J Stat Phys (2010) 140: 917-933
DOI 10.1007/s10955-010-0024-7

On the Gaussian Approximation for Master Equations

Luis F. Lafuerza - Raul Toral

Received: 8 April 2010/ Accepted: 2 July 2010 / Published online: 22 July 2010
© Springer Science+Business Media, LLC 2010

Abstract We analyze the Gaussian approximation as a method to obtain the first and second
moments of a stochastic process described by a master equation. We justify the use of this
approximation with ideas coming from van Kampen’s expansion approach (the fact that the
probability distribution is Gaussian at first order). We analyze the scaling of the error with
a large parameter of the system and compare it with van Kampen’s method. Our theoretical
analysis and the study of several examples shows that the Gaussian approximation turns out
to be more accurate than van Kampen’s expansion at first order. This could be specially
important for problems involving stochastic processes in systems with a small number of
particles.

Keywords Master equations - Gaussian closure - Stochastic processes - Fluctuations
in small systems

1 Introduction

Master equations are a convenient tool to treat stochastic Markov processes [1, 2]. In some
cases, they offer an alternative approach to the Chapman-Kolmogorov equation and have
been used extensively in discrete-jumps, or birth-death, processes, such as chemical reac-
tions (including those happening inside a cell), population dynamics or other ecology prob-
lems [3], opinion formation and cultural transmission in the field of sociophysics [4], etc. In
all these cases, it is important to consider that the population number (whether molecules,
individuals, agents, etc.) might not be very large (maybe ranging in the tens or hundreds)
and the fluctuations, whose relative magnitude typically scales as the square root of the in-
verse of this number, can not be considered as negligible. It is therefore, of the greatest
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importance to derive evolution equations for the average behavior and the fluctuations. The
important work by van Kampen [1] offers a systematic way of deriving these equations from
an expansion of the master equation in a parameter £2, typically the system volume. The £2-
expansion is mostly used in its lowest order form, in which one can prove that the error in
the average value, the second moment and the fluctuations (the variance), scale at most as
20, 2" and 212, respectively. The van Kampen §2-expansion, furthermore, shows that, at
this lowest order, the fluctuations follow a Gaussian distribution. In this paper, we take this
result of van Kampen’s theory and, considering from the very beginning that fluctuations
are Gaussian, we derive a closed system of equations for the average value and the second
moment. This Gaussian closure of the hierarchy of moments turns out to be more accurate
than the §2-expansion as the above-mentioned errors scale at most as Q712 QU2 and 212,
respectively. Furthermore, the Gaussian closure scheme is very simple to carry on in practice
and can be easily generalized to systems described by more than one variable. An alterna-
tive approach to deal with master equations (specially useful in spatially extended systems)
consist on mapping the master equation to a Schrédinger equation in imaginary time in the
second quantization formalism [5, 6].

The paper is organized as follows: In the following section, we will briefly review the
§2-expansion and derive the main equations for the Gaussian closure approximation. The
errors of both methods are discussed in Sect. 3. In Sects. 4 and 5, we will give examples of
the application of the method in the cases of a binary chemical reaction and an autocatalytic
reaction. The results of these two examples confirm the error-analysis performed before. For
both processes we compare with the results coming from the exact solution of the master
equation in the stationary regime (derived in the appendix for the binary chemical reaction),
and the results of numerical simulations using the Gillespie algorithm in the time-dependent
evolution. In Sect. 6 we present an application to a recently introduced model for opinion
formation which requires two variables for its full description. Finally, in Sect. 7 we end
with a brief summary of the work.

2 Formulation

Let P(n,t) be the probability that at time ¢ the population number takes the value n. We
consider that it evolves according to a general master equation of the form:

% = Xk:(Ek — D [Ci(n; $2)P(n, 1], (1)
where E is the linear step operator such that EX[ f (n)] = f(n+k) and k runs over the integer
numbers. Besides 7, the coefficients Cy(n; §2) depend on §2, which is a large parameter of
the system (typically the system volume). We consider that these functions are polynomials
or can be expanded in power series of n as Cy(n; £2) = Y C{(£2)n® where the coefficients
C{(£2) scale as Cf (2) = 2'7(cf oy + ¢{ 127" + ¢{ ,8272 4 - - ). Master equations of this
form appear in the description of chemical reactions [3], ecological systems [7] and opinion
dynamics [8], among many other cases. More specific examples will be considered in the
next sections.

In a seminal work, van Kampen [1] has given a way of finding an approximate solu-
tion of (1). The approximation is based upon the splitting of the variable n using the ansatz

@ Springer



On the Gaussian Approximation for Master Equations 919

n=R¢()+ Q%S, where ¢ (t) ~ 0(£2°) is a function of time accounting for the deter-
ministic part of n and £ ~ O (£2°) corresponds to the fluctuations. Changing variables from
n to & in (1), and expanding in powers of §2 one obtains a Fokker-Planck equation for the
probability distribution I7(&, t) of the new variable &:

oIl JET 91
s 2 [Z ciokad®” ‘} G ) [Z ko7 } TS +0(27Y), 2)

ak

where the macroscopic variable ¢ satisfies

d
d’(l) _Zk Od),, 3)

From (2) we obtain the first and second moments of the fluctuations:

= [Zczokawl} (£). “
ak
3(£2) C a« K
ai =-2 |:Z Cokad 1:| (€ +2 |:; Ck,0?¢ i| : ®)

ak

As proven by van Kampen, the solution of the Fokker-Planck equation (2) is a Gaussian
distribution. Therefore, the §2-expansion method tells us that, up to corrections of order
.Q_%, the fluctuations of the variable n follow a Gaussian distribution. It suffices, then, to
know the first and second moments of this distribution. Our intention is to use from the very
beginning the Gaussian property in order to obtain a closed system of equations for the first
two moments (n) and (n?).

From (1) we get the (exact) equations for these first two moments, as:

d{n)

0 =—Z (kCi(n; 2)).

d{n?)
w :Xk:<k(k—2n)ck(n;9)>- ©

After substitution of the series expansion Cy(n; £2) =), C{(§£2)n“ in the right hand side
of these equations, one obtains higher order moments (n") for m > 3. The Gaussian closure
replaces these higher order moments with the expressions (n™) that hold in the case of a
Gaussian distribution, i.e. (n)g = (n), (n*)g = (n?) and

[%
(") = ()" + (Z{) 2k — D" [(n?) — ()] -

k=1

for m > 3. The first moments are explicitly shown in Table 1.
The van Kampen ansatz n = 2¢(¢) + £2 %5 allows us to find the error of this approxima-
tion. It follows that:

m

—é",:?l = (7)9‘*”2%1 (&"). @®)

1=0
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Table 1 Gaussian moments

Moment Gaussian approximation

(n) 3(n?)(n) —2(n)?

(n*) 3(n%)2 = 2(n)*

(n) 15(n%)2(n) — 20(n?) (n)* + 6(n)°

n®) 15(n2)3 —30(n?) (n)* + 45(n)®

(nfna) (n3)(n2) + 2(n1) (n1ng) — 2(n1)* (n2)

(n}n3) (n3)(n3) +2(n1n2)? — 2(n1)?(n2)?

(n3no) 3(n2)(nyna) —2(n1)> (n2)

) 6(n1n2)?(n1) +6(n1)*(n2)2 + 6(n1n2) (n3) (n1)* — 2(n1)?

—6(n7)(n2)2(n) +3(n7)(n3) (n1) — 2(n1)3 (n3)

In the Gaussian approximation, the first three terms of the sum, / =0, 1, 2 are exact and the
term [ = 3 scales as 272, or:
(n")  (n")g

_ ~1/2
Qm—1 - Qm—1 + O(Q ) (9)

If we use this result in each of the terms of (6) and Cy(n; 2) = 2!~ (cfot o(R27Y) we
obtain

d{n)
dt
with g1 = — ), (kC(n; £2))¢. Similarly, one finds

=g1((n), (n*) + 0277, (10)

d({n?)
dt

=g((n), (n*) + 0(2'7), an

with g, =Y, (k(k — 2n)Cy(n; §2))-.

This Gaussian approximation scheme (or equivalently, finding a hierarchy of equations
for the cumulants and neglecting those of order greater than two) has been used many times
in the literature in different contexts [9, 10]. We will show in the next section that the direct
use of (10), (11) has a smaller error that the use of (3)—(5). Before showing this, we will
generalize this procedure for the case of two-variable problems. Let us consider a master
equation of the following form:

OP(ni 1)

o > (EVE? = D[Ciy ity (n1.1m2: 2)P(ny. 12, 1)] . (12)

ky.ky
The evolution equations for the first, second order moments and the correlations are:

d{n;)
dt

== (kiCiy iy (1. 123 2). (13)

ki.ky

@ Springer



On the Gaussian Approximation for Master Equations 921

d(n?
211> = Z(ki(ki —2n;)Cry 4y (11,125 2)), (14)
! ky.ka
d{nn
<dl[ 2) = Z((klkz —kan _k1n2)ck|,k2(n1»n2§ -Q)> (15)
k].kz

(i =1,2). Again, the Gaussian closure consists in replacing (n|''n,?) by the expression
(n'l'“ ng”)c that holds assuming that the joint distribution P (ny, n,, t) is Gaussian. This can
be computed using Wick’s theorem [11]. In Table 1 we write the expression of some of the

terms.

3 Error of the Method

We now calculate the error of the Gaussian approximation and compare it with the one of
the £2-expansion. In (10)—(11) we have shown that the errors we introduce in the equations
for the moments when performing the Gaussian approximation are of order O (£2~'/2) for
(n) and O(£2'?) for (n?). The Gaussian approximation scheme proceeds by considering
approximations /i (¢), p2(t) to the true moments (n(z)), (n*(¢)). These approximations are
defined as the solution of the evolution equations (10), (11):

du dus
— = L 2), — = s 12). 16
ar g1, u2) R &a(1, u2) (16)

Defining the errors ¢y, €, as: (n) = u; + ¢y, (n?) = o + & expanding in first order in &
and ¢&,, and using (10)—(11) and (16) we get:

d 3 : 3 ; -

dei _ 9g1(m uz)alJr g1 (i M2)82+0(Q 172y, 17
dt YA o

d d . 9 ;

der _ 98 (i /Lz)gI 4 0820 uz)82+0(91/2). (18)
dt R o

Taking into account that jy, g ~ O(82), 2, g2 ~ 0(£2?%), we have:

d8]

ar 0(2%e + 0(2 Hey + 0277, (19)
92 0(2)e1 + 0(2es + 0(2'/2) (20)
dt == 1 2 .

If we set &, ~ O(2%), &, ~ 0(£2°), and the initial conditions are known, so that initially
& =¢&, =0, (19), (20) imply that a < —1/2 and b < 1/2, a scaling respected during the
time evolution.

In conclusion, solving (10)—(11), we get (n) and (n?) with errors of order &, = O (£27'/?)
and &, = O(£2'/?), or smaller. Using (3)—(5) of first order van Kampen’s expansion the
error is of higher order in both cases: O(£2°) for (n) and O(£2") for (n?). However, for the
variance, o> = (n?) — (n)?, both approximations have an error of order O(£2'/?). We will
show in the next sections that the Gaussian approximation has the extra advantage that it is
easier to derive for many problems of practical interest.
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One might be tempted to go to higher order schemes, where one neglects all the cumu-
lants of order greater than m with m > 2, and in this way obtain a closed set of equations for
the first m moments. For example, if we neglect all the cumulants of order greater than 3,
applying the same analysis as before, it is possible to derive that the errors in the first, second
and third moments are of order O (27", 2°, 2"), respectively.

A word of caution is needed here. When truncating beyond the second cumulant, it is not
ensured that the resulting probability distribution is positive definite [12]. This means that
one could get from such an scheme inconsistent results, e.g. a negative variance. Neverthe-
less, according to our analysis, the importance of these spurious results would decrease with
£2 as indicated, so one can still get useful results from higher order schemes.

In the following sections we will compare the Gaussian approximation presented here
with the first order £2-expansion in some specific examples.

K
4 Binary Reaction A+ B = C

(o}
Chemical reactions are suitable processes for a stochastic description. The stochastic ap-
proach is specially necessary when the number of molecules considered is small, as it is
the frequently addressed case of chemical reactions inside a cell, because in this situation
fluctuations can be very important.

We consider the general process A + B é C, limited by reaction. This means that any

two particles A and B have the same probabiﬁty of reaction. Denoting by A(¢) and B(t), re-
spectively, the number of molecules of the A and B substances, the rate for the A+ B — C
reaction is %A(t)B (t). For the reverse reaction, it is assumed that C has a constant concen-
tration, and hence the rate is wS2. In these expressions £2 is proportional to the total volume
accessible. Since B(t) — A(t) = A is a constant, one only needs to consider one variable,
for example, the number of A molecules at time ¢. Let us denote by P(n, t) the probability
that there are n A-molecules at time ¢. The master equation describing the process is:

dP(n,t) K
- 5[("+1)(A+n+1)P(’l+ I,t) —n(n+ A)P(n,1)]
+w2[P(n—1,1t) — P(n,1)], 21

which is the basis of the subsequent analysis. Note that this equation can be written in the
form (1) setting C;(n; £2) = %n(n + A),C_1(n; 2) =ws2.

In the irreversible case, w = 0, this master equation can be solved exactly using the
generating function technique. In the general case, w # 0, an exact solution can also be found
for the stationary state % = 0. Details of the calculation are given in the Appendix. We
will compare the results obtained from the Gaussian approximation and the first order £2-
expansion with the exact results, when available.

The equations for the first two moments, using (6), are:

din) __x ((n*) + A(n)) + Qo (22)
dt Q ’
d(n?) K 3 »
P 5(—2(71 )+ (A =24)(n") + An)) — 282w(n) + Lw. (23)
Using the Gaussian approximation, the evolution equations for the moments are:
D Kyt dun) + 2 24)
a0 [2%) 231 w,
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B2 = S@ud = o + (1 - 2402 + Aw) + 22011 + Q0. (25)
And the first order §2-expansion gives:
Y k@ +0+0. (26)
dt
din) _ o
i 89 — k(8 +2¢)(n) + Lo, 27)
d(n?) )
T —2k(2¢ +68)(n") + 2 [kp(P + ) (1 —2(n))
+ 2k ¢ 2P+ 8) + w((n) + 1+ wg))], (28)
where § = 4.

We compare the two approximations in the time-dependent case with results obtained by
averaging over single realizations of the process, obtained numerically using the Gillespie
algorithm [3]. In the next figures we compare the exact results with those obtained from the
Gaussian approximation (computed by numerical integration of (24), (25) and §2-expansion
(26)—(28).

Figure 1 shows that the Gaussian approximation reproduces better the exact results for
the first two moments; for the variance, the §2-expansion gives more accurate results but both
approximations differ from the exact values. Figure 2 shows that the errors in the stationary
state, coming from the Gaussian approximation for the mean value, the second moment and
the variance scale as (27!, 2°, 29), respectively, while the errors of the £2-expansion at
first order scale as (£2°, 2!, £2°). This scaling is consistent with the previous analysis, as
the exponents of the errors are smaller than the obtained bounds.

<n> <n’> s
62F Y. - T ] '\_'_;_'_'_._4.6}&' T
] \
— Gaussian 42 '\ b
61 ==« Q-Expansion |
Gillespie I 45+ \ -
L ——  Exact stationary | J
41F -~ ———
6 i | L i
1 . 1 . 1 40 . L . L 4.4 L ! L . L
3 6 9 3 6 9 3 6 9
t t t

Fig. 1 (Color online) (n(t)), (n2 (¢)) and O’Z(I) for the binary reaction A + B = C with parameters k = 1,
w =1, £ = 10 and initial conditions n(0) = 100, § = 1. For the first two momegts the Gaussian approxima-
tion (solid) is very close to the results obtained with the Gillespie algorithm (dot-dashed, obtained averaging
over one million realizations) and the exact stationary value (thin line), while 1st order §2-expansion (dashed)
gives clearly different values. For o2, the §2-expansion gives more accurate results but both approximations
differ from the exact values
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Error in <n> Error in <n’> Error in 6
— p— p— T T T T T T
0.1 B
w— Gaussian 1000 ~——— ]
0.01 - w== « € -Expansion |_|] )
0.001 - C ]
0.0001 1 L i
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le-05 -
1 1 1 1 1 1

1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000
Q Q Q

Fig. 2 (Color online) Error in (n), (nz) and o2 in the stationary state in the same case than in Fig. 1. The
straight thin lines are fits to the data and have slope —1, 0 or 1. For the Gaussian approximation (solid),
the errors in ((n), (nz), 02) scale as (.Q*l, QO, .QO). For the §2-expansion (dashed), the errors scale as
29, !, 20

k 14
5 Autocatalytic Reaction A — X,2X — B

The master equation describing this process is [1]:

oP(n,t)
— = QPk[P(n—1,1) — P(n,1)]

/

—l—%[(n+2)(n+1)P(n+2,t)—n(n—1)P(n,t)], (29)

where the concentration of A particles is consider to be constant with a value ¢4. This
equation if of the form (1) with C_,(n; £2) = Qk¢a, C2(n; 2) + %n(n — 1). The general
solution for this equation is not known, but the stationary solution P*/(n) can be obtained
using the generating function technique [1]. The exact equations for the first moments are:

d{n) ,(n) ,(n?)

e = Rk + 2k o — 2k o (30)
d<"2>—:2k 2 1 K 4n®y —8(n*) + 4 31
Tl Pal( <n>+)—9((n>— (n°) +4(n)). (31

Performing the Gaussian approximation, we get:

du Hi 22

— =Rk 2k — —2k'—=, 32
i da+ o o (32)
du, 4 3
W:Qk¢/x(2/~tl+])_5(]2ﬂ2ﬂl_8M1_8M2+4H1)~ (33)

While first order §2-expansion approach leads to:

4P _ a2

i =kpA — 2k ¢, (34)
d(l’l) 7 42 /
ar = Q2(kps +2k'¢p") — 4k'¢p(n), (35)
din’) _ 8k ¢ (n) + 22k 4K’ ¢? 2(k 4k’ ¢? 36
o = d(n") + 2 2kpa +4k'¢7)(n) + 2 (kpa + 4k'¢7). (36)
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2
<n> [9)
T T T T T T T 1 1
110 B
10.1 B
108 H |
10 "_____— ‘ — ]
Y A R T N |I.’| P IR
4 6 8 2 4 6 8
t t

’
Fig. 3 (Color online) (n(z)), (n(t)z) and 02(1) for the autocatalytic reaction A L X, 2X — B with
kppa =1,k =1 /2, £2 = 10 and initial condition n(0) = 0. For the first two moments the Gaussian ap-
proximation (solid) is very close to the results coming from the Gillespie algorithm (dot-dashed) and the
exact value in the stationary case (thin line) whereas the §2-expansion result (dashed) is clearly different,
although for o2 the §2-expansion provides more accurate results

Error in <n> Error in <n’> Error in 6
T T T T T T F T T T B
0.1 = 1000 \\
0.01 - —
1
0.001 — 0.1 .
0.0001 || === Gaussian - 0.001 - - C ]
== = Q-Expansion = =
1e-05 T T 1 1 1 1 1 1 1
1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000

Q Q Q

Fig. 4 (Color online) Error in (n), (nz) and o2 in the stationary state as a function of §2 in the same
case than in Fig. 3. The thin lines have slope —1, 0 or 1. For the Gaussian approximation (solid), the er-
rors in ((n), (nz), 02) scale (asymptotically) as (.Q_l, .Q_], .QO). For the §2-expansion, the errors scale as
0, 2!, 20

In the next figures we show the results obtained with the Gaussian approximation (com-
puted by numerical integration of (32)—(33), §2-expansion (34)—(36), the Gillespie algo-
rithm, and the exact stationary solution.

As in the previous example, we see in Fig. 3 that the Gaussian approximation fits bet-
ter the evolution of the moments, but the variance is somehow better approximated by
the first order £2-expansion. In Fig. 4 we show the errors in the stationary state for the
two approximations as a function of £2. We see that the errors in ((n), (n?), 0%) decay as
(27", 271, 2° for the Gaussian approximation, while the first-order £2-expansion leads
to errors that scale as (29, 2!, 29). Again, this scaling is consistent with the analysis of
the approximations performed.

6 Opinion Formation

In the last few years there has been a growing interest in the application of methods and
techniques coming from statistical physics to the study of complex phenomena in fields
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926 L.F. Lafuerza, R. Toral

traditionally far from physics research, particularly in biology, medicine, information tech-
nology or social systems. In particular the application of the physical approach to social
phenomena has been discussed in several reviews [4, 13—15]. As an example of the use of
master equations in this field, we mention a recent paper [8] in which the process of opinion
formation in a society is modeled as follows: Society is divided in two parties, A and B, plus
an “intermediate” group of undecided agents 1. The supporters of A and B do not interact
among them, but only through their interaction with the group I, convincing one of its mem-
bers with a given probability. In addition there is a nonzero probability of a spontaneous
change of opinion from I to the other two parties and vice-versa. More specifically, if n 4z,
is the number of supporters of party A(B), n; is the number of undecided agents and 2 is
the total number of individuals, the possible transitions are:

spontaneous change A — I, occurring with a rate ajn4,

spontaneous change I — A, occurring with a rate a,ny,

spontaneous change B — I, occurring with a rate o3ng,

spontaneous change / — B, occurring with a rate oyn,,
Bi

convincing rule A 4+ I — 2A, occurring with a rate anany,

convincing rule B + I — 2B, occurring with a rate %anI.

As the total number of individuals (2 =n4 +ng +n;) is fixed, there are only two indepen-
dent variables, say n4 and np. The master equation of the process is:

0
EP(”ZA’”BJ)

=ai(nga+DPma+1,np,t)+az(ng +1)P(ng,np+1,1)
+ (2 —ng—np+1)P(nay—1,np,t)
+as(2 —ng —ng+1)P(na,ng—1,1)

+(S2—nA—n3+1)[%(m—1)P(nA—1,nB,t)
+&(n —DP(na,ng—1,1)
Q B AsItB 5

- |:051nA +azng + (ay +ag)(2 —ny —np)

+W(Q—m—n3)]1’(flmna,’)- 37)

We note that this master equation can be written in the general form (12) by setting
Cro=ana, Co1=asng, Coi9= (2 —ns —ng)ar+ Lny) and Co_1 = (2 —na —
np)(as + %HB)-

An exact solution of this master equation is not known. In the following, we will apply

to this problem the Gaussian approximation scheme and compare it with the results of the
§2-expansion. The exact equations for the first moments are:

d

(n;t(t» =—(a; +ay — B1){na) + (2 — (ng)) — %(ni) - %(WAHB>, (38)
d

(n;t(t» = —(a3 +ag— Br)(np) +as(2 — (ny)) — %(n%) — %(HAHB), (39)
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On the Gaussian Approximation for Master Equations 927
d 2
% = (01 +02(282 — 1) + B1)(na) + @2(2 — (np))
—2<a +a,— B +ﬂ><n2>
! SRIGYol A
2 2
— <2Ol2 + %)(nws) — %mi& — %(nim, (40)
d{nz®) _ _— o
7 = (03 + 4(282 — 1) + Bo)(np) + a4 (2 — (n4)
— 2wt — ot 22 )
3 4 2 20 B
2 2
- <2a4 + %)(”AHB) - %(lﬁ;) - %(nw%), 41)
d
OO () 4 -+ = By — B ans) + (@) — ()
+aa(@200) — 02)) = PP () + (0. )

2

Denoting by A;, A,, By, By, C the Gaussian approximations to the moments (7,4), (ni),
(ng), (n%) and the correlation (n4np), respectively, and using the results in Table 1, we

obtain:
dA
d—tl =—(o;+ay— BA + a2 — B — %Az - %C,
dB
d—tl =—(oz+as— fo)Bi + a2 —osAy — %Bz - %C,
dA,
e (@) + 02282 = 1) + B A +a2(2 — By)
B Bi 28
2 B+ 24— (200 + 2o - 23404, —
(051+012 :31+29 2 Olz-f-Q _Q( 142
zﬂl 2
— LA +24,C —241By),
dB,
o (a3 + 4282 = 1) + B1) B + a4 (82 — Ay)
B2 B2 28> 5
-2 — — |B, — (2 — |C — —3B;B, —2B;
((X3+(¥4 ﬂ2+2[2 2 014"“Q _Q( 1D2 1)
2
—%(BZA1+2BIC—2812A1),
dC
Z:—(061+Olz+(13+0l4—131—52)C+052(931—Bz)+0l4(QA1—A2)

+
_bth ’ P2 1B, As + Bod +2(A1 + A2)C — 2424, — 2B2By]

(43)

(44)

(45)

(46)

(47)

@ Springer



928 L.F. Lafuerza, R. Toral

In van Kampen’s expansion method, we define ¢4z, £a(p) such that ny) = L¢am) +
228 p).
The equations for the macroscopic components are [8]:

oy
e —o1pa + [0 + B1oal(l — P — P5), (48)
oy
0 = sy e+ Babul(1 — 94 — b (49)
and for the fluctuations:
d
ft” = o o+ Bi2ba+ ) — BilER) — (@2 + Brd)(En), (50)
d{ép) ) 51
S — s o+ B85+ 60) — BalEn) — (@ + o) En), 51)
i) _ Do (E2) —2 2 28,(£2)(1
BA) = 20y (83) ~ 2er + B (ED + Eadn)) + 261631 — 64 — 9)
Faia+ @+ Bion) (1 — da — dn), (52)
d 2
B8 = dan(5h) — 20a + Ban) (£D) + (Eatn)) + 26206301 — 91 — 9)
+azpp + (os + Bogpp) (1 — Ps — @), (53)
d
A8 (a4 ) Ea) — (@ oW () + (£3)

— (s + Pop) ((Eakp) + (1) + (1 — pa — ¢p) (B + Bo) (Eakp).  (54)

From those we can recover the original variables n 4z (?).

In Fig. 5 we compare the results coming from both approximations (obtained by numer-
ical integration of the previous equations) and from simulations of the process using the
Gillespie algorithm, for some representative values of the parameters and initial conditions.
Again, the Gaussian approximation reproduces better the values for the average and the sec-
ond moment whereas in this case both methods perform very similarly for the fluctuations
and correlation.

7 Conclusions

In this paper, we have given explicit expressions for the equations for the first and second
moments of a stochastic process defined by a general class of master equations using the
Gaussian approximation closure. The approach is motivated by van Kampen’s §2-expansion
result that, at lowest order, the fluctuations are Gaussian. The main difference is that while
in van Kampen’s approach one introduces the ansatz that the fluctuations are of the order
of the square root of the macroscopic value, and then checks that this ansatz is consistent,
in the Gaussian approximation scheme one uses the ansatz that the distribution is Gaussian
and then derive the order of the fluctuations. We have shown that the Gaussian closure is
simple to perform and leads to errors in the average value, the second moment and the fluc-
tuations (the variance), that scale at most as (2712, 2172, 21/?), respectively. This is to
be compared with the §2-expansion result in which the respective errors scale at most as
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T I T T 165 I T I T T
3.66 - — e — —
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Fig. 5 (Color online) (n4(1)), (n/z4 (1)), ai (t) and Cap(t) = (npgnpg) — (na){np) for the opinion forma-
tion model of reference [8], for o; = B; = 1, 2 = 10, and initial conditions n 4(0) =0, ng(0) = £2. For
the average (n4 (7)), the Gaussian approximation (solid) follows very accurately the Gillespie simulation
results (dot-dashed), whereas the §2-expansion (dashed) differs clearly. For the second moment (n A(t)z)
the Gaussian approximation performs clearly better as well, while for the variance Ui (t) and correlations
Cp(t), the Gaussian approximation and the §2-expansion give very similar results, although both are far
from the simulation data

(29, 21, £21/2). Therefore, the Gaussian approximation is more accurate, which turns out
to be important, specially for small values of §2. This scaling of the errors is valid for all
times provided that the macroscopic law (3) has a fixed point as a single attractor [1]. In both
schemes the validity of the approximations might be limited for large times when there is
more than one absorbing state, or a single one different from the attractor of the macroscopic
law, since in those cases the distribution eventually approaches a sum of delta-functions. We
have checked these results by comparing the performance of the two methods in three exam-
ples: (i) a binary chemical reaction, (ii) an autocatalytic reaction and (iii) a model for opinion
formation. In all cases studied, the Gaussian closure has given a better approximation to the
average and the second moment, although the £2-expansion, due to a cancellation of errors,
yields a somehow smaller numerical error in the variance. In general, and compared to other
field-theoretical methods available in the literature [5, 6], the Gaussian closure scheme is
very simple to carry on in practice and this simplicity and the improvement of the predic-
tive power is more apparent in many-variable systems. We believe that this method can be
usefully applied to the study of other problems of recent interest in the literature involving
stochastic processes in systems with a small number of particles.
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Appendix: Reaction-limited Process

We now find the solution of the master equation (21) in the equilibrium state for the gen-
eral case, and the full dynamical solution for the irreversible case w = 0. Without loss of
generality, let us rescale t — «t/£2 and w — w22/« to get the simpler equation:

dP(n,t)
B =m+1D)A+n+1)Pn+1,t) —n(n+ A)P(n,t)

+w[P(n—1,t) — P(n,t)]. (55)

Furthermore, only the case A > 0 needs to be considered. If A < 0 the change n’ =n — A
leaves invariant the previous equation provided that we make the identification P(n,t) —
P(n + A,t). This means that the solutions in both cases are related by P(n,t; A) =
P(n— A, t; —A).

The generating function

o0
fls,0)=)_ P, ns", (56)
n=0
satisfies the partial differential equation:

2
2{_(1— )[s—f—i-(l—i-A)—f— f]. (57)

Let us first discuss the equilibrium solution in the general case.
8.1 The Equilibrium Solution

By setting % = 0 one gets the differential equation:

52
8J;-i-(1+A)—f—a)f 0. (58)

The solution around the singular regular point s = 0 can be found by the Frobenius method
as a power series > - a,s" ™. The regular solution satisfying the boundary condition

fs=1=1is!
sTAZIL (2 ws)
1,2 ws)

where I, (z) is the modified Bessel function of the first kind [16]. The equilibrium probabil-
ities, rescaling back to the original parameters, are:

f()= (59)

P( ) _ (wQZ/K)HA/Z (60)
Y e Jaon(n+ A

I'There is another solution to this equation, but it contains a term in Ins and it has to be discarded since it can
not be expanded in a power series of s.
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from where the first two moments can be computed as:

B Ir 1282 /w/K)
= e van Ve

o Lan Q2K
(n°) = 2°w/k L2 JaTo) AR\ w/k.

(61)

8.2 The Time-dependent Solution

We now study how the system relaxes towards equilibrium. We will restrict ourselves to
the irreversible case w = 0. This corresponds to the process A + B — 0, inert. The partial
differential equation (57) can be solved by the technique of separation of variables by trying
solutions of the form f(s,t) = fi(s) f2(¢). This leads to the pair of ordinary differential
equations:

sA=s)f' + A =5)(1+ A) f] +27f1 =0, (62)
fr+22f=0, (63)
being A” the constant arising from the method of separation of variables. The solution of

the time dependent function is e~*’ and the solution of the s-function is the hypergeometric
function? F(—piy, 2; A + 1; 5). The explicit series is:

oo

(=) (p2), s"

F(—pp, po; A+ 18) =y ———= 64
(=t pai A+ 155) gmﬂ)n pr (64)
(), is the Pochhammer’s symbol: (a), = 5452, or (a)o =1, (@), =a(a+1)...(a+n—1)

for n > 0, and we have introduced

—A+ VA% +4)2 A+ A2+ 422 65)
:—, MZZ—'
2

H1 )

The solution for the function f(s,t) is obtained by linear combination of the elementary
solutions found above:

fls,)=Y CF (=i, uz A+ Is)e ™. (66)
A

This function is, in general, an infinite series on the variable s. In fact the coefficients,
according to (56) are nothing but the time-dependent probabilities. However, in this irre-
versible case, the probability of having more A-molecules that the initial number at t =0,
say M, has to be zero. Therefore the series must be truncated after the power s . This
implies that in the previous expression only hypergeometric functions that represent a poly-
nomial in s can be accepted. This is achieved by forcing u; =k =0, 1,2, ..., M, since the
series (64) becomes then a polynomial of degree k. The condition ©; = k is equivalent to

2There is another solution to the second-order differential equation. As before, this solution has to be dis-
carded since it can not be expanded in powers of s.
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the parameter A adopting one of the possible values A; = «/k(k + A). Finally, noticing that
U2 — 1 = A, the solution can be written as:

Mk

fls. =)D CulA, M)eH B, (A)s". (67)

k=0 n=0
The notation emphasizes that C depends both on A and M but B, ; depends only on A:

(_k)n (k + A)n
Byi(A) = ——i——. (63)
nl(A+1),
All that remains is to impose the initial condition. We start with M A-molecules at time
t =0, such that f(s,t=0) =sM. This implies that the coefficients C; must satisfy:

M

> BuiCi=6uu. (69)

k=n

forn=0,1,..., M. The solution starts by finding first Cyy = 1/By » and then proceeds
backwards to find Cy—j, Cy—2, ..., Cp in a recursive manner. After some lengthy algebra,
the result is:

2k+ A (k+1 M—-k+1
CLlA. M) = (—1)f +A(k+1Da ( + Dy (70)
k+A Al (M4 A+ 1),
(in the case A = k = 0 the correct interpretation of the undetermined expression is Cy = 1).
Going back to the original time variable, we now give the expression for the probabilities:

M
P(n,t)=_ Ci(A, M)B, (A)e H+/2, (71)
k=n

To the best of our knowledge, this and the stationary solution (60), are original results. The
normalization condition Zﬁllzo P, (¢) = 1is verified with the help of the relation Zﬁzo B, =
8k.0- The relation Zﬁzo”Bn,k = (—l)kkﬁ (the indetermination arising when A =k =0
must be resolved as 0) helps to find the average of the number of particles:

M
(M —k+ 1)k —k(k4+A)xct /2
D)= k+A)——— e kkFAK1/2 72
(n(1)) ;< M ATy (72)
The second moment (n(t)?) can be found with the help of (22) as (n(t)?) = — 2420 _
A(n(t)), or:

M M —k+1)

() =Dk + AR + (k — 1) 4) —————CeTkhran/e, (73)

— (M + A+ 1),
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