (performed
over 1000 realizations of the quenched noise variables and
initial conditions) of the order parameter increase with sys-
tem size ({(w) = 0.97 and C = 4.0).
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Figure 6.6: Finite size analysis for Gaussian distributed fre-

quencies with (w) = 0.97 and C = 4: a) Linear fits of maximal

fluctuations yield In (X)) ~ cIn(N) with ¢ = 0.65 + 0.07

for the first transition (circles) and ¢ = 0.6 + 0.1 for the sec-

ond (squares). b) Rescaled order parameter {m(g, N))N/2

collapses as a function of eN? with exponent b = 1/3,
(N = 12800, ...,204800).

Ginzburg-Landau model (Komin & Toral 2010). It turns out that
the full dependence of N and o at both transitions can be fitted using
standard finite-size-scaling theory (Cardy 1988; Deutsch 19924) as
(m(0,N)) = N2, (eN") and x(0, N) = N°f, (eN) with e = 1-0/0,
ore = 1-0/0,,and being f,, and f, suitable scaling functions differ-
ent for the two transitions. Our numerical results are not sufficiently
precise to allow an accurate determination of the exponent b, but
reasonable scaling collapse of the data, see figure 6.6(b), is achieved
using b = 1/3, as suggested by the analogy with the Ginzburg-
Landau model mentioned before.

6.4.2 Exponentially distributed frequencies

The probability distribution function for the natural frequencies is
g(w;) = e /9 [{w) for w; > 0. As mentioned before, this distribu-
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tion has only one parameter as the standard deviation is equal to
the mean o = (w). Itis chosen such that all rotators have natural fre-
quencies in the same, anti-clockwise, direction. As shown in figure
6.7 we find the same dynamical regimes as a function of the disorder
o as in the case of an arbitrary distribution. This is in accordance
to the theoretical predictions displayed in figure 6.4. the transition
into coherent firing is rather constant and happens around o, = 1,
the interval grows with rising coupling strength and a minimal C
is needed to induce coherent firing. Again the second transition is
overestimated. As before, we use the maximum of the fluctuations
in the order parameter (see figure 6.7b for the case of the transition
at o.) to estimate values for the critical noise intensities and annotate
them in the corresponding phase diagram (figure 6.4).

The first transition, into coherent firing, is marked by diverging
fluctuations (for a particular case, C = 5.0, see figure 6.7b) which
scale in the same way with system size N as we have seen in the
Gaussian case (see evidence in figure 6.8). However, in stark con-
trast to Gaussian distributions, the simulations with exponential
distributed frequencies give strong evidence that the transition into
asynchronous firing is now of first order. We compare the his-
tograms of steady states for 1000 noise realizations around both
transitions in figure 6.9. At the first transition (left column) the dis-
tribution broadens at the critical disorder and moves continuously
to higher values. On the contrary the equilibria near the second
transition are narrowly distributed around zero, or around the non-
zero value in the ordered state, typical for a first order transition
(right column).

It turns out that the order parameter expansion developed in the pre-
vious section predicts that the second transition into asynchronous
firing occuring at o = o7, is of second order for the Gaussian distribu-
tion and of first order for the exponential distribution of frequencies.
In fact it predicts that any distribution leads to a first order transi-
tion out of the ordered state if the mean and variance are set equal
(or in any other linear relationship) and varied simultaneously. The
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Figure 6.7: Simulation results for exponentially distributed

w;i’s: a) The order parameter is non-zero for finite disorder.

Fluctuations show that the first transition takes place around

o = 1, as Eq. (6.14) predicts for large C. b) Ensemble fluctua-

tions (for C = 5.0) diverge at the first transition for increasing
N.
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Figure 6.8: Finite size analysis for exponentially distributed

frequencies (C = 5): a) Linear fit of maximal fluctuations

yields ¢ = 0.65 + 0.02. b) Rescaled order parameter with
scaling exponent b = 1/3.

results of the numerical integration of the system of equations (6.6-
6.8) for selected sets of parameters ({(w), o, C) for the mean phase
velocity W are plotted in figures 6.10 (Gaussian) and 6.11 (expo-

nential). It is evident the jump of W at the second critical point o,
in the case of the exponential distribution whereas it is continuous
for the Gaussian distribution. The first transition to synchronized
firing at 0 = o, is predicted to be continuous independently of the
distribution of frequencies.

6.5
Conclusions

We have used the order parameter expansion to approximate the
dynamics of the global phase in systems of coupled active rota-
tors under the influence of quenched disorder. The method leads
straightforwardly to a system of three differential equations easier
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Figure 6.9: Histogram of 1000 steady states from simulations
of equations (6.1) with exponentially distributed frequencies.
At the transition into coherent firing (left column) the values
are distributed around one single value, broadening near the
critical disorder. The destruction of the ordered state is a first
order transition (right column), the values are distributed
narrowly around zero or the non-zero value, C = 5.0.
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Figure 6.10: Results from the integration of Eqgs. (6.6-6.8)
in the vicinity of the transition points with (w) = 0.97 and
C = 4.0. Both transitions, into the ordered state and into
asynchronous firing, panel a) and b) respectively, are of sec-

ond order.
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Figure 6.11: Results from the integration of Egs. (6.6-6.8) in

the vicinity of the transition points with (w) = 0. Whereas

the transition into the ordered state is of second order, panel
a), the second transition is discontinuous, panel b).
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treatable than the full system and more accurate than other approxi-
mations used in previous works. In agreement with exact results for
the full system, the global phase of the reduced system can undergo
a transition from a rest state into a rotating regime and back into a
rest state, when subjected to increasing diversity. In the rest states,
W(t) is time independent and the angular speed is zero, whereas
in the intermediate regime of coherent firing, W(t) increases with
time and the angular speed adopts a non-zero value. Our treatment
allows us to give analytic expressions for the critical disorder values
in the limit of large coupling. We have seen that the first transition is
predicted to a high degree of accuracy whereas the second is highly
overestimated.

We have used numerical simulations to show that the ensemble fluc-
tuations of the order parameter diverge at the transition points. The
simulations with Gaussian distributed frequencies show continuous
transitions, both in and out of the coherent firing state, but if the
frequencies are distributed according to an exponential distribution
(and therefore the mean and variance are varied simultaneously)
then the destruction of the ordered state is achieved through a first
order transition. The order parameter expansion scheme predicts
this distinction of the transitions. A finite-size scaling analysis of
the numerical simulations data indicate that the critical exponents
of the transitions are consistent with those found in the athermal
Ginzburg-Landau model with additive quenched noise.
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Chapter 7

Phase transitions induced
by microscopic disorder

71
Introduction

The effect of time-dependent noise in extended dynamical systems
has been the subject of intensive study in the last years (Garcia-
Ojalvo & Sancho 1999). Besides the expected disordering role, it
has been found that some kind of order at the macroscopic level
can appear by increasing the intensity of the noise. Examples of
this paradoxical result include stochastic resonance (Gammaitoni
et al. 1998, 2009), or enhancement of the effect of an external forcing
under the right amount of noise, coherence resonance (Pikovsky &
Kurths 1997) (also named as stochastic coherence (Zaikin et al. 2003))
where a dynamical system displays optimal periodicity at the right
noise value, noise sustained patterns, structures and fronts (Clerc
et al. 2006; Santagiustina et al. 1997), phase transitions where a more
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ordered phase appears when increasing the noise intensity (van den
Broeck et al. 1994b, 1997), etc.

In a very general framework, it has been argued that the reso-
nance with an external forcing can also be achieved when the time-
dependent noise is replaced by a more general source of disorder.
This includes natural diversity or heterogeneity, competitive inter-
actions, disorder in the network of connectivities, etc. and can
appear in driven bistable and excitable systems (Tessone et al. 2006,
2007; Toral et al. 2007), in linear (Toral et al. 2009) and chaotic (Chen
& Zhang 2008) oscillators and in a variety of other systems (Acebrén
etal. 2007; Chen et al. 2009; Gosak 2009; Perc et al. 2008; Postnova et al.
2009; Tessone & Toral 2009; Ullner et al. 2009; Wu et al. 2009; Zanette
2009a)). A unifying treatment of the role of noise and diversity for
non-forced excitable systems, has been developed in (Tessone et al.
2007).

In this work we examine the effect that structural disorder or di-
versity, in the form of quenched noise, has on some prototypical
models of phase transitions which have been studied thoroughly in
the presence of noise. From the practical point of view, the models
we will be considering bear some similarities with random-field, or
impurities, models. As tool of investigation we will refine a pre-
viously developed order parameter expansion method of approxi-
mating large systems of coupled differential equations (de Monte &
d’Ovidio 2002; de Monte et al. 2004, 2005, 2003; Silva et al. 2006) with
diverse parameters. This allows the reduction of the large set of dif-
ferential equations to just three: one for the global, mean field, value
and two which describe the fluctuations around this mean value.
Within this approximation (which is valid in the vicinity of the ho-
mogeneous state) we will analyse three different models and show
its ease to deliver some understanding of the emergent properties
of the global behaviour. To find the limits of the order parameter
expansion method we will compare the results with the solution
of the self-consistency equation which arises from the property of
self-averaging.
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The chosen models are a set of globally coupled ¢*-systems both
in the presence of additive and multiplicative quenched noise and
the canonical model for noise-induced phase transition (van den
Broeck et al. 1994b, 1997). It will be seen that quenched noise can
induce phase transitions (in, out and reentrant) of ordered phases.

The rest of this chapter is organized as follows: In the next section
we will describe the analytical methods, self-consistency and order
parameter expansion; in section 7.3 we will apply those methods
to the showcase models and compare with the results of numerical
simulations; the last section closes the chapter with the discussion
of the presented results.

7.2
Models and method

The type of models we will be considering in this thesis is defined
via differential equations for the dynamics of a set of real variables
Xi:

X :f(xi,ni;X), i= 1,...,N. (71)

The time derivative x;(t) = dx;(t)/dt depends on the constant pa-
rameter 1), a kind of quenched noise. The values {ny,...,ny} are
independently drawn from a probability distribution g(17) of mean
H and variance 0>. Coupling between the different dynamical equa-
tions is provided by the presence of the global variable or mean
value X(t) = (x;(t)) = % Zfil x;(t) in Eq. (7.1). For a given realiza-
tion of the 7n;’s variables the x;’s tend in the limit ¢ — o to some
asymptotic, stationary values which, in general, will depend on ini-
tial conditions. Some insight can be obtained if we write Eq. (7.1)
as a relaxational dynamics (San Miguel & Toral 2000) in a potential
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V(xi,ni X) = — [ dxi fxi, ni X):

. dV(xi,n; X)
Xi = —a—xi. (72)

If the potential V(x;, 1;; X) is monostable for a particular value of X,
then the variable x;(t) tends during the dynamical evolution towards
the single minimum of V(x;,n;; X). Note that the location of this
minimum will change with time as X evolves. If, on the contrary,
V(x;, ni; X) presents several minima, the dynamics will tend towards
one of the local minima of the potential.

In the following we will be interested in characterizing the station-
ary solution by the ensemble average value and fluctuations with
respect to realizations of the quenched noise and initial conditions
of the global variable X. We first review briefly the self-consistency
method and then explain the approximate method based on the
order parameter expansion.

7.2.1 Self-consistency

This method uses ideas borrowed from the Weiss molecular field
theory (Stanley 1971), which is known to be exact for systems with
long-range interaction or, equivalently, in which the interaction oc-
curs through the global variable X, a mean-field scenario, as it is
our case. Let us denote the stable stationary solution of Eq. (7.1)
by x!. This is nothing but the absolute minimum of the potential
V(xi,ni; X). It will be a function of 7; and the global variable X, i.e.
x; = x*(n;, X). For a given realization of the quenched noise vari-
ables 7;’s, the value of the global variable must be obtained from
the self-consistency relation X = 3 YN, x*(n;, X). It is clear that for
large N the sum can be replaced by an integral over the distribution
g(n) of the independent n;’s variables:
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X = f dng(mx(n, X). (7.3)

It is then assumed that one can identify the value of X, obtained
solving this equation, as the desired ensemble average, i.e. as-
suming the property of self-averaging (Landau & Binder 2000). In
general, the possible solutions X of the self-consistency equation
(7.3) have to be found numerically. A possible scenario is that by
changing some parameter (e.g. the root mean square o or the mean
H) of the distribution g(1), the solutions bifurcate and the system
then undergoes a phase transition between the possible solutions.
We will present the results of this procedure in the examples below,
but will not give any further details about the (in general, very in-
volved) numerical method used to solve Eq. (7.3). Explanations of
how to determine the actual value of the critical diversity is given
in Appendix B.2.

7.2.2 Order parameter expansion

For the development of this approximate method we assume, as in
the previous subsection, that the number of degrees of freedom N
is very large and then it is possible to substitute the mean value of
the distribution g(n) by the system average H = (1;) = %Zfil i,
the variance by 0% = ((1; — (7:)?) = & L, (i — (1:))?, and similar
expressions for other cases.

Our goal is to find an approximate equation describing the dy-
namics of the mean value variable X. To this end, we will expand
the evolution equations in the deviations €;(t) = x;(f) — X(t) of the
dynamical variables from the mean value, and in the deviations
0; = n; — H of the parameters from their mean value. The Taylor
expansion of Egs. (7.1) around the mean values up to second order
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gives:
J.Ci = f(X/ H/ X) +€; f:\”(X/ H/ X) + 6i fT](X/ H/ X) +
1 1
5 €1 forl X, H; X) + €01 fn (X, H; X) + 5 87 fy(X, H; X) +(74)

With the usual notation f(X, H; X) = 9 mX) , etc. We now
A=

ox
xX=
take averages and use that (¢;) = 1%1 Zf\il €, =0and (6;) = 1%] Zﬁl o; =
0. Furthermore we have (6?) = 0? as the parameter distribution’s
variance. So when we average over Eq. (7.4) we are left with:

X = FOCHX) + o fulXH X)) + X Hy X)eid) +

2
% Fon (X, H; X) + O((€3), (€267), ..) . (7.5)

The evolution of X is then coupled to that of the second moment of
the snapshot probability density Q = (?) = + Y €? and the so-called
shape parameter (de Monte et al. 2005) W = (€;6;) = % Zfil €;0;. We
will now obtain evolution equations for these two variables. We
follow closely the method of (de Monte et al. 2003) but keep all
terms up to second order in €; and 6;. We start by subtracting (7.5)
from (7.4) to obtain é; = %; — X, which can then be replaced in
Q = (2€i€;), W = (8;€;). After some algebra, and neglecting terms of
order O((€?), (€76;), . ..) or higher, we get:

X = f(X,H;X)+% FueXH; X) + fon(X, H; X)W +

(72

> fonX H; X), (7.6a)
Q = 20/XH;X)+2W (X, H; X), (7.6b)
W = W £(X H;X)+ 0 f,(X, H; X). (7.6¢)

In summary, within this approximation we have obtained a closed
set of three differential equations (7.6a-7.6c). They have the feature
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of being coupled only in one direction, i.e. W(t) is independent of
the others and €)(t) depends only on W(t). These equations are valid
to study the global behaviour in the general case, including non-
stationary collective states. Steady state conditions W =Q =X =0

2f'7 fz

and Q = ¢° —, and the equilibrium of variable

lead to W =

X is given by the solution of:

f; Sk
2 5k
where we have simplified notation f = f(X, H; X), etc. As before,

an analysis of the bifurcations of this equation will allow us to find
the possible phase transitions of the model.

0=f+ frm + fa s 7.7)

Our results, Egs. (7.6), differ slightly from those in the cited sources.
The authors de Monte & d’Ovidio (2002) and de Monte et al. (2004,
2005) require the parameter to be additive, thus setting f, = 1. In
other works (de Monte et al. 2003; Silva et al. 2006) any parameter
dependence is allowed, but a coherent regime is required, such that
terms of order O((¢?)) and higher are neglected.

7.3
Examples

After presenting the general development of the order parameter
expansion method, we will now apply it to a few models of rele-
vance in the field of phase transitions. Our purpose is to compare
the results of our approximation with those coming from the self-
consistency equation analysis as well as with numerical simulations
of the different models. Solving the self-consistency equation re-
quires in practice a complicated numerical calculation, while our
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treatment is simple and predicts the existence of phase transitions
with reasonable accuracy in some cases.

7.3.1 Globally coupled Ginzburg-Landau model with
additive quenched noise

The Ginzburg-Landau or ¢* scalar-field has been studied thor-
oughly from the analytical and numerical points of view, as a
paradigmatic model undergoing a second-order phase transition
(see Amit & Mayor 2005). Here we are interested in this model in
the case that the stochastic thermal fluctuations have been replaced
by additive quenched noise, as an example of a random-field scalar
model (Young 1998). The dynamical equations for the set of real
variables x;,i=1,...,N, are:

J'Cizax,'—x?+C(X—xi)+ni- (7.8)

The study of the model using the self-consistency relation Eq. (7.3)
can be found in (Toral et al. 2007). Here we want to use the order
parameter expansion to derive the main properties of this model,
in particular the existence of a phase transition as a function of the
intensity o of the fluctuations of the random fields 7;.

Following the steps from section 7.2, we obtain the set of equations
for the order parameter X and the fluctuations W, Q:

X = @-3QX-X>+H (7.9a)
QO = 20(a-C-3X%)+2W (7.9b)
W = W(a-C-3Xx%)+0. (7.9¢)

The steady state for the order parameter, Eq. (7.7), leads to:

02

0=(a—3—2
BX2+C-a)

)X—X3+H. (7.10)
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We now consider the case of zero average field H = (n;) = 0. In
that case, Eq. (7.10) can have up to five real solutions. The trivial
solution X = 0, always exists and it is stable (if C > a) whenever
o > 0., with

|0 ifa<0,
GC‘{\/?(C—a) ifa>0. 7.11)

It turns out that for C > 7a > 0, the set of Eqs. (7.9a-7.9¢) contains
two additional real stable fixed point solutions +Xj for ¢ < o.. At
o0 = o0.itis Xy = 0 and hence o, identifies a second order, continuous,
phase transition (see right panel of Fig. 7.1). If 7a > C > a > 0 the
range of existence and stability of these two additional solutions
extends up to 0 < 0g, where 0y > o, is given by:

_ |4 3
00 = /55 22+ 0) (7.12)

Hence, in the range o € [0, 0¢] there is bistability between the X = 0
and the +Xj solutions. Moreover, two additional symmetric un-
stable solutions +X; appear in this range. Therefore, the point o
signals the appearance of a first order, discontinuous, phase tran-
sition (see Fig. 7.1, left). In that range, the three stable solutions
coexist with the two unstable solutions.

From a microscopic point of view, the phase transition from the
|X| > 0 to the X = 0 states can be explained as follows: for o = 0, itis
n; = 0,Vi; all variables end up in the same stationary value x; = \a
or x; = —ya and the average value satisfies |X| = \a > 0. As the
noise intensity increases, o > 0, the average value |X| tends to zero
and the chances that individual values 7); are smaller than —CX grow.
This changes the minimum’s sign in the (individual) potential. Asa
consequence the distribution of {x;} becomes bimodal and the mean
value approaches zero.
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Figure 7.1: Bifurcation diagram of the Ginzburg-Landau
model with additive quenched noise. Order parameter ex-
pansion (thick black lines) predict a second order transition
for C > a (right: C = 10,a = 1) while bistability (first order
phase transition) appears for C < 7a (left: C = 1.5,a = 1,
the unstable solution is plotted as a dotted line). The self-
consistency solution (grey line) does not show bistability in
any case. Symbols show the results of numerical simula-
tions of the evolution equations averaged over 10° realiza-
tions of the quenched noise variables r; and initial conditions.
N =10%,10%,10° (circles, squares, diamonds, respectively).
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Figure 7.2: Critical intensity of the additive quenched noise
for the Ginzburg-Landau model versus coupling strength
for a = 1. Prediction of order parameter expansion (7.11) as
continuous line, exact solution (7.3) as dotted line. The order
parameter expansion predicts a bistability region for C < 7a.

The existence of a phase transition from order to disorder predicted
by the order parameter expansion simple approximation scheme is
confirmed by the numerical solution of the self-consistency equa-
tion (7.3) (Toral et al. 2007). However, the transition appears to be
always second-order, so indicating the validity of the prediction of
the approximate order parameter expansion in the limit of large cou-
pling. In fact, the critical value o, predicted by the order-disorder
transition, Eq. (7.11), deviates systematically from the value coming
from the numerical integration of the self-consistency equation (7.3)
for large coupling constant C, as shown in figure 7.2, although the
relative error between the two values decreases as C increases.

We have also compared these predictions versus the results com-
ing from intensive numerical simulations. In the simulations we
have integrated the full set of equations (7.8) up to the steady state
and, then, we have computed the order parameter m = ({|X|)) and
its fluctuations x = X [((X2)) - ((IX|)?]. Here X = &YX, x; and
((-++)) denotes an ensemble average with respect to realizations of
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the random variables 7; and initial conditions. The simulation re-
sults for the order parameter are indicated by symbols in figure
7.1. As usual, the transition from order to disorder is smeared
out due to finite-size-effects but the numerical simulations do ap-
proach the results of the self-consistency equation as the number N
of variables increases. We have analysed our data using standard
finite-size-scaling relations (Cardy 1988; Deutsch 19924) and found
that the dependence of the order parameter on ¢ can be well fitted
by m(o,N) = N7/2f,(eN®) with € = 1 - g/0., b ~ 0.33 and being
fm a scaling function. See evidence in the left panel of figures 7.3
and 7.4 for two different values of the coupling constant. Note that
this scaling relation implies that in the thermodynamic limit, the
order parameter vanishes as m(o) ~ (o, — 0)!/2, the typical mean-
field result. Similarly, the fluctuations can be fitted by the form
Xx(o,N) = N°f, (er), with ¢ & 0.67 and f, the appropriate scaling
function, as demonstrated in the right panels of figures 7.3 and 7.4
again for two different values of the coupling constant. This im-
plies that in the thermodynamic limit, the fluctuations diverge as
X(0) ~ |oc — o7 withy =c/b = 2.

7.3.2 Globally coupled Ginzburg-Landau model with
multiplicative quenched noise

We now consider the case in which the quenched noise couples
multiplicatively to the variable x;:

Xi=(a+n)xi— xf +C(X —x) . (7.13)

This model has been studied extensively in the case that the 1;’s are
independent white noises and it has been found that an increase in
the noise intensity leads to a transition from disorder to order (Buc-
eta et al. 2001; Garcia-Ojalvo et al. 1996; Garcia-Ojalvo & Sancho 1999;
van den Broeck et al. 19944). We want to compare the predictions of
the self-consistency equation with the order parameter expansion
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Figure 7.3: Low coupling (C = 1.5).
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Figure 7.4: Finite-size scaling analysis of the Ginzburg-
Landau model with additive quenched noise. Rescaled sim-
ulation data for low coupling (top graphs, o. = 1.094) and
high coupling (bottom graphs, o, = 6.203). Ensemble av-
erage m (left) and fluctuations x (right) as defined in the
main text. Exponents: b = 0.33,c = 0.67. Ensemble sizes:
N = 10%,10%,10° (circles, squares, diamonds). In all cases:
a = 1. Here, 0. has been determined to a high degree of
accuracy by using the numerical solution of Eq. (7.3).
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and numerical simulations to check if a similar result holds in the
case of quenched noise. Without coupling (C = 0) Eq. (7.13) is a
prototype of supercritical pitchfork bifurcations (see e.g. the part
about bifurcations in section 2.2 on page 13) with two possible sets
of solutions: x; = 0 is the stable solution whenever a + 1; < 0, or
X; = £ +fa + 1); are stable solutions and x; = 0is unstable fora+mn; > 0.

To study the consequences of coupling, C > 0, we use the above
developed order parameter expansion approximation. After setting
H = (n;) = 0, the equations are:

X = aX-X>-3XQ+W, (7.14a)
Q = (20-6X2-2C)Q+2XW, (7.14b)
W = (a-3X>-C)W+Xo?. (7.14c)

The equilibrium condition (7.7) leads to:

3X3g2 Xo?

0=aX-X°- + )
‘ (C-a+3Xx2)? C-a+3X?

(7.15)

Similarly to the uncoupled case this equation has two different
regimes of solutions: On one hand, if 2 > 0 the stable solutions
of Eq. (7.14) are X = ++/a for 0 = 0. As o increases, |X| mono-
tonically increases as well (see fig. 7.5, left). On the other hand, if
a < 0 then X = 0 is a stable solution for small 0. At some value o,
it becomes unstable and a fork of solutions grows out of zero (see
tig. 7.5, right). o. is determined by Eq. (7.15) and is related to a and
C by:

02=a@-C). (7.16)
o, identifies a second-order phase transition from disorder to order
(i.e. from X = 0to X # 0). In this case of a < 0, the value o, grows
monotonously with coupling strength C, a rather counter-intuitive
observation, since it means that the coupling hinders the ordering

and more structural disorder is needed to induce macroscopic order
(fig. 7.6).
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Figure 7.5: Bifurcation diagram of the Ginzburg-Landau
model with multiplicative quenched noise. Positive values
of a show order without noise (left: a = 0.1), whereas nega-
tive value show order only with a finite value of the noise
intensity (right: a = —0.5). In both panels it is C = 10. The
order parameter expansion approximation scheme gives a
monotonous solution while the exact solution of Eq. (7.3)
reaches a maximum and decreases for large o (grey line).
Symbols are the result of direct numerical simulations of
Egs. (7.13) averaged over 10° realizations of the quenched
noise variables 7; and initial conditions. N = 10%,10% 10°
(circles, squares, diamonds).
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Figure 7.6: Critical noise for bifurcation versus coupling

strength for a = —0.5 for the Ginzburg-Landau model with

multiplicative quenched noise. The prediction by the order

parameter expansion is shown as continuous line, the exact
solution (7.3) is shown as dotted line.

The numerical solution of the self-consistency equation (7.3) is qual-
itatively similar to the results of the order parameter expansion
approximation, however |X| doesn’t increase monotonically with
increasing o. It rather reaches a maximum and decreases after that
approaching zero asymptotically. Note that his is not a (reentrant)
phase transition since |X| = 0 is only reached for ¢ — co.

The simulation results for the order parameter are shown as sym-
bols in figure 7.5. At this scale no finite-size-effects can be seen at
the phase transition. In a thorough data analysis with finite-size-
scaling relations at o, in the way we did in the first example, we
found exponents of b ~ ¢ ~ 0.5 to fit the order parameter and fluc-
tuations (see fig. 7.7). These scaling relations imply, again in the
thermodynamic limit, that the order parameter vanishes and the
fluctuations diverge as m(a) ~ (0. — 0)'/? and x() ~ |o. — 0|7, with
y = c/b = 1 respectively.
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Figure 7.7: Finite-size scaling analysis of the Ginzburg-

Landau model with multiplicative noise for a = —0.5, C = 10.

Rescaled ensemble average m (left) and fluctuations yx (right)

of 10° numerical simulations with N = 103, 10%,10° (circles,

squares, diamonds). Critical point, as from Eq. (7.3), is
0. = 2.169; exponents: b = 0.5,c = 0.5.

7.3.3 Canonical model for noise-induced phase tran-
sitions

As the last example we will study a model for which a genuine
phase transition induced by multiplicative noise has been shown
(van den Broeck et al. 1994b, 1997) with the feature that the ordered
phase is reentrant, it only exists for intermediate noise intensities.
The equation for an individual element is:

5= -x (1+2) +(142)n+ C(X - x) (7.17)
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and the reduced system according to section 7.2.2 (again setting
(n;) = 0) reads:

X = —X(1+X2)2+%[—12(1+X2)X—8X3]Q
+2XW (7.18a)
a = 2Q[—(1+X2)2—4X2(1+X2)+c]

£2W(1+X?)  (7.18b)
W= w[—(1 +x7) —4x2(1 +X2)+C]
+0?(1+X%) . (7.180)

The equilibrium condition (7.7) becomes

—(6+6X2)X —4x3)02(1+x2)
0=—X(1+X2)2+( ( (1+6)X2+5X4)+C()2 ) + (7.19)
X02(1+X2)

2 .
1+6X2+5X4+C

Equations (7.18) have the stable solution X = 0 for ¢ < o, or a pair of
symmetric solutions X # 0 for ¢ > o,, when X = 0 becomes unsta-
ble (see left panel of fig. 7.8). The value of o, indicates the location
of a second-order phase transition. It follows from analysing the
Jacobian of (7.18a-7.18¢) and calculates to:

1+C

O = ——. 7.20

T At 1 (7.20)

Accordingly, a minimal coupling C > 2 is necessary to induce the
phase transition. An analysis of this relation shows that o, has a
minimum with respect to C. Therefore, see figure 7.9, the transition
is predicted to be reentrant with respect to C: the ordered phase
only exists in a range of values for C, with the surprising prediction
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Figure 7.8: Bifurcation diagram of model (7.17) (left). Order

parameter expansion (thick black line) and exact solution

(grey line) together with the ensemble average of 10° nu-

merical simulations for N = 10%10% 10° (circles, squares,

diamonds). Coupling is C = 10. On the right the unscaled
fluctuations are shown.

that too a large coupling destroys the ordered state. The predictions
of the order parameter expansion are in qualitative agreement with
those obtained after solving the self-consistency equation. How-
ever, whereas the order parameter expansion predicts incorrectly
that the order parameter monotonously increases with o, as shown
in figure 7.8, the self-consistency equation instead predicts that the
transition is reentrant also with respect to the quenched noise inten-
sity o, see figure 7.9. Both reentrant behaviours were observed in
the case of time-dependent noise (van den Broeck et al. 1994b, 1997).

Again we have compared the predictions with the numerical in-
tegration of the set of equations (7.17). The simulation results are
shown as symbols in figure 7.8. Due to finite-size-effects the the-
oretical results are approached with increasing number N of par-
ticles, reentrance and the dependence of o, from C are observed.
Analysing the data as we have done with the other examples, we
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Figure 7.9: Critical noise intensity versus coupling strength

for model (7.17). The prediction (7.20) of the order parameter

expansion (continuous line) and the exact solution (7.3) as

dotted line. Only the latter shows reentrance with respect to
o.

find exponents for the scaling relations of b = 0.33 and ¢ = 0.67.
As in the first case this implies the relations m(o) ~ (o, — 0)'/? and
Xx(0) ~ |loc—ol™,y = c/b = 2in the thermodynamic limit. Figure 7.10
summarizes the fitted simulation data.

7.4
Conclusions

In this chapter we have constructed an approximate analytical
scheme based on the order parameter expansion developed by de
Monte & d’Ovidio (2002), de Monte et al. (2004, 2005, 2003) and
Silva et al. (2006), to study the macroscopic behaviour of extended
systems which are globally coupled. We have used the method
to study in detail the phase diagram of three widely used models
of phase transitions in scalar systems: the Ginzburg-Landau scalar
model with both additive and multiplicative quenched noise and
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transition. Exponents are: b = 0.33,¢c = 0.67.
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a genuine model for noise-induced phase transitions where time-
dependent noise has been replaced by quenched, time-independent
noise coupled multiplicatively to the dynamical variable (van den
Broeck et al. 1994b).

We have compared the results of our simple approach with those
coming from a numerically involved, but in principle exact, treat-
ment based on the self-consistency relation and with extensive nu-
merical simulations of the corresponding dynamical equations for
each model. In the case of additive noise, the main result is that
macroscopic order is destroyed when increasing the intensity of
the quenched noise. In the other two cases, when noise appears
multiplicatively, we find that macroscopic order appears for an in-
termediate value of the intensity of the quenched noise. Since the
quenched noise can represent, for instance, diversity or heterogene-
ity, it appears paradoxically that some amount of structural disorder
is needed in order to observe macroscopic order.

Furthermore it has been shown numerically, that all investigated
models follow a finite-size scaling law and the exponents have
been determined. It suggests a common universality class for
the Ginzburg-Landau model with additive quenched noise and the
canonical model for noise induced phase transitions, whereas the
Ginzburg-Landau model with multiplicative quenched noise yields
different exponents. A more detailed analysis of the finite-size re-
lations and their possible dependence with the system parameters
will be presented in a chapter further down.

The method of order parameter expansion, which we lead consis-
tently up to terms of second order, is a tool which reduces large
systems to only a couple of reduced variables. The advantage is its
very easy management. In this chapter we have proven that reliable
conclusions can be drawn with that method in some cases. Sinceitis
an expansion around mean values, designed to be applied near the
homogeneous state, the method yields good results for low values
of the intensity of the quenched noise or for high synchronization
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of the subunits. Otherwise, the method might not be reliable. As a
consequence the reentrant phase transitions were not predicted in
the studied cases for multiplicative noise. It is an open issue how
to modify the method in order to predict the reentrant transitions.
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Chapter 8

Ginzburg-Landau model:
Critical behaviour due to
additive quenched noise

8.1
Introduction

In statistical mechanics, models describing the effect of impurities
or heterogeneities in the behaviour of magnetic systems are gath-
ered under the label of spin glasses (Young 1998) when the source
of heterogeneity affects the local spin interaction (and therefore the
interaction term in the Hamiltonian takes into account such disor-
der). Conversely, the so-called random field models (Young 1998)
address those systems where the source of heterogeneity only yields
an additive heterogeneous term (perturbation) in the Hamiltonian:
in this case the effect of disorder is akin to subject the system to
a random external perturbation. In both cases, such sources of
heterogeneity typically have slower dynamical evolution than the
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spins (or the dynamical variables), and therefore these sources of
randomness are said to be quenched. In the last decades a wealth
of literature has addressed the phenomenology behind spin glasses
and random field models, including phase diagrams, aging and
other dynamical behaviour, and comparison with their equilibrium
counterparts (see (Calabrese & Gambassi 2005; Crisanti & Ritort
2003; Young 1998) and references therein).

In other branches of science the role of disorder in models charac-
terizing the dynamical behaviour of multicomponent systems has
also been addressed in the last years. Noticeable examples include
the effect that a certain amount of heterogeneity in the natural fre-
quencies of Kuramoto oscillators can yield on synchronization (Ku-
ramoto 1975, 1984), the paradoxical constructive role that disorder
can induce in the formation of ordered structures in a plethora of
different contexts (Buceta et al. 2001; Chen & Zhang 2008; Gosak
2009; Perc et al. 2008; Postnova et al. 2009; Tessone & Toral 2009; Tes-
sone et al. 2006, 2007; Toral et al. 2009, 2007; Ullner et al. 2009; Zanette
2009D), and the effect that the topology of the underlying network of
interactions plays in several types of dynamics (Acebroén et al. 2007;
Boccaletti et al. 2006; Chen et al. 2009; Wu et al. 2009), to cite some.
All these works address similar generic questions, namely study
the effect of structural disorder in the dynamics of multicomponent
systems.

here, in this chapter we will address a paradigmatic example within
equilibrium statistical mechanics, the Ginzburg-Landau, also called
¢*, model (Amit & Mayor 2005), in a version subjected to such
quenched disorder much in the vein of random field models. Al-
though the expected role of heterogeneity is that of destroying the
ordered state, recent works (Tessone et al. 2006; Toral et al. 2007) have
addressed the positive role of the quenched noise in enhancing the
response of this model under the presence of an external periodic
driving. In (Buceta et al. 2001) the authors studied the effects of in-
troducing a quenched multiplicative dichotomous noise, and found
that the phase diagram is modified and gives rise to the onset of
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reentrant phase transitions not present in the quenched noise free
model.

Here we address the mean-field version of the model subjected to
quenched additive noise in absence of temperature (Komin & Toral
2010; Toral et al. 2007). First, we present an analytical study of the
phase diagram by means of a self-consistent theory, both in the non-
metastable and metastable regions. The theory predicts an order-
disorder transition as a function of the quenched noise intensity o,
with mean field critical exponents equal to those of the thermal equi-
librium counterpart. We also perform a detailed numerical study of
the system for different sizes N in terms of finite-size-scaling theory
and determine the scaling exponents. We show that in the non-
metastable region the order parameter fluctuations diverge with
an exponent different from the one of the magnetic susceptibility.
This indicates a violation of the fluctuation-dissipation relation. In
order to justify this finding, we obtain in closed form an expres-
sion for the probability density function of the system in terms of an
effective Hamiltonian He¢(x), and accordingly argue that the fluctu-
ations of the order parameter cannot be straightforwardly related to
the linear response of the system. In the region where metastability
does take place, results from numerical simulations deviate from the
phase diagram found through the self-consistent theory and show a
strong dependence on the specific initial conditions. Concretely, we
show that for symmetrical initial conditions, the simulations point
out the presence of a reentrant phase transition (disorder-order-
disorder) with an ordered state whose width varies and eventually
disappears in the Ising limit, corresponding to alarge valued of a pa-
rameter in the Hamiltonian. This counterintuitive phenomenology
supports the fact that disorder or heterogeneity can not only induce
dynamical disorder but, on the contrary, can have an ordering role.
Conversely, for positive-definite initial conditions the phase tran-
sition is smoothed in the same limit, and no critical behaviour is
found in that case.
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The rest of this chapter is organized as follows: in section 8.2 we
present the model. In section 8.3 we outline some considerations
regarding the presence of metastable states. In section 8.4 we derive
the mean-field critical exponents associated to the magnetization
and magnetic susceptibility. In section 8.5 we numerically study
the order-disorder transition in the range of parameters where the
system lacks metastable states. We provide compelling evidence
suggesting that the fluctuation-dissipation relation is not satisfied,
and we argue that a possible reason is that the influence of the
average external field  on the effective Hamiltonian yielding the
probability density function of the system cannot be readily stated
as Hegr(x) = Ho(x) + Nmh, being m the magnetization, as it happens
in equilibrium theory. In section 8.6 we numerically explore the sys-
tem’s behaviour in the presence of metastable states and discuss the
role of the initial conditions in the asymptotic stationary state of the
system. We also point out the presence of an disorder-order transi-
tion induced by diversity in the metastable situation. In section 8.7
we summarize our main results.

8.2
Additive Ginzburg-Landau model: prelimi-
nary considerations

We consider a set of N real dynamical variables x;(t),i = 1,...,N
whose evolution is given by a relaxational gradient flow (San Miguel
& Toral 2000) in a potential V:

dx; _ V(%)
dt B 8X,‘ ’
Nl a, 1 1 &
= Il o — ) — i
V—Z le +4xl +4N Z(x] xi)° = nixi|, (8.1)
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or,

dx; 1
2 gy — S — s )
n ax; — x; + N ;21 (xj —x:) + 1. (8.2)

The Lyapunov potential V(x;1) depends, besides on the dynami-
cal variables x = (xy,...,xn), on a set of variables = (11,..., )n).
Most commonly these variables represent white noise of ampli-
tude proportional to the temperature and the model defines a class
of thermal phase transitions. In this work, however, we take these
variables to represent quenched noise and the problem then belongs
to a class of zero temperature random field models. Accordingly,
(m, ..., nn) areindependently drawn from a probability distribution
g(n) (which typically will be a Gaussian) of mean h and standard
deviation 0. The model can be thought as describing a set of glob-
ally coupled heterogeneous units, being ¢ a measure of the amount
of diversity or heterogeneity in the system. As we are interested in
this work in the effect of the diversity, o will be taken as a control
parameter and we will study the effect that o has on the collective
properties of the system.

This model is indeed a discretization of a mean—field version of the
well known Ginzburg-Landau Hamiltonian for a scalar field x(7)
under the presence of a random external field 7(7) (Amit & Mayor
2005; Young 1998):

H = jvdf’(—gx2 + glﬁxl2 + gx‘i - nx), (8.3)

where, without loss of generality, we have rescaled variables and
time such that u = 1, C = 1/2. This Hamiltonian provides a coarse-
grained description of critical phenomena, and its formulation is
based on some phenomenological considerations such as locality
and symmetries (rotational and translational); that is to say, this
latter expression is not calculated from the microscopic physics,
but rather can be understood as a coarse-grained description of the
magnetization field x. By using the Boltzmann weight factor e /7,
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where T is the temperature, this model has been used for instance
to describe the paramagnetic-ferromagnetic transition (where the
Hamiltonian describes the coarse-grained magnetization field). In
the case of a uniform external field, Landau theory elegantly de-
scribes a second-order thermal phase transition for this system, with
mean-field critical exponents f§ = 1/2, y = 1 (Amit & Mayor 2005;
Young 1998). This Hamiltonian also offers a soft-spin description
of the Ising model (Young 1998): as a matter of fact, in the limit
a — oo one recovers the Ising model (or the Random Field Ising
Model (RFIM) in the case of having a random external field). In
the last decades the RFIM has been extensively studied (see (Sethna
et al. 2006; Young 1998) and references therein), where some specific
results include the onset of criticality in terms of a second-order
phase transition in zero-temperature induced by the disorder of the
random field, with mean-field critical exponents (Dahmen & Sethna
1996; Sethna et al. 1993) as in the thermal counterpart (Schneider &
Pytte 1977). Several other features such as hysteresis, avalanche
dynamics, or return point memory effects, to cite a few, have been
studied within the RFIM, both in analytical (renormalization-group)
and numerical (finite-size scaling) terms (Pérez-Reche & Vives 2004;
Sethna ef al. 2006). The properties of the model have also been stud-
ied in the context of domain growth dynamics both in the Ising
limitGrant & Gunton (1984, 1987); Grinstein & Fernandez (1984) or
using the full Ginzburg-Landau Hamiltonian (Oguz et al. 1990) .

8.3
On the presence of metastability

From the dynamical point of view, it has already been said that the
evolution is relaxational in the Lyapunov potential V. Hence, the
absolute minimum (or ground state) of V' located at x* = (x7,...,x})
must be considered as the global attractor of the dynamics. It is
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obvious that the value of x* will depend on the specific realiza-
tion of the quenched noise variables (11,...,7n). On the other
hand, the solutions of the differential equations (8.2) tend to val-
ues x = limy_, x;(t) which might or might not coincide with x7. If
the potential V has a single minimum, then the dynamics always
leads to x*, but if there are additional, metastable, minima, then the
asymptotic solution x** depends on the initial condition x(t = 0) as
it might get stuck in one of them. The presence and relevance of
these metastable minima depends in general (and besides the par-
ticular realization of the quenched-noise variables) on the value of
the parameter 2 and the number of variables N.

In order to find the absolute minimum x* one needs to solve the
system of N coupled algebraic equations:

N
1
0=ax';—xF+ Y =)+ (8.4)
j=1

The solution is greatly simplified if one introduces the magnetization
m as

1 &
mzﬁzlx,-, (8.5)

and then writes Eq. (8.4) as:
m+n = (1—a)x'; +x°2. (8.6)

This equation allows one to find x} as a function of m and 7; (in
fact as a function of m + 7;). The explicit solution, x; = x*(m + 1;)
can be replaced in the definition of the magnetization to obtain a
self-consistency equation:

1 &
m= N Z x'(m + ;). (8.7)
i=1

The problem has been reduced from the simultaneous solution of
the N coupled equations (8.4), to the solution of a single one (8.7)
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although, in general, all possible solutions m), m?, . .. of this equa-
tion have to be obtained numerically. For a given solution m®

one can then find the respective values of x*(") using the function

*E") = x"(m™ + 13;). In order to analyze the structure of the possible
solutions of Eq. (8.7), it is convenient to split the discussion in the
casesa < landa > 1.

8.3.1 Casea <1

This is the simplest case. A graphical analysis shows that Eq. (8.6)
has a unique real solution x*; = x*(m + 1;) (see Appendix). Even in
this case, it is possible that Eq. (8.7) has more that one solution for
m. This is typically the case for small values of N. See an example
in Fig. 8.1.

i

i ‘
" i ”“m\ﬂ‘ |

Figure 8.1: Lyapunov potential V(x;,x;) as defined in
Eq. (8.1) for N =2, 7y = —0.48,1, = 0.5 in the cases a = -1
(left), a = 0.8 (center) and a = 2.8 (right). While the case
a = —1 displays a single minimum, in the case a = 0.8
there are 3 minima (2 metastable) and 2 maxima, whereas
for a = 2.8 there are 4 minima (3 metastable) and 5 maxima.

However, as N increases the number of metastable solutions de-
creases greatly. In fact, it is possible to prove that in the thermo-
dynamic limit, N — oo, Eq. (8.7) can have only either one or three
solutions depending on the values of a, /1, 0. The proof replaces the
sum over N by an integral over the probability distribution of the
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quenched-noise variables:

m= f dn g(mx*(m +n). (8.8)

Let us assume that the probability distribution g(1) has a generic
form g(n) = 1G ("T_h) Henceforth, all numerical results will use the
Gaussian distribution G(z) = ‘/szne‘zz/ 2. A change of variables leads
to:

m= f dEGEX (m + h + 0&) = F(m + h). (8.9)

As F,(z) is a monotonously increasing function satisfying F,(0) = 0
and with a sigmoidal shape*, there will be only one solution for m for
all values of h if the derivative satisfies F/,(0) < 1. On the other hand,
for F;,(0) > 1 there will be either one or three solutions depending
on the value of h. This analysis mimics that of the Weiss mean-field
theory (Stanley 1971) and allows one to compute the magnetization
m(h;a,0) as a function of the mean value of the disorder & and the
parametersa, 0. It displays usual critical phenomena and hysteresis.
The critical point is defined by the condition F/(0) = 1 and can be
achieved by varying a or 0. It is possible to show that F/_ (0) =
1/(1 —a) and, since F/(0) is a decreasing function of o, the condition
F;(0) = 1 can never be achieved for a < 0. This was a priori obvious
since in that case the Lyapunov potential in the absence of quenched
noise has the global minimum at x; = 0, Vi, already a disordered
state. Some numerical values (for the Gaussian distribution) for the
location of the critical diversity o. as a function of aare: (2 = 0.1, 0, =
0.19616), (a = 0.5,0. = 0.50041), (a = 2/3, 0. = 0.595233). In the case
a = 1, the Cardano formula simplifies to x* = (m + h)'/3 and it is
possible to perform analytically the integrals (again for a Gaussian
distribution for the quenched-noise variables) with the result (Toral

3/2
etal. 2007) (a=1,0. = [25213% 2 0.7573428..).

“This assertion is certainly true for a Gaussian distribution g(17) as well as for
other probability distributions, although we have not been able to give a general
proof of its validity.
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8.3.2 Caseua > 1

The problem in this case is that the cubic equation (8.6) can have
either one or three real solutions depending on whether the dis-
criminant A; = 27(m + 1;)* + 4(1 — a)® is, respectively, positive or
negative. Besides, as before, several values of m can satisfy the self-
consistency Eq. (8.7). When there are three solutions for x}, (A; <0,
this requires a > 1) it is not clear a priori which one to chose in order
to substitute in the self-consistency relation (8.7). A possibility is
to compute the Lyapunov potential V for each of the possible so-
lutions. However, since the maximum number of solutions can be
as large as 3V, this is not possible to carry out in practice for large
N. The answer arises when one realizes that the dynamical equa-
tion for x;(t) can be written also as relaxational in a local potential
v;(x;, m):

dx; _ dvi(xi,m)
dar ox; !
1-a, 1 m?
v; = Txlz + Zx? — (m+m)x; + > (8.10)

The solutions x*(m + 1;) are nothing but the extrema of this local
potential. Now we notice that the Lyapunov potential can be written
as sum of the local potentials:

N
V(xs,...,xn) = Z 0ix;, m). (8.11)
i=1

ik

Therefore, the absolute minimum of V is achieved by choosing in
each case the solution x*(m + 1;) that minimizes the local potential
vi(x;, m). Explicit expressions for the function x* are obtained using
Cardano’s formula and are given in Appendix B.1.

The process to find the absolute minimum x* of the Lyapunov poten-
tial proceeds, as before, by finding first m after solving numerically
the self-consistency equation (8.7), but using the correct function
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x*(m + n). Similarly, the integral equation (8.8) can be used to find
the magnetization m(l; a, o) in the thermodynamic limit. The phe-
nomenology of the solutions is similar to what was found in the
case a < 1 and will not be repeated here.

Animportant difference, however, with the casea < 1is thatnow the
Lyapunov potential displays a large number of metastable minima
for all values of N and, consequently, also in the thermodynamic
limit (a recent study for the metastable states of the zero-temperature
RFIM has been carried on in (Rosinberg et al. 2008, 2009)). Therefore,
starting from arbitrary initial conditions, the asymptotic solution of
the evolution equations x{' will in general differ from the values x; of
the absolute minimum. It will be shown that new phase transitions
occur when one looks at the magnetization values that derive from
the stationary solution.

8.4
Critical behaviour

We have seen that this mean-field model displays a second order
phase transition between an ordered state (|| > 0) and a disordered
state (m = 0) at a critical value of the diversity o.. In order to
derive the critical exponents of such transition, we consider the
self-consistency Eq. (8.9) and expand Fs(m + h) in a Taylor series.
Since x*(—m — h) = —x*(m + h) (see Appendix) and assuming that
the distribution of noises is symmetric with respect to the mean
value, G(=&) = G(&), the function F, is antisymmetric F;(—m — h) =
—Fs(m + h) and we get:

m = ay(o)(m +h) + az(o)(m + h)® + ... (8.12)
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with ax(0) = FgQ(O) /k!. Hence, the magnetization at 1 = 0 is:

0 foro > o,
bl Lo for 6 < g, (8.13)

a3(0)

As F/(0) — 1 changes sign at 0 = 0., we can expand ai1(c) = 1 +
a1(o.—0) +.... Accordingly, close to the transition the spontaneous
magnetization behaves as |m| ~ (0. — 0)?, with a critical exponent
B =1/2, as in Landau’s treatment of the thermal phase transition.

d
To compute the critical behaviour of the susceptibility x;, = % ,
h=0

we take the derivative of both sides of Eq. (8.12) and set h = 0.
a1(0) + 3a3(c)m?

1 —ay(0) — 3a3(c)m?’

a1(0) =1+ ay(o. — 0) + ... we find the critical behaviour:

This leads to x; = Replacing Eq. (8.13) and

Xn=Aslo—ol™ (8.14)

with critical amplitudes A~ = 1/(2a;) for ¢ < o, and A, = 1/ for
o > o.. Therefore the susceptibility critical exponent is y = 1, the
same, not surprisingly, than in Landau’s theory.

8.5
Numerical results for a < 1: violation of the
fluctuation-dissipation relation

In this section we present the results coming from the numerical
integrations * of the dynamical equations (8.2) in the casea < 1. The

“The simulations were performed using a fourth-order Runge-Kutta method
with a time-step 6t = 0.05 and integrating up to the stationary state checking that
the magnetization remains constant up to a precision € = 107°. The initial condition
x(t = 0) was a uniform random distribution in the interval [-2.5,2.5].
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objective is twofold. First, by comparing with the analytical results
valid in the thermodynamic limit, we want to check the importance
of the metastable states that appear for finite N. Second, we will
use the theory of finite-size scaling in order to determine the ex-
ponents of the transition. We will show that there is a violation of
the fluctuation-dissipation relation in the sense that the magnetic
susceptibility can not be computed as the ensemble fluctuations of
the magnetization. By ensemble average (- - -)) we mean an average
with respect to realizations of the random quenched-noise variables
as well as with respect to the initial conditions x(f = 0). However, for
the range of values of system size N employed in the simulations,
N > 10, there was hardly any dependence on the initial condition
for a given realization of the random variables. This shows that
metastable states either do not exist or it is rare to get trapped in
them for this range of values of a and N. In the left panel of Fig. 8.2
we plot the order parameter my as a function of the diversity o for
the value a = 2/3. As usual (Landau & Binder 2000), the order
parameter is defined as the ensemble average of the absolute value
of the magnetization mg = {|m|) computed from the stationary val-
ues as m = + Y x5!, As predicted by the self-consistent treatment
explained in previous sections, there is a phase transition from an
ordered (ferromagnetic-like, 11 > 0) to a disordered (paramagnetic-
like, my = 0) phase as a function of 0. The transition is smeared out
by finite-size effects, but it approaches the solution of the thermody-
namic limit and the transition point o, as the system size N increases.
In the right panel of this figure we plot the normalized fluctuations
of the order parameter, defined as y = & [((m2)> - (<|m|)>2] as a func-
tion of the diversity o. These fluctuations have a maximum in the
neighborhood of . and, as shown in the right panel of Fig. 8.3, they
increase with increasing N as x(o.) ~ N’ with b ~ 2/3 for different
values of the parameter 2, and hence diverge in the thermodynamic
limit. As shown in the left panel of the same figure, the order pa-
rameter at the critical point decreases as my(o,) ~ N~ withc = 1/6
and tends to zero in the thermodynamic limit.
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Figure 8.2: Left panel: Order parameter m, as a function of
the diversity o for a = 2/3. The symbols correspond to the
numerical integration of the dynamical equations (8.2) for
different system sizes N and a Gaussian distribution (zero
mean, standard deviation o) of the quenched noises. The
solid line is the magnetization m obtained by solving the self-
consistency Eq. (8.9) for h = 0. Right panel: Order parameter
fluctuations, yx, as a function of the diversity o, for the same
system sizes as the left panel (the vertical axis is in logscale
for presentation purposes).
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In(my)
]n(Xmax)

4 T R . 0 T W R
4 6 8 10 12 14 16 4 6 8 10 12 14

In(N) In(N)

Figure 8.3: Log-log plots of the order parameter mq (left
panel) and the fluctuations x (right panel) as a function of
system size N for different values of g, at the corresponding
critical point o.(a). In all cases we find a good fit to a power-
law behaviour: my ~ N~ and xy ~ N? with ¢ = 0.16 +0.01 and

b =0.66+0.02.
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Figure 8.4: Data collapse of the order parameter mq (left
panel) and the fluctuations yx (right panel) according to the
finite-size scaling relations 11y(g, N) = N~2 £, (N°(1 — o /o))
and x(o,N) = N!f,(N°(1 - 6/0,)) using v = 1/3, b = 2/3.
The goodness of the collapse is an evidence supporting the

validity of the scaling relations.
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Data for a range of values around the critical region can be collapsed
through standard finite-size analysis (Cardy 1988; Deutsch 1992b)
according to the scaling laws: mg(o,N) = N~°f,(N°(1 — ¢6/0.)) and
x(0,N) = N’ £,(N?(1 — ¢/0,)) with appropriate scaling functions f,,
and f,. A good fit, see Fig. 8.4, is obtained with v = 2c¢ = 1/3. Note
that this scaling form implies that in the infinite-size limit (o) ~
lo — o.lf and x(0) ~ |0 — 0|77, with critical exponents f = c/v =1/2
and y = b/v = 2. We have also performed a finite-size scaling of the
fluctuations of the stationary value of the energy (global potential)
at the critical disorder o.(a = 2/3) = 0.595233, according to which
one finds a value for the critical exponent of those fluctuations a =~ 0,
the same than the (thermal) mean-field result for the specific heat
(data not shown).

While the result of the previous section proved that the susceptibility
Xn has a critical exponent y = 1, the numerical simulations suggest
that the fluctuations y diverge close to the critical point as a power
law with a different exponent y = 2. This seems to constitute
a violation of the fluctuation-dissipation relation. Since we have
restricted this analysis to the range a < 1, this violation does not
seem to be related to typical situations of metastability, absence of
time translation symmetry or aging (Calabrese & Gambassi 2005;
Crisanti & Ritort 2003; Young 1998). Furthermore, the hyperscaling
relation 28 + y = d.v, that holds in the mean-field regime or for
d > d., is satisfied using y = 2 as it is known (Imry & Ma 1975) that
the upper critical dimensionis d, = 6 and v = 1/2.

To explain this discrepancy, we note that the fluctuation-dissipation
relation is obtained typically for a system in the canonical ensem-
ble at temperature T and whose probability density function (pdf) is
= Z ' exp(—=H/T), witha partition function Z = f dx exp(-Hx)/T),
being H the Hamiltonian of the system. If the Hamiltonian con-
tains a magnetic interaction H(x) = Hy(x) + Nmh, one can prove the
fluctuation-dissipation relation between the magnetic susceptibility

Xn and the fluctuations of the magnetization (m):
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_ m)
Xn = oh

where (- --) denotes an average with respect to the probability dis-
tribution f(x).

_ ¥[<m2> —m?], (8.15)

In our case, there are two averages: with respect to initial conditions
and with respect to realizations of the random variables 1. We have
already argued that for 4 < 1 and large values of N, the results are
largely independent of initial conditions, so all that contributes to
the ensemble average (- - -)) are the noise variables. As there is a one
to one correspondence between the stationary values x and 1 we
can write the pdf of X in terms of the pdf of n:

S, x0n) = fy(m - ) 11 (8.16)

If we take the 7;’s to be independently distributed Gaussian vari-
ables, we have

N
fo(m, -+, mn) = H[ exp —(n; —h)z/Zaz)]. (8.17)
As Eq. (8.6) implies
1 &
=1 -ayxi+x3 - ~ Z X', (8.18)
j=1
it is possible to compute the determinant of the Jacobian matrix
81,’ .
Jij = 3—;/
1y 1 s
=[1-% [3x7 +1 -4 8.19
d N].Z_;3x*]2.+1—a H g a (8.19)

Replacing Egs. (8.17-8.19) in Eq. (8.16), one can write the pdf of x as
the exponential of an effective Hamiltonian f;x(x) = Z! exp(—Hes),
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with:

Het(x) = —In|1

1 v 1
- — _— |+ 8.20
N;Bx*2+1—a (8:20)

2 —1In (Bx*iz +1- a)

i{[(l—a)x +x? —m—h]?
-1

However, as it can not be split in the form Hegr = Hy + Nhm, it is
not possible (at least in a trivial manner) to relate the susceptibility
to the fluctuations of the order parameter.

8.6
Numerical results for 2 > 1: dependence on
the initial conditions

In the case a > 1 the presence of metastable states is relevant as
the dynamics usually gets trapped in one of them. Therefore, in
general, the asymptotic values x*' depend on initial conditions and
the absolute minimum of the potential V' might not be reached.
Accordingly, deviations from the self-consistent theory are expected
to appear. In this section we will study this case and show that a
new phenomenology can appear depending on the particular value
of a and the distribution of the initial condition x(t = 0). For the sake
of concreteness, we have focused on two types of initial conditions:
symmetrical and positive-definite.

8.6.1 Symmetrical initial conditions

The initial values x;(t = 0),i = 1,...,N, are independently drawn
from a uniform distribution in the interval [-0, +0], for a given value
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NUMERICAL RESULTS FOR A > 1: DEPENDENCE ON

THE INITIAL CONDITIONS

a=
KKK K
3 Hoky

Figure 8.5: Numerical results of the average magnetization
as a function of diversity o, for a system of N = 16384 cou-
pled variables for different values of a > 1 (for the numerical
integration of Eq. 8.2, initial conditions are drawn from a
symmetrical uniform distribution U[-6, +0]). Note that de-
pending on the specific value of parameter g, three different
behaviours take place: (I) an order-disorder transition at o,
for a = 1,14, (II) a reentrant phase transition formed by a
disorder-order transition at o/ coupled to an order-disorder
one at ¢, for intermediate values of a = 1.8, and (III) the
absence of any transition to an ordered state for the larger
valuea = 2.4.
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Figure 8.6: Left panel: Phase diagram of the system, where
the symbols correspond to the values of critical points o, (as-
sociated to the order-disorder transition) and ¢’ (associated
to the disorder-order transition) as a function of a, for a sys-
tem of N = 16384 (derived numerically integrating Eq. 8.2
with initial conditions drawn for a symmetrical uniform dis-
tribution [-6, +6]). In the region a > 0 the system evidences
an order-disorder phase transition at o, the location of this
transition increasing with a. The values of o, (in the thermo-
dynamic limit) can be derived from the self-consistent theory
as those satisfying F,, (0) = 1, and are represented by the solid
line. In the region a > 1 the system presents metastable states
even in the thermodynamic limit and the solid line refers to
the location of phase transition derived from the analysis of
the ground state of the Lyapunov potential. At odds with the
self-consistent theory, we numerically find for intermediate
values of a the coexistence of two phase transitions (reen-
trant transition), where the location of both critical points
converge for increasing values of a until coalescence. At this
point the ordered state is completely destroyed for all values
of 0. Right panel: Same diagram as for the right panel, when
the numerical integration of Eq. (8.2) is performed with initial
conditions drawn for a uniform distribution in the positive-
definite interval [0,20]. In this case, the phase transitions
disappear for a2 > 1.4 as in this case the order parameter 1,
tends to zero smoothly with o, see right panel of Fig. 8.8.
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Figure 8.7: Left panel: Numerical results of the order param-
eter as a function of o, for different system’s size and a = 1.8,
where a reentrant phase transition takes place (for the nu-
merical integration of Eq. (8.2), initial conditions are drawn
from a symmetrical uniform distribution U[-6, +6]). Exact
results from the self-consistent theory are represented in the
solid line. The deviations from the theory are related to the
fact that the system does not reach the ground state of the
Lyapunov potential as it gets trapped in metastable states.
Right panel: Fluctuations of the order parameter as a func-
tion of o for the same system as the right panel. Fluctuations
have a peaked maximum that scales with system’s size close
to both transition points.
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of 0. In Fig. 8.5 we plot the average magnetization my = {|m[) as
a function of diversity o for different values of a2 and system size
N = 16384 for 6 = 2.5. The data have been averaged over 10°
initial conditions for x(t = 0) and then over 10? realizations of the
quenched noise variables (10* averages in total). At variance with
the case a < 1 (which is also shown in the figure for comparison) we
find three possible scenarios: (i) for a > 1 (weak metastable regime,
a = 1.4 in the figure) one observes the same phenomenology as for
a < 1: an order-disorder transition at a critical value o.(a). (ii) For
larger values of 4, the former transition is still present at o, butanew
transition (from a disordered state my = 0 to an ordered one my > 0
as o increases) is found at o < o, see the curve corresponding to
a = 1.8 in the figure. In this case, we find the counterintuitive result
that a certain level of diversity in the quenched noise is needed to
induce order at ¢ = 0/, whereas a large level of diversity destroys
again the ordered state (reentrant phase transition). (iii) Finally, for
increasing 4, o, increases and o, decreases, eventually coalescing for
a > a. = 2.4, where the ordered state disappears. Thus, for large
values of a, the system does not evidence any transition and the
stationary phase is always the disordered one. We point out that
in the curve for a = 2.4, the magnetization is not exactly zero for
intermediate values of the diversity due to a finite-size effect: my
decreases and approaches zero for all values of o as the system size
increases, something that does not occur in cases (i) and (ii). All
these features are illustrated in the phase diagram plotted in the
left panel of Fig. 8.6: (i) For 1 < a < 1.6 the usual order-disorder
transition appears, although the value of o is smaller that the one
derived from the analysis based upon the structure of the global
attractor x. (ii) For 1.6 < a < 2.4 there is a new transition from a
disordered to an ordered state at a value o, < o.. (iii) Finally, for
a 2 2.4 the only phase encountered is the disordered one.

In order to characterize the transitions that occur in region (ii), we
have run extensive simulations for different system sizes in the case
a = 1.8. The order parameter my is displayed in the left pane of
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THE INITIAL CONDITIONS

Fig. 8.7. By looking at the difference with the magnetization curve
derived from the theoretical analysis, it is clear from this figure that
the system is not able to reach the absolute minimum neither for
small or large diversity 0. We observe at both transitions the same
qualitative dependence with system size that was discussed in the
casea < 1. As we don’t have now a theoretical prediction for ¢/, or o,
the numerical analysis of the data is much less conclusive. Pseudo-
critical points o.(N) and ¢/(N) can be defined as the location of the
maximum of the fluctuations yx of the order parameter, see the right
panel of Fig. 8.7. The fluctuations scale roughly as x(d.(N)) ~ N”
and x(0.(N)) ~ Nl with ¥’ = b ~ 0.9. However, it is difficult to obtain
reasonably good quality fits of the data to the standard finite-size-
scaling relations used in the case 2 < 1. Furthermore, the data
show a dependence on 6 (data not shown) such that o, and ¢/ adopt
different values for small 0 but saturate for 6 2 2.5.

Summing up: if the initial conditions are distributed in a symmet-
rical interval, the order region is much reduced with respect to the
predictions based upon the structure of the ground state. There
is a region in parameter space where the system undergoes what
appear to be well defined phase transitions, from disorder to order
and back to disorder at o}, and o, respectively. The order-disorder
transition (o) is related to the one found in the regime 2 < 1, while
the disorder-order transition (at ¢/ < o) is a new behaviour whose
nature is genuinely metastable. For a > 2.4 the system is never in
the ordered state.

8.6.2 Positive-definite initial conditions

The initial values x;(t = 0),i = 1,...,N, are independently drawn
from a uniform distribution in the interval [0, 26], for a given value
of 6. Obviously, by symmetry reasons, the same results would
be obtained in the initial conditions were drawn from the interval
[-26,0]. In Fig. 8.8 we plot the average magnetization my = {|m|)
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as a function of diversity o for different values of a = 1.2 (left panel)
and a = 1.8 (right panel), for different system sizes N and values of
0. These two values of a evidence slight different behaviours: for
a = 1.2, while the sharpening finite-size effect of the magnetization
is hardly seen in the plot, the fluctuations still increase with system
size close to the transition (data not shown), what suggests the
presence of a phase transition in the thermodynamic limit. Note
that the dependence on the width of the initial condition 0 is very
weak and results are basically indistinguishable for 6 > 0.5. On
the other hand, for 2 = 1.8 there is hardly any dependence on
the system size both for the magnetization and its fluctuations. The
magnetization mg tends to zero smoothly with o and the fluctuations
do not increase with system size (data not shown): the transition
is smoothed and no critical behaviour is present. Again, there is a
dependence with the value of 6 for small 6 but the curves for 6 = 2.5
and 0 = 5.0 are indistinguishable from each other. Summing up, for
positive-definite initial conditions, the phase transition from order
to disorder disappears at a value a = 1.6 (the actual value depends
of the width 6), such that the system shows always some degree of
order for a 2 1.6 (see the right panel of Fig. 8.6). In this sense, the
ordered region is enhanced with respect to the predictions based
upon the structure of the ground state.

8.7
Conclusions

In this chapter we have studied the mean-field version of a Ginzburg-
Landau, or ¢*, model with additive quenched noise at zero tempera-
ture. The model, that has recently been proposed in the framework
of collective behaviour induced by diversity (Tessone et al. 2006;
Toral et al. 2007), is a field version of the random field Ising model
well studied in the literature. As a function of diversity o, a self-
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Figure 8.8: Numerical results of the order parameter
as a function of o, for different system’s size N =
4096,8192,16384, and a value a = 1.2 (left panel) and a = 1.8
(right panel). For the numerical integration of Eq. (8.2), ini-
tial conditions are drawn from a positive-definite uniform
distribution U[0,20], with 6 = 0.1,0.5,2.5,3.0. The effect of
the interval size saturates for approximately 6 > 0.5 and 2.5
for the left and right panel respectively. While finite size
effects in the magnetization are hardly observed fora = 1.2,
fluctuations still increase with system size close to the tran-
sition. On the other hand, for a = 1.8 no finite-size effects are
observed, neither for the magnetization nor for its fluctua-
tions: the transition is smoothed and no critical behaviour is
observed.
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consistent theory predicts the presence of an order-disorder transi-
tion at a critical value 0., with mean field critical exponents that are
equal than those of Landau’s theory of thermal phase transitions.
Numerical integrations of the dynamical equations (8.2) are also
performed for comparison. In the range of parameters where the
system lacks metastable states (a2 < 1), finite-size scaling relations
show that the order parameter fluctuations diverge quadratically,
rather than with y = 1 as in thermal, equilibrium, phase transitions.
This suggests a violation of the fluctuation dissipation not associated
to metastable effects such as lack of time translational invariance or
aging (Calabrese & Gambassi 2005; Crisanti & Ritort 2003; Young
1998). To explain this fact, we compute an effective Hamiltonian
and argue that it cannot be readily expressed as Hegs = Hoy + Nhm:
as a consequence, the fluctuations of the order parameter cannot
be straightforwardly related to the linear response, as it happens in
equilibrium theory. In the range of parameters where metastability
is likely to appear (a > 1), stationary values typically do not reach
the minimum of the Lyapunov potential, and accordingly numeri-
cal results deviate from the self-consistent theory, showing a strong
dependence in the initial conditions. For a symmetrical distributed
initial condition in the interval [-6, +0], the ordered region is much
reduced with respect to the predictions based upon the structure
of the ground state of the potential. Furthermore, there is a region
of values of a for which a new transition from a disordered to an
ordered state takes place at 0, < o.. In this case, diversity can not
only destroy an ordered state but also induce order from a disor-
dered metastable state. This new transition is genuinely metastable,
and its location increases for increasing values of 4, until coalesc-
ing with o., where the ordered phase completely disappears. On
the other hand, when the initial condition is distributed in [0, 26],
large enough values of a destroy the critical behaviour of the order-
disorder transition and some degree of order remains at every value
of the diversity o.
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We conclude that structural diversity can induce both the creation
and annihilation of order in a nontrivial way, and deeply modify
the dynamics of the diversity-free system counterpart. On the other
hand, the apparent violation of the fluctuation-dissipation relation
should be further investigated; at this point we can conclude that
to directly relate the order parameter fluctuations to the linear re-
sponse of a system can be tricky, even in the absence of metastability.
This is particularly relevant in problems involving the estimation of
critical exponents in nonequilibrium phase transitions.
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Chapter 9

Concluding Remarks

The investigations of this thesis initially were driven by the search
for answers to questions that arise in a biological context. They
were raised within the BioSim network, a cooperation of scientists
from the fields of pharmacology, medicine, mathematics, biology,
physics and other disciplines investigating biological, pathological
and pharmacological processes underlying the causes and treat-
ments of illnesses. A network of related subjects needs to be entan-
gled and the two first results of this thesis, chapters 4 and 5, are two
pieces of the puzzle.

Drug absorption

When a chemical compound is found that might have a beneficial
effect on the course of an illness, many steps are needed to find the
optimal way of its application and to assure the safety of the drug.
In general, a medicine that can be taken up orally like normal food
is preferred to other possibilities. To assure that the right amount of
substance reaches the desired organ one has to know all properties
of the drug very well. The main barrier a substance has to overcome
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on its way into the bloodstream is the intestinal wall, a single layer
of tight-woven cells. Pharmacologists use a stem of intestinal cells
that can be seeded in such a mono layer under laboratory conditions
to investigate the properties of a certain drug in experiments. To
this end a drug is investigated in experiments with a high number
of initial and environmental conditions. With nonlinear fitting tech-
niques to mathematical models for such absorption experiments the
pharmacologists estimate the absorption parameters of a substance.

We investigated a widely used model for the absorption from one
compartment to another through a third from an analytical perspec-
tive. We transformed the model into a form depicting a mass in a
potential with a friction force and then approximated the potential
by a parabola, an approximation that keeps all relevant features.
It allows to calculate the theoretical outcome of an experiment di-
rectly which, on one hand, might help to narrow down the range of
conditions in which the experiments have to be conducted and, on
the other hand, allows to estimate how fluctuations of a parameter
would propagate into the measurement.

The physiological conditions as well as external stimuli of habits
and social clues are very different between people. The fluctuations
resulting from these differences will have to be taken into account
to optimise the efficiency of treatments for individual patients. Fur-
thermore the three compartment model can be refined by allowing
the cells to be different in size, membrane composition and expres-
sion of transporter proteins. Only the assumption of equal cells
allows the reduction of the system to the three compartment model.
In case of diverse equations for many individual cells (in the order
of hundreds of thousands) more sophisticated methods, like the
order parameter expansion, would have to be performed.
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24 hours - a day is a day

As a drug enters the body, affects it and is cleaned out again the pro-
cess is all together a dynamical one. As such its interaction with the
body (changing hormone and activity levels or body temperature,
supply of water and nutritions) is dynamic as well. Doubtlessly, a
large part of the dynamical processes in the body is coupled to the
daily change between light and darkness. Many processes like the
need to sleep or eat interact with periodic hormone levels that are
controlled by a kind of master clock in the brain. It receives infor-
mation directly from the eye and masters hormone levels during
the course of a day. It is reported that for example some cancer
drugs are more efficient and less toxic when they are applied at
the right moment of a day. Also it is known that light stimuli can
have a beneficial effect on patients with depression. To learn more
about these complex, time-dependent, interactions it seems natural
to start by asking how the master clock itself works. It is known that
about twenty thousand neurons clumped up in a small part of the
brain (the suprachiasmatic nucleus) receive the light stimulus and
exhibit protein oscillations. The oscillations have to be shifted when
the time zone changes and have to be robust when the duration of
darkness changes during the year.

Experiments have shown that isolated cells do oscillate, all with
different inherent periods. It was our intention to investigate how
the difference of periods affects the way the collective rhythm is
maintained in phase with the light stimulus. On one hand we
did extensive numerical simulations of the dynamical equations.
On the other hand we analysed the system with a constant light
term instead of the periodic one. By doing so one can calculate
the stability of the fixed point for a given realisation of the random
terms and obtain an average stability. It turns out that if the cells
were nearly equal in their properties then the overall rhythm is
governed by the coupling of the cells — stronger coupling leading
to longer day lengths. They show self sustained oscillations. In
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the other extreme, when the cells are too diverse, they perform
damped oscillations. Thus, an oscillatory forcing maintains the
protein oscillations but the cells have poor synchronisation among
themselves. The best pronounced and synchronous oscillations
occur at intermediate levels of diversity, where the self sustained
oscillations due to the coupling die out and give way to a system of
neurons that are very susceptible to periodic stimuli from outside.

It is an open question if the results hold for other nonlinear oscilla-
tors based on biochemical reactions. Furthermore it seems that the
coupling in the suprachiasmatic nucleus is more complex than the
assumed mean field coupling. If the diversity can induce oscillator
death in a system with hierarchically organised interactions is yet
to be proven.

Synchronisation of an excitable system

Models that represent biochemical processes are usually of a large
number of variables and furthermore highly nonlinear. In above
example of the circadian rhythms we used a four dimensional
model with nonlinear terms in all four of the dynamical equations.
This makes a complete analytical solution difficult. One can try to
find generalities in the synchronization of nonlinear oscillators by
analysing a prototypic model with few system parameters. One
such model is the one dimensional active rotator model which is
the base of our analysis in chapter 6. It is an abstract mathematical
model that is controlled by two parameters. One parameter decides
if the system actually performs oscillations without any stimulus.
If not it rests in a fixed position and a sufficiently high perturbation
causes one single oscillation, larger than the original stimulus — an
excitation. The length of one oscillation, the period, is governed by
the second parameter. It is known that this system in the excitable
regime exhibits periodic excitations when it is subjected to small
random forces of intermediate strength.
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We wanted to know if many rotators together would oscillate in
synchrony just by having different inherent periods without the
need of random fluctuations. It is indeed so and in fact the on-
set of synchrony, as well as its offset, show typical properties of
phase transitions similar to what is known from thermodynam-
ics and statistical mechanics. Transitions of first and second order
were identified. The phase diagram and the order of transition can
be predicted by the help of an approximative method that is de-
veloped and presented in full detail in chapter 7. Apart from the
approximate method we used extensive numerical simulations to
investigate the finite size effects of the active rotator model with
diverse frequencies. We calculated the size dependence of order
parameter and its fluctuations at the phase transition and found
critical exponents that are not conform with what is expected from
a mean field model as it is the case for our considerations. We
decided to have a look at other, non oscillatory models which are
known to show synchronisation to an external periodic forcing and
phase transitions.

Diversity induced phase transitions

The Ginzburg-Landau model with thermal fluctuations is a scalar
model that undergoes second-order phase transitions. Another
model we have treated is the paradigmatic model for phase tran-
sitions in the presence of multiplicative noise. Our interest was
to study how these models behave in the presence of local het-
erogeneities and without the thermal fluctuations. In a first step
to achieve our goal we refined an existing method of approximat-
ing coupled diverse differential equation (which we also used in
the treatment of the active rotators). It reduces a large number of
variables for coupled scalar dynamics to a set of three differential
equations for the mean value and the fluctuations. We analysed
fixed points and stability of the resulting equations and identified
ordered and disordered phases of the collective system for different
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values of diversity (width of the distribution of heterogeneities).
The critical values obtained from the approximate method have
been compared with the numerical evaluation of an exact expres-
sion. In one case the method was not reliable as it did not show the
reentrant transition into disorder. In the other cases the method re-
veals analytic formulas for the phase diagram in the limit of strong
coupling.

Next, we used numerical techniques to investigate the finite size
scaling behaviour and determine critical exponents at the phase
transitions. The Ginzburg-Landau model with additive diversity
as well as the prototypic model for noise induced phase transitions
both exhibit exponents consistent with those found for active ro-
tators, suggesting that they belong to the same universality class.
The exponents, however, are different from what is expected in a
mean field analysis. We carried out the mean field analysis for the
Ginzburg-Landau model with additive heterogeneities in chapter 8.
In this case the system can exhibit local metastability: for a given
heterogeneity and mean field an element can be in either of the two
fixed points. If such is the case the global solution of the coupled
system is highly dependent on the initial conditions.

All together we have seen that diversity, i.e. a time independent
random element in a collective system, not surprisingly can destroy
an ordered phase. But it also can induce the ordered phase. Further-
more, under some circumstances the induced ordered phase is de-
stroyed for even higher diversities, thus a reentrant phase transition
is induced. It is the hope, that some results from this thesis deeper
the understanding of specific dynamical systems as observed in bio-
chemical processes, others give insights that have a general validity
for systems with diversity, not limited to the area of biochemistry.
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Appendix B

Prototypes of phase tran-
sitions induced by diver-
sity

B.1
Solutions of the cubic equation

We give explicit expressions for the function X(mm + ) defined as the
convenient real solution of the cubic equation ax + x> = z, where
a=1-aandz=m+n.

In the case a > 0 there is only one real solution to this equation as
given by Cardano’s formula



APPENDIX B. PROTOTYPES OF PHASE TRANSITIONS
INDUCED BY DIVERSITY

Fora < 0, the same formula applies if the discriminant A = 27z%+4a3
is positive A > 0,i.e. z ¢ (—2(—0(/3)3/2, +2(—a/3)3/2). Otherwise, out
of the three real solutions, the one that minimizes the local potential
v(x) = $x? + $x* — zx is obtained using the trigonometric form of
Cardano’s formula:

_ . a 1 2722
%(z) = 2sign(z) -3 cos (5 arccos _W] , (B.2)

where the arccos function takes values in the principal branch of
[0, 1/2]. Note that, in every case, the function X is antisymmetric
X(z) = —x(-=2).

B.2
Calculation of critical diversity

The order parameter of the models in chapters 7 and 8 (X and m
respectively) was found through the self consistency equation

m=X= f dn g(nx*(n,m,H) = F(m), (B.3)

where x*(n,m, h) is the stable stationary solution of the local dy-
namics depending on the additive external field &, the local hetero-
geneity 17 and the mean value itself. The susceptibility is defined as
Xn = %—]’H o and therefore we can write:

am ox* d ox*
wo =% = [ dng(n)(aia—’%%) (B.4)
d ox*
= 3’;: f ng(n) f dng(n)%, (B.5)
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which can be reordered to

fdn g( )8x*(m,/],h)
1- fdn g(n) ox* (m r] hy ”

xn(o) = (B.6)

The derivatives are to be taken at & = 0. This equation allows us to
calculate the critical diversity by finding the singularity where the
susceptibility diverges, that is where the denominator is zero.

In chapters 7 and 8 we have calculated the critical diversity for the
Ginzburg-Landau model, or ®* model, with an additive random
field. In this specific form it is x*(m,n,h) = x*(m + n,h) and the
local fixed point solution can be expressed analytically (see Ap-
pendix B.1). Function F(m) of equation (B.4) is antisymmetric so
one identifies the critical point with the change of slope in the ori-
gin where additional, non-zero, solutions arise that characterise the
the ordered phase.

To obtain the slope of F(m) in the origin it is convenient to first
introduce a new set of variables 1 = 0§, z = m + n and dé = dz/o.
Then the probability density of & is g(&) = g(n/0) and x*(m + 1)) =
x*(z). We can now write Eq. (B.4) in the following way:

m = F(m)

f 45 (€' (m + 08) (B7)

1 ™ z—
aLdzg(

For a Gaussian distribution of the field, now without o-dependency

" ) ¥(2). (B.8)

¢(x) = 1/ V2mexp —x?/2, the derivative with respect to its argument
is g’(x) = —x g(x) and then the the derivative of F(im) with respect to
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m, F'(m), reads:

F/(m) 1[‘” 4l3(5)> @)

0 J o dm
= _—1 dzwx(z)
dZ m
= —f dzg (z—m)x*(z).

We now set m = 0 and reduce the integral to half, as zx(z) is an
even function. We find:

F’(O):%L dzg(g)zx*(z). (B.9)

In Appendix B.1 we have seen that for some cases one has to decide
for the energetically lowest solution. The system parameter a de-
termines in what regions of the function’s argument which formula
is valid. In terms of equation (B.9) the integral can be split in two

3
by realising that in case of |z] < z, = 24/(%5 1) one has to take for-

mula (B.1) and for |z| > z, formula (B.2). As a result, to determine
the critical diversity one has to determine the solution of

1=F(0) = %L{OZC dzg(g)zxg'z(z) +fzc dzg( )szl(z)]

(B.10)
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