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Resum

L’objectiu fonamental de la fı́sica estadı́stica és descriure les propietats
emergents de sistemes compostos de moltes parts que interaccionen. Més
en general, la denominada “ciència dels sistemes complexos” busca reg-
ularitats que permetin entendre el comportament de sistemes compostos
per un gran nombre d’agents. En aquest context, els sistemesbiològics
han estat sempre al focus d’atenció de la fı́sica dels sistemes complexos,
i l’estructura i dinàmica d’ecosistemes ha estat un dels temes rellevants.
En aquesta tesi s’ha estudiat l’organització i evolució d’ecosistemes, des
del punt de vista de l’estudi de sistemes complexos, emprantles eines
de la dinàmica no lineal i la fı́sica estadı́stica. Com a tema central, s’ha
estudiat la fenomenologı́a dels “canvis de règim”: Tot ecosistema està
exposat a canvis graduals de clima, càrrega de nutrients o fragmentació
de l’hàbitat. La naturalesa en general respon a aquests canvis graduals
d’una manera suau. Tanmateix estudis en ecosistemes dispars com els de
llacs, oceans, o terres àrides han mostrat que respostes suaus poden ser
interrompudes per canvis bruscos a estats molt diferents. En aquesta tesi
s’han formulat i analitzat diversos models que permeten interpretar aque-
stes observacions en el marc dels conceptes de bifurcació,transicions de
fase i dinàmica adaptativa. En particular s’han estudiat models de cadenes
tròfiques pelàgiques, de competició d’espècies en ecosistemes litorals, de
vegetació en sabanes, i d’efectes evolucionaris i ecològics en les carac-
terı́stiques del parasitisme.
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Verdera you are the best!
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José Manuel Pellicer Martı́n i Toni Vidal Ferrer i als delegat de la mateixa
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Preface

... what is needed is an altogether new instrument; one that shall envisage the
units of a biological population as the established statistical mechanics

envisage molecules, atoms and electrons; that shall deal with such average
effects as population density, population pressure... These, in broad outline, are

some of the principal land-marks in the territory ultimately to be covered by
Physical Biology,

Elements of Physical Biology. Alfred J. Lotka

Last century saw an increasing application of the mathematical me-
thodologies developed in the context of the Physical sciences (differential
equation modeling, stability and control concepts, stochastic processes,
etc.) to the understanding of biological processes. An early synthesis was
provided by the book “Elements of Physical Bilology” authored by Alfred
J. Lotka, in particular with results for population dynamics and energetics.
The subject grew to a mature stage (see for example the textbook written
by Murray, “Mathematical Biology”) and the recent explosive increase in
the availability of precise data from living systems has stressed again the
need for quantitative approaches to the modeling of cells, organisms and
ecosystems.

xiii



This work started in the scope of the“Thresholds of Environmental
Sustainability” project (http://www.thresholds-eu.org) that was an inte-
grated project in which the study of ecological discontinuities and thresh-
olds effects as the consequence of human perturbations on ecological sys-
tems were the main related aspects. There I had the opportunity to work
with two different streams,Stream 2: Thresholds and points of no-return:
thresholds definition, theory and identificationandStream 4: Thresholds
and drivers of contaminants.

Researchers in the Stream 4 developed several kinds of experiments
and collected data from them. Specifically they performed a mesocosm
experiment which had the main purpose to study effects of pyrene as a
contaminant on a pelagic system including three trophic levels (algae,
bacteria, zooplankton), under two nutrient conditions. Such a experiment
was used to investigate direct and indirect effects of the contaminant on
the studied species. Firstly my collaborators and I tried topropose mod-
els that could validate these experimental data, however our studies drove
into a different path with a more general point of view, others in the
group kept working in the original direction. Hence I could contribute
with two different works studying regime shifts of marine ecosystems,
not just considering the pyrenne case. One related to marinetrophic
chains affected by contaminants, changing differently themortalities in
each trophic level. And another work related to effects of eutrophication
process in shallow marine ecosystems and competition between floating
and submerged algae.

Then at the same perspective of the Threshold project and global
change studies I drove my attention deeper inside to ecosystems that
present complex behavior, discontinuities and non-linearities, i.e., sys-
tems that act through a number of motors, including climate change, de-
sertification, land erosion, water shortage, eutrophication, pollution, bio-
diversity loss, succession, adaptation, natural disturbances, etc. Then I
could develop different ecological models and show the versatility of a
new kind of professional might be to carry out interdisciplinary projects.
A professional who not only might dominate mathematical tools and bio-

xiv



logical knowledge but might have the insight to solve, interpret and make
prediction to problems in nature. These are the qualities required in a pro-
fessional that work in joint programs of different areas of knowledge and
could be the major challenge scientists shall face in the 21st Century.

This thesis is divided in two parts. The first part is related to math-
ematical tools and modeling ideas used throughout the second part where
the original contributions are presented. The main purposeof the first part
is to introduce mathematical concepts with some illustrative examples and
give the reader as many references as possible. This is maybeuseful in
order to help further students in preliminary studies and guide them in
searching articles and books driving them deeper in the cited topics.

First Part
In the first chapter the concepts of dynamical systems are introduced and
represented mathematically using differential equationslanguage. Then,
studies of fixed points and analysis of stability. Finally, in a non-rigorous
way, bifurcation theory is introduced with some examples ofcodimension-
one and codimension-two bifurcations. In the second chapter some classi-
cal and established models of biological growth and interactions of pop-
ulations are depicted. Completing the tools required in thestudies of
Chapters 5 and 6.

Following the same logic, in the third chapter topics in discrete dy-
namical systems are shown. Starting with a historical perspective and the
definition of cellular automata and followed by few conceptsof percola-
tion and critical phenomena theory used in Chapter 7.

And finally, closing the first part, the fourth chapter pursuits the
main concepts and tools of adaptive dynamics. The definitionof fitness,
trade-off functions and techniques for the analysis of evolution through
pairwise invadability plots (PIPs), i.e., theory used in Chapter 8 are intro-
duced.

Second Part
The second part is divided in three chapters; one related with marine ecol-
ogy, other related with tree patterns and fire in savannas andthe last one is

xv



about sex-dependent parasitism. Basically this constitutes the core of this
thesis, where ecological models can be found what help the understand-
ing of actual problems raised from interactions of natural instabilities and
transformations of those ecosystems and human interventions.

Marine Ecology
Marine ecology is the study of marine organisms and their relationship
with other organisms and with the surrounding environment,such as non-
living, abiotic factors and living, biotic ones. Water, light, temperature,
salinity, tides, currents, etc are some of the abiotic factors or physical,
chemical and geological elements related to marine areas. The biotic fac-
tors comprises the interactions among living organisms. One aspect of
such interactions can be described through food chains, food networks
or trophic networks that describe the feeding interactionsamong species
within an ecosystem. Food webs evolve complex networks of interactions
in contrast with the simple linear pathway of the food chains. Biologists
often model food web relationships in terms of the flow of solar energy,
captured in photosynthesis by the phytoplankton (primary producers) and
passed from organism to organism by means of feeding transfers.

Unfortunately the growing exploitation of bio-marine resources and
the growing input of nutrients and contaminants due agricultural and in-
dustrial activities unbalance the correct functioning andequilibrium of
such ecosystems and affects the economy of many coastal areas involv-
ing aquaculture, fishing and/or tourism. Because of this andmany other
reasons, interest and research activity in marine ecology are intensifying
which leads to the increasing understanding of the complex interactions
evolved in the marine ecosystems.

In the first work, presented in Chapter 5, we analyze the jointeffect
of contaminants and nutrient loading on population dynamics of marine
food chains by means of bifurcation analysis. Contaminant toxicity is as-
sumed to alter mortality of some species with a sigmoidal dose response
relationship. A generic effect of pollutants is to delay transitions to com-
plex dynamical states towards higher nutrient load values,but more coun-
terintuitive consequences arising from indirect effects are described. In
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particular, the top predator seems to be the species more affected by pol-
lutants, even when contaminant is toxic only to lower trophic levels. This
work lead to the publication Bacelar et al. (2009).

Pristine coastal shallow systems are usually dominated by exten-
sive meadows of seagrass species, which are assumed to take advantage
of nutrient supply from sediment. An increasing nutrient input is thought
to favor phytoplankton, epiphytic microalgae, as well as opportunistic
ephemeral macroalgae that coexist with seagrasses. The primary cause
of shifts and succession in the macrophyte community is the increase of
nutrient load to water; however, temperature plays also an important role.
A competition model between rooted seagrass (Zostera marina), macroal-
gae (Ulva sp.), and phytoplankton has been developed in Chapter 6 to an-
alyze the succession of primary producer communities in these systems.
Successions of dominance states, with different resilience characteristics,
are found when modifying the input of nutrients and the seasonal temper-
ature and light intensity forcing. This chapter is related to the publication
Zaldı́var et al. (2009).

Patterns in Savannas
The term savanna describes ecosystems characterized by thecoexistence
between tree and grasses. The proportions of tree and grass can vary
greatly. On the basis of general arguments(e.g. the competitive exclu-
sion principle, see Hardin (1960)) pointing to the dominance of the fittest
among competing species, one can ask about which mecanism allows this
co-dominance of tree and grasses? Sarmiento (1984) formulated this ar-
gument as the ”savanna question”:What is special about the savanna
environment that allows trees and grasses to coexist, as opposed to the
general pattern in other areas of the world where either one or the other
functional type is dominant?. Climate, fire, hydrology, herbivory, as
well as soil nutrients, texture and depth are all important in determin-
ing the location of savanna. However recent studies have highlighted the
importance of fire and tree competition for water, nutrientsand light on
savannas. In Chapter 7 we focused on a spatially explicit lattice model of
savanna tree and grass population dynamics including thesetwo factors.
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This chapter is related to results in Bacelar et al. (2010)

Male Biased Parasitism
Males are often the “sicker” sex with male biased parasitismfound in a
taxonomically diverse range of species. There is considerable interest in
the processes that could underlie the evolution of sex-biased parasitism.
Mating system differences along with differences in lifespan may play a
key role. We examine in Chapter 8 whether these factors are likely to
lead to male-biased parasitism through natural selection taking into ac-
count the critical role that ecological feedbacks play in the evolution of
defence. We use a host-parasite model with two-sexes and thetechniques
of adaptive dynamics to investigate how mating system and sexual dif-
ferences in competitive ability and longevity can select for a bias in the
rates of parasitism. Male-biased parasitism is selected for when males
have a shorter average lifespan or when males are subject to greater com-
petition for resources. Male-biased parasitism evolves asa consequence
of sexual differences in life history that produce a greaterproportion of
susceptible females than males and therefore reduce the cost of avoid-
ing parasitism in males. Different mating systems such as monogamy,
polygyny or polyandry did not produce a bias in parasitism through these
ecological feedbacks but may accentuate an existing bias. This chapter is
related to results in Bacelar et al. (2011).
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Part I

Introduction: General theory
and Tools





1
Biological Models

Things should be made as simple as possible, but not anymore simpler.
A. Einstein

In this chapter some examples of the simplest biological models
will be briefly presented. They still are used to model dynamics of diverse
phenomena, such as the various manifestations of populations, social and
economic systems and biological organisms. And some of themare used
in the chapters 5, 6 and 8 of second part of this thesis.

1.1 Models of growth

Growth is a fundamental property of biological systems, occurring at the
level of populations, individual animals and plants, as well as within or-
ganisms. Even in technology, growth curves are used to forecast tech-
nological performance fitting a set of data and extrapolating the growth
curve beyond the range of the data. Much research has been devoted
to modeling growth processes, and there are many ways of doing this,
including: mechanistic models, time series, stochastic differential equa-
tions, etc.

1.1.1 Exponential growth: Malthus Model

The Malthusian growth model, sometimes called theexponential law of
population growth, (Malthus, 1798), describes “if a population will grow

3



4 Chapter 1.

(or decline) exponentially as long as the environment experienced by all
individuals in the population remains constant”, (Turchin, 2001). The
derivation of a exponential law could be given considering all individuals
in the population absolutely identical (in particular, there is no age, sex,
size, or genetic structure) and they reproduce continuously. In this way
the number of individuals can only change as a result of birth, death, em-
igration, and immigration. Malthus considered a closed population, with-
out immigration nor emigration, in this approach, the population growth
equation can be written as following:

dN
dt

= (b−d)N ⇒ N(t) = N0e(b−d)t (1.1)

where b and d are the birth and death positive rates. Ifb > d the popu-
lation grows exponentially, ifb < d the population becomes extinct. Ex-
ponential growth is only realistic as long as there appears to be no limits
to growth. Many systems appear to grow in this fashion for theinitial
periods until some capacity constraint begins to take place.

1.1.2 Gompertz curve

A model that takes into account capacity constraints is Gompertz’s law.
In 1825 Gompertz published “On the Nature of the Function Expressive
of the Law of Human Mortality”, in which he showed that “if the average
exhaustions of a man’s power to avoid death were such that at the end
of equal infinitely small intervals of time, he lost equal portions of his
remaining power to oppose destruction”, (Winsor, 1932), then the number
of survivors at any aget would be given by the equation:

N(t) = ke−be−ct
(1.2)

where k is the upper asymptote, i.e, the number of individuals in equilib-
rium, c is the intrinsic growth rate and b, c are positive numbers. Differen-
tiating and taking the logarithm of theGompertz equation (1.2) results
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the following equations:

dN
dt

= kcbe−cte−be−ct
= kcN(t)be−ct

ln(N) = ln(k)+ ln(e−be−ct
) = ln(k)−be−ct ⇒ be−ct = ln(k)− ln(N)

combining these two results the Gompertz differential equation becomes:

dN
dt

= kcN(ln(k)− ln(N)) (1.3)

In other words this model states that, under a given number ofindividuals,
the rate of population increase is positively proportionalto the natural
logarithm of the number of individuals in equilibrium divided by the given
number of individuals. This model was initially used only byactuaries,
but recently it has been used as a growth curve in biological and economic
phenomena, mobile phone uptake and Internet, (Chow, 1967),population
in a confined space and modeling of growth of tumors, (Durbin et al.,
1967).

1.1.3 The Pearl-Verhulst logistic equation

Taking the Malthus model and adding a function that describes the con-
centration of nutrients, C, to limit the production of organisms into the
dynamic equations, the following system results:

dN
dt

= bCN (1.4)

dC
dt

= −αbCN (1.5)

PerformingαdN
dt + dC

dt it is obtained: d
dt(C−αN) = 0, thus(C+αN)(t) =

constant= C0. In this wayC = C0−αN, substituting this expression in
(1.4) and performing some algebraic calculation it resultsinto a single
equation called thelogistic equation:

dN
dt

= r

(
1− N

K

)
N (1.6)
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where the expressionr(1− N
K ) is called an intrinsic growth-speed and

K is the carrying capacity, the maximum number of individuals that the
environment can support. The logistic equation can be integrated exactly,
hence the development of a population, which at initial timet = 0 has the
sizeN0, is:

N(t) =
K

1+ K−N0
N0

e−rt
(1.7)

This equation initially developed for studies of demography by Verhuslt
(1838), was rediscovered by Pearl and Reed (1920) , who promoted its
wide and indiscriminate use.

1.1.4 The chemostat equation

The chemostat is an apparatus in which the growth of microorganisms
can be controlled. Basically the system is formed by a nutrient reser-
voir and a growth chamber, in which the microorganisms reproduce. The
name chemostat stands forchemical environment isstatic what means
that “the purpose of the chemostat is to have a quasi-constat microorgan-
ism concentration, N, and nutrient concentration, C, allowing a constant
rate of harvest”, (Stranndberg, 2003).

Adjusting the equations (1.4) and (1.5), substitutingbC in Eq. (1.4)
for K(C) = Kmax

C
Kn+C, a Holling type II (see section 1.2.2), and introduc-

ing the inflow and outflow of nutrients from the reservoir and outflow of
harvested microorganisms the following system is obtained:

dN
dt

= K(C)N− F
V

N (1.8)

dC
dt

= −αK(C)N− F
V

C+
F
V

C0 (1.9)

Where F
V N represents flow of the harvested microorganisms,−F

V C cor-
responds to the outflow andFVC to the inflow of nutrition. The microor-
ganisms can not reproduce indefinitely because they are not in a chamber
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of infinite concentration, the functionK(C) is the reproduction-rate with
upper limitKmax andKn is the concentration at whichK = 1

2Kmax.

There are still more growth equations discussed in the literature, for
instance, by Savageau (1980) , and in the articles therein. Each data de-
scribed by growth equations requires different processes to be considered,
in this way many specialized growth equations can be proposed in order
to describe different aspects on the dynamics related to thegrowth. How-
ever there are enormous number of examples that are described by these
basic growth equations mentioned before and some of these will be used
in later chapters of this thesis.

1.2 Interacting populations models

1.2.1 Lotka-volterra model

N2

N1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FIGURE 1.1. LOTKA-VOLTERRA

PREDATOR−PREY: THE PURELY PERI-
ODIC SOLUTIONS.

In 1925 Alfred Lotka explained
deeply the purpose of the new area
called physical biology, which
consists on the application of
physical principles in the study of
life-bearing systems as a whole
in contrast withbiophysics that
treats the physics of individual life
processes. Among some examples
employed in this area he proposed
a model to describe chemical reac-
tions in which the concentrations
oscillates, (Lotka, 1920). Some years hence, using the sameequations,
different studies were carried out by Volterra (1926). The main purpose
of his work was to describe the observed variations in some species of fish
in the Upper Adriatic sea. The system of equations proposed by Lotka
and Volterra describes the change of prey or host density with time, and
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assumed, for this purpose, that the number attacked per predator was di-
rectly proportional to prey density. This model became known asLotka-
volterra predator-prey equations:

dN1

dt
= r1N1−αN1N2 (1.10)

dN2

dt
= δαN1N2−d2N2 (1.11)

WhereN1 is the density of prey,N2 is the density of predator,r1 is growth
rate of prey,d2 is the mortality rate of predator,α is the predation rate
coefficient andδ is the reproduction rate of predators per 1 prey eaten
(predation efficiency). This model generatesneutral stability , see Figure
1.2.1 , but the “assumptions are very unrealistic since very few compo-
nents are included, there are no explicit lags or spatial elements, and
thresholds, limits, and nonlinearity are missing”, (Holling, 1973).

The rate at which prey are taken by predators is known as thefunc-
tional response, depending on the behavior of both the predator and the
prey. A remarkable variety of functions has been proposed tocharacterize
the functional response. In the classical Lotka-Volterra model this rate is
the productαN1 in Eq. (1.10), other functional responses are going to be
shown in the next subsection.Numerical responseis defined in different
ways, however, the numerical response is usually modeled asa simple
multiple of the functional response, so the numerical response assumes
the same shape as the functional response likeδαN1 in Eq. (1.11).

competition

Competition among two species means that the increase in oneof the
populations decreases the net growth rate of the second one,and vice
versa. This happens when they feed on the same resources, or if they
produce substances (toxins) that are toxic for the other species. A classical
competition model was also introduced in Volterra (1926), and considered
in a more general parameter range by Lotka (1932). It is knownas the



1.2. Interacting populations models 9

competitive Lotka-Volterra system:

dN1

dt
= N1(r1−a11N1−a12N2)

dN2

dt
= N2(r2−a21N1−a22N2) (1.12)

whereN1 andN2 are the densities of the two competing organisms. Taking
r1, r2 > 0, so that each species reaches a non-vanishing stable equilibrium
(at r1/a11 and atr2/a22) in the absence of the other.a11 anda22 are the
coefficients of intraspecific competition. The presence of one species de-
creases the growth of the other ifa12 > 0 anda21 > 0. Symbiosis and
mutualism can also be represented by taking negative interspecific com-
petition coefficients.

1.2.2 Holling types of predation

One improvement of the predator-prey Lotka-Volterra modelis to add the
logistic growth of prey and besides change the type of predation, func-
tional response, into a more realistic form. Holling in his article “The
functional Response of Predators to Prey Density and its Role in Mimicry
and Population Regulation”, (Holling, 1965), reviewed previous papers,
(Holling, 1959a,b), and analyzed a series of data of invertebrates and ver-
tebrates species. Basically he presented three different types of predation
functional responses,P, Holling types:

• Type I: Linear, the number of prey consumed per predator is as-
sumed to be directly proportional to prey density until a saturation
value after which it remains constant, so initially the fuctional re-
sponse is the same used in the Lotka-Volterra model until satura-
tion. This functional response is found in passive predators like
spiders.

P = αN1N2, i f N1 < NT (1.13)

P = αNTN2, i f N1 > NT
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Linear with saturation Hiperbolic Sigmoidal

Figure 1.2: Holling Types. (a) Type I, (b) Type II, (c) Type III.

• Type II: hyperbolic functional response in which the attackrate in-
creases at a decreasing rate with prey density until it becomes con-
stant at satiation. This response is typical of predators that special-
ize on one or a few prey.

P = α
N1

h+N1
N2 (1.14)

• Type III: S-Shape or Sigmoidal, this functional response occurs in
predators which increase their search activity with increasing prey
density showing a initial S-shaped rise up to a constant maximum
consumption.

P = α
N2

1

h2+N2
1

N2 (1.15)

α represents the rate of successful search (predation rate coefficient) and
h is the half saturation of the function, see Figure 1.2. Basically in these
three types only two variables affecting predation were considered, prey
and predator density. They were considered by Holling in hisarticle of
1959 to be the only essential ones, against other characteristics that were
considered not to be essential, such as characteristics of the prey (e.g.,
reactions to predators, stimulus detected by predator, etc), density and
quality of alternate foods available for the predator and characteristics of
the predator (e.g., food preferences, efficiency of attack,etc). When such
complex interactions are present, it is difficult to understand clearly the
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principles involved in predation. In this instance a simplified situation
was taken into account where some of the variables are constant or not
operating.

Without more explanations it is worth citing other sort of predations
functional responses in the literature:

• Gause (1934) in his book “ The struggle for existence” , proposed a
model that explained the behavior of predator-prey system embod-
ied by Didiniurn-Paramecium. For large density of predator, N2, its
mortality is negligible for positive values of prey density, N1 > 0.
In addition, the increase of predator only slightly dependson N1.
To reduce the dependence uponN1 the termN1, used in the Lotka-
volterra model, was substituted by

√
N1 in the predation functional

response.

P = αN
1
2
1 N2 (1.16)

• Rosenzweig generalized the expression proposed by Gause taking
N1 to the gth power 0< g 6 1, (Rosenzweig, 1971).

P = αNg
1N2, 0 < g 6 1 (1.17)

• Watt proposed another non-linear connection between the relative
increase of the predator and the number of prey, (Watt, 1959).

P = α(1−e−aN1)N2 (1.18)

1.2.3 Rosenzweig: Paradox of Enrichment

“ Instability should often be the result of nutritional enrichment in two-
species interactions”, (Rosenzweig, 1971). Rosenzweig showed for six
different predator-prey models that increasing the food supply in the sys-
tem can lead to destruction of the food species that are wanted in greater
abundance. The enrichment was taken increasing the prey carrying capac-
ity and he showed that for a threshold value the steady state is destroyed
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while a limit cycle rises. This process was called theparadox of enrich-
ment.

1.2.4 Kolmogorov general model

Kolmogorov in 1936 studied predator-prey models of the general form:

dN1

dt
= N1 g(N1,N2)

dN2

dt
= N2 h(N1,N2) (1.19)

where g en h are continuous functions ofN1 andN2, with continuous first
derivatives. This model was reviewed by May (1972) , who proved that
limit cycle behavior is implicit in essentially all conventional predator-
prey models. This model requires density dependence or resource-limitation
effects at least for the prey population in contrast with theoriginal Lotka-
Volterra model which invokes exponential population growth. These sort
of nonlinear two-dimensional equations possess either a stable equilib-
rium point or a stable limit cycle, a fact that can be guaranteed by the
Poincaré-Bendixson theorem, (May, 1972). In three and higher dimen-
sional systems, (Monteiro, 2006), there are two more possible attractors
such as tori , (Nishiuchi et al., 2006) and strange attractors.

For more detailed information in ecological models see the books
Gurney and Nisbet (1998), Murray (2002, 2003) and Neufeld and Hernández-
Garcı́a (2009).
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2
Dynamical systems: Stability and
Bifurcation analysis

Science is built up with facts, as a house is with stones. But acollection of facts
is no more a science than a heap of stones is a house.

La Science et l’hypoth̀ese. Poincaŕe

The previous chapter presented some examples of biologicalmod-
els. In this chapter will be presented characteristics and some mathemat-
ical analysis of dynamical systems, tool required in chapters 5, 6 and 8
of second part of this thesis. Some explanations of continuation programs
used to solve numerically some results shown in chapter 5 arein appendix
A.

A system can be defined by a set of interacting elements, in such
way there are cause and effect relations in the phenomena that occur to
the elements of this set. In a dynamical system some characteristics of
the interacting elements change over time. From the Calculus invented
by Newton and independently reinvented by Leibniz it is known that the
variation of an object (characteristic)x(t) in a continuous time is mea-
sured by the derivativedx(t)

dt . In this sense the system evolution in time
can be described mathematically by1:

~̇x = ~f (~x,β) (2.1)

1~̇x = d~x(t)
dt

17
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Where~f is the variation rate of thestate variables, ~x, andβ is a
parameter of the system. When~f does not depend on time explicitly the
system is calledautonomous. Certain values,lim

t→∞
~x(t) =~x∗ with ~f (~x∗) =

0, do not change over time, depicting astationary solution of Eq. (2.1),
in other words they correspond stagnation (fixed) points of the flow. These
equilibrium points or fixed points of a system can be classified according
with their stability and the topology of theirphase portrait2

2.1 Stability of fixed points

According to Lyapunov, stability is a property of system behavior in
neighborhoods of equilibria. When the initial conditions,~x(0), fit in with
a equilibrium point the system remains indefinitely in this point. How-
ever, when the initial conditions are inside a sphere of radius δ whose
center is a specific equilibrium,~x∗, it can be defined asasymptotically
stablewhen all the trajectories,~x(t), converge to~x∗. If this sphere has a
finite radius this point islocally sable, otherwise whenδ → ∞ the point
is globally stable. In both cases the equilibrium point is classified as a
stationary attractor and all the set of initial conditions that converge to
this point form thebasin of attraction of this attractor.

An equilibrium point isneutrally stable when for a sphere of radius
δ centered in such point there is another sphere with radiusε also centered
in ~x∗, with δ < ε, such that every trajectory with initial condition inside
the sphere of radiusδ remains in the second sphere of radiusε for al
t ≥ 0. Hence~x(t) does not tend to~x∗ when t → ∞. When there is at
least one trajectory with initial condition belonged to a sphere of radiusδ
that leaves the sphere of radiusε in a finite time the equilibrium is called
unstable.

2Phase portrait, phase space or phase diagram: a plot of the system’s trajectories
in the state space in which the axes are the state variables. In mechanical systems the
phase space usually consists of all possible values of position and momentum(or speed)
variables.
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(a) (b) (c)

Figure 2.1. Fixed points in two dimensions. (a) Stable Node, (b) Stable Spiral, (c)
Saddle Point. The equations that have been used are: (a) ˙x = −0.5x, ẏ = −y, (b)
ẋ = −x+y, ẏ = −x−y, (c) ẋ = x, ẏ = −y.

All this classification is based on the temporal evolution ofthe dis-
tance between a trajectory~x(t) and~x∗, for the complicated systems mod-
eled by Eq. (2.1) that scientists study, explicit solutionsfor~x(t) are rarely
available. In consequence of this difficulty Lyapunov (1892), developed
a method for assessing the conditions of stability indirectly. This method
involves linearizing~f at~x∗, let J be the jacobian matrix of~f evaluated at
~x∗.

J =
∂~f (~x,β)

∂~x

∣∣∣
~x=~x∗

(2.2)

The eigenvaluesof J determine whether~x∗ is stable. These are scalar
valuesλi such that3det(J−λiI) = 0, i.e. the roots of the characteristic
polynomial ofJ. In this way, if the eigenvalues are all distinct, it is pos-
sible to write a exponential combination as the for general solution of the
linearized system,

~̇x = J~x (2.3)

by
~x(t) = k1~v01e

λ1t +k2~v02e
λ2t + ...+kn~v0neλnt (2.4)

wheren is the dimension of the system,ki are the arbitrary con-
stants that are given by the initial conditions and the vectors~v0 j are the

3I is the identity Matrix.
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eigenvectorsassociated with each eigenvalue and are determined by:

J~v0i = λi ~v0i , (i = 1,2, ...,n) (2.5)

Sometimes the Jacobian matrix presents equal real eigenvalues, in
this casemultiplicity 4 of the eigenvalues has to be taken into account in
order to generate linearly independent solutions. For example if a two-
dimensional system has two equal eigenvalues (λ1 = λ2 = λ) a general
solution for thisdegenerate caseis:

~x(t) = k1~v01e
λt +k2~v02te

λt (2.6)

In a n-dimensional case for eigenvalues with multiplicitym the associ-
ated functions areeλit , teλit , t2eλit , ..., tm−1eλit , thus, in the same way as
for distinct eigenvalues, the general solution is the linear combination of
these functions and the arbitrary constants are determinedby the initial
conditions.

In two dimensions, according to Poincaré, the fixed points can be
classified from the traceT and the determinant∆ of theJ matrix:

• if ∆ < 0, λ1,2 are real and of opposite signs. The fixed point is
calledsaddle pointwhich is unstable in the sense of Lyapunov;

• if ∆ > 0 andT2−4∆ > 0, λ1,2 are real and with the same sign.
If T > 0 the point is called aunstable node, if T < 0 it will be a
stable node.

• if ∆ > 0 andT2−4∆ < 0, λ1,2 are complex conjugated. IfT > 0
the fixed point is anunstable spiral, if T < 0 it is an asymptotic
stable spiral and if T = 0 the point is a neutrally stablecenter,
where the eigenvalues are purely imaginary.

4The number of equal eigenvalues. If the multiplicity of an eigenvalue is 2, there are
two eigenvalues of this same value. If is 3 there are three eigenvalues with this same
value and so on.
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(a) (b) (c) (d)

Figure 2.2. Two dimensional degenerate cases of fixed points . (a) Star Node,
(b) Degenerate Node, (c) Line of fixed points, (d) Center. Theequations that have
been used are: (a) ˙x = −x, ẏ = −y, (b) ẋ = −x+y, ẏ = −x−3y, (c) ẋ = −x+3y,
ẏ = x−3y , (d) ẋ = y, ẏ = −x.

On the lineT2−4∆ = 0 are lying thestar points anddegenerate
nodeswhich are cases where the system presents two equal eigenvalues.
In the case of star points, only the main diagonal ofJ is different of zero
with equal elements, hence the solutions are straight linespassing through
x∗ in the phase space. If the elements of the diagonal are positive the
star is unstable, if the elements of the diagonal are negative the star is
asymptotically stable. WhenT2 = 4∆ there is a degenerate node that is
stable whenT < 0 and unstable whenT > 0. If ∆ = 0, at least one of
the eigenvalues is zero and in this case there is a wholeline or a plane
of fixed points. Figure 2.1 shows some of the different mentioned types
of fixed points and Figure 2.2 depicts the degenerate cases . Hirsch and
Smale (1974, Chapter 9), give a detailed discussion of stability of fixed
points as well as Strogatz (2000, Chapter 5).

Observing the form of the solution (2.4) it can be seen that itcon-
verges to stable solution whenReλi < 0 and diverges when at least one
eigenvalueλi is positive. All the above refers to the phase portrait of the
linearized system (2.3). But in the degenerate cases such ascenter, star,
degenerate node and non-isolated fixed points, the linear system does not
guaranty a correct picture of the phase portrait near the fixed point, de-
generate points can be altered by small nonlinear terms. In such cases
stability must be determined considering non-linear termsof the Taylor
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series of~f (~x,β), (Andronov et al., 1973, Strogatz, 2000).

As mentioned before the stability of a equilibrium point is estab-
lished by the sign of the real part of its eigenvalues. Therefore to deter-
mine the stability of this solution, taking into account that a fixed point
is stable whenRe(λi) < 0 for all i, is only necessary to know if the signs
of the real parts ofλi are negative or not. Edward John Routh and Adolf
Hurwitz found independently the solution to find out whetherall the roots
of a polynomial have a negative real part. This criterion of stability known
asRouth-Hurwitz theorem is very helpful specially when the character-
istic polynomial for the eigenvalues of the JacobianJ is of order higher
than five and it is in general impossible to calculate analytically its roots.
The theorem says that the real part of all roots of the polynomial:

λn +a1λn−1 +a2λn−2 + ...+an−1λ+an = 0 (2.7)

are negative if all the coefficientsai are positive and if all upper-left de-
terminants∆i(i = 1, ...,n) of the Hurwitz matrixH are positive. If the
jacobian matrixJ is n×n so isH. TheH matrix is made in the following
way:

• The coefficientsai with odd indices and increasing j are written in
the first line . In the second line are written the coefficientswith
even indices and increasing j. Notice that the coefficient ofλn, a0,
is 1. the other positions are filled up with zeros.

• The two following lines are obtained moving the first two lines one
column to the right, filling-in the empty positions with zeros.

• The other lines are built repeating the procedure above until an oc-
cupies the lower right edge of the matrix.

In this way, for example, forn = 6 the Hurwitz matrix is:
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H =




a1 a3 a5 0 0 0
1 a2 a4 a6 0 0
0 a1 a3 a5 0 0
0 1 a2 a4 a6 0
0 0 a1 a3 a5 0
0 0 1 a2 a4 a6




and the upper-left determinants∆i(i = 1, ...,n) are:

∆1 = |a1| , ∆2 =

∣∣∣∣
a1 a3

1 a2

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣

a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣
, ... ,∆6 = |H|

In this section it was shown how different sorts of fixed points and
their stability characterize the topology of the phase space, see Figures
2.1 and 2.2. When the phase portrait of a dynamical system changes
qualitatively its topology as parameters pass through critical values the
system suffers a bifurcation that will be explained in the next section.

2.2 Bifurcation analysis

The term bifurcation was introduced by Poincaré (1885) andit is strongly
linked to the concept ofstructural stability . In a bifurcation fixed points
can be created or destroyed, or their stability can change when varying
parameters. When the dynamical system does not change quality of the
flow in the phase space under small perturbations of thecontrol param-
eter the system is structurally stable. In two-dimensional systems there
is a theorem that states the necessary conditions for which the system
is structurally stable, it is the knownPeixoto’s theorem, see (Peixoto,
1962).

In this section the fourlocal bifurcations that occur in continu-
ous dynamical systems will be presented: saddle-node bifurcation, trans-
critical bifurcation, pitchfork bifurcation and Hopf bifurcation. Then the
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global bifurcations homoclinic and heteroclinic will be presented. Local
bifurcations are those which can be previewed studying the vectorial field
in the neighborhood of a fixed point or a closed trajectory. Normally this
study is made by through the eigenvalues. Global bifurcations are those
which can not be established by a local analysis.

First thenormal forms5 of the simplest equilibria bifurcations of
codimension one will be depicted. An example of a codimension-two
bifurcation will be presented in the ending of this chapter and although
this work is not focused on chaos behavior, there are some regions in the
bifurcation diagram of the studied system that present chaotic behavior
and because of this a period doubling cascade routing to chaos will be
briefly explained.

2.2.1 Codimension-one local bifurcations

Codimension counts the number of control parameters for which fine
tuning is necessary to get such a bifurcation, i.e. the smallest dimension of
a parameter space which contains the bifurcation in a persistent way. Four
local bifurcations can occur varying the values of a unique parameter. The
normal form of saddle-node, transcritical and pitchfork bifurcations are
given in one-dimensional systems whereas a two-dimensional system is
needed for a Hopf bifurcation.

Definition 2.2.1. A dynamical system (2.1) is said to undergo a bifurca-
tion at parameter valueβ = β0 if in any (small) neighborhood ofβ0 ∈R

m

there is aβ value containing dynamics that are not topologically equiva-
lent to those atβ0.

5A normal form of a mathematical object is a simplified form of the object obtained
by applying a transformation (often a change of coordinates) that is considered to pre-
serve the essential features of the object.
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Saddle-node bifurcation

A saddle-node bifurcation is a local bifurcation in which two fixed points
coalesce into a single point that represents a bifurcation point and then this
point disappears. The normal form of this bifurcation can berepresented
in a one-dimensional equation:

ẋ = β−x2 (2.8)

This equation6 presents two equilibria, for ˙x = 0, x∗ = ±
√

β. When

x

β

Figure 2.3. Bifurcation diagram: Saddle-node Bifurcation. The thick line is the
stable solution and the dashed line is the unstable one.

β < 0 there is no equilibria, whenβ > 0 there are two equilibria. Then
β = 0 depicts the transition in the change of flow topology in the phase
space,β = 0 is the bifurcation point,β0. A way to analyze graphically
bifurcations is through the bifurcation diagram, see Figure 2.3. But in
order to visualize better this bifurcation a two-dimensional equation was
also plotted, see Figure2.4. In this case it expresses the collision of a
stable equilibrium (node) with a unstable one (saddle).

Transcritical bifurcation

In the transcritical bifurcation, fixed points are not destroyed nor created,
but for a critical value of the parameter they switch stability. The normal

6ẋ = β +x2 is also possible as a normal form of a saddle-node bifurcation.
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(a) (b) (c)

Figure 2.4. Phase space in two dimensions showing a saddle-node bifurcation. (a)
β < 0, (b) β = 0, (c) β > 0. The equation that has been used is: (a) ˙x = β + x2,
ẏ = −y.

form of this bifurcation can be:

ẋ = βx−x2 (2.9)

Observe that this equation7 presents two equilibria,x∗ = 0 andx∗ = β and

β

x

Figure 2.5: Bifurcation diagram: Transcritical Bifurcation

the eigenvalue is given byλ = β−2x∗. Therefore the fixed pointx∗ = 0
has the eigenvalueλ = β and the fixed pointx∗ = β has the eigenvalue
λ =−β hence in the bifurcation pointβ0 = 0 these point change stability,
see Figure 2.5.

7ẋ = βx+x2 is also possible as a normal form of a Trancritical bifurcation.
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Pitchfork bifurcation

A pitchfork bifurcation occurs generically in systems withinversion or re-
flection symmetry. That is, an equation of motion that remains unchanged
if one changes the sign of all phase space variables (or at least for one).
This bifurcation has two types: supercritical or subcritical. The normal
form of the supercritical pitchfork bifurcation is:

ẋ = βx−x3 (2.10)

x

β β

x

(a) (b)

Figure 2.6. Bifurcation diagram: Pitchfork bifurcation . (a) Supercritical, (b)
Subcritical.

Whenβ < 0 there is a stable equilibriumx∗ = 0 at pointβ = 0 this
point changes stability and two other equilibriax∗ = ±

√
β appear with

the same stability, in this case both are stable. And the normal form for
the subcritical case is:

ẋ = βx+x3 (2.11)

In this case, forβ < 0 the equilibrium atx∗ = 0 is stable, and there are two
unstable equilibria atx∗ =±

√
−β. Forβ > 0 the equilibrium atx∗ = 0 is

unstable.

Hopf bifurcation

In 1942, E. F. F. Hopf established the conditions in which such bifur-
cation could occur in a n-dimensional system, (Hopf, 1942).This bi-



28 Chapter 2.

furcation was originally studied by Poincaré (1892) and studied by An-
dronov (1929) for two-dimensional systems. Because of thissometimes
this bifurcation is called Poincaré-Andronov-Hopf bifurcation. A Hopf
or Poincaré-Andronov-Hopf bifurcation is a local bifurcation in which a
limit cycle8 arises from an equilibrium in dynamical system, when the
equilibrium changes stability via a pair of purely imaginary eigenvalues.
Like in the Pitchfork bifurcation the Hopf bifurcation has two types: su-
percritical or subcritical. To obtain this sort of bifurcation minimally a
two-dimensional system is demanded. A normal form of Hopf bifurca-
tion could be:

ẋ = βx−y+σx(x2 +y2),

ẏ = x+βy+σy(x2 +y2) (2.12)

This system presents a unique fixed point, the origin (x∗ = 0, y∗ =
0). The eigenvalues are±i + β hence the origin is asymptotically stable
for β < 0 and unstable forβ > 0. Forβ = 0 the origin changes stability, if
σ = −1 astable limit cyclearises in theβ > 0 region and in this case the
bifurcation issupercritical. If σ = 1 while the origin is stable forβ < 0
there is a presence of aunstable limit cycle that collapses in the transition
of stability of the origin, in this case the bifurcation issubcritical. All
these facts can be better viewed in the polar coordinates, changingx =

8A limit cycle is an isolated closed trajectory that can appear in the phaseportrait
of nonlinear systems. An isolated trajectory means absenceof other closed trajectories
infinitely close. Therefore the neighboring trajectories must approach or move away
from the limit cycle which is aperiodic attractor or repeller. A limit cycle is asymp-
totically stable when the neighboring trajectories approach the limit cycle otherwise it is
unstable. It is important to differentiate limit cycles from closed trajectories surrounding
center points. In the last case the closed trajectories are not isolated and there could be
several of them infinitely close for close initial conditions. In addition the amplitude,
the period and the shape of a limit cycle are determined by theparameters of a nonlinear
system while the shape, period and amplitude of closed trajectories surrounding centers
depend on the initial conditions.
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β

x y

x

y

x x

y

(a) (b) (c) (d)

Figure 2.7. Supercritical Hopf bifurcation (σ = −1). (a)Bifurcation diagram.
Phase space (b)β < 0, (c)β = 0, (d)β > 0.

x

β

y

x x

y

x

y

(a) (b) (c) (d)

Figure 2.8. Subcritical Hopf bifurcation (σ = 1). (a)Bifurcation diagram. Phase
space (b)β < 0, (c)β = 0, (d)β > 0.

r cosθ andy = r sinθ the system becomes:

ṙ = h(r) = βr +σr3,

θ̇ = 1 (2.13)

For ṙ = 0 there are two possibilities, the originr∗ = 0 and a cycle with

radiusr∗ =
√

−β
σ , as stated before whenσ = −1 the eigenvalue in polar

coordinates isλ = dh
dr

∣∣∣
r∗

= β − 3(r∗)2, analyzing the cycle, forβ > 0,

λ = −2β and hence the limit cycle is stable. Ifσ = 1 the eigenvalue is
λ = β+3r2, for β < 0, λ = 4β and hence the limit cycle is unstable. See
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Figures 2.7 and 2.8.

2.2.2 Codimension-one global bifurcations

Global bifurcations can not be previewed by eigenvalues of fixed points,
however in 1963 V. D. Melnikov developed a method by which is possi-
ble to prove the existence of homoclinic and heteroclinic bifurcations in
Hamiltonian perturbed systems, see (Melnikov, 1963). In this subsection
the homoclinc and heteroclinic bifurcations will be presented briefly .

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

x

y

Figure 2.9. Phase space: Homoclinic bifurcation. The limit cycle get close to
the saddle point (0,0) when increasingβ. The dashed lines are the nullclines for
β =−0.1 and the solid lines are the trajectories (x3−x2+y2 = β) for the increasing
values ofβ, β = −0.1, β = −0.05,β = −0.01 and finallyβ = 0 that represents the
homoclinic orbit.

Homoclinic Bifurcation

A point is called ahomoclinic point when it lays down in a trajectory that
is, at the same time, a stable and unstable manifold of a saddle point, this
trajectory is ahomoclinic orbit9. A bifurcation that leads to a destruction

9Homoclinic trajectory or homoclinic loop
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of a of a homoclinic orbit is ahomoclinic bifurcation . As an example,
the following system proposed by Hale and Koçak (1991), presents a ho-
moclinic bifurcation:

ẋ = 2y

ẏ = 2x−3x2−y(x3−x2 +y2−β) (2.14)

This system presents two fixed points, observe the intersection of the
nullclines10 in Figure 2.9. The origin(x∗ = 0,y∗ = 0) and the point
(x∗ = 2

3,y∗ = 0) are the fixed points of this system. The origin is always

a saddle point with eigenvaluesλi =
1
2

(
β±

√
β2+16

)
independently of

the values ofβ. But the point (23, 0) changes stability whenβ varies, and

its eigenvalue isλi = 1
54

(
27β+4±

√
729β2+216β−11648

)
. Observe

that atβ∗ = − 4
27 the system suffers a supercritical Hopf bifurcation be-

fore which this point is a stable spiral, and than it convertsinto a unstable
spiral. For− 4

27 < β < 0 one can see the presence of an orbitally asymp-
totically periodic orbit, alias limit cycle and atβ∗ = 0 the periodic orbit
is absorbed by a homoclinic loop, i.e, a homoclinic bifurcation happens,
see Figures 2.9 and 2.10, in this case forβ > 0 the homoclinic orbit is
destroyed.

Heteroclinic Bifurcation

When the unstable manifold of a steady point becomes the stable man-
ifold of another steady point, thus connecting two steady points, then
the system presents a heteroclinic connection, aliasheteroclinic cycle.
A Heteroclinic bifurcation happens when the steady points connection
is broken. Observe the following system proposed by Hale andKoçak

10Nullclines or Zero-Growth isoclines of a two-dimensional dynamical system are the
boundary between regions where ˙x or ẏ switch signs. In this way setting either ˙x = 0 or
ẏ = 0 the nullclines of the system will be found. The intersections betweenx andy
nullclines are the equilibrium points.
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Figure 2.10. Bifurcation diagram: Homoclinic Bifurcation . (a) 2D Bifurcation
diagram, (b) 3D Bifurcation diagram. The dashed lines are unstable solutions and
thick lines the stable ones.

(1991):

ẋ = β+2xy

ẏ = 1+x2−y2 (2.15)

In Figure 2.11 depicts the phase portrait for three different values of the
parameter. Atβ = 0 the system presents two fixed points,(0,1) and
(0,−1), both of which are saddle points. The orbit in the y-axis between
the two points has the stable manifold of(0,1) and the unstable manifold
of (0,−1) thus the system has a heteroclinic orbit forβ = 0. Forβ 6= 0
the saddle connection is broken hence a heteroclinic bifurcation happens.

2.2.3 Codimension-two bifurcations

As mentioned before the number of control parameters necessary to get
a bifurcation determined the codimension of this bifurcation. Therefore
when two control parameters are necessary to get a bifurcation, such a
bifurcation is told to be codimension two. There are severalsorts of codi-
mension two bifurcations, such as Bautin, Bogdanov-Takens, Cusp, Fold-
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Figure 2.11. Phase space: Heteroclinic Bifurcation. Dashed lines are the nullclines
and thick lines are some trajectories.
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Holpf and Hopf-Hopf bifurcations. As an example observe thesystem
that was studied by Takens (1974) and Bogdanov (1975) ,:

ẋ = y

ẏ = β1+β2x−x2 +xy (2.16)

Whenβ1 > 0 there is no equilibrium. Forβ1 = 0 andβ2 = 0 the origin
is the unique equilibrium and its two eigenvalues are zero. For β1 < 0
there are two equilibria:(

√
−β1,0) and(−

√
−β1,0). In this wayβ1 = 0

is a saddle-node bifurcation point. The first fixed point is a saddle with
eigenvalues:

λ1,2 =
1
2

(
β2−

√
−β1±

√
β2

2−2
√

−β1β2−β1+8
√

−β1

)
(2.17)

the second one has the eigenvalues:

λ1,2 =
1
2

(
β2+

√
−β1±

√
β2

2+2
√

−β1β2−β1−8
√

−β1

)
(2.18)
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Figure 2.12. Bogdanov-Takens Bifurcation. The first graph is the bifurcation
diagram forβ2 = 0.5. The second one is the two-parameter bifurcation diagram.

For β2 < −
√

−β1 this point is asymptotically stable and unstable
for β2 > −

√
−β1. And observing the eigenvalues of the second point
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one can see that a subcritical Hopf bifurcation happens atβ2 = −
√

−β1,
the decreasingβ1 from this value a limit cycles arises. Decreasing further
more the value ofβ1 the cycle is destroyed into a homoclinic bifurcation
when it merges with the saddle point, see Figure 2.12(a). In the two-
parameter graph in Figure 2.12(b), it can be seen that a Bogdanov-Takens
bifurcation happens. The origin of the parameter plane, coincides with the
origin in the cartesian plane and, as mentioned before, thispoint has two
zero eigenvalues and corresponds to the critical value of the Bogdanov-
Takens bifurcation. Three codimension-one bifurcations occur nearby:
a saddle-node bifurcation, a Poincaré-Andronov-Hopf bifurcation and a
homoclinic bifurcation.

2.2.4 Period Doubling Cascade and Chaos

Differently to the previous bifurcations aperiod doubling bifurcation or
flip bifurcation is a local bifurcation related to cycles and hasno cor-
respondence for equilibria in continuous systems. In this bifurcation a
cycle loses its stability, while another cycle with twice the period of the
original cycle rises. If the secondary path is stable the bifurcation issu-
percritical (subtle), conversely, when the secondary path is unstable the
bifurcation issubcritical (catastrophic). This bifurcation requires at least
a three-dimensional phase space and a supercritical perioddoubling cas-
cade converges to chaotic behavior. This can be seen in the following
example.

Rössler equations

Rössler proposed the following system in 1976:

ẋ = −y−z

ẏ = x+ay

ż = b+z(x−c) (2.19)
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Figure 2.13. Period Doubling Cascade and Chaos for Rössler system, varying the
b parameter and fixinga = 0.2 andc = 5.7. The first picture depicts the complete
bifurcation diagram, where line betweenb = 5.99 andb = 7 is the fixed point
that bifurcates in a Hopf bifurcation at b value, 5.99. The other lines represent
the maximum and minimum of the cycles. The second picture shows the higher
sequence of bifurcations amplified.

It is minimal for continuous chaos for at least three reasons: Its phase
space has the minimal dimension three, its nonlinearity is minimal be-
cause there is a single quadratic term, and it generates achaotic attrac-
tor11 with a single lobe, in contrast to the Lorenz attractor whichhas two
lobes, (Lorenz, 1963).

This system presents stationary, periodic and chaotic attractors de-
pending on the value of the parameters (a, b, c). The Figure 2.13 shows
the sequence of bifurcations for certain range of parameters, in the first
plot a complete bifurcation scenario is plotted, observe that there is a sta-
ble fixed point that converts into unstable via a Hopf bifurcation at b value

11Also called Strange Attractors , (Ruelle and Takens, 1971).Actually, in many texts
in the literature, the word strange is related to the geometrical structure of attractor,
strange attractors are fractals and demonstrate infinite self similarity, while the word
chaotic refers to the dynamics of orbits on the attractor. The attractor that will be shown
here is a strange chaotic attractor, but it is important to bear in mind, although it will not
be shown in this thesis, the existence ofstrange nonchaotic attractors, (Romeiras and
Ott, 1987).
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Figure 2.14. Rössler Phase Space: (a)b= 2.0, (b)b= 1.0, (c)b= 0.8, (d)b= 0.4.
fixeda = 0.2 andc = 5.7.

of 5.99 then the stable cycle loses stability through a period doubling bi-
furcationb = 1.43. Another period doubling happen at 0.85 and then at
0.73. Afterwards a cascade of supercritical bifurcations occurs leading to
a chaotic attractor, see the last picture of Figure 2.14. More information
can be also found in the book of Thompson and Stewart (2002, Chapter
12).

The theory of dynamical systems is not an innovation and excel-
lent books have already been published in this issue, specially it’s worth
citing Strogatz (2000), Hale and Koçak (1991), Thompson and Stewart
(2002), Gugenheimer and Holmes (1993) and Monteiro (2006, in Por-
tuguese). The purpose of this chapter was a quick review and asummary
of dynamical systems theory. The graphs were drawn using a MATLAB
package for numerical bifurcation analysis of ODEs (Matcont), (Dhooge
et al., 2003), XPPAUT, (Doedel et al., 1997, Ermentrout, 2002) and my
own program codes, see appendix A.
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3
Cellular Automata

The sciences do not try to explain, they hardly even try to interpret, they mainly
make models. By a model is meant a mathematical construct which, with the
addition of certain verbal interpretations describes observed phenomena. The
justification of such a mathematical construct is solely andprecisely that it is

expected to work.

John von Neumann

It is known in the history of science that new areas of basic sci-
ence are developed from the appearance of new technologies.For exam-
ple, telescope technology was what led to modern astronomy,microscope
technology led to modern biology and at the same way computertech-
nology has led to what Wolfram called in his book the new kind of sci-
ence, (Wolfram, 2002), the era of cellular automata ,which together with
simulations and other individual based modeling started since then. At
the beginning the standard intuition in traditional science, more focused
in equation-based methods or top-down approaches, showed no interest
in the agent/individual-based modeling, a bottom-up approach, thinking
that the results in this kind of modeling wouldn’t be interesting...

However since the release of Conways Game of Life (Gardner,
1970), cellular automata have been developed and progressively used to
model a great variety of dynamical systems in different application do-
mains such as physical and spatial sciences, biology, mathematics and
computer science, image processing (Rosin, 2006, 2010) andas well as
in the social sciences.

Historically CA were first defined and studied in the 1950’s byJohn
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Von Neumann and Stanislaw Ulam as ideal structures for modeling self-
reproducing “machines”, (Von Neumann, 1951, Von Neumann and Burks,
1966), in 1970, the mathematician Jon Conway proposed his now famous
Game of Life published by Martin Gardner in the mathematicalgames
column in Scientific American (Gardner, 1970). In 1980’s systematic
studies were pioneered by Wolfram in a family of one-dimensional cellu-
lar automata rules . Many interesting behaviors encountered in continuous
systems are seen in such discrete dynamical systems, as seenfor example
in (Wolfram, 2002). In the following sections the basic theory used in the
studied model in chapter 7 is presented.

3.1 Definition

Cellular automata (CA) are an idealization of physical/dynamical systems
in which space and time are discrete, and physical quantities (state vari-
ables) take only a finite set of values. Basically it consistsof a grid of
cells/sites (lattice), where each cell’s value (state) is updated in discrete
time steps according to atransition rule (or updating rule). The transi-
tion rules of a CA can be deterministic or, in a more general case, proba-
bilistic and there are several ways to implement them. Theseimplemen-
tations are an essential part of the definition of a model, since they gener-
ally produce different transients, stationary states and averages of physical
quantities. There are three basic ways of implementing the update rules
which are common for practical purposes like in computer simulations.
They are called parallel, sequential and random sequentialupdate.

3.1.1 Updating rules

Thedeterministic updating rules can be seen as functions which can be
linear or nonlinear whose argument is the state at timet of itself and the
neighboring cells, and whose value is the next state of the considered cell
at timet + 1. In probabilistic or stochasticCA, local rules may have a
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probabilistic element to them; rather than dictating the state of an updated
cell (Coe et al., 2008, Domany, 1984, Grassberger et al., 1984, Lebowitz
et al., 1990, Szabó and Borsos, 2002).

In the models defined in terms ofparallel updating rules, the state
of every cell in the model is updated together, before any of the new states
influence other cells and it can be performed synchronously (Burstedde
et al., 2001, Wang et al., 1999). Implementations ofsynchronous up-
dating can be analyzed in two phases. The first, interaction, calculates
the new state of each cell based on the neighborhood and the update rule.
State values are held in a temporary store. The second phase updates state
values by copying the new states to the cells.

In contrast,asynchronous updatingdoes not necessarily separate
these two phases: in the simplest case (fully asynchronous updating),
changes in state are implemented immediately in such a way that the
new state of a cell affects the calculation of states in neighboring cells.
The two most common asynchronous updating implementation are the
sequentialand random sequentialupdate. In the first, also known as
ordered asynchronousupdating, includes any process in which the up-
dating of individual states follows a systematic pattern (Cornforth et al.,
2005). In the second, also known asrandom asynchronousupdating, at
each time step, a cell is chosen at random with replacement (Braun et al.,
1998, Cornforth et al., 2005).

3.1.2 Neighborhoods

The two most commonly used neighborhood types in a two dimensional
square lattice are the Von Neumann and Moore neighborhood. TheVon
Neumann neighborhoodconsists of four adjacent cells orthogonally sur-
rounding a central cell on a two-dimensional square lattice. They are
also called by physicists as “nearest neighbors sites”. TheMoore neigh-
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borhood1 comprises the eight cells surrounding a central cell on a two-
dimensional square lattice, the four of Von Neumann’s one and the four
diagonal neighbors which touch at one corner only, called byphysicists
the “next nearest neighbors”. It was the neighborhood used by John Con-
way’s ”Game of Life” (Gardner, 1970). These neighborhoods can be ex-
panded, and the number of cells are given by(2r +1)2 and 2r(r +1)+1
respectively, wherer is the range of the neighborhood (r = 0,1,2,3, ...).
In Figure 3.1 Von Neumann and Moore neighborhood can be seen for
ranges 1 and 2.

(a) (b)

Figure 3.1. Most common square lattice neighborhoods: (a) Von Neumann and
(b) Moore neighborhoods. Black represents the analyzed central cell, light gray the
neighborhood in the range 1 and dark gray together with lightgray represent the
neighborhood in range 2.

The simplest implementation of a CA is a one-dimensional array
of cells (possibly two way infinite). Many examples of one-dimensional
CA can be find in the Wolfram’s book “A new kind of science” (Wol-
fram, 2002). The most used in literature are the two-dimensional CA,
normally representing a square lattice. However other sortof geometrical
structures can been found in the literature such as hexagonal/honeycomb
lattice (Domany, 1984) and triangular lattice (Kong and Cohen, 1991).

1This neighborhood takes its name from Edward Forrest Moore,the inventor of the
Moore finite state machine (Moore, 1956)
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In Figure 3.2 the most common neighborhood in a hexagonal lattice and
triangular lattice can be seen.

(a) (b)

Figure 3.2: (a) Hexagonal lattice neighborhoods. (b) Scheme of a triangular lattice.

3.1.3 Dynamics and Boundary conditions

The dynamics begins with an initial condition that is known by the initial
configuration of the cellular automaton and may be given or randomly
generated. In the systematic studies performed by Wolfram (1984), he
showed that starting from random initial conditions, ordercan emerge or
even the system can became more and more complex and indeed some-
times the produced behavior appears completely random. Thediffer-
ent structures (attractors) generated by cellular automata evolution were
grouped in four basic behavior classes :Class 1: Independently of the
initial state the output generated are lead to exactly the same uniform
final state, analogous tofixed point. Class 2: There are many differ-
ent possible final states, but all of them consist just of a certain set of
simple structures that either remain the same forever or repeat every few
steps, analogous tolimit cycle. Class 3: A more complicated behavior is
reached and seems in many aspects random, although triangles and other
small-scale structures are seen always at some level (fractals), analogous
to Chaotic (“strange”) attractors . Class 4: Involves a mixture of order
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and randomness: localized structures are produced and interact with each
other in very complicated ways. See the snapshots of the different final
configurations of each class in Figure 3.3.

Figure 3.3. Examples of the four basic classes of behavior seen in
the evolution of one-dimensional cellular automata from random initial con-
ditions (Wolfram, 2002) and periodic boundary conditions.These fig-
ures were generated with WolframMathematica program with the code
ArrayPlot[CellularAutomaton[rule, ” Initialconditions” ,t]] for 250, 108, 126 and
110 rules respectively, representing class 1 to class 4.

In thereby a CA could consist of an infinite grid of cells, however for
practical reasons and computer memory limitations, CA are often simu-
lated on a finite grid rather than an infinite one. One issued problem is how
to handle the cells on the edges. For that, many different boundary condi-
tions arose for different problems modeled. For exampleopen boundary
conditions can be found for example in a vehicular traffic models (Kai
Nagel and Michael Schreckenberg, 1992), pedestrian dynamics models
(Burstedde et al., 2001) and others (Rajewsky and Schreckenberg, 1997).
In this kind of boundary condition the elements of the model (pedes-
trians, cars, etc.) are introduced/eliminated through theedges. Fixed
boundary condition is the condition where cell values on the boundary
(virtual neighbors) are not allowed to change with time, in the case a null
value is chosen this condition is known asnull boundary condition (Cho,
2005, Rubio et al., 2004). In thereflexive boundary condition the vir-
tual neighbors assume the same value of the present state of cells in the
edges (Kobuchi and Nishio, 1973, Yacoubi and Jai, 2002). Andfinally
the periodic boundary condition where the extreme cells are adjacent
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(Rubio et al., 2004). In Figure 3.4 three different schematic representa-
tions of the virtual neighborhood near the boundary in a square lattice are
represented, namely fixed, reflexive and periodic boundary conditions.

Use values from top row of the grid

Use values
 from left row
 of the grid

(a) (b) (c)

Figure 3.4. Examples of common used boundary conditions: (a) constant bound-
ary condition, (b) reflexive boundary condition and (c) virtual Moore neighborhood
in the periodic boundary condition which uses left,right rows to extend the grid hor-
izontally and the top, bottom rows to extend the grid vertically

Some reviews of cellular automata can be found in Sarkar (2000)
and Yang and Young (2005).

3.2 Percolation clusters

Percolation is a model for random connectivity, associatedwith systems
with a critical state. In biological systems the role of the connectivity of
different elements is of great importance (Green, 1993). Basically per-
colation deals with groups of neighboring occupied sites with the same
state in the lattice and these groups are calledclusters. Usually, in liter-
ature, Von Neumann neighborhood is the most considered neighborhood
in the formation of these clusters, like in the example showed in Figure
3.5. However other kinds of neighborhood can be considered as well (see
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(a) (b) (c)

Figure 3.5. Site percolation: (a) system in which few cells at occupied state are
randomly distributed throughout the lattice. (b) A system in which some cells at
occupied state are randomly distributed so that some clusters may form (encircled).
(c) A system in which enough cells at occupied state have beenrandomly added so
that a probability exists of a cluster forming that spans thesystem (encircled).

chapter 7). Percolation is widely observed in chemical systems and his-
torically, it was first recognized by Flory and Stockmayer asa method
to describe how small, branched molecules react to form polymers, ul-
timately leading to an extensive network connected by chemical bonds
(Flory, 1941a,b,c, Stockmayer, 1943, 1944).

The term “percolation” and the mathematical concept were intro-
duced by Broadbent and Hammersly in the late 1950s, who studied the
spreading of hypothetical fluid particles through a random medium, mak-
ing the distinction between diffusion and percolation processes (Broad-
bent and Hammersley, 1957). Thereafter, percolation theory has been
found useful to characterize many disordered systems (Andrade et al.,
2000). Stauffer described the application of percolation theory to con-
ductivity and diffusivity (Stauffer and Ahorony, 1985).

In order to understand percolation phenomena observe Figure 3.5.
In Figure 3.5(a) it is possible to see how occupied cells are distributed
randomly. Because of the low density of this occupied cells no physi-
cal contact is encountered. In this sense no information in the system
is exchanged. If increasing the density of occupied cells inthe lattice a
finite probability arises for these cells to form some clusters which per-
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mits some exchange of information within the clusters, but the clusters are
isolated so the information exchange is confined within eachcluster, see
Figure 3.5(b). If enough occupied cells are randomly added to the system,
some clusters may appear as a single cluster which spans the entire length
or width of the system.

Figure 3.6: Bond Percolation

This spanning cluster produces
a conduit through which an uninter-
rupted flow of information is possible
across the system. This situation of
uninterrupted flow is calledpercola-
tion ( Figure 3.5(c)). The minimum
number of occupied cells in the system
necessary to have a finite probability
of percolation occurring is called the
percolation threshold or percolation
point (Kier et al., 1999). In this pro-
cess the cells are not necessarily distributed independently (i.e. randomly)
in the lattice but the cells positions may be correlated, i.e., determined by
rules which depends on the cells positions in cellular automata models,
like the positions of molecules in a real gas, forest fire through clusters of
trees or infected people in spreading diseases.

There are two types of percolation: Bond percolation and site per-
colation. Abond percolation considers the lattice edges as the relevant
entities; asite percolation considers the lattice vertices/cells as the rel-
evant entities. In Figure 3.5 shows an example of site percolation and
Figure 3.6 an illustration of bond percolation. The transition from a non-
percolating state to a percolating state is a kind ofphase transition. The
major difference between percolation and other phase transition models
is the absence of a Hamiltonian. Instead, the theory is basedentirely on
probabilistic arguments (Essam, 1980). Good reviews in percolation the-
ory can be found in Essam (1980), Stauffer (1979) and Fortunato (2000).



50 Chapter 3.

3.2.1 Cluster size distribution

Once defined the problem, it is possible to study percolationphenomena
quantitatively. Since percolation is related to a random process, in repeat-
ing the procedure over and over clusters of different sizes and shapes will
be encountered. Hence it is possible to study the averages ofquantities
related to the clusters, studying the statistics of these clusters. Thesize of
a cluster, s can be defined as the number of sites (bonds) belonging to it.
In percolation theory one of the statistics studies is to seehow the clusters
are distributed according to their size. Hence the number ofclusters of
sizes per lattice site can be expressed as following:

ns = lim
V→∞

NV(s)
V

(3.1)

whereV is the number of sites (volume) of a finite lattice andNV the num-
ber of clusters of sizes on that lattice which depends also on occupation
probabilityp.

As illustrated in Figure 3.5, depending on the density of occupied
cells it is possible to find some clusters, increasing the density of occupied
cells when increasing the occupation probabilityp, the cluster sizes and
the number of clusters increase until a certain critical point, pc, where
the biggest cluster spans through the lattice. Near this transition2 , when
p = pc, cluster sizes become statistically correlated over largescales, and
can even become scale invariant. Thus the distribution of clusters sizes
obeys a power-law:

ns ∝ s−τ (3.2)

Whereτ is a critical exponent. This is the connection of percolation and
critical phenomena, what lead in the 80’s to growth of popularity of this
subject among physicists.

2It is called by physicists as a second-order transition since it is characterized by a
continuous vanishing of the order/control parameter
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(a) (b)

Figure 3.7. (a) Snapshot of a 2000× 2000 square lattice. Sites are randomly
occupied or empty (white cell)when occupation probabilityp = pc ≈ 0.593 (which
is the percolation threshold on site percolation in the square lattice). Occupied
sites with the same color pertain to the same cluster. (b) Log-log plot of the cluster
distribution shown in (a). The slope of the straight line gives an approximated
estimate of the critical exponentτ.



52 Chapter 3.



Bibliography

Andrade, J. S., Buldyrev, S. V., Dokholyan, N. V., Havlin, S., King, P. R., Lee, Y.,
Paul, G., Eugene Stanley, H., 2000. Flow between two sites ona percolation
cluster. Phys. Rev. E 62 (6), 8270–8281.

Braun, O. M., Hu, B., Filippov, A., Zeltser, A., 1998. Trafficjams and hysteresis
in driven one-dimensional systems. Phys. Rev. E 58 (2), 1311–1324.

Broadbent, S., Hammersley, J., 1957. Percolation processes i. crystals and mazes.
Proc. Cambridge Philos. Soc. 53 (03), 629–641.

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J., 2001. Simulation of
pedestrian dynamics using a two-dimensional cellular automaton. Physica A:
Statistical Mechanics and its Applications 295 (3-4), 507 –525.

Cho, S.-J., 2005. Analysis of pseudo-noise sequences generated by null boudnary
cellular automata. J. Appl. Math. & Computing 18 (1 - 2), 287 –300.

Coe, J. B., Ahnert, S. E., Fink, T. M. A., 2008. When are cellular automata
random? EPL (Europhysics Letters) 84 (5), 50005.

Cornforth, D., Green, D. G., Newth, D., 2005. Ordered asynchronous processes
in multi-agent systems. Physica D: Nonlinear Phenomena 204(1-2), 70 – 82.

Domany, E., 1984. Exact results for two- and three-dimensional Ising and Potts
models. Phys. Rev. Lett. 52 (11), 871–874.

Essam, J. W., 1980. Percolation theory. Rep. Prog. Phys. 43 (7), 833.

Flory, P. J., 1941a. Molecular size distribution in three dimensional polymers. I.
Gelation. J. Am. Chem. Soc. 63 (11), 3083–3090.

53



54 Chapter 3.

Flory, P. J., 1941b. Molecular size distribution in three dimensional polymers. II.
trifunctional branching units. J. Am. Chem. Soc. 63 (11), 3091–3096.

Flory, P. J., 1941c. Molecular size distribution in three dimensional polymers.
III. tetrafunctional branching units. J. Am. Chem. Soc. 63 (11), 3096–3090.

Fortunato, S., 2000. Percolation and deconfinement in SU(2)Gauge theory.
Ph.D. thesis, Physics Faculty, University of Bielefeld.

Gardner, M., 1970. Mathematical games: The fantastic combinations of John
Conway’s new solitaire game ‘Life’. Sci. Am. 223 (4), 120–123.

Grassberger, P., Krause, F., von der Twer, T., 1984. A new type of kinetic critical
phenomenon. Journal of Physics A: Mathematical and General17 (3), L105.

Green, D. G., 1993. Emergent behavior in biological systems. In: In: D.G. Green
and T.J. Bossomaier (Editors), Complex Systems: From Biology to Compu-
tation. IOS. IOS Press, pp. 24–35.

Kai Nagel, Michael Schreckenberg, 1992. A cellular automaton model for free-
way traffic. J. Phys. I France 2 (12), 2221–2229.

Kier, L. B., Cheng, C.-K., Testa, B., 1999. A cellular automata model of the
percolation process. J. Chem. Inf. Comput. Sci. 39 (2), 326–332.

Kobuchi, Y., Nishio, H., 1973. Some regular state sets in thesystem of one-
dimensional iterative automata. Information Sciences 5, 199 – 216.

Kong, X. P., Cohen, E. G. D., 1991. Diffusion and propagationin triangular
lorentz lattice gas cellular automata. Journal of Statistical Physics 62, 737–
757.

Lebowitz, J. L., Maes, C., Speer, E. R., 1990. Statistical mechanics of probabilis-
tic cellular automata. Journal of Statistical Physics 59, 117–170.

Moore, E. F., 1956. Gedanken experiments on sequential machines. In: Au-
tomata Studies. Princeton U., pp. 129–153.

Rajewsky, N., Schreckenberg, M., 1997. Exact results for one-dimensional cel-
lular automata with different types of updates. Physica A: Statistical and The-
oretical Physics 245 (1-2), 139 – 144.

Rosin, P., 2006. Training cellular automata for image processing. IEEE Transac-
tions on Image Processing 15 (7), 2076–2087.

Rosin, P. L., 2010. Image processing using 3-state cellularautomata. Computer
Vision and Image Understanding 114 (7), 790 – 802.



55

Rubio, F., Encinas, C. H., White, L. H., del Rey, S. M., Snchez, A. R., Ger-
ardo, 2004. The use of linear hybrid cellular automata as pseudorandom bit
generators in cryptography. Neural Parallel Sci. Comput. 12, 175–192.

Sarkar, P., 2000. A brief history of cellular automata. ACM Computing Surveys
32 (1), 80–107.

Stauffer, D., 1979. Scaling theory of percolation clusters. Phys. Rep. 54 (1), 1 –
74.

Stauffer, D., Ahorony, A., 1985. Introduction to Percolation Theory, revised sec-
ond edition Edition. Taylor & Francis, London.

Stockmayer, W. H., 1943. Theory of molecular size distribution and gel forma-
tion in branched-chain polymers. J. Chem. Phys. 11 (2), 45–55.

Stockmayer, W. H., 1944. Theory of molecular size distribution and gel forma-
tion in branched polymers ii. general cross linking. J. Chem. Phys. 12 (4),
125–131.
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4
Evolutionary dynamics

It is clearly impossible to say what the “best” phenotype is unless one knows
the range of possibilities. If there were no constraints on what is possible, the
best phenotype would live forever, would be impregnable to predators, would

lay eggs at an infinite rate, and so on. It is therefore necessary to specify the set
of possible phenotypes, or in some other way describe the limits of what can

evolve.

Maynard Smith

The basic principle of evolution, natural selection, was outlined by
Darwin (1859) in his book On the origin of species. Darwin expressed
his arguments verbally, but many attempts since then have been made to
formalize the theory of evolution, such as population genetics (Rough-
garden, 1979), quantitative genetics (Falconer and Mackay, 1996) and
evolutionary game theory (Hofbauer and Sigmund, 1998).

John Maynard Smith introduced game theory to biology in the 1980s,
including the evolutionarily stable strategy (ESS), a population-genetic
counterpart to the Nash competitive equilibrium (NCE) of game theory
(Nash, 1951, Roughgarden et al., 2006). An ESS is a strategy that when
played by most of the population is unbeatable by any other strategy.
“A major advantage of the ESS is that it can be resolved from pheno-
typic considerations alone without having to account explicitly for the
(often unknown) underlying genetic detail. Moreover, by circumventing
the intricacies of diploid Mendelian inheritance, more complex ecologi-
cal interactions and adaptations can be explored than is usually possible
with a fully genetic approach. In those cases where a comparison with
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more complete approaches is possible, ESS-theory has been shown to be
largely compatible with both quantitative genetics and population genet-
ics” (Geritz et al., 1998, and references therein).

Evolutionary invasion analysis, also known as adaptive dynamics, is
a mathematical theory for studying long-term phenotypicalevolution and
was formally developed during the 1990s. It links population dynamics
to long-term evolution driven by mutation and natural selection providing
methods of model formulation and analysis that relate phenomena on an
evolutionary time scale to processes and structures definedin ecological
and population dynamical terms. A key factor is that mutant strategies
must be successful in an environment shaped by current resident strate-
gies. Successful mutations can become established and therefore alter the
environment for future mutant strategies. In this way thereis a feedback
between the population dynamics (the environment) and the evolutionary
dynamics.

This chapter introduces the fundamental ideas behind adaptive dy-
namics and the methods that were used in the studies shown in chapter
8.

4.1 Adaptive dynamics

In adaptive dynamicsthephenotypesare represented as astrategy that
can vary continuously. Theresident population can be assumed to be in
a dynamical equilibrium when newmutants appear, and the eventual fate
of such mutants can be inferred from their initial growth rate when rare in
the environment consisting of the resident. Following the same notation
as in Geritz et al. (1997) consider a population with a singlestrategyx.
The growth of the population can be described by the equation:

d
dt

~N = M(x,Ex) ·~N (4.1)
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where~N is the state vector or variable of the population,M(x,Ex) is the
matrix that contains the demographic parameters for birth,death, migra-
tion and depends on strategyx as well as on the environmentEx = Ex(~N).
Fixing condition of the environment the population would increase expo-
nentially with growth rater(x,Ex), which is the real leading eigenvalue of
the matrixM, i.e., the long-term exponential growth rate of the phenotype
in a given environment, also calledfitness(Metz et al., 1992).

The equilibrium of the resident population is the solution of r(x,Ex) =
0 and is assumed to be unique. Adaptive dynamics considers the fate of
a new mutant with strategyy emerging in a population of residents with
strategyx. Since the mutant population is rare it does not contribute to
change the environment and so its fitness can be written as:

sx(y) = r(y,Ex) (4.2)

Analysis of the mutant fitness in the environment set by the resident,sx(y)
can determine the evolutionary behavior of the system.

If sx(y) > 0 the mutant can spread but it is not guaranteed to per-
sist, since random extinction can happen due the small initial amount of
mutants. But ifsx(y) < 0 the mutant population will die out. Ifsx(y) > 0
andsy(x) < 0, it means that the mutant can spread but the resident cannot
recover when its population is rare and in this situation it is common for
the mutant to replace the resident strategy (and therefore become the new
resident). It is possible to assess the evolutionary behavior by re-writing
the mutant fitness expression. Since mutations are small it is possible to
apply a linear approximation of the mutant’s fitness:

sx(y) = sx(x)+D(x)(y−x) (4.3)

whereD(x) is the local fitness gradient and can be defined when mutant
and resident population are equal:

D(x) =
∂sx(y)

∂y

∣∣∣
y=x

(4.4)

sincesx(x) = r(x,Ex) = 0 for all x, the sign ofD(x) determines whether
mutants can invade. Evolution progresses in the direction of the fitness
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Figure 4.1. Classification of the singular strategies according to the second partial
derivatives ofsx(y). The small plots are the local PIPs near to the singular strategy
in the center of each graph.

gradient until reaching a strategy for which the local fitness gradient is
zero, called anevolutionary singular strategy, x∗.

4.1.1 Pairwise invasibility plots

In monomorphic populations, considered up to now, where there is only
one analyzed strategy, the evolution can be analyzed graphically by means
of a pairwise invasibility plot (PIP). And close to a singular strategy
there are only eight possible generic local configurations of PIP (see Fig-
ure 4.1 and each configuration represents a different evolutionary scenario
that can be determined analytically in terms of the second-order deriva-
tives of sx(y) at singular evolutionary point (x = y = x∗) and interpreted
in terms of four properties of singular strategy (Geritz et al., 1998, 1997):

1. ∂sx(y)
∂y2 < 0, means thatx∗ is locally ESS-stable and no nearby mutant
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can invade;

2. ∂sx(y)
∂x2 >

∂sx(y)
∂y2 , means thatx∗ is convergence stable (CS), a popula-

tion of nearby phenotypes can be invaded by mutants that are even
closer tox∗;

3. ∂sx(y)
∂x2 > 0, means that the singular strategyx∗ can spread in other

populations when itself is initially rare;

4. ∂sx(y)
∂x2 > −∂sx(y)

∂y2 , the two strategiesx andy can mutually invade and
hence give rise to a dimorphic population.

In practice the evolutionary behavior at the singular strategy can
be determined by considering the ESS and CS properties only.If x∗ is
ESS and CS then it is necessarily an evolutionary attractor and will be an
end point of evolution; if it is not ESS and not CS, it is an evolutionary
repellor and strategies will evolve away fromx∗. If x∗ is ESS but not CS it
is known as a Garden of Eden strategy. Here, if atx∗, no other strategies
can invade but nearby strategies evolve away from the singular strategy.
The phenomenon of evolutionary branching occurs whenx∗ is CS but not
ESS. Here strategies evolve towardsx∗ but when close by they undergo
disruptive selection and two distinct strategies co-existeither side ofx∗.
Branching points are at the forefront of theoretical attempts to explain
speciation.

4.2 Intraspecific competition in predator-prey
models

The adaptive dynamics techniques can be understood more clearly by
considering a specific example. Bowers et al. (2003) considered a clas-
sical predator-prey model and examined the evolutionary behavior when
the prey had an explicit or implicit carrying capacity. Theyargued that
implicit carrying capacities, where individual properties evolve and act
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on natural selection are more appropriate for evolutionarymodels. The
model of Bowers et al. (2003) with an implicit carrying capacity is for-
mulated as follows:

dN
dt

= N(r −hN−cP)

dP
dt

= P(−d+ceN) (4.5)

Here,N represents the density of the prey andP the density of the
predator. All parameters are positive andr is the intrinsic growth rate of
prey, c is the rate of predation ,d is the death rate of the predator and
e is the rate of conversion of predation into predator births.The param-
eter h represents the susceptibility to crowding for the prey (prey self-
regulation) and in the absence of the predator the prey reaches a carrying
capacityN = r/h which depends on model parameters. Bowers et al.
(2003) consider the evolution of the prey parametersr andc (all other pa-
rameters are fixed). A key property of evolutionary theory isthat a benefit
through changes in one life history parameter must be boughtat a cost in
terms of other parameters. Therefore we link the parametersr andc with
a trade-off (r = f (c)) such that the benefit of an increase in host repro-
duction rate,r, is bought at a cost of an increase on the predation rate,c.
Therefore the only evolving parameter isc (andr is linked toc through
the trade-off).

The fitness,s, of a mutant prey type with parameterc in a resident
predator-prey environment at a stable point equilibrium where the resident
prey has parameterc is as follows:

s= f (c)−hN−cP (4.6)

Where nowN andPdenote the resident equilibrium population den-
sities and, therefore, depend only on resident parameters.A singular strat-
egy,c∗, occurs when:
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∂s
∂c

∣∣∣
c=c

= 0 ⇒ f ′(c∗) = P (4.7)

The behavior at the singular points is determined by the ESS and
CS properties which satisfy the following conditions:

ESS:
∂2s

∂c2

∣∣∣
c∗

< 0 ⇒ f ′′(c∗) < 0 (4.8)

CS:
∂2s
∂c2

∣∣∣
c∗
− ∂2s

∂c2

∣∣∣
c∗

> 0 ⇒ f ′′(c∗) <
hd

e(c∗)3 (4.9)

Therefore if f ′′(c∗) < 0 the singular strategy is ESS and CS and is
therefore an evolutionary attractor. Iff ′′(c∗) > hd/e(c∗)3 then the sin-
gular strategy is neither ESS or CS and it is an evolutionary repellor. If
0 < f ′′(c∗) < hd/e(c∗)3 then the singular strategy is CS but it is not ESS
which leads to evolutionary branching. This example highlights how the
shape of the trade-off function (the cost structure of the trade-off) deter-
mines the evolutionary behavior.

Simulations of the adaptive dynamics process can be undertaken
to verify this evolutionary behavior. In the simulations, the population
dynamics were numerically solved for a fixed time (t) according to popu-
lation dynamical equations (4.5) starting with a monomorphic population.
Mutant strategies were generated by small deviations around the current
strategies and introduced at low density. Explicitly the solved system is:

dNi

dt
= Ni(r i −hNi −ciP)

dP
dt

= P(−d+∑cieNi) (4.10)

where i represents all non-zero populations or prey, resident or mutant,
and all prey have the same susceptibility to crowding, h. Then the pop-
ulation dynamics were solved for a further timet with strategies whose
population density fell below a low threshold considered extinct and re-
moved before considering new mutations. In this way, the parameter c
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could evolve (see Bowers et al. (2003) for further details).By choosing
the trade-offr = f (c) = αc2+2c+α+1 the singular strategy can become
an evolutionary attractor, a repellor or a branching point by choosing dif-
ferent values ofα, see Figure 4.2.

This example highlights how adaptive dynamics can be used toun-
derstand the evolution of phenotypes (represented by differences in the
parameterc in Bowers et al. (2003)) and the importance of trade-offs in
determining the evolutionary behavior. These techniques will be used to
examine the evolution of male-biased parasitism in chapter8.
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Figure 4.2. Simulations of equations (4.10), showing how strategyc evolves over
time. In each panel the singular strategy,c∗, is represented by the vertical dotted
line. The solid line represents the wayc evolve in the adaptive dynamics simulation
process, i.e., the density of prey with non-zeroci . Parameters areh = 1, d = 1 and

e= 1. In (a)α =−0.5 and therefore,∂
2 f (c∗)
∂2c̄

< 0 andc∗ is an evolutionary attractor.

In (b) α = 0.8 and ∂2 f (c∗)
∂2c̄

> hd/e(c∗)3 andc∗ is an evolutionary repellor. In (c)

α = 0.3 and 0< ∂2 f (c∗)
∂2c̄

< hd/e(c∗)3 andc∗ is an evolutionary branching point.
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5
Joint effects of nutrients and con-
taminants on the dynamics of a
food chain in marine ecosystems

5.1 Introduction

Marine waters and in particular coastal waters are increasingly exposed
to anthropogenic pressures represented not only by the growing input of
nutrient and contaminants related to urban, agricultural and industrial ac-
tivities, but also by the exploitation of coastal areas for aquaculture, fish-
ing and tourism. Since the resources of the coastal zone are exploited
by different stake holders it is essential to improve the knowledge on the
ecosystem’s vulnerability to stressors and protect those areas through a
sensible management.

The interaction of pollutants and nutrients on aquatic ecosystems
is difficult to evaluate, since many direct and indirect effects have to be
considered. Contaminants can have instantaneous effects,such as mas-
sive killings after an accidental contaminant release. Other toxic effects,
such as genotoxicity and reproductive failure are less evident and they act
on a longer time-scale; however, they represent an important risk for the
ecosystem. Furthermore, if the contaminant is lipophilic1, bioaccumula-
tion2 should be considered. On the other hand, an increase of the nutrient
load can have the direct effect of raising the primary production at the
bottom of the food chain and consequently increase the concentration of

1The ability of a chemical compound to dissolve in fats, oils,lipids.
2An increase in the concentration of a chemical in a biological organism over time.
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the organic matter in the system. But the higher concentration of organic
matter can affect the bioavailability of the contaminants and therefore the
fate of pollutants in the aquatic environment and their effects on the im-
pacted ecosystem (Gunnarsson et al., 1995).

Thus, contaminants affect aquatic ecosystems through direct and
indirect effects (Fleeger et al., 2003), from acute and/or chronic toxic-
ity on sensitive species to disruption in the food web structure. Some
species might be more sensitive than others to a certain chemical, but
since the different populations are linked to each other by competition and
predation, species which are not directly stressed may respond indirectly
(Fleeger et al., 2003). Within a food web, community-level relations arise
from unobservable indirect pathways. These relations may give rise to
indirectly mediated relations, mutualism and competition(Fath, 2007).
In some cases environmental perturbations alter substantially the dynam-
ics or the structure of coastal ecosystems and the effect mayproduce the
occurrence of a trophic cascade and eventually the extinction of some
species (Jackson et al., 2001). A better understanding of the relative im-
portance of top-down (e.g. overfishing) versus bottom-up (e.g. increased
nutrient input causing eutrophication) controls is essential and can only
be achieved through modelling (Daskalov, 2002).

Sudden regime shifts and ecosystem collapses are likely to occur
in stressed ecosystems. Catastrophic regime shifts have been related to
alternative stable states which can be linked to a critical threshold in such
a way that a gradual increase of one driver has little influence until a
certain value is reached at which a large shift occurs that isdifficult to
reverse (Scheffer and Carpenter, 2003, Scheffer et al., 2001). The shape of
ecotoxicological3 dose-response curves (Suter II, 1993), showing a sharp
increase in the effect of toxic substances above a critical value, facilitates
the occurrence of regime shifts under pollutant pressure.

This study considered the combined effects of contaminant sub-

3“The branch of toxicology concerned with the study of toxic effects, caused by nat-
ural or synthetic pollutants, to the constituents of ecosystems, animal (including human),
vegetable and microbial, in an integral context.”
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stances and nutrient load in the framework of a simple tritrophic food
chain model. The study was restricted to contaminants, suchas s-triazines4,
which affect the mortality in particular trophic levels, but which do not
bioaccumulate neither in time nor along the food chain. Whenstudying
the dynamics of simple food chain and food web models it is also impor-
tant to bear in mind that the response might depend on the complexity of
the represented system. Chaotic dynamics, for example, seems to be more
frequent in simple ecosystem models or in models with a high number of
trophic levels (Fussmann and Heber, 2002). Thus, only the first quali-
tative changes of behavior occurring when increasing nutrients from low
values, and how this is changed by pollutants, will be focused. And not
the complex sequences of chaotic states which may occur at high nutrient
availability, whose details are more affected by the trophic structure of
the model.

Since no microbial recycling loop was included, sediment oroxy-
gen dynamics, or shading effects, complex eutrophication behavior typ-
ical of coastal ecosystems (Zaldı́var et al., 2003), e.g. anoxic crises, al-
teration of nutrient cycling, macroalgal blooms, etc. willnot occur in the
model. The study was rather concentrated in the simplest scenarios occur-
ring during enrichment and its modification by contaminants, discussing
particularly the indirect effects which lead to counterintuitive behavior.

5.2 Model formulation

The Canale’s chemostat model (CC) was considered, (Boer et al., 1998,
2001, Canale, 1970, Gwaltney and Stadtherr, 2007), which isan extension
of the tri-trophic food-chain Rosenzweig-MacArthur model(RMA) that

4s-triazine is one of three organic chemicals, isomeric witheach other, whose em-
pirical formula isC3H3N3. The three isomers of triazine are distinguished from each
other by the positions of their nitrogen atoms, and are referred to as 1,2,3-triazine, 1,2,4-
triazine, and 1,3,5-triazine or s-triazine. Among other usages triazine is used in the
manufacture of resins and as the basis for various herbicides.
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has been extensively studied in theoretical ecology (Abrams and Roth,
1994, DeFeo and Rinaldi, 1997, Gragnani et al., 1998, Gwaltney et al.,
2004, Hastings and Powell, 1991, Klebanoff and Hastings, 1994, Kuznetsov
and Rinaldi, 1996, McCann and Yodzis, 1994). This model was previ-
ously used to analyze the dynamics of a food chain consistingof bacte-
ria living on glucose, ciliates and carnivorous ciliates (Boer et al., 1998,
2001), but can be adapted to represent an aquatic food chain with a con-
stant nutrient input. The CC model is similar to the RMA model, but there
is an additional equation representing the input of nutrient and it considers
the losses due to the flushing rate:

Ṅ = D(I −N)−P
a1N

b1+N
, (5.1)

Ṗ = P

[
e1

a1N
b1+N

− a2P
b2+P

−d1− f1D

]
, (5.2)

Ż = Z

[
e2

a2P
b2+P

− a3F
b3+Z

−d2− f2D

]
, (5.3)

Ḟ = F

[
e3

a3Z
b3 +Z

−d3− f3D

]
. (5.4)

Figure 5.1. Phytoplankton
of winter-spring proliferation
in the Catalan-Balearic sea.
Photo:Marta Estrada

In this study the variablesN, P, Z, F
represent the nitrogen concentration in
the different compartments of the sys-
tem (nutrient, phytoplankton, zooplank-
ton and fish, which will be also denoted
with the alternative names of nutrient,
prey, predator, and top-predator, respec-
tively) expressed in units ofmgN/l . The
default parameters, see Table 5.1, were
derived from the parameters of the aquatic
food chain model presented in Mosekilde
(1998) and from the pelagic ecosystem
model in Lima et al. (2002).I is the nu-
trient load or nutrient input into the sys-
tem.D is a flow rate quantifying water re-
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newal in the system, which affects the species through the flushing ratesfi
(i = 1,2,3). di are the specific mortalities,bi half saturation constants for
the Holling type-II predation functions,ai are maximum predation rates,
andei efficiencies. The following condition should be satisfied bythe
equation parameters:

eiai > di +D fi (i = 1,2,3), (5.5)

since this “avoids the case where predator and top-predatorcannot sur-
vive, even when their food is infinitely abundant” (Kuznetsov et al., 2001).
Contaminant toxicity is incorporated in the model by an increase in mor-
tality.

Three different scenarios were considered in each of which the con-
taminant affects the mortality of only one of the compartments:

d j = d(0)
j +∆d j

(
(Cj)

6

(Cj)6+0.56

)
(5.6)

0 0.5 1.0
Contaminant

Mortality 

d
j
(0)+∆d

j

d
j
(0)+∆d

j
/2

d
j
(0)

Figure 5.2. Sigmoidal response of mor-
tality to the concentration of the toxic
contaminant, according to Eq.(5.6)).

j = 1,2, and 3 labels the three
trophic levels: prey, predator and
top-predator,Cj is the dimension-
less concentration of the contam-
inant affecting the levelj, nor-
malized in such a way that for
Cj = 0.5 the toxicity achieves half
its maximum impact on mortality,
and a sigmoidal function (Figure
5.2) has been used to model the
mortality increase from a baseline

value,d(0)
j , to the maximum mor-

tality, d(0)
j + ∆d j , attained at large

contaminant concentrations. This
represents typically the shape of the dose-response curvesfound when
assessing toxic effects of chemical on biological populations (Suter II,
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1993). Other works that have studied bifurcations due to mortality
changes in the CC model (Gwaltney and Stadtherr, 2007) have normally

considered a linear increase. The values ofd(0)
j and∆d j used are written

in Table 5.2.

Table 5.1: Parameters of the CC model.

Parameters value Units
Nutrient input I 0.15 mg N/l
Inflow/outflow rate D 0.02 day−1

Max predation rate a1 1.00 day−1

a2 0.50 day−1

a3 0.047 day−1

Half saturation cont b1 0.008 mg N/l
b2 0.01 mg N/l
b3 0.015 mg N/l

Efficiency e1 1.00 -
e2 1.00 -
e3 1.00 -

Mortality(base values) d1 0.10 day−1

d2 0.10 day−1

d3 0.015 day−1

Flushing rate f1 0.01 day−1

f2 0.01 day−1

f3 0.01 day−1

Table 5.2: Contaminant parameters for the three compartments,j = 1,2,3.

j d(0)
j ∆d j

1 (prey) 0.1 0.5
2 (predator) 0.1 0.3
3 (top-predator) 0.015 0.015
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5.3 Steady states

This system presents the following set of fixed points: The nutrient-only
state (Nu):

N = I ,

P = 0, (5.7)

Z = 0,

F = 0.

The nutrient-phytoplankton state (NP):

N =
b1(d1+D f1)

a1e1−d1−D f1
,

P =
De1

(
b1(d1+D f1)

a1e1−d1−D f1
+ I

)

d1+D f1
, (5.8)

Z = 0,

F = 0.

There are two solutions (NPZ) characterized by the absence of the
top predator:

N =
b1D+a1P−DI ±

√
4b1D2I +(−b1D−a1P+DI)2

2D
,

P =
b2(d2+D f2)

a2e2−d2−D f2
, (5.9)

Z = −(b1d1+b1D f1 +d1N−a1e1N+D f1N)(b2+P)

a2(b1+N)
,

F = 0.

but only the one with the positive sign of the square root is positive defi-
nite.

And finally there are three internal fixed points (NPZF), in which
all species are alive. From the equation forṄ, (5.1), an equation forP
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as a function ofN is obtained. Introducing it into (5.2) together with the
expression forZ = Z̄ which is obtained from (5.4), the following equation
for N is obtained:

[A1N3 +A2N2 +A3N+A4] = 0 (5.10)

where

A1 = D(a1e1−d1−D0 f1),

A2 = −a2
1b2e1−D(d1+D f1)(2b1− I)+a1(b1De1 +b2(d1+D f1)

+a2Z̄−De1I),

A3 = b1(−D(d1+D f1)(b1−2I)+a1(b2(d1+D f1)+a2Z̄−De1I)),

A4 = b2
1D(d1+D f1I). (5.11)

The values of the remaining variables at the three internal fixed
point solutions can be written in terms of̄Z and of the three values of
N = N̄ obtained from the cubic (5.10):

N = N̄,

P = D0(I − N̄)
b1+ N̄

a1N̄
,

Z = Z̄ =
b3(d3+D f3)

a3e3−d3−D f3
, (5.12)

F =
(a2e2P−b2d2−b2D f2−d2P−D f2P)(b3+ Z̄)

a3(b2+P)
.

It turns out that only one of the three fixed point solutions ispositive for
the parameter values in Table 5.1.

Mathematically there are four additional solutions but they are not
feasible biologically since they lead to negative populations: the state
characterized by the absence of phytoplankton (N = I ,P= 0,Z 6= 0,F 6= 0
), by the absence of nutrient and of the top-predator (N = 0,P 6= 0,Z 6=
0,F = 0), by the absence of the nutrient and of phytoplankton (N = 0,P=
0,Z 6= 0,F 6= 0), and by the absence of nutrient (N = 0,P 6= 0,Z 6= 0,F 6=
0).
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5.4 Stability and bifurcation analysis

The dynamics of the CC food-chain models has been analyzed for sev-
eral parameter values by direct numerical integration of the model equa-
tions, and by bifurcation analysis carried on with the software XPPAUT,
(Doedel et al., 1997, Ermentrout, 2002). Background on the different
types of bifurcations can be found in (Gugenheimer and Holmes, 1993,
Strogatz, 2000). Only bifurcations of positive solutions were considered
and, as stated in the introduction, the routes to chaotic behavior occurring
at high nutrient loadwere not described in detail. For low and interme-
diate nutrient load the relevant attractors are the fixed points described
above, and also two limit cycles, one involving the variables N, P andZ,
lying on theF = 0 hyperplane, and another one in which all the species
are present. These attractors are represented in Figure 5.3.
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Figure 5.3. a) Projection on the PZF subspace of a trajectory which starts close to
the NP fixed point, approaches the NPZ one, and finally is attracted by the NPZF
fixed point.I = 0.4 mgN/l ,C1 =C3 = 0, andC2 = 0.8. This shows the approximate
location of these points and that only the NPZF one is stable for these parameter
values. (b) Cyclic behavior: Thick line is a trajectory leading to an attracting limit
cycle on the NPZ hyperplane forI = 0.1 mgN/l , C1 = C2 = 0, andC3 = 0.8 ;
dotted line is a trajectory attracted by the limit cycle involving all the variables for
I = 0.24mgN/l , C1 = C2 = 0, andC3 = 0.2.
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5.4.1 The non-contaminant case

First, system behavior for the case of mortalities at their base values was
considered, i.e. in the absence of contaminants. This will serve as a ref-
erence for later inclusion of contaminants. Figure5.4 shows the sequence
of bifurcations when increasing the nutrient inputI . For very low input,
only nutrients are present in the system (solution (5.7)). WhenI > ITB1,
with

ITB1 =
b1(d1+D f1)

a1e1−d1−D f1
, (5.13)

phytoplankton becomes positive in a transcritical bifurcation (which was
called TB1) at which the NP state (5.8) becomes stable. SinceITB1 =
0.0008909 is very small, this bifurcation can not be clearly seen in Figure
5.4. From this value on, further enrichment leads to a linearincrease
of phytoplankton (5.8), until a second transcritical bifurcation, TB2, at
which zooplankton becomes positive and the NPZ solution (5.9) becomes
stable. It happens at

ITB2 =
(d1+D f1)(PNPZd1−PNPZa1e1−b1De1 +PNPZD f1)

De1(d1−a1e1 +D f1)
(5.14)

wherePNPZ is the expression forP in theNPZ solution, (5.9). From this
point the zooplankton starts increasing (keeping phytoplankton concen-
tration at a constant value) until a new bifurcation TB3 occurs, at which
the fish concentration starts to grow from zero while zooplankton remains
constant, phytoplankton increases, and nutrients decrease (this is the pos-
itive interior solution NPZF, Eq. (5.12)). The value ofITB3 is given im-
plicitly by:

dTB3
3 =

ZNPZa3e3−ZNPZD f3−b3D f3
ZNPZ+b3

(5.15)

whereZNPZ is the expression forZ in theNPZsolution, (5.9).

One of the first counterintuitive indirect effects present in the food-
chain dynamics has been noticed here: In the NPZF solution, increase of
nutrient input leads to decrease in nutrient concentration(see Figure 5.4).
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Figure 5.4. Bifurcation diagrams of the four variables as a function of nutri-
ent input parameterI . Thick lines and full symbols denote stable fixed points
and maxima and minima of stable cycles, respectively, and thin lines and open
symbols, unstable ones. The name of the fixed points is indicated. The rele-
vant bifurcations (described in the main text) occur atITB1 = 0.0008909mgN/l ,
ITB2 = 0.01345 mgN/l , ITB3 = 0.05352 mgN/l , IHB1 = 0.06101mgN/l , and
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The reason is the top-down control that the higher predator begins
to impose on zooplankton, leading to positive and negative regulation on
the compartments situated one or two trophic levels belowZ, respectively.
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Shortly after becoming unstable at TB3, the fixed point NPZ expe-
riences a Hopf bifurcation (HB1) which leads to a limit cycleon the NPZ
hyperplane. Since the whole hyperplane has become unstablebefore this
bifurcation occurs, this cycle has no direct impact on long time dynam-
ics, although it can affect transients, and it will become relevant when
adding contaminants. The steady coexistence of the three species at the
NPZF fixed point remains stable until a new Hopf bifurcation HB2 occurs
at which the fixed point becomes unstable and oscillations involving the
three species and the nutrients (Figure 5.3) occur. The destabilization of
steady coexistence by the appearance of oscillations, which could facili-
tate extinctions if the amplitude of oscillation is sufficiently large, is the
well known “paradox of enrichment”, first mathematically described by
Rosenzweig (1971). A good overview of the studies connectedwith this
issue can be found in the paper of Jensen and Ginzburg (2005).See also
Bell (2002), Fussmann et al. (2000), Kirk (1998), Shertzer et al. (2002).

Gragnani et al. (1998) demonstrated that the dynamics of Canale’s
model for increasing nutrient supply is qualitatively similar to the one of
the RMA model. After the stationary and cyclic states described above,
chaotic behavior followed a different cyclic behavior withhigher fre-
quency are found. Also, the maximal average density of top-predator is
attained at the edge between chaotic and high frequency cyclic behavior.
We will not further describe these states but we will concentrate in the
modifications arising from toxic effects of contaminants onthe dynamics,
for small and moderate nutrient loading.

5.4.2 Contaminant toxic to phytoplankton

Now the contaminantC1 is introduced. It increases the mortality of phy-
toplankton according to expression (5.6) fori = 1. Expressions for the
bifurcation lines TB1, TB2 and TB3 as a function ofI andC1 can be ob-
tained simply by replacing the mortality (5.6) into the corresponding ex-
pressions (5.13), (5.14), and (5.15), respectively. The same can be done
numerically for the Hopf bifurcation lines HB1 and HB2. The result is
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shown in the 2-parameter bifurcation diagrams of Figure 5.5.
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Figure 5.5. Upper graph: Some of the bifurcations occurring as a function of nu-
trient inputI and the phytoplankton mortalityd1, in the range of values determined
by the presence of contaminantC1 affecting phytoplankton. Values ofC1 are also
indicated in the upper horizontal axis. Lower graph: same plot but displayed in
terms ofC1 instead ofd1. The name of the bifurcation lines is indicated (for the
case of the Hopf lines HB1, HB2 and HB3, the name of the fixed point involved in
the bifurcation is shown in parenthesis). Crossing the continuous lines involves a
qualitative change for the state attained by the system. Inside regions surrounded
by continuous lines, the name of the relevant stable fixed point is shown inside grey
squares. Crossing the discontinuous bifurcation lines does not involve a change in
the stable state (because, e.g., they correspond to bifurcations of already unstable
states). Immediately above the HB2 line, a limit cycle involving all the species is
the relevant attractor for low values ofd1 (or C1). The limit cycle on theF = 0
hyperplane is the relevant attractor above the HB1 line for larged1. Additional
bifurcations (not shown) occur in other regions of the open areas above HB1 and
HB2. M is a codimension-2 point described in the main text. Inthe upper graph
the dotted region identifies areas where chaotic solutions have been found.

Because of the sigmoidal effect of the contaminant (5.6), its impact
is mild for C1 ≪ 0.5, and it will saturate forC1 ≫ 1. Thus, in both limits
the bifurcation lines become parallel to the horizontal axis. The interest-
ing behavior is for intermediate values ofC1, where the bifurcation lines
are displaced towards higher values ofI . That is, the first effect of the
contaminant is to stabilize the simplest solutions, the ones stable at lower
nutrient load, delaying until higher nutrient loads the transitions to the
most complex ones.

But this stabilizing effect is different for the different solutions, and
the most important qualitative change occurs at point M in Figure5.5. It is
a codimension-2 point at which the transcritical bifurcation TB3, involv-
ing the NPZ and the NPZF fixed points, and the Hopf bifurcationHB1
of the NPZ point, meet. A new Hopf bifurcation line of the NPZFequi-
librium, HB3, emerges also from that point. The cycle created at HB3
consists in oscillations of all the four variables, similarly to the cycle cre-
ated at HB2. Other characteristics of the organizing centerM is that the
Hopf bifurcations change subcritical to supercritical character across it,
and also that a line (not shown) of saddle-node bifurcationsof the cycles
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created at HB1 and HB3 emerges also from M. There are a number of ad-
ditional structures in parameter space emerging from double-Hopf points,
and transcritical bifurcations of cycles which were not described further
here.
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Figure 5.6. Bifurcation diagrams of the four variables as a function of nutrient
input parameterI , at a constant high value of the contaminant affecting phyto-
plankton,C1 = 0.9. Thick lines and full symbols denote stable fixed points and
maxima and minima of stable cycles, respectively, and thin lines and open sym-
bols, unstable ones. The name of the fixed points is shown. Thebifurcation points
are identified by arrows. PD is a period doubling bifurcation.

Despite the complexity of the above scenario, its effect on the bifur-
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cation sequence when increasing nutrient level (up to moderate levels) in
the presence of contaminant values beyond M is rather simple(see Fig-
ure 5.6): since the lines TB3 and HB1 have interchanged order, the Hopf
bifurcation HB1 in which a stable limit cycle is created in the hyperplane
F = 0 occurs before the appearance of a positive NPZF equilibrium. As a
consequence, fish remains absent from the system even at relatively high
nutrient levels. This is one of the counterintuitive outcomes of indirect ef-
fects: adding a substance which is toxic for phytoplankton makes fish to
disappear, whereas the oscillating phytoplankton levels are indeed com-
parable with the ones at zero contaminant (see Figure 5.6). As in the
absence of contaminant, period doubling and transition to chaos, which
have not been analyzed in detail, occur when increasing further the value
of I .

A different view of the transitions can be given by describing the bi-
furcations occurring by increasing the contaminant concentration at con-
stantI . Figure 5.7 and 5.8 shows that for an intermediate value of the
nutrient load,I = 0.15 mgN/l . The NPZF fixed point is stable at low
contaminant, but oscillations appear when crossing the HB3lines. Very
shortly after that, this limit cycle involving all species approaches the
F = 0 hyperplane until colliding with the cycle lying on that plane, which
involves only theN, P, andZ species. At this transcritical bifurcation, this
limit cycle from which fish is absent becomes stable and is theobserved
solution for largerC1 or d1. As before, adding a substance which is toxic
for the bottom of the trophic chain has the main effect of suppressing the
top-predator.
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and open symbols, unstable ones. BP is a transcritical bifurcation of cycles. The
name of the fixed points is shown. The bifurcation points are identified by arrows.
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5.4.3 Contaminant toxic to zooplankton

As before, the mortality expression (5.6) forj = 2 can be inserted in the
expressions (analytical or numerical) for the bifurcations TB1, TB2, TB3,
HB1, and HB2 to elucidate the impact of the contaminantC2, acting on
zooplankton, into the food chain dynamics. As in theC1 case, the bifur-
cation lines become displaced to higher nutrient load values, so that the
sequence of bifurcations of Figure 5.4 becomes delayed to higher values
of I .
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Figure 5.9. Upper graph: some of the bifurcations occurring as a function of
nutrient inputI and zooplankton mortalityd2, in the range of values determined
by the presence of contaminantC2 affecting zooplankton. Values ofC2 are also
indicated in the upper horizontal axis. Lower graph: same plot but displayed in
terms ofC2 instead ofd2. Names of fixed points and bifurcation lines as in Figure
5.5, as well as the meaning of continuous and discontinuous lines. Immediately
above the HB2 line, the relevant attractor is a limit cycle involving all the species.
Additional bifurcations (not shown) occur at higher valuesof I . In the upper graph
the dotted region identifies areas where chaotic solutions have been found
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This is seen in the 2-parameter bifurcation diagram of Figure 5.9.
At difference with theC1 case, the TB3 and HB1 lines do not cross, so that
there are no further qualitative changes with respect to thecase without
contaminants (Figure 5.4), at least up to moderate values ofI .
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Another view of the consequences of Fig. 5.9 can be seen in Fig-
ures 5.10 and 5.11, which shows the different regimes attained at a fixed
intermediate value ofI (I = 0.15 mgN/l ) and increasingC2 or d2. The
most remarkable indirect effect is that, ford2 < dTB3

2 = 0.2592day−1

(C2 <CTB3
2 = 0.5103), zooplankton remains constant despite the increase
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of C2 which is toxic to it. The net effect ofC2 in this range is to de-
crease the amount of fish until extinction. Only forC2 > CTB3

2 con-
taminant kills zooplankton until extinction atd2 = dTB2

2 = 0.374 day−1

(C2 = CTB2
2 = 0.7406).

5.4.4 Contaminant toxic to fish

The simplest bifurcation lines are shown in Figure 5.12 as a function ofI
andC3, the contaminant affecting fish mortality. As in the cases before,
bifurcations are delayed to higher values ofI when contaminant is present.
As in theC1 case, this delay is different for the different lines, resulting in
a crossing of TB3 and HB1 in a codimension-2 point M, joining there also
a new Hopf bifurcation HB3 of the NPZF fixed point and other bifurcation
lines (not shown).

Additional structures emerging from other codimension-2 points,
such as double-Hopf points are also presented but they were not studied
in detail. The qualitative behavior when increasingI at largeC3 (Figure
5.13) is similar to theC1 case: there is a succession of N, NP and NPZ
fixed points followed by a Hopf bifurcation which leads to oscillations of
theN, P andZ variables, remaining the fish absent from the system.

Only at relatively high nutrient values does the NPZF steadystate
become stable at the subcritical branch of the Hopf bifurcation HB3 be-
fore becoming unstable again at HB2. Two of the NPZF internalsolutions
(5.12) which, in contrast with theC3 = 0 case, are positive here, collide
at a limit point. In Figure 5.12 the line of these points as a function of the
I andC3 parameters is labelled as LP.

The two solutions exist above that line, and cease to exist below.
The sequence of bifurcations encountered when increasingC3 at constant
intermediate values ofI is also similar to theC1 case of Figure 5.7 in that
the NPZF stable fixed point becomes a cycle involving all the variables
when HB3 is crossed, and in that this falls onto theF = 0 plane shortly
afterwards. The details are, however, more complex becauseof the pres-
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ence in phase space of additional unstable cycles.
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Figure 5.12. Upper graph: some of the bifurcations occurring as a function of
nutrient inputI and fish mortalityd3, in the range of values determined by the
presence of contaminantC3 affecting fish. Values ofC3 are also indicated in the
upper horizontal axis. Lower graph: same plot but displayedin terms ofC3 instead
of d3. Names of fixed points and bifurcation lines as in Figure 5.5,as well as
the meaning of continuous and discontinuous lines. Immediately above the HB2
line, the relevant attractor is a limit cycle involving all the species. Additional
bifurcations (not shown) occur at higher values ofI . There is a region of the area
labelled as NPZF in which this stable fixed point coexists with a stable limit cycle
on theF = 0 hyperplane.

5.5 Discussion and conclusion

We have seen that, because of the assumed sigmoidal influenceof con-
taminant on mortality, toxic effects on our food chain modelhave a dis-
tinct effect at low and at large concentrations, with ratherfast transition
behavior in between.

At small and moderate contaminant concentrations the main effect
is a displacement of the different bifurcations towards higher nutrient load
values, so that transitions to states containing less active compartments,
and states without oscillations, become relatively stabilized. Contami-
nants increase the stability of the food chain with respect to oscillations
caused by increased nutrient input. A similar outcome has been observed
in Upadhayay and Chattopadhayay (2005) for a food-chain model com-
posed of a toxin producing phytoplankton, zooplankton and fish popula-
tion. In that study chaotic dynamics can be stabilized by increasing the
strength of toxic substance in the system.

For higher contaminant values, in most of the cases there is are-
ordering of the different transitions, giving rise to the appearance of new
bifurcations which change qualitatively the sequence of states encoun-
tered by increasing nutrient input. The main effect, even inthe cases in
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which such reordering does not occur (the case ofC2 contaminant), is
that the top predator becomes the most depleted, being even brought to
extinction. This strong impact of the contaminant on the higher preda-
tor occurs even in the cases in which the direct toxic effect is on lower
trophic levels. It seems that the increased mortality at lower trophic lev-
els becomes nearly compensated by a debilitation of top-down control
exerted by higher predators. Obviously, the top predator can not benefit
from this mechanism, thus becoming the most affected.

Extrapolation of the above findings for real ecosystems may be
problematic, because of the much higher food web complexityfound in
nature. We believe however that the counterintuitive indirect effects de-
scribed above should be kept in mind when analyzing the complex re-
sponses that ecosystems display to changes in external drivers such as
nutrient load and pollutants, and that the detailed identification of them
performed here can help to interpret some aspects of the behavior of real
ecosystems.
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6
Modeling approach to regime shifts
of primary production in shallow
coastal ecosystems

6.1 Introduction

Shallow transitional water systems (McLusky and Elliott, 2007) are in-
trinsically unstable and highly variable over wide temporal and spatial
scales (Kjerfve, 1994, Zaldı́var et al., 2008). These ecosystems, being
interfaces between terrestrial and aquatic ecosystems, provide essential
ecological functions influencing the transport of nutrients, material and
energy from land to sea (Wall et al., 2001). Biodiversity canattain low
values, but its functional significance remains high (Sacchi, 1995). There-
fore, shifts in diversity are likely to have important and profound con-
sequences for ecosystem structure and functioning (Levin et al., 2001).
Invasions, competitive advantages, and non-linear feedback interactions
may lead to alternating states and regime shifts (Scheffer et al., 2001),
which, once occurred, may pose limits for remediation strategies since it
may be difficult, if not impossible, returning to the original state (Webster
and Harris, 2004).

Contrary to open seas, where primary production is dominated by
phytoplankton, in transitional waters a considerable portion of primary
production is performed by angiosperms, epiphytic algae1, macroalgae
and epibenthic microalgae. In addition, shallow aquatic ecosystems do

1Attached algae on natural substrates.
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not show the typical correlation between nutrient inputs and chlorophyll-
a in water (Nixon et al., 2001), as already demonstrated for deeper coastal
waters and lakes (Vollenweider, 1976).

Regime shift phenomena occurring in shallow coastal areas (Flindt
et al., 1999, Nienhuis, 1992, Sand-Jensen and Borum, 1991, Schramm,
1999, Viaroli et al., 1996) have been already documented as the result of
the competition between free floating plants and submerged phanerogams.

Several authors have proposed a conceptual scheme that consid-
ers nutrient inputs as the main driver in the succession frombenthic2

vegetation to phytoplankton or floating seaweeds in shallowtransitional
waters (Borum, 1996, Hemminga, 1998, Nienhuis, 1992, Nixonet al.,
2001, Valiela et al., 1997). This conceptual scheme is basedon the evo-
lution of benthic communities through several phases as thelevel of nu-
trients increases. In the pristine stage, the community is dominated by
phanerogams species from a relatively small number of genera, i.e. Zostera,
Thalassia, Halodule, Cymodocea, and Ruppia. Nutrient enrichment leads
to an increase in epiphytic microalgae, followed by the increase in float-
ing ephemeral macroalgae as Ulva and Gracilaria which compete for
light and nutrients thus producing the disappearance of perennial seagrass
species. Finally, at high levels of nutrient input, phytoplankton growth in-
creases water turbidity enough to depress macroalgal growth thus leading
to a dominance of phytoplankton species.

Even though the decline of seagrasses due to anthropogenic eu-
trophication is a world wide phenomenon (Orth et al., 2006, Short et al.,
2006), there is no direct causality evidence from field data (Ralph et al.,
2006). In addition, it is not evident from experimental studies where the
limit lies for the dominance shift between these two competing type of
organisms are (Hauxwell, 2004, Schramm, 1999). Field studies demon-
strate that the decrease of seagrass meadows is directly related to ni-
trogen loadings (Hauxwell, 2004, Nelson, 2003) and the dominance of
macroalgae, especially Ulvaes, becomes apparent in eutrophic environ-

2The benthic zone is the ecological region at the lowest levelof a body of water such
as an ocean or a lake, including the sediment surface and somesub-surface layers.
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ments (Borum, 1996). An overview of seagrass responses to nutrient en-
richment and/or eutrophication events is presented in Burkholder et al.
(2007), whereas the evolution of several Mediterranean coastal lagoons
from pristine conditions to the present situation is summarized in Viaroli
et al. (2008).

Although nutrient loading is one of the main drivers of regime shifts
in transitional waters, light and temperature have been also recognized as
key abiotic factors controlling algal growth (Schramm, 1999). Further-
more, in transitional water ecosystems hydrological and hydrodynamic
conditions affect community persistence (Dahlgreen and Kautsky, 2004,
Marinov et al., 2007).

Regime shifts occurring in shallow aquatic ecosystems werean-
alyzed by Scheffer and Carpenter (2003), who developed a minimum
model with two ordinary differential equations, one considering floating
plants and the other for submerged aquatic vegetation (SAV). Competi-
tion between floating vegetation and SAV was found to cause alternate
attractors, since floating plants out compete SAV when lightis the only
limiting factor, whereas SAV species dominate at low nutrient concen-
trations since they are able to uptake nutrients from the sediments. The
model, although not fully validated with experimental data, was the first
to provide a comprehensive explanation of several observedphenomena.

In this work, we have studied the regime shifts from SAV to float-
ing macroalgae in shallow brackish ecosystems. We have developed a ba-
sic model that accounts for the competition between Zosteramarina and
Ulva sp. using existing models by Bocci et al. (1997), Coffaro and Bocci
(1997) and Solidoro et al. (1997a,b). To deal with the ability of seagrass
to survive at low nutrient conditions, we have also includedthe dynamics
of inorganic nitrogen (nitrates and ammonium) in the water column and
in the sediments (Chapelle, 1995). A simple phytoplankton model (Plus
et al., 2003) has been also incorporated in the main model.

The integrated model is able to simulate successions of dominance
states, with different resilience characteristics according with the concep-
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tual scheme. Regime shifts are found when changing nutrientinput, tem-
perature and light intensity forcing functions. Finally, are-interpretation
in terms of sensitivity to initial and operating values is discussed for meso-
cosm experiments.

6.2 Methods

6.2.1 Model formulation

The model is based on previous existing and validated modelsdeveloped
for Mediterranean coastal lagoons, i.e. Venice lagoon (Italy) and Etang
de Thau (France). This approach was chosen because it would allow the
flexibility of analyzing different scenarios for these types of ecosystems
which are subjected to strong anthropogenic pressures. In addition, pre-
viously validated models can offer more robust results thana de novo
approach when there is no experimental data adequate for their valida-
tion.

Zostera marina model

Figure 6.1: Zostera marina

The Z. marina sub-model is based on the
model described in Bocci et al. (1997)
and Coffaro and Bocci (1997). State
variables in this sub-model are: Zs
(shoot biomass, gdwm−2), Zr (rhizome-
root biomass, gdwm−2) and Nz (internal
nitrogen quota, mgNgdw−1).

Zostera growth is described as fol-
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lows:

dZs
dt

= (growthz− trans− respirations)Zs (6.1)

dZr
dt

= trans(Zs− respirationr)Zr (6.2)

dNz
dt

= (uptakez−growthz)Nz (6.3)

The influence of the limiting factors on Zostera growth is described
with a multiplicative formulation:

growthz = µz
maxf1(I) f2(T) f3(Nz) f4(Zs) f5(NO−

3 ) (6.4)

The functional forms as well as the parameters of the model are
described in Table 6.1. Thef5 term has been introduced in the Bocci et al.
(1997) model to take into account that water-column nitrateenrichment
promotes decline of Z. marina independently of algal light attenuation.
According to Burkholder et al. (1992) this is probably due tointernal
imbalances in nutrient supply ratios.

In this formulation, the growth of rhizome depends on the translo-
cation of photosynthetic products from leaves to below-ground parts of
the plant. This translocation is proportional to the rate ofgrowth:

trans= Ktrans×growthz (6.5)

The parameterKtrans was estimated by Olesen and Sand-Jensen
(1993) as 25% of the growth, i.e.Ktrans = 0.25. Shoot biomass losses
are expressed as a function of shoot respiration rate at 20◦C, SR20, cor-
rected by the actual temperature:

respirations = SR20× fs(T) (6.6)

where

fs(T) = 0.098+exp(.4.690+0.2317T) (6.7)
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Following a similar approach, rhizome-root biomass loss processes
are considered as a function of a respiration coefficient,RR20, with a tem-
perature correction:

respirationr = RR20× fs(T) (6.8)

Internal nitrogen quota in Zostera has been modelled as a function
of nitrogen uptake. Shoots can uptake nitrates and ammonium, whereas
the rhizome-root can only uptake ammonium.

uptakez = (uptakes+uptaker) fu(Nz) (6.9)

uptakes = uptake
NH+

4
s +uptake

NO−
3

s (6.10)

uptake
NH+

4
s = VNH+4

maxs

[NH+
4 ]

[NH+
4 ]+K

NH+
4

s

(6.11)

uptake
NO−

3
s = V

NO−
3

maxs
[NO−

3 ]

[NO−
3 ]+K

NO−
3

s

(6.12)

uptaker = V
NH+

4
maxr

[NH+
4 ]s

[NH+
4 ]s+K

NH+
4

r

(6.13)

fu(Nz) =
Nzmax−Nz

Nzmax−Nzmin
(6.14)

The values of parameters are summarized in Table 6.1.

Ulva rigida model

Figure 6.2: Ulva rigida

The U. rigida sub-model is based on
the model described in Solidoro et al.
(1997a,b). State variables in this sub-
model are: U (Ulva biomass,gdwl−1) and
Nu (internal nitrogen quota,mgNgdw−1).
The model can be written as
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Table 6.1. Parameters and computed quantities used in the Zostera marina model
from Bocci et al. (1997) and Coffaro and Bocci (1997).
Parameters,
computed Description Value
quantities

µz
max Maximum specific growth 0.0025h−1

f1(I) f1(I) = I
I+Kz

Kz
I Semisaturation constant for light 500kcalm−2d−1

I = I0exp[.(εw + εuU)z]
εw Water extinction coefficient 0.4m−1

εu Ulva shading coefficient 40lgdw−1m−1

f2(T) f2(T) = exp

[
−

(
T−Tz

opt

Tz
width

)2
]

Tz
opt Optimal temperature 20◦C

Tz
width Temperature range, sigmoid width 3.6◦C

f3(Nz) f 3(Nz) = Nz−Nzmin
Nzcrit−Nzmin

Nzmin Minimum internal nitrogen quota 5.0mgNgdw−1

Nzmax Maximum internal nitrogen quota 30.0mgNgdw−1

Nzcrit Critical internal nitrogen quota 15.0mgNgdw−1

f4(Zs) f4(Zs) = 1−exp

[
−

(
Zs−Zsmax

Zswidth

)2
]

Zsmax Maximum shoot biomass 500gdwm−2

Zswidth Growth dependence on space availability 5gdwm−2

f5(NO−
3 ) = exp

[
−

(
NO−

3 −NO−
3opt

NO−
3width

)2
]

NO−
3opt

Optimal nitrate concentration 5.0mmolm−3

NO−
3width

Nitrate concentration range 80.0mmolm−3

SR20 Shoot respiration rate at20◦C 1.0042×10−3h−1

RR20 Rhizome-root respiration rate at20◦C 6.25×10−4h−1

V
NH+

4
maxs Shoot maximum uptake for NH+4 0.3mgNgdw−1h−1

K
NH+

4
z Shoot half saturation constant for NH+4 9.29mmolNm−3

V
NO−

3
maxs Shoot maximum uptake for NO−3 0.06mgNgdw−1h−1

K
NO−

3
z Shoot half saturation constant for NO−3 16.43mmolNm−3

V
NH+

4
maxr Rhizome-root maximum uptake for NH+

4 0.02mgNgdw−1h−1

K
NH+

4
maxr Rhizome-root half saturation constant 5.0mmolNm−3

for NH+
4
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dU
dt

= (growthu−deathu)U (6.15)

The influence of the limiting factors on Ulva growth was described
with a multiplicative formulation:

growthu = µu
max×g1(I)×g2(T)×g3(Nu) (6.16)

The functional forms of the algae model are described in Table 6.2.
As we do not consider oxygen dynamics explicitly, the mortality in this
model does not follow Solidoro et al. (1997a,b) model. In this case, the
mortality term has been expressed as a simple constant and a density de-
pendent function:

deathu = ku
d +ku

t exp

[
−

(
U −Umax

Uwidth

)2
]

(6.17)

Like Z. marina, Ulva is able to store nitrogen, therefore Solidoro
et al. (1997a,b), introduced the tissue concentration of this element (Nu)
as a separated state variable. Its dynamics can be expressedas

dNu
dt

= (uptakeu−growthu)Nu (6.18)

The specific uptake rate of nitrogen depends on the chemical form
available and on the level Nu of nitrogen tissue concentration. Hence,
uptake can be written as

uptakeu = (uptake
NH+

4
u +uptake

NO−
3

u ) fu(Nu) (6.19)
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Table 6.2. Parameters and computed quantities used in the Ulva model from Soli-
doro et al. (1997a) and Solidoro et al. (1997b).

Parameters,
computed Description Value
quantities

µu
max Maximum specific growth, 0.0167h−1

g1(I) g1(I) = I
I+Ku

I

Ku
I Semisaturation constant for light 239kcalm−2d−1

g2(T) g2(T) = 1
1+exp(−ζ(T.TU ))

ζ Temperature coefficient 0.2◦C−1

TU Temperature reference 12.5◦C
g3(Nu) g3(Nu) = Nu−Numin

Nu−Nucrit

Numin Min.value f orNquota 10.0mgN/gdw
Nucrit Critical N quota level 7.0mgN/gdw
Numax Max. value for N quota, uptake limitation 42.0mgN/gdw

ku
d Mortality rate 6.2.10−3h−1

ku
t Mortality rate due to biomass 1.0h−1

Umax Growth dependence on space availability 0.01gdwl−1

V
NH+

4
maxu Max. specific uptake rate for ammonium8.5mgNgdw−1h−1

V
NO−

3
maxu Max. specific uptake rate for nitrate 0.45mgNgdw−1h−1

K
NH+

4
u Half-saturation for ammonium 7.14mmol/m3

K
NO−

3
u Half-saturation for nitrate 3.57mmol/m3

whereas

uptake
NH+

4
u = V

NH+
4

maxu
[NH+

4 ]

[NH+
4 ]+K

NH+
4

u

(6.20)

uptake
NO−

3
u = V

NO−
3

maxu
[NO−

3 ]

[NO−
3 ]+K

NO−
3

u

(6.21)

fu(Nu) =
Numax−Nu

Numax−Numin
(6.22)
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Phytoplankton model

Figure 6.3. Phytoplankton of
winter-spring proliferation in the
Catalan-Balearic sea. Photo:
Marta Estrada

A simple phytoplankton module was in-
troduced in the model. The module, de-
veloped for Etang de Thau (France), has
been adapted from Plus et al. (2003). Phy-
toplankton will compete for nutrients in
the water column and will have a shad-
owing effect less pronounced than that of
Ulva on benthic vegetation.

dP
dt

= (growthP−deathP)P (6.23)

The influence of the limiting factors on phytoplanton growthwas
described with a multiplicative formulation (Plus et al., 2003):

growthP = µP
max×h1(I)×h2(T)×h3(N) (6.24)

whereas mortality is also described as a function of temperature:

deathP = m0eεT (6.25)

As we do not explicitly consider zooplankton grazing explicitly, the
mortality function in this model has been changed accordingly. Phyto-
plankton nutrient uptake can be expressed as a function of the nutrient
limitation expression and phytoplankton biomass as in Pluset al. (2003).
The functional forms of the phytoplankton growth model as well as the
main parameters are described in Table 6.3.

Dissolved inorganic nitrogen (DIN) model

To model the competition between Zostera and Ulva it is necessary to
include nutrient consumption. The nutrients included are nitrogen in the
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Table 6.3. Parameters and computed quantities used in the phytoplankton model
from Plus et al. (2003).

Parameters,
computed Description Value
quantities

µP
max Maximum specific growth, 0.021h−1

h1(I) h1(I) = (1−e−I/Ik)
Ik Saturation constant for 620.1kcalm−2d−1

light
h2(T) h2(T) = eε·T

ε Temperature Coefficient 0.07◦C−1

h3(N)
[NH+

4 ]

[NH+
4 ]+KN

+
NO−

3
NO−

3 +KN
e−ψ[NH+

4 ]

KN Half-saturation constant 2.0mmolm−3

for N limitation
ψ Wroblewski inhibition 1.5m3mmol−1

factor
m0 Mortality rate at0C 1.15×10−2h−1
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oxidized and reduced forms. Furthermore, in shallow water bodies, sed-
iments play a fundamental role in the nutrient dynamics and in this case
Zostera is able to uptake ammonium from sediments (Coffaro and Bocci,
1997). For these reasons, the dynamics of DIN in sediments has been
introduced as well. The model, adapted from Chapelle (1995), can be
written as

(a) Dissolved Inorganic Nitrogen (DIN) in the water column

d[NO−
3 ]

dt
= Nitri f w−uptakeNO−

3 +
Qdi f f usion

NO−
3

watervol
+Qinput

NO−
3
−Qout putNO−

3

(6.26)

d[NH+
4 ]

dt
= −Nitri f w−uptakeNH+

4 +
Qdi f f usion

NH+
4

watervol
+Qinput

NH+
4
−Qout put

NH+
4

(6.27)

Nitrification rates in the water column are functions of water tem-
perature and oxygen concentration, and they can be expressed as

Nnitri fw = knitexp(ktT)[NH+
4 ] (6.28)

[NO−
3 ] uptake (mmolNm−3h−1) can be divided into Ulva, Zostera

and phytoplankton uptake:

uptakeNO−
3 = α1(uptake

NO−
3

u +uptake
NO−

3
z )+uptake

NO−
3

p (6.29)

whereasα1 is a conversion factor to pass from mgN to mmol N.[NH+
4 ]

uptake (mmolNm−3h−1) can also be divided into Ulva, Zostera and phy-
toplankton uptake:

uptakeNH+
4 = α1(uptake

NH+
4

u +uptake
NH+

4
z )+uptake

NH+
4

p (6.30)

At the interface between the water column and the interstitial water,
diffusion is responsible for [NO-3 ] and [NH+4 ] fluxes (mmolNm−3h−1).
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These fluxes can be represented as

Qdi f f usion
NO−

3
= DNO−3

Aβ
zs

([NO−
3 ]s− [NO−

3 ]) (6.31)

Qdi f f usion
NH+

4
= DNH+

4

Aβ
zs

([NH+4]s− [NH+
4 ]) (6.32)

whereasDX are the sediment diffusion coefficients (m2h−1), A the ex-
change area (1m2), zs the distance between the centres of the water and
sediment layers, andβ is the sediment layer porosity (Chapelle, 1995).

This DIN submodel behaves as a CSTR (Continuous Stirred Tank
Reactor), where the forcing is given by the fluxes of nutrients. For exam-
ple, for nitrate it can be written:

Qinput
NO−

3
=

F[NO−
3 ]initial

V
(6.33)

Qout put
NO−

3
=

F[NO−
3 ]

V
(6.34)

where F refers to the water flow (m3/h), V the total volume (1m3) and
[NO−

3 ]initial is the initial concentration of nitrate that enters into the sys-
tem. (b) DIN in the sediments

d[NO−
3 ]s

dt
= Nitri f s−Ndenit−

Qdi f f usion
NO−

3

interstvol
(6.35)

d[NH+
4 ]s

dt
= (1−αdenit)Ndenit−Nitri f s−uptaker −

Qdi f f usion
NH+

4

interstvol
(6.36)

Nitrification in the sediments,Nitri f s, can be described as a first
order process in ammonium concentration at the sediment:

Nnitri fs = knit× f1(T)× f2(O)×[NH+
4 ]s (6.37)
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whereas nitrate reduction can be expressed as a first order process in ni-
trate concentration at the sediment:

Ndenit= kdenit× f1(T)× f3(O)×[NO−
3 ]s (6.38)

Nitrogen mineralization has not been taken into account in this model.
Oxygen concentration is considered constant. The values ofparameters
taken form Chapelle (1995) are summarized in Table 6.4.

6.2.2 Forcing functions and parameters

In all the runs, the model has been forced by imposing temperature and
solar radiation sinusoidal forcing, which have the following form:

T = AT sin

(
2π

(
t−114.74

365

))
+Tm (6.39)

I = AI

[
sin

(
2π

(
t−90
365

))
+1

]
+ Im (6.40)

Parameters, amplitude and mean value, were adjusted using meteo-
rological data from several Mediterranean stations, but, in any case, their
influence is going to be analyzed.

Nutrient inputs and flows have been maintained constant during
each simulation run. This is not typical under natural conditions where
nutrient loadings delivered to coastal systems undergo seasonal variations
due to rainfall regimes. In addition in the Mediterranean climate region,
nutrient loadings to coastal marine systems can attain short-term peaks
following heavy rainfall events (Plus et al., 2006). Furthermore, oxy-
gen concentrations were set constant at 8.0gm−3 during all simulations,
whilst in transitional water ecosystems they undergo dailyand seasonal
variations from supersaturation to anoxia (Viaroli and Christian, 2003).



6.2. Methods 115

Table 6.4: Nutrient and sediment parameters, from Chapelle (1995).
Parameters,computed Description Value

quantities
knit Nitrification rate at0◦C 0.0083h−1

f1(T) f1(T) = exp[kT T]
kT Temperature increasing rate 0.07◦C−1

f2(O) f2(O) = [O2]s
KNitO+[O2]s

kNitO Half-saturation coefficient for O2 4.0g/m3

limitation of nitrification
RUPC Ulva stoichiometric ratio 2.5mgP/gdw
QPS Photosynthetic ratio 1.5

RPHY Phytoplankton respiration rate at 2.083×10−3h−1

0◦C
ψ Stoichiometric ratio 1450gO2/gdw

RPS O2produced/N 0.212gO2/mmol
DNO Diffusion coefficient for nitrate in 0.00072m2/h

the sediment
DNH Diffusion coefficient for 0.00072m2/h

ammonium in the sediment
A Surface of computational cell 1m2

zS Distance between the centre of 0.51m
water cell and sediment layer

watervol Volume of the water cell 1m3

interstvol Interstitial water volume for a cell 0.008m3

kdenit Denitrification rate at0◦C 0.0125h−1

f3(O) f3(O) = 1− [O2]s
KdenitO+[O2]s

[O2] Oxygen concentration 8g/m3

KdenitO Half-saturation coefficient for O2 2.0g/m3

limitation of denitrification
αdenit Percentage of N denitrified into N2 0.6

f4(O) f 4(O) = [O2]s
KminO+[O2]s

KminO Half-saturation coefficient for O2 0.5g/m3

limitation of mineralization
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6.2.3 Assessment of mesocosm data

Mechanistic experiments dealing with phanerogams-macroalgae- phyto-
plankton competition were carried out using mesocosms under controlled
conditions (Nixon et al., 2001, Taylor et al., 1999). In thiswork we have
re-assessed the mesocosms experiments reported by Taylor et al. (1999).
In these experiments (five settings, each with two replicates: Control, C,
Low, L, Medium, M, High, H and Very High, VH) enrichment with am-
monium and phosphate at several levels was performed and results moni-
tored from April to September.

The following assumptions were made to simulate these experi-
ments:

• Light intensity was assumed to be not a limiting factor for any of
the three taxa.

• Temperature was simulated using a sinusoidal function as inEq.(6.39)
with Tm = 10.5 andAT = 10.1◦C, respectively.

• Dissolved inorganic phosphorous (DIP) was not considered.

• Dissolved inorganic nitrogen (DIN) was equally partitioned between
nitrates and ammonium in the background concentration.

• Initial conditions of Zostera above-ground biomass were taken con-
stant at 50gdwm−2 whereas the influence of initial conditions of
Ulva and phytoplankton was assessed.

• A constant flow,F = 5.3×10−3m3h−1 was assumed during all the
experiment, as well as a constant concentration input of nitrate,
[NO−3]input = 2.4mmolm−3 and ammonium,[NH + 4]input = 2.4,
20.6, 38.7, 75.1, 148.0 mmolm−3, for the different experimental
conditions (C, L, M, H and VH).
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6.3 Results

6.3.1 Competition between Zostera and Ulva

Figure 6.4. Rocks and sub-
merged algae in “Abrolhos”
(Brasil). Photo: André Luis
Sousa Sena.

The first set of simulations was run ex-
cluding phytoplankton, to compare with
field observations for which no phy-
toplankton data were mentioned. At
low DINinput concentrations(5mmolm−3)
Zostera survives and Ulva disappears
(Figure 6.5).

Figure 6.5. Zostera biomasses Zs (shoot biomass, gdwm-2) and Zr (rhizome-root
biomass, gdwm-2, in green); Ulva biomasses (gdwm-2); internal nitrogen quotas;
DIN concentrations (NO−

3 : blue,NH+
4 : green) in the water column and in the sed-

iments (pore water).F = 0.1m3h−1, and[NO−3]input = [NH+
4 ]input = 5mmolm−3

(low nutrient situation).



118 Chapter 6.

Figure 6.6. A green tide in Brit-
tany, beach of Saint-Michel en
Grève/Saint Efflam (IFREMER),
Northern Brittany (France)

In addition, due to the relatively
high flow of DIN into the system, nitrogen
is not completely depleted and the dynam-
ics in the water column and in the sedi-
ments are tightly coupled. However, there
is a certain transient period of few years
before the limit cycle is reached, during
which both vegetation types coexist.

The contrary effect, i.e. dominance
by Ulva, may be observed at high input DIN concentrations (50mmolm−3,
see Figure 6.7). Keeping high nutrient loads, Zostera will disappear after
a few years while Ulva will tend to prevail.

Figure 6.7. Zostera biomasses:Zs (shoot biomass,gdwm−2) andZr (rhizome-
root biomass,gdwm−2, in green); Ulva biomasses (gdwm−2); internal nitrogen
quotas; DIN concentrations (NO−3 : blue, NH+4 : green) in the water column
and in the sediments (pore water).F = 0.1m3h−1, and[NO−

3 ]input = [NH+
4 ]input =

50mmolm−3 (high nutrient situation).
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Figure 6.8. Ulva annual mean biomass (gdwm−2) as a function of nitrate (x-
axis) and ammonium loads (y-axis) inmmolh−1. Top: F = 0.1m3h−1; bottom:
F = 0.01m3h−1.
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Figure 6.9. Zostera annual mean biomass (gdwm−2) as a function of nitrate (x-
axis) and ammonium (y-axis) loads inmmolh−1. Top: F = 0.1m3h−1; bottom:
F = 0.01m3h−1.
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In order to analyze the effects of DIN inputs in the Zostera−Ulva
competition model, we have run the model for a set of flow conditions
with the same forcing. Figs.6.8 and 6.9 present the results in terms of
average biomass over the year. Zostera dominates the regions with low
DIN concentrations whereas the opposite applies to Ulva. Inaddition, due
to the fact that in the Zostera model the rhizome-root is assumed to only
uptake ammonium (Bocci et al., 1997), there is an asymmetry concerning
the effects ammonium and nitrate in the figures.

Figure 6.10. Zostera biomasses:Zs (shoot biomass,gdwm−2, blue) and Zr
(rhizome-root biomass,gdwm−2, green) and Ulva biomasses (gdwm−2). Same
parameters as in Figure 6.5, but after the fifth year of simulation the temperature
forcing function increases by 1.0◦C.

Since we consider explicitly the DIN dynamics, the results repre-
sented in Figs.6.8 and 6.9 will change as a function of the flow(F,m3h−1),
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assuming the same initial concentrations of nutrients. Likely, at low flows
depletion of DIN may occur in the water column as well as in thesedi-
ments during the periods of maximum growth. This affects thedynamics
in the system and, consequently, the competition between the two taxa. In
order to highlight these differences, we have plotted the results obtained
with 0.1 and 0.01m3h−1 flows.

To verify the sensitivity of the competition in relation to changes
in temperature, several simulations were set up, with the same conditions
as in Figure 6.5, but with average temperature increased from 0.2 to 2◦C.
Results obtained for a temperature increase of 1◦C after the fifth year are
presented in Figure 6.10. In this case, the outcome is the opposite as in
Figure 6.5 with Ulva dominating the competition. Dynamics and timing
of the regime shift are not a simple function of the temperature increase, as
shifts have been observed in all the temperature ranges studied depending
on the initial and forcing conditions.

The model was also run changing mean temperatures (Tm) and an-
nual temperatures (AT ) ranges, Eq.(6.39). Results are presented in Figure
6.11, showing that an increase of both parameters tends to favor Ulva
growth, even in environments with low nutrient concentrations.

Finally, the results of the model were analyzed as a functionof the
incident light. A series of simulation were run by modifyingthe average
light intensity (Im) and its annual range (AI), see Eq. (6.40). From the
results presented in Figure 6.12 it can be inferred that Zostera is adapted
to narrower light ranges while Ulva seems able to cope with high variable
light regimes (Dahlgreen and Kautsky, 2004). However, there is a certain
realm of lighting conditions within which Zostera dominates even at high
DIN concentrations. All simulated results showed that the system was in
a transient and the final limit cycle was reached after a few years.
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Figure 6.11. Zostera and Ulva annual mean biomass (gdwm−2) as a function of
mean temperatures, Tm, and its amplitude of annual variation, AT, for the low
nutrient regime,F = 0.1m3h−1 and[NO−

3 ]input = [NH+
4 ]input = 5mmolm−3.
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Figure 6.12. Zostera and Ulva annual mean biomass (gdwm−2) as a function of
mean light intensity,Im, and its amplitude of annual variation,AI , for the high
nutrient regime,F = 0.1m3h−1 and[NO−

3 ]input = [NH+
4 ]input = 50mmolm−3.
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6.3.2 The influence of phytoplankton on competition be-
tween Zostera and Ulva

The partitioning of primary production among the differenttaxa was an-
alyzed under different set of conditions as a function of DINinputs with
high (F = 0.1m3h−1) and low flows (F = 0.01m3h−1), see Figure 6.13.
Overall, phytoplankton was able to compete with Ulva for nutrients in
the water column, thus favoring Zostera due to its lower shadowing ef-
fect. At high DIN loadings phytoplankton outcompeted both Ulva and
Zostera, thus becoming the dominant group. This is due to itshigher max-
imum growth rate (0.021h−1) compared to Ulva (0.017h−1) and Zostera
(0.0025h−1) when no nutrient, temperature or light limitation exists.

6.3.3 Assessment of mesocosm experiments

The model has been used to simulate the mesocosm experimentswhich
tested competition between Z. marina, Ulva lactuca and phytoplankton
under several nutrient enrichment conditions (Nixon et al., 2001, Taylor
et al., 1999). The authors concluded that no significant effect of loading
could be detected for Z. marina, epiphytic material, drift macroalgae or
for all plant components combined. This contradictory result could be
due to several reasons; therefore in this work we have tried to assess two:
sensitivity to initial conditions and transient behavior.

Concerning the sensitivity to initial conditions, resultsobtained from
two identical runs imitating the mesocosm experiments, butwith different
initial biomass of Ulva and phytoplankton are reported in Figs. 6.14 and
6.15, as an example. In the first case, Zostera biomasses increased steadily
with nutrient enrichment, from C to M and decreased from M andVH. In
parallel, Ulva and phytoplankton increased with nutrient enrichment from
C to VH (Figure 6.14). However, in the second case (Figure 6.15), even
though Ulva and phytoplankton behaved in a similar way but with delayed
dynamics and with different values, Zostera showed a different behavior
with higher biomasses at higher concentrations.
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Figure 6.13. Percentage of primary production for each compartment: Zostera,
Ulva and phytoplankton as a function of nutrient flows. Top:F = 0.01m3h−1;
bottom:F = 0.1m3h−1
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Figure 6.14. Simulated biomasses of Zostera, Ulva and phytoplankton under the
conditions of the mesocosm experiments from Taylor et al. (1999). Control (C):
continuous blue line; Low (L): dotted red line (L); Medium (M): dashed green line;
High (H): dash-dot black line; Very high (VH): continuous cyan line.
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Figure 6.15. Simulated biomasses of Zostera, Ulva and phytoplankton under the
conditions of the mesocosm experiments from Taylor et al. (1999). Control (C):
continuous blue line; Low (L): dotted red line (L); Medium (M): dashed green line;
High (H): dash-dot black line; Very high (VH): continuous cyan line. Conditions as
Figure 6.14 but the initial conditions of Ulva and phytoplankton have been reduced
by a factor of 10.
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6.4 Discussion

The simulated results from the competition between Zosteraand Ulva are
in agreement with field observations. For example, DIN concentrations
around∼ 5 mmol m3 are typical from Etang de Thau (France), which
is covered by Zostera meadows; whereas high DIN concentrations∼ 50
mmolm3 have occurred during some years in Sacca di Goro (Italy), which
is dominated by Ulva. Similar observations have also been reported by
Nelson (2003) with Ulva starting to appear at DIN concentrations higher
than 18.0mmolm.3. However, the regime shift would be more abrupt
since, with such high Ulva biomasses, Zostera would disappear not only
due to nutrient competition, but also due to alteration of sediment bio-
geochemistry (Holmer et al., 2003) and anoxic crises triggered off by the
biomass decomposition (Zaldı́var et al., 2003).

Biomasses and Ulva−Zostera competition are more correlated with
DIN loads than with mean DIN concentrations, since with highgrowth
rates nutrients become depleted. This is one of the reasons why field
observations are difficult to use for defining a regime shift value.

Simulation outcomes evidenced that system responses to DINload-
ings are complex depending on multiple parameters. For example, en-
vironmental conditions, such as temperature and light intensity, seem to
play an important role in controlling the competition between benthic and
pelagic species. Therefore, attempts to develop a simple nutrient scale
for detecting regime shift in benthic vegetation seems not possible. This
is probably one of the reasons why experimental observations and meso-
cosm data do not provide a clear threshold/range of values for regime
shifts.

The results of simulations considering the influence of temperature
and light intensity can be informative on climatic conditions and depths
at which Zostera is able to grow when competing with Ulva by provid-
ing plausible values at which regime shifts will occur. The simulations
can also help the debate on how changes in incident lights spectrum and
intensity would affect the benthic vegetation.
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The simulation of mesocosm experiments highlighted that the model
of benthic vegetation is very sensitivity to initial (biomass concentra-
tions) and operating (temperature, light intensity, DIN flows) conditions.
Such result is in agreement with high variability detected in data, where
biomasses differed by a factor of two between the experimental replicates
(Taylor et al., 1999). In addition, transient regimes last longer (years)
than the duration of the experiments (months); therefore, results could be
not adequate to demonstrate the effects of nutrient enrichment on plant
competition. Differences could be amplified by manipulations, e.g. when
setting mesocosms with sediment transfer and phanerogams transplant-
ing.

6.5 Conclusions

In this work a competition model has been developed with the aim of an-
alyzing the succession of primary producer communities in coastal shal-
low ecosystems and identifying possible nutrient thresholds which cause
shifts between alternative stable states.

The integrated model is able to simulate succession of dominance
states, with different resilience characteristics according with the concep-
tual scheme that sees floating macroalgae as the optimal competitors for
light, and submerged phanerogams as most efficient in recovering and
storing nutrients from the sediments and from the water column. The shift
from phanerogams to macrolgae, and finally to phytoplanktondominated
communities, conformed to the general theory of successionin coastal
lagoons (Viaroli et al., 2008). Field observations supportthe view that in
nutrient poor ecosystems, rizophytes dominate until they are not limited
by light penetration (depth effect) or by turbidity and shading by floating
vegetation and phytoplankton (Dahlgreen and Kautsky, 2004). Increasing
loading rates support the development of macroalgae, whilst high loaded
water masses become dominated by phytoplankton.

Regime shifts are found when changing the input of nutrients, but
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also, model simulations were sensitive to environmental forcing: temper-
ature and light.

Overall, model runs evidenced a clear tendency towards a shift from
seagrass to macroalgae under increasing temperatures. However, it is ex-
pected that the occurrence and severity of the shifts will besite specific
depending on local conditions and past history. These results point out
that one of the possible outcomes of an average air temperature increase
will be the increase in macroalgae and decrease in benthic vegetation.
However, the results of the analysis of a competition model between two
species are not sufficient to sustain this point.

The model shows a high sensitivity to initial conditions as well as
to forcing parameters, but this effect is also observed in mesocom exper-
iments (Taylor et al., 1999). Furthermore, model simulations show that,
when initial conditions do not correspond to steady state conditions, sea-
grasses communities require time periods to attain steady state, which
usually are longer than the duration of the mesocosm experiments. In ad-
dition, ecosystems, as other nonlinear dynamical systems,are sensitive
to initial conditions and even a small difference may drive the system to
a completely different position in state space after a certain time (Pahl-
Wostl, 1995). Our results suggest that this is probably the main reason
behind the high variability found by Taylor et al. (1999) in their exper-
iments, which did not allow finding a clear correlation between nutrient
increase and regime shifts.

In its present form, the model does not take into consideration sev-
eral important aspects such as hydrodynamics, buffering capacity (de Wit
et al., 2001, Viaroli et al., 2008), salinity, organic nutrient, oxygen, zoo-
plankton and bacteria as well as interactions between Ulva and aquacul-
ture activities. In order to develop a more realistic assessment of regime
shifts in terms of range of concentrations and temperature,we plan to
consider a real case study in which the studied taxa coexist.Future ef-
forts will aim to implement the competition model using a 3D hydro-
dynamic approach such as COHERENS (Luyten et al., 1999) for Thau
lagoon (France).
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7
Savanna-Fire Model

7.1 Introduction

Savanna ecosystems are characterized by the robust coexistence of trees
and grass. The mechanisms allowing for the persistence of both types of
plants, despite their obvious competition, and governing the population
dynamics and spatial arrangement of savanna trees are poorly understood
(Bond, 2008, Scholes and Archer, 1997). Of the many potential driving
mechanisms investigated, local-scale interactions amongtrees have re-
ceived increasing attention in recent years (Barot et al., 1999, Calabrese
et al., 2010, Meyer et al., 2008, 2007a,b, Scanlon et al., 2007, Wiegand
et al., 2006).

Such tree-tree interactions can roughly be divided into twoclasses:
facilitative and competitive. Facilitation among trees promotes tree clus-
tering and may be mediated by a variety of mechanisms. Among these
are dispersal limitation, improvement of local resource conditions, and
protection from fire (Belsky et al., 1989, Calabrese et al., 2010, Hochberg
et al., 1994, Holdo, 2005, Scanlon et al., 2007). Alternatively, competi-
tion among trees for water, nutrients, and light may alleviate the tree-grass
competition, favoring their coexistence, and tends to promote separation
among trees (Barot et al., 1999, Calabrese et al., 2010, Meyer et al., 2008).

There is evidence for both classes of interactions in the savanna lit-
erature; sometimes coming from the same region. For example, several
studies have found evidence consistent with competition inthe Kalahari
(Jeltsch et al., 1999, Meyer et al., 2008, Moustakas et al., 2006, 2008,
Skarpe, 1991), while others have found evidence suggestingfacilitation

141
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(Caylor et al., 2003, Scanlon et al., 2007). Indeed, one of the key diffi-
culties in understanding the forces structuring savanna tree populations is
that both classes of local-scale interactions often occur together and it is
not obvious whether the net effect of local interactions will be positive or
negative (Bond, 2008).

Further studies, both empirical and theoretical, are needed to bet-
ter understand the interplay between the opposing forces. Specifically,
studies that focus on a limited number of processes and theirinteractions
should help illuminate the conditions under which positiveor negative lo-
cal interactions structure savanna tree populations. Mesic savannas that
receive∼ 400− 800 mm of mean annual precipitation (MAP) are par-
ticularly interesting because there is evidence from such systems that,
in addition to local-scale interactions, fire plays also an important role.
(Bucini and Hanan, 2007, Sankaran et al., 2005). Both of these factors
can act strongly on juvenile trees and can contribute to a demographic
bottleneck through which juvenile trees must pass to recruit into the adult
population.

In contrast to forest tree species, savanna trees are often more fire re-
sistant, (Hoffmann et al., 2003), thus savanna fires basically burn the grass
layer and the young trees included in it, leaving adult treesalive, affect-
ing only tree recruitment and not adult survival (Gignoux etal., 1997)1.
Recent studies highlighting the importance of tree competition and fire
on savannas are Calabrese et al. (2010), D’Odorico et al. (2006), Hanan
et al. (2008), Higgins et al. (2000), Meyer et al. (2008), Moustakas et al.
(2006, 2008), from which we might expect a kind of tug of war between
these forces, the outcome of which affects both the tree-grass balance of
the savanna and the spatial arrangement of adult trees.

1See Box 1.
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Box 1. Fire : disturbance or disaster?

Figure 7.1. Fire in the savanna grass-
lands of Kruger National Park, South
Africa, September 1992. Photo: J. S.
Levine, NASA

From human point of view, a
wildfire is a disaster that can
wreak havoc and shake the
sense of security and economic
well-being. In nature, how-
ever, there are no disasters−
only disturbances. Fire sets in
motion a cycle of death, decay,
and re-birth that is vital to all
ecosystems.
Fire can also prepare seedbeds
for germination by burning
leaf litter. Some seeds require
mineral soil for germination,
and fire can release nutrients in
the soil and make them avail-
able for sprouting plants. Like-
wise, fire can remove overstory
plant material permitting sun-
light to bathe the lower plant strata. In fact, naturally occurring fires
are essential for the survival of many plant species. Trees such as the
jack pine actually depend on heat from fire to break open theirseeds for
germination.
Regarding savanna, fire has an important role on its dynamics, main-
tenance and evolution. Tree resistance to fire depends largely on the
presence of morphological traits that protects critical tissues and on the
food reserves for successful recovery. But the regularity of savanna fire,
the low flame height, and the short time of exposure to flame give adult
trees other possibilities of resistance. Species in fire-prone ecosystems
exhibit a diversity of adaptations to burning, such as largecarbohydrate
reserves and thick bark. The differences in fire-related traits may largely
explain the greater capacity of savanna species to persist in the savanna
environment.
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The role of fire in mesic savannas is two-fold. On the one hand,it
provides an indirect way for grass to compete against trees:the higher
recovery rates of grasses compared to juvenile trees make grass the dom-
inant form of vegetation shortly after a fire has destroyed both. On the
other hand, several studies have suggested that adult treescan protect
vulnerable juveniles from fire, thus increasing their chances of survival
(Hochberg et al., 1994, Holdo, 2005). Exactly how such protection works
has not been intensively studied. However, given the frequent occurrence
of fires in many savannas, it seems likely that the protectioneffect may
be one of the most common forms of positive facilitation among savanna
trees, and the dominance of grass after fire could be as important as tree-
tree competition in restricting the amount of tree-cover inthe savanna.

Recently, Calabrese et al. (2010) studied the interaction between
competition and fire in a highly simplified savanna model. They showed
that these two forces interact non-linearly with sometimessurprising con-
sequences for tree population density and spatial pattern.However, be-
cause Calabrese et al. (2010) treated fire in a non-spatiallyexplicit man-
ner, only the negative impact on trees, and not the protection effect, was
included and thus could not fully tease apart how these contrasting local
interactions function in combination.

Here, we focus on a spatially explicit lattice model of savanna tree
and grass population dynamics under the influence of competition and
fire. The model is an extension of the semi-spatial model studied by Cal-
abrese et al. (2010). Importantly, both competition and fireare explicit
spatial processes in the new model. This allows us to study directly how
adult trees influence the survival probabilities of nearby juveniles. Com-
petition was treated the same way as in Calabrese et al. (2010) and fire
was implemented in a similar manner as in the Drossel-Schwabl Forest
Fire Models (Bak and Chen, 1990, Drossel and Schwabl, 1992).In our
model, however, grasses and juvenile trees are the flammableobjects, in
contrast to adult trees being flammable in the original Drossel-Schwabl
model. We highlight the ranges of conditions under which local inter-
actions result in net positive and net negative influences onjuvenile tree
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survival, and we demonstrate how these local interactions affect the spa-
tial structure of adult tree populations.

In this Chapter, after this introduction, we briefly describe the mod-
eling ideas behind explicit fire models (Sect. 7.2), and then(Sec. 7.3),
after reviewing the previous model by Calabrese et al. (2010), we intro-
duce our new Savanna-Fire model. In Sects. 7.4 and 7.5 we describe the
effect of fire on the tree-grass balance and in the character of the effec-
tive tree-tree interactions, respectively. We conclude with a description of
tree patterns and tree cluster statistics (Sect. 7.6). A Summary closes the
chapter.

7.2 Spatially explicit fire models

In 1990 Bak and Chen introduced a toy model to demonstrate theemer-
gence of scaling and fractal energy dissipation. Two years later Drossel
and Schwabl made an extension of this model by introducing a lightning
parameterf . This is the forest fire model we adapted in order to im-
plement the fire spread in savanna. This model is one of the best stud-
ied models of non-conservative self-organized criticality (Bak and Chen,
1990, Clar et al., 1999, 1996, Drossel and Schwabl, 1992, Grassberger
and Kantz, 1991, Schenk et al., 2000) and has four simple rules. The first
three are the same as in the Per Bak and Chen model and the fourth is due
to the lightning parameter introduced by Drossel and Schwabl.

The forest fire model is a probabilistic cellular automaton defined
on ad-dimensional hypercubic lattice ofLd sites, initialized with a com-
bination of burning trees and green trees, and updated at each time-step
with the following rules: (i) A burning tree becomes an emptysite. (ii) A
green tree becomes a burning tree if at least one of its nearest neighbors
is burning. Some immunity can be introduced in this rule, so that a green
tree becomes a burning tree with probability 1− I (Clar et al., 1996). (iii)
At an empty site a tree grows with probabilityp. (iv) Trees in the lat-
tice spontaneously (i.e., without the need of a burning neighbor) become
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burning trees with probabilityf . This model is very rich in behavior, and
depending on the parametersf andp it displays spiral-like shapes, critical
states and phase transitions.

7.3 Savanna-Fire Model (SFM)

Our model is run in a square lattice with periodic boundary conditions.
We use a lateral size ofL = 200 sites, so that there areN = L×L = 4 104

lattice sites in the simulation domain, each site represents a square of 5
meters side size. In the previous savanna model (SM) of Calabrese et al.
(2010) each site in the lattice could be in one of these two states: grass
occupied or tree occupied.

In the Savanna-Fire model (SFM) introduced here, a combination
between the previous SM and the Drossel-Schwabl Forest Firemodel
presented in the previous section is made, but the flammable materials
being grass and juvenile trees which are the predominant states in savan-
nas (Gignoux et al., 1997, Hoffmann et al., 2003), instead ofthe trees of
the Drossel-Schwabl Forest Fire model. In this way the fire isincluded
in a explicit way being a possible state in the dynamics. Susceptibility to
fire leads to distinguish between adult trees and juvenile trees, being only
the later flammable. In this way in addition to the two states of SM, grass
and adult trees, three more states are considered in SFM, so that each site
on the lattice can be in one of the following five states:

• Grass (G)

• Juvenile Tree (JT)

• Adult Tree (AT)

• Burning (B)

• Ashes (A)
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Figure 7.2. Spreading seeds
from a central adult tree could
reach both thenear (light gray)
and far (dark grey) neighbor-
hoods of that central site. Spread-
ing of fire and tree-tree com-
petition occurs only within the
nearneighborhood. Note that the
Moore neighborhood (sites shar-
ing edges or corners) is used.

We distinguish two sets of neigh-
bors for each lattice site (see Figure 7.2):
the near neighborhood consists of the
sites sharing an edge or a corner with
the central one (Moore neighborhood).
We assume this is the spatial scale at
which there is direct competition effects
between trees, as well as direct influence
for fire propagation. Thefar neighbor-
hood consists of the sites sharing edges
or corners with thenearones, and will be
assumed to be the farther sites to which
seeds from a central tree can arrive.

We note that fire propagation is a
process much faster (the spread rate may
be around 2 m/s, see Cheney and Gould (1995)), than the typical scales
for growth, reproduction, death, and the rest of ecologicaltimescales for
both trees and grass. Thus we implement the burning process on top of
the previous savanna model Calabrese et al. (2010), but acting on a faster
scale. More specifically, at each model time step, time advances in an
amount of∆t = 0.1 years, and the whole lattice is scanned in parallel to
check for one of the following updates:

1. Growth: A random number is drawn for each site occupied by a
juvenile tree so that with probabilitya∆t it becomes an adult tree.
Thusa−1 is the mean time for a juvenile tree to become adult.

2. Reproduction and establishment: Each adult tree in the lattice sends
seeds, with probabilityβ∆t/24, to each of the 24 sites pertaining
to its nearand far neighborhood (see Fig. 7.2). If the seed lands
on a site in a state which is not G nor A, then nothing happens
(establishment fails). If instead a site occupied by grass or ashes is
reached a juvenile tree is established.

3. Competition: there is a probabilityPc that a juvenile tree survives
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from competing adult trees neighbors. This probability of survival
due to competitionPc depends only on the competition exerted by
neighboring adult trees:Pc = e−δz1, whereδ is the competition pa-
rameter andz1 is the number of adult trees in thenearneighbor-
hood.

4. Death: A random number is drawn for each site occupied by an
adult tree, so that with probabilityα∆t this tree dies. Thusα−1 is
the lifetime of adult trees. This mortality could be spontaneous or
originated by external agents (e.g. harvesting).

5. Recovery: At each time step, each ash site may recover intograss
with probabilityp∆t, so thatp−1 is the mean recovery time of grass
from ashes. Note that this forces a delay between successivefire
fronts, thus difficulting all the lattice to be burnt out and trees com-
pletely disappearing giving place to grassland formation.

6. Spontaneous burning: There is a “lightning parameter”,f , so that
fire appears spontaneously on the lattice with this rate, affecting
grass and juvenile trees. More explicitly, lattice sites occupied by
G and JT are checked so that with probabilityf ∆t/N they become
burning sites.

7. Fire propagation and extinction: After updating with allthe above
processes, a new pass through the lattice is done, so that if some
fire has been introduced in the previous step, fire propagation is
simulated until complete extinction. It is assumed that this process
is fast and occurs at small time steps, much smaller than the∆t =
0.1 years introduced above. It is implemented in the followingway:

a) Each G and JT site is checked and if at least one site in itsnear
neighborhood is in the B state, the site also burns with proba-
bility Pb. This models fire propagation on grass and juvenile
trees. We will use a constant ignition probabilityPb = 1− I ,
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with I an immunityparameter reducing from unity the proba-
bility of burning by contact, thus giving some stochastic com-
ponent to the fire propagation process. Note that, since adult
trees do not burn, fire has less chances to reach JT (and G)
sites which are surrounded by some adult trees. In this way
the inclusion of fire in a explicit way implements the protec-
tion effect from adult trees.

b) End of burning: All sites that were burning before entering the
previous step (a) are set to ashes.

Processes a) and b) are repeated until there are no remainingburn-
ing sites. Then time advances in∆t and the algorithm repeats again
from step (1) on the updated lattice.

Table 7.1: Parameters
Parameters Units

α mortality rate 0.1 or 0.2 year−1

b sent offspring constant rate1 year−1

δ competition coefficient vary
f lightning parameter 0.2-1year−1

a growth rate 0.2 year−1

p recovery rate 4 year−1

I Immunity 0.3

The parameters used (see table 7.1) are based in the ones fromCal-
abrese et al. (2010), but with a few modifications. The parameter α,
death of adult trees, andf , lightning parameter, were changed accord-
ing to Hanan et al. (2008, p 852) and Gignoux et al. (1997, p 557). In
mesic savannas fire frequency is about once per year or even once each
three years. The growth rate,a, was changed according to Hochberg et al.
(1994, p 219), so that a tree takes on average 5 years to begin to re-
produce (i.e. this is the mean time a juvenile tree becomes adult after
seedling).

We note that the main facilitative interaction, the dispersal of seeds
from adults to promote new trees, occurs at the spatial scaleof the first
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and second neighborhood, whereas the main competitive one,adults dif-
ficulting the development and juveniles, occurs at shorter distances, the
first neighborhood. This is exactly the opposite situation as the one be-
lieved to occur in nutrient-poor arid savannas and other dryecosystems,
namely short distance facilitation by local improvement ofhumidity, and
long range competition among trees mediated by long superficial roots.
In this last case, tree patterns are expected to be nearly periodic in space
(Rietkerk et al., 2004, Rietkerk and van de Koppel, 2008). Our situation
is more appropriate for mesic savannas, and would tend to promote tree
clustering. But the occurrence of fire may alter the nature ofthe interac-
tions in a variety of ways, which we investigate in the following.

7.4 The tree-grass balance and phase transi-
tion

As expected, stronger tree-tree competition displaces thetree-grass coex-
istence towards the grass side (Figure 7.3, left). The modelwas run for
3000 years until an asymptotic state was reached in which we performed
the measurements described in Figure 7.3. Simulations wereperformed
to determine under what conditions we have a transition fromsavannas to
grassland.
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Figure 7.3. Density of adult trees (i.e., the number of adult trees divided by the
total number of lattice sites) versus competition (δ, left graph) and versus lightning
( f , right graph). Average over 500 snapshots in the long-time asymptotic state.
Parameters in Table 7.1 butα = 0.1 and in the right graphδ= 0.01.
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In the previous study by Calabrese et al. (2010), however, coexis-
tence was observed even for high competition. This is also the outcome
in our SFM for small fire ratef (see Figure 7.3). For largerf , however,
competition could drive tree extinction, which did not happen in the Cal-
abrese et al. (2010) model. The lightning frequencyf turns out to be
the parameter most easily driving this savanna-grassland transition: The
right part of Figure 7.3 shows a phase transition towards grassland by tree
extinction by increasingf .

The indirect effect of fire on the tree-grass balance occurs because
increasing fire destroys grass and juvenile trees, but the ashes will be re-
placed soon by grass, which grows faster. For frequent fire this would re-
sult in lack of tree renewal and finally in tree extinction. This mechanism
and the subsequent extinction was somehow built-up in the definition of
the fire parameter of the previous model by Calabrese et al. (2010). Here
the mechanism appears as a consequence of the explicit presence of fire.
In Figure 7.3 we can see that the transition from the coexistence state to
grassland driven by increasingf is favored by larger grass recovery rates.
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Figure 7.4. Density of adult trees (i.e., the number of adult trees divided by the
total number of lattice sites) versus adult tree mortality (α). Parameters:b = 1,
a = 0.2, I = 0.3, p = 4, f = 0.33.

A smooth transition forest-savanna is also present in the model (Fig-
ure 7.4). Tree cover increases when adult tree life span increases (i.e. de-
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creasingα value). However, when using reasonable values for tree mor-
tality in savannas, the region of parameters in which foreststate is reached
is strongly reduced and basically only the savanna-grassland transition
can be found.

7.5 Positive and negative effects of surround-
ing adult trees on juvenile’s: Protection and
competition

In addition to affecting the tree-grass competition, fire has also an indirect
effect on tree-tree interactions. In fact, it introduces the positive effect of
juvenile-tree protection by surrounding adult trees. In order to analyze
this effect in detail we run simulations in which only the firepropagation
process (6) above occurs. The lattice is initialized fully with grass except
for one unique site occupied by a juvenile tree, and a number of adult
trees, from 1 to 8, occupying random positions in the Moore neighbor-
hood of the chosen JT. Once with this initial condition, one sparkling is
allowed so that a lattice site chosen randomly among the G sites becomes
burning and fire begins to propagate. Step (6) in the SFM algorithm is
repeated until fire disappears.

Juvenile trees sufficiently protected by adult trees will not burn. An
example is seen in Figure 7.5, where the pass of a fire front does not affect
a juvenile protected by five adult trees.

The effect has been quantified by repeating this burning protocol
1000 times for each number of AT neighbors, from 1 to 8. The sparkling
site and the position of the surrounding neighbors is changed in these
realizations. The resulting survival probabilitypf (z1) is shown in Figure
7.6. The protective effect of an increasing number of ATs is clearly seen
when the immunity parameter is not too small. For very smallI protection
is only effective when the juvenile is completely surrounded by adults, i.e.
z1 = 8.
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Figure 7.5. Protection effect: Selected snapshots from an example simulation with
5 adult trees (blue) surrounding a juvenile (green). Immunity parameterI = 0.3.
Time runs from left to right and then from the upper to the lower row. A fire front
(red) advances downwards, converting grass (yellow) into ashes (white), but the
juvenile survives. Only a 10×10 area of the whole 200×200 lattice is shown.

In order to better quantify the impact of this protective effect on the
survival of juveniles and recruitment into adults, we estimate now how
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the number of adult treesz1 in the near neighborhood of a site affects
a ‘recruiting probability’Pr(z1), defined as the probability that a grass
or ash site becomes successfully colonized by a tree seed during a given
time-step, in such a way that the resulting JT would survive successive
fires and become adult. This probability is a product of several factors.
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Figure 7.6. The protection effect: The probabilitypf (z1) of a juvenile surviving
one fire as a function of the number of surrounding adult treesin its first neigh-
borhood. This probability has been obtained from 1000 realizations of the process
in which fire is initiated at one grass site, as described in the text, using immunity
I = 0.3.

First, the grass or ash site should receive in that time step seeds from
the adult trees in the near or in the far neighborhood (the number of adult
trees there isz1 ∈ (0,8) andz2 ∈ (0,16), respectively). This is given by
ps(z1,z2) = 1− (1−β∆t/24)z1+z2. Then, the seed, turned on a juvenile
tree, should survive competition at successive time steps which is given
by the factorPe = exp(−δz1). Sincea−1 is the growth time from juvenile
to adult tree,a∆t−1 time steps occur during the growth, and exp(− δz1

a∆t ) is
the total survival factor to adulthood under competition.

Finally, the growing JT should resist the first and successive fires
occurring during its growing timea−1. The survival to a single fire is the
function pf (z1) numerically calculated and shown in Figure 7.6 for the
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case in which the considered site is surrounded just byz1 trees in the near
neighborhood (i.e.,z2 = 0).

An estimation of the survival probability to successive fires, which
neglects any correlations arising from successive fire fronts and from
the lattice configuration beyond the immediate neighborhoods would be
pf (z1)

f /a, since f/a is the expected number of fires suffered by the JT
during its growing timea−1. The probabilityps(z1,z2) depends on the
number of AT both in the near and in the far neighborhood. For consis-
tence with the calculation ofpf (z1) we will takez2 = 0. This (as in the
case ofpf (z1)) will underestimate the probability of establishment, sur-
vival and recruitment, as the trees in the far neighborhood do not compete
with the central one. In this way we will obtain an estimationof the re-
cruitment probabilityPr(z1) which would be smaller than the exact one.
Thus, if this function shows positive effects of surrounding adult trees (as
it will do), the result has an enhanced value, since it is obtained in aworst
casesituation.

Summarizing all the factors above, withz2 = 0, our estimation of
the recruitment probability of a grass site surrounded byz1 adult trees is

Pr(z1) ≈
[
1−

(
1− β∆t

24

)z1
]

e−
δz1
a∆t pf (z1)

f
a (7.1)

This is plotted in Figure 7.7, and reveals both the positive and the
negative effects of the presence of neighboring trees (but remember that
the positive effects are underestimated). For medium values of the compe-
tition parameter and above four neighboring adult trees thepositive pro-
tective effect of fire (in combination with local dispersal)overcomes the
negative effect of direct competition, but for high values of competition
the negative effect predominates. For frequent fire, however, the protec-
tion effect is no longer effective.
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Figure 7.7. Estimation of the recruiting probabilityPr(z1), as a function of the
number of adult treesz1 in the near neighborhood, from Eq. (7.1), showing the
positive and negative effects of these neighbors. (a) and (b) I = 0.3, f = 0.33/year
(triennial fire). (c)I = 0.3, f = 1/year(annual fire).
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7.6 Clustering patterns

7.6.1 Spatial pattern under different fire scenarios

We characterize spatial patterns of adult trees by the pair correlation func-
tion, g(r):

g(r) =
ρAA(r)
(ρA)2 (7.2)

ρAA is the proportion of pairs of adult trees at a distancer with respect
to the total number of pairs of sites at that distance, and thedenominator
is the expected value of this ratio under a random distribution with the
density of the adult treesρA. At large distancesg(r) is expected to ap-
proach 1, as correlations indicating a departure from random distribution
would decay. For short distances,g(r) characterizes how the particles are
packed together (see Dieckmann et al., 2001, chap. 14), values higher
than 1 indicating a proportion of pairs at that distance greater than in the
random case, and a smaller proportion indicated by values ofg smaller
than 1. We will not use the Euclidean distance forr but instead we will
measurer in number of cell layers so thatg(1) andg(2) will denote the
pair correlation function for the first and for the second Moore neighbor-
hood, respectively.

Comparison of Figure 7.8 with the results of Calabrese et al.(2010)
shows that all the patterns found in the SM model are present also here.
In that case the patterns can be understood from the fact thatthere is di-
rect competition only between nearest neighbors, whereas the facilitation
effect of local seed dispersal reaches first and second neighbors. In con-
sequence, all these patterns have an enhanced probability of ATs having
other ATs as second neighbors (far Moore neighborhood), as seen by the
high value ofg(2). As in Calabrese et al. (2010), two types of configu-
rations are distinguished by having a value ofg(1) smaller or larger than
1, i.e. smaller or larger proportion of ATs in the near neighborhood than
the one expected from a random distribution. The balance between posi-
tive and negative tree-tree interaction effects determines these values. The
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Figure 7.8. Patterns in the SFM. Parameters as in Table 1 andp = 4.0, δ = 0.02.
Regular case:f = 0.10. Clumped case: 0.60. The central panel shows an interme-
diate state (f = 0.24) in whichg(1) = 1, which indicates the same number of AT
near pairs as in a random case.

caseg(1)< 1 is aregularcase in which trees appear more regularly spaced
than in the random case. The caseg(1) > 0 is aclumped state, in which,
although the density of near-neighbor pairs is still smaller than the one
of far-neighbor pairs, it is larger than in the random case. The transition
between the two states, that in the SM model was ruled by the parameter
σ (representing the probability of surviving fire), is here determined by
the explicit fire parameterf .

In the clumped patterns just described, plotted in Figure 7.9, the
clusters areopen in the sense that there are more neighbors in the far
neighborhood than in the near neighborhood. This a clear effect of the
competition existing in the near neighborhood, and was the only clumped
state present in the previous SM model. The novelty here is that, in ad-
dition, there is a second type of clustered state not presentin the SM
model. A clumped state made ofclosedclusters is shown in Figure 7.10.
The clusters are closed in the sense that there are more AT neighbors in
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Figure 7.9. Savanna configuration in the clumped state at parametersα = 0.2,
b= 1,a= 0.2 andI = 0.3,δ = 0.02,p= 4, f = 0.55 and an example of open cluster
of ATs, the typical configuration here. The right panel showsthe pair correlation
function for this and similar parameters, similar to the onein the SM model in the
clumped state. The yellow represents grass state, green thejuvenile tree state and
blue the adult tree state.

the near neighborhood than in the far neighborhood. Thus, the positive
effect of fire protection (and local dispersion) has completely overcome
the competition effect occurring in the near neighborhood.The transition
from one type of pattern to the other occurs when changing thecompe-
tition or the lightning parameters,δ and f , as shown in Figure 7.11 and
7.12.

7.6.2 Cluster size distributions

A cluster is a group of neighbor sites occupied by the same type of veg-
etation (e.g. adult trees). The distribution of cluster sizes is a powerful
indicator of the different mechanisms occurring in ecosystem (Pascual
and Guichard, 2005, Pascual et al., 2002). The distributions of sizes of
adult-tree clusters in regions of southern Africa have beeninvestigated
by Scanlon et al. (2007), finding that in most cases a power-law fit can
describe the data (although the fit was not of uniform quality). Scanlon
et al. (2007) showed that resource constraints, together with positive local
interactions of the type identified in the previous section,could generate
cluster size distributions similar to the observed ones.
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Figure 7.10. Savanna configuration in the clumped state at parametersα = 0.2,b=
1,a= 0.2 andI = 0.3, δ = 0.008,p= 4, f = 0.65 and an example of closed cluster
of ATs, the typical configuration here. The right panel showsthe pair correlation
function for this and similar parameter, which is differentto the one in the SM
model in the clumped state because the maximum ofg(r) occurs atr = 1, i.e. in
the near neighborhood. Colors are the same as in Figure 7.9.

Figure 7.13 shows the cumulative adult-tree cluster size distribu-
tions from our model. The Moore neighborhood has been used todefine
clusters. It is seen that, although the distributions have fat tails (and even
plateaux at large sizes, see the small-f curves in Fig. 7.13), a single power
law does not provide a good description except in particularparameter
ranges. One of such cases in which cluster size distributionfollow a rel-
atively good power law is seen in Fig. 7.13 atf ≈ 0.9. Inspection of
the tree distributions above and below such value indicatesthat a perco-
lation transition occurs precisely at that point: there is agiant adult-tree
cluster spanning the whole area for smaller lightning, and just discon-
nected tree patches for higher values. Power-law cluster distributions are
observed close to the percolation transition. Then, power-law behavior
in our model seems to be associated to thepercolationmechanism dis-
cussed in Pascual and Guichard (2005), although in a parameter range not
as broad as suggested there. The reason is not difficult to understand: tree
cover in Fig. 7.13 is just of 0.4 forf ≈ 0.9, and can not be increased
much more (see Fig. 7.3, right panel), which makes difficult to attain per-
colation through the whole lattice because of the absence ofvery large
clusters. By artificially changing parameters, in particular reducing tree
mortality (see Fig. alfadensity), larger tree densities could be achieved
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Figure 7.11. Values of the pair correlation function for near neighbor pairs g(1)
and for far neighborsg(2). Left graph: Parameters:α = 0.2, b = 1, a = 0.2 and
I = 0.3, p = 4.0, f = 0.33. Closed clusters occur forδ < 0.0014 and open ones for
δ > 0.0014. The second graph corresponds the same as in the left onebut for fixed
δ = 0.003 and varying lightning parameterf .

which makes easier to cross a percolation transition when moving the
remaining parameters. In such situations, we observe more robust power-
law behavior (not shown), but the system is then closer to a forest than
to a realistic savanna. We do not find systematic correlationbetween the
small-scale character of the tree patterns (regular, clumped, open, closed,
...) and the type of cluster-size distributions, despite one could expect
that positive short-range correlations would favor power-laws (Scanlon
et al., 2007). This can be explained because in our model stronger posi-
tive correlations are generally associated to lower tree-densities (compare
Figs. 7.11 with 7.9) which are far from the percolation pointsince large
clusters are necessarily absent.

7.7 Summary

We have introduced a model for the savanna structure which includes,
in addition to the standard ecological interactions and competition, the
explicit effect of spatial fire. Fire introduces some effective tree-grass
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Figure 7.12. Pair correlation functions showing the transition open-closed clusters.
Parameters:α = 0.2,b= 1,a= 0.2 andI = 0.3, p= 4.0. (a)δ = 0.001. (b)δ = 0.01

and tree-tree interactions which are important in shaping demography
and spatial pattern. First, the presence of fire improves competitiveness
of grass because of its faster recovery after a fire. Second, adult trees
may provide protection against fire to juveniles surroundedby them. This
gives a positive tree-tree interaction which can overcome the explicit tree-
tree competition for resources. As a result of these direct and indirect
interactions a variety of tree distributions are observed,which we have
characterized by the pair correlation function. As the short-range positive
interactions gain importance as compared to the negative ones, a succes-
sion of regular to clumped states is observed. Clumped states can have
“open” clusters, as the ones present in the previous Calabrese et al. (2010)
model, but also “closed” for the cases with stronger positive interactions.
Adult-tree cluster-size distributions are of power-law type in some cases
because of the proximity of a percolation transition, but for much of the
realistic parameter range tree cover is small and far from percolating. The
tails of the distributions, although fat, seem to decay faster than power
laws, as in fact is seen to occur in several of the sites reported by Scanlon
et al. (2007).
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8
Life history and mating systems
select for male biased parasitism
mediated through natural selec-
tion and ecological feedbacks

8.1 Introduction

Sex bias in parasitism is often found across a diverse range of taxa, with
males commonly the ‘sicker’ sex (Zuk, 1990, 2009). Althoughsuch male-
biased parasitism is the most commonly reported (Ferrari etal., 2004,
Perkins et al., 2003, Poulin, 1996, Schalk and Forbes, 1997), higher rates
of parasitism and less investment in immunity have also beenreported for
females (McCurdy et al., 1998, McKean and Nunney, 2005, Zuk et al.,
2004). It remains unclear what processes can account for sex-biased par-
asitism and in particular the higher prevalence of disease in males. One
possibility is that males exhibit different behavior that leads to greater ex-
posure (i.e. larger home ranges or more risk of infection forany given
exposure because of damage caused by fighting) (Bundy, 1988,Restif
and Amos, 2010). Bias may also result from underlying differences in
life-history characteristics between males and females (Moore and Wil-
son, 2002) including the idea that the larger physical size and growth rates
of males make them a more accessible and attractive target for parasites
(Moore and Wilson, 2002). There is also clear evidence of a physiolog-
ical basis for differences in susceptibility with for example androgenic
hormones in males (testosterone in vertebrates) acting to depress the im-
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mune system (Alexander and Stimson, 1988, Folstad and Karter, 1992,
Moore and Wilson, 2002).

Beyond physiological mechanisms, it has been proposed thatlife-
history theory could explain immune differences from an adaptive point
of view in relation to sex-specific reproductive strategies. In particular, it
has been argued that the reduced investment in resistance isdue to trade-
offs between male mating effort and immune defence. In this scenario
as the strength of sexual selection on males increases, the magnitude of
the sex differences in immunocompetence will increase. In essence the
argument is that a reduced immune systems may be the unavoidable price
of being male due to sexual selection (Zuk, 1990, 2009). Following on
from this a polygynous mating systems should lead to greaterdifferences
in male biased parasitism and under polyandry females should be more
susceptible (Zuk, 1990, 2009). The basic assumptions of these ideas have
recently been examined theoretically by Stoehr and Kokko (2006) who
determine optimal allocation of resources between immunity, survival and
reproduction in males and females, under varying levels of sexual selec-
tion. This theory has shown that sexual selection may explain male-biased
parasitism (Stoehr and Kokko, 2006, Zuk, 2009). In addition, Moore
and Wilson (2002) carried out a meta-analysis using two measures of the
strength of sexual selection (mating system and sexual sizedimorphism)
and showed that sexual selection was associated with sex differences in
parasitism.

There is a large body of theoretical work that has emphasizedthe
importance of ecological feedbacks to the evolution of hostdefence to
infectious disease (see Boots et al. (2009) for a review). Itis clear from
this theory that host life-history is critical to level of defence that evolves.
In particular, it is often, although not always the case, that increased re-
sistance to parasites is more likely to evolve for long-lived hosts (Miller
et al., 2007a). Differences between males and females in terms of their
life-histories may therefore be enough to explain the evolution of different
levels of investment in defence through natural rather thansexual selec-
tion. In particular differences in ecological feedbacks between males and
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females due to differences in their life-histories may underpin the evo-
lution in reduced investment by males in defence and therefore result in
higher transmission of infection. Furthermore, the ecological feedbacks
due to monogamous and polygynous mating systems may have different
effects on the evolution of male and female investment in defence. In par-
ticular, different mating systems could cause different patterns in the way
in which densities of males and females feedback into the evolutionary
dynamics.

A recent model (Restif and Amos, 2010) has shown the importance
of epidemiological feedbacks in determining male-biased parasitism through
natural selection. Restif and Amos (2010) develop a model with explicit
genetics (two diploid loci with a link between genotype and phenotype)
to investigate how the evolution of sex-specific investmentin immune de-
fenses (through recovery from, or tolerance to, infection)are affected by
a combination of life-history trade-offs and pre-existingdifferences be-
tween male and female phenotypes (in particular an imposed sex-specific
difference in exposure to disease). Our aim is to investigate how the mat-
ing system and differences in competitive ability and longevity between
sexes influence the level of resistance to infection that evolves. Our study
additionally differs from Restif and Amos (2010) in that we examine the
effect of mating system on the level of evolved resistance ineach sex and
we do not impose pre-existing sex-specific differences in disease param-
eters. We also examine the effects of mating system and host life-history
under natural selection that includes epidemiological dynamics, focusing
on how ecological feedbacks affect the evolutionary process. We find
that differences in lifespan are enough to explain male biased parasitism.
Differences in the mating system act only to accentuate an existing bias.
Our work further emphasizes the importance of including epidemiologi-
cal feedbacks when studying the evolution of defence.
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8.2 Methods

The underlying host-parasite framework is based on the classical approaches
for modelling the population dynamics of directly transmitted micropar-
asites (see Anderson and May (1981)) and which have been successfully
extended to understand the evolution of host resistance (Boots et al., 2009,
Boots and Haraguchi, 1999). This framework is modified following the
techniques of Lindström and Kokko (1998) and Miller et al. (2007b), to
represent a two-sex host parasite model that considers the dynamics of
males and females separately. This is achieved by representing births as
the harmonic mean function proposed by Caswell and Weeks (1986), that
depends on the densities of the two sexes and declines to zeroin the ab-
sence of either sex. This function can also be modified to approximate
different mating systems (monogamy, polygyny and polyandry)1. The
theoretical framework is therefore represented by the following system of
nonlinear ordinary differential equations for the densities of susceptible,
S, and infected,I , males and females, represented by the subscriptsmand
f respectively.

dSm

dt
=

1
2

B(Sm,Sf )(1−qmH)−dmSm−βmSm(I f + Im)

dIm
dt

= βmSm(I f + Im)− (dm+α)Im (8.1)

dSf

dt
=

1
2

B(Sm,Sf )(1−qf H)−df Sf −β f Sf (I f + Im)

dI f

dt
= β f Sf (I f + Im)− (df +α)I f

Here H = Sf + Sm + I f + Im is the total host density. Births are
divided equally between males and females according to the harmonic

1Monogamy: males and females have one mate. Polygyny: a male has more than
one female mate. Polyandry: a female has more the one male mate.
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birth function,B(Sm,Sf ) , which describes the dependency of the birth
rate on the density of either sex and mating strategy. The birth rate is
modified due to density-dependent competition for resources with the pa-
rameterq, and the population has a natural death rate,d. Infection can
occur through contact between susceptible and infected individuals with
transmission coefficient,β, and the disease induces an additional mor-
tality while infected at rateα. (The subscripts on some parameters dis-
tinguishes between male and female specific parameters.) The harmonic
birth function,B(Sm,Sf ) , is derived from (Caswell and Weeks, 1986),
and takes the following form.

B(Sm,Sf ) =
cmSmcf Sf

Sm+
Sf
h

(8.2)

Here,cm andcf represent the contribution that males and females
make to the birth rate andh represents harem size and can be manipu-
lated to represent different mating systems. Whenh > 1 it represents a
polygynous mating system (births are maximized when females exceed
males), whenh < 1 it represents polyandry (births are maximized when
males exceed females) and whenh = 1 it represents monogamy (births
are maximized when males and females are equally abundant) (Caswell
and Weeks, 1986).

To examine the evolution of parasite resistance we follow the tech-
niques of adaptive dynamics (Boots et al., 2009, Geritz et al., 1998). We
assume a ‘mutant’ strain of host can occur at low density and attempt to
invade the established ‘resident’ strain which is at its equilibrium density.
The mutant male host strain differs from the resident strainin terms of
its transmission coefficient̃βm compared toβm for the resident (a similar
difference can occur for the female transmission coefficient and we will
use ‘˜ ’ to represent the mutant parameters). In line with previous studies
into the evolution of host resistance it is assumed and that abenefit in
terms of increased resistance to infection is bought at a cost in terms of a
reduced birth rate (Boots and Haraguchi, 1999). For this study we impose
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the trade-offcm = g(βm) andcf = g(β f ) . The trade-off is defined by

cm = cmax−



(cmax−cmin)

(
1− βm−βmin

βmax−βmin

)

(
1+ γ βm−βmin

βmax−βmin

)



 (8.3)

which is a smooth curve between the minimum and maximum val-
ues of the birth and transmission rates and in which the parameterγ con-
trols the curvature (and therefore cost structure) of the trade-off, see Fig-
ure 8.1. (We will discuss other possible trade-offs later.)
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Figure 8.1. A trade-off with accelerating costs as defined by Eq. (8.3). Parameters
arecmin = 2, cmax= 5, βmin = 1, βmax= 20 andγ = 40.

The fitness is the long-term exponential growth rate of a pheno-
type in a given environment. We initially consider the situation where
the female parameters are fixed and we allow the male parameter βm (and
cm via the trade-off) to evolve. A proxy for the fitness,R, can be cal-
culated as the determinant of the jacobian matrix,J, at the steady state
(Sm,Sf , Im, I f , S̃m, Ĩm) = (S∗m,S∗f , I

∗
m, I ∗f ,0,0) (Miller et al., 2005) where

J =




∂ ˜̇Sm
∂S̃m

∂ ˜̇Sm
∂Ĩm

∂ ˜̇Im
∂S̃m

∂ ˜̇Im
∂Ĩm



 (8.4)
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and therefore,R, can be represented by the following expression

R = −bm− (I ∗f + I ∗m)β̃m+
cf amg(β̃m)S∗f (1−qmH∗)

2(
S∗f
h +S∗m)

(8.5)

whereH∗ = S∗m+S∗f + I ∗m+ I ∗f

The fitness proxy,R, can be used to determine the position of evolution-
ary singular points and the evolutionary behavior at the singular point.
Evolutionary singular points are determined when the fitness gradient
∂R

∂β̃m

∣∣∣
βm=β̃m

= 0 which equates to solving the following expression

− I f − Im+
1

2(
Sf
h +Sm)

amcf Sf (1−qmH∗)g′(β̃m) = 0 (8.6)

The evolutionary behavior at the singular point is determined by
analyzing the second order partial derivatives ofRwith respect to the mu-
tant and resident parameters (Geritz et al., 1998). Previous studies have
assessed how the trade-off cost structure or underlying population dynam-
ics can influence the evolutionary behavior and also induce evolutionary
branching leading to diversity in host strategies (Boots etal., 2009, Boots
and Haraguchi, 1999). The focus here is to examine whether different
levels of resistance can evolve between males and females. To allow us
to concentrate on this issue we ensure that the underlying population dy-
namics are point equilibrium and that the trade-off has sufficiently accel-
erating costs that the singular point is an evolutionary stable attractor. We
can then assess how the position of the singular point changes as other
life history parameters are varied.

To examine the coevolution of male and female resistance prop-
erties we determine the female fitness function (which depends on the
evolving parameterβ f andcf via the trade-off). The male singular points
are plotted againstβ f (for a fixed female strategy using the method out-
lined above) and the female singular points (against a fixed male strategy)
are plotted againstβm . The intersection of these lines produces a coevolu-
tionary attracting singular point (Restif and Koella (2003), note that again
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the trade-off is chosen to ensure the population dynamics exhibit a point
equilibrium and that the singular point is a coevolutionarystable attrac-
tor). Using this method it is possible to determine how the coevolutionary
singular point varies with changes in underlying life history parameters.

8.3 Results

The evolutionary behavior is dependent on feedbacks that arise in the eco-
logical dynamics and therefore it is useful to first understand how changes
in life history parameters will affect the equilibrium density of the differ-
ent classes in the model system (Figure 8.2). Increases in the harem size,
h, or the overall birth rate leads to an increase the total density of males
and females (equally since the sex ratio is 50:50). If the male death rate
is reduced (relative to the female death rate) then there is an increase in
the overall density of males (through an increase in infected males) and
a decrease in female density. As the male death rate is increased then
there is an increase in the overall density of females (through an increase
in susceptible females) and a decrease in male density. Notealso that the
prevalence of infection decreases as the male death rate increases (relative
to the female death rate). When there is a reduction in the competition pa-
rameter for males there is an increase in male density through increases in
susceptible and infected males and female density in both susceptible and
infected classes is reduced. When there is an increase in thecompetition
parameter for males then overall male density and female infected density
decreases while female susceptible density increases. Theoverall suscep-
tible density remains constant as the competition parameter is varied but
the proportion of susceptible males to susceptible femalesdecreases as
the competition parameter for males is increased. Also, theprevalence of
infection remains relatively constant when the male competition param-
eter is less than the female parameter but the prevalence decreases when
the male competition parameter is greater than the female parameter.

When interpreting the remaining results it is worthwhile recalling
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Figure 8.2. Changes in the density of the different classes as other parameters
are varied where ‘◦’ representsSf , ‘•’ representsI f , ‘�’ representsSm and ‘�’
representsIm. Parameter values (unless varied in the figure) arecm = cf = 3.79,
qm = qf = 0.25,dm = df = 1, αm = α f = 1, βm = β f = 1.6625,h = 1. In a)h a is
varied, b)cm is varied, c)dm is varied and d)qm is varied. In a) and b)Sf = Sm and
I f = Im so the results are just shown for males.
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Figure 8.3. Change in the singular value of disease transmission for males,β∗
m,

when males can evolve ( and females do not evolve). Parameters values (unless
varied in the figure) arecf = 3.79, qm = qf = 0.25, dm = df = 1, αm = α f = 1,
β f = 1.6625,h = 1. The parameters for the trade-off (Eq. (8.3)) areβmin = 1,
βmax= 20, cmin = 2, cmax = 5 andγ = 40. In a) harem size,h is varied, b) death
rate,dm is varied and c) male competitionqm is varied.

that a decrease/increase in disease transmission equates to an increase/decrease
in disease resistance and that male biased parasitism occurs whenβm >
β f .

8.3.1 Evolving male characteristics.

The results when the male characteristics are allowed to evolve against
fixed female parameters are shown in Figure 8.3. As harem sizeincreases
the level of resistance to disease in males increases (the singular value of
βm decreases). The evolved level of disease resistance in males decreases
as the male death rate increases and the male competition parameter in-
creases. The decrease in disease resistance in males is a response to de-
creased levels of prevalence of infection (see Figure 8.2) which reduces
the need to avoid infection (as individuals are less likely to become in-
fected). Male-biased parasitism is therefore evident under polyandrous
mating systems and when males have a higher death rate or suffer more
severe competition than females.
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Figure 8.4. Change in the coevolutionary singular value of disease transmission,
β∗

m andβ∗
f plotted against changes in harem size,h. Parameter values areqm =

qf = 0.25,dm = df = 1, αm = α f = 1. The parameters for the trade-off (Eq. (8.3))
are as in Fig.8.3. a) shows the relative values ofβm andβ f at the coevolutionary
singular point and b) shows the actual value ofβ∗

m at the coevolutionary singular
point (note the value ofβ∗

f is identical here).

8.3.2 Coevolving male and female characteristics

When both male and female characteristics are allowed to evolve variation
to the harem size does not produce a bias between male and female in-
fection rates (Figure 8.4a). Both males and females will evolve increased
levels of resistance as harem size increases (Figure 8.4b) in response to
the associated increases in prevalence.

When the male death rate exceeds that of females then male biased
parasitism can result from coevolution (Figure 8.5a). Herethe increased
death rate for males means they have, on average, a shorter lifespan and
this increases the possibility of dying from natural causesbefore becom-
ing infected. This is reflected in the fact that the proportion of female to
male susceptible increases as the male death rate increases. Since there
are more susceptible females than males it implies that females are more
likely to be infected and therefore males can afford to evolve decreased re-
sistance. When male biased parasitism occurs the bias increases as harem
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Figure 8.5. Change in the coevolutionary singular value of disease transmissionβ∗
m

andβ∗
f plotted against changes in a) male death rate,dm and b) male competition,

qm. Parameter values (when not varied in the figure) aredm = df = 1, qm = qf =
0.25,αm = α f = 1, βm = β f = 1.6625. The parameters for the trade-off (Eq.(8.3))
are as in Fig.8.3.

size decreases. Here, as harem size decreases the prevalence of infec-
tion decreases and the evolved level of disease resistance decreases (and
therefore transmission of infection increases) for both males and females
(Figure 8.4). This accentuates the relative bias in the transmission of in-
fection between males and females in a multiplicative manner.

A similar response occurs when male competition exceeds that of
females (Figure 8.5b) and can again be attributed to changesin the pro-
portion of female to male susceptible as the male competition parameter
increases. When the male competition parameter is reduced below that
of the female parameter the evolved level of resistance remains relatively
constant. This occurs as the prevalence of infection also remains relatively
constant and therefore there is no selection for a change in resistance to
infection.
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8.3.3 Generality of results for other trade-offs

We have undertaken the above analysis when the level of parasitism, β,
is traded-off against the competition parameter,q(q = g(β)), and where
we have imposed a trade-off such that a decrease in parasitism rate for fe-
males results in an increase in the parasitism rate for males(βm = g(β f )).
We find the results are analogous to those presented above. The changes
in the mating system do not produce a bias in parasitism between males
and females. Male biased parasitism occurs when the males have a short
lifespan (or where appropriate suffer increased competition) in compari-
son to females. Again the type of mating system can only accentuate this
bias rather than cause it.

8.4 Discussion

Differences in the rate of parasitism between sexes, in particular male
biased parasitism, is often observed in nature (see Moore and Wilson
(2002), Skorping and Jensen (2004), Zuk (1990, 2009)). We examined
whether parasite bias between the sexes could arise as a result of the
mating system or through differences in the underlying lifehistory char-
acteristics between males and females through natural selection due to
the epidemiological feedbacks that they cause. As such we are exam-
ining the evolutionary ecological implications of life-history and mating
system in isolation from the role that they may play in sexualselection.
Male-biased parasitism was selected for when males have a shorter lifes-
pan than females or when males were subject to greater competition for
resources than females (provided the overall level of competition was not
too low). Changes to the mating system did not produce a bias in para-
sitism but could accentuate an existing bias. In particularas harem size
decreases an existing male bias in parasitism is increased as a result of
a decrease in overall prevalence. We therefore predict moremale biased
parasitism when males have shorter life spans than females in monoga-
mous or polyandrous species.
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Selection for biased rates of parasitism requires there to be under-
lying differences in the life history characteristics of males and females.
Male-biased mortality rates have been reported in vertebrate and inver-
tebrate systems (Promislow, 1992, Rolff, 2002) and it has been shown
to have a positive correlation with male-biased parasitism(Moore and
Wilson, 2002). It has therefore been suggested that male-biased para-
sitism may drive the increased mortality rates in males (Moore and Wil-
son, 2002). Our study indicates the converse, that male-biased parasitism
may evolve as a consequence of male-biased mortality. (Moore and Wil-
son (2002) noted this as a possible interpretation of their empirical find-
ings.) We show that increased mortality in males leads to differences in
the population dynamics, with a greater proportion of susceptible females
than males. This reduces the likelihood of infection for males and so they
can afford to evolve decreased resistance. Fundamentally our argument is
that non-disease causes of higher mortality in malesper semay select for
the observed decrease in immune investment. This increase in mortality
can come from processes such as increased risks from larger range size
or fighting over females. By examining how natural selectionoperates
through the ecological feedbacks we show in general terms that if males
are shorter lived they will invest less in resistance.

The mating system, determined by the choice of the harem size,
does not directly select for differences in parasitism between males and
females in our models. However, we do find that differences inlife-
history characteristics that select for parasitism bias can be accentuated by
the mating system. This is because as the harem size reduces,total preva-
lence levels also reduce leading to selection for reduced levels of host
resistance. The mating system, which in this study acts via the harmonic
birth function, affects population density and the overalllevel of disease
resistance that evolves. If there is less selection for resistance then given
an existing bias, it becomes accentuated. Taken as a whole, our results
on the importance of mating systems are very different to those expected
from sexual selection theory and shown in comparative studies (Moore
and Wilson, 2002, Stoehr and Kokko, 2006, Zuk, 1990, 2009). Generally
polygynous species are expected to have stronger selectionand therefore
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more male biased parasitism. Our results show that for a 50-50 sex ra-
tio the ecological feedbacks that operate due to natural selection affect
males and females equally. Therefore, the mating systemper sedoes not
lead to a sexual bias through ecological feedbacks. Furthermore, the ef-
fect of mating system on accentuating existing biases runs counter to the
prediction from sexual selection studies. Monogamous or polyandrous
mating systems are more likely to accentuate the bias and therefore show
male biased parasitism. Therefore the selection pressuresdue to ecologi-
cal feedbacks may run counter to those that result from sexual selection.
The outcome will depend on the relative strength of the different selection
pressures in particular natural systems.

The model results can be used to examine when female biased par-
asitism can evolve. By swapping the male and female labels onpopu-
lation classes and parameters it would indicate the female biased para-
sitism could evolve if females had higher mortality rates orwere subject
to greater competition for resources that males. This further emphasizes
the idea that it is differences in the underlying mortality/competition rates
between the sexes that can drive a bias in their rates of parasitism. The
evolved bias would be accentuated in monogamous or polygynous mat-
ing systems (since when the labels are swapped a value ofh< 1 indicates
polygyny). This is again counter to the ideas from sexual selection stud-
ies in which polyandrous mating systems are predicted to produce female
biased parasitism (Zuk (1990, 2009)).

The mating system can have important consequences for the pop-
ulation dynamics that are exhibited and can lead to complicated (cycles,
chaos) dynamical behavior (Lindström and Kokko, 1998, Miller et al.,
2007b). Recently, the population dynamical effects of male-biased par-
asitism for different case mortalities and both monogamousand polyga-
mous mating systems (Miller et al., 2007b) have been examined. The pop-
ulation dynamics exhibited (point stability, cycles, chaos) did not show
clear trends with increasing male-biased parasitism and the outcome de-
pended on a complex interaction between the hosts mating system, de-
mography and parasite virulence (Miller et al., 2007b). Here we focus
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on the situation where the underlying population dynamics are at a sta-
ble point equilibrium to allow analysis of the fitness expression. We also
choose the trade-off to ensure the singular point is an evolutionary sta-
ble attractor. Studies which examine the evolutionary behavior for non-
equilibrium underlying dynamics are rare but report that the evolutionary
behavior would not change for trade-offs where an attractoris predicted
under equilibrium conditions (Hoyle et al., 2010, White et al., 2006). We
would therefore expect our finding to extend to non-equilibrium underly-
ing dynamics.

Our results confirm previous general work on the evolution ofresis-
tance to parasites (Boots et al., 2009, Miller et al., 2007a)in that we find
that the evolved level of host resistance increases as the average lifespan
of the host increases. This result is linked to increased levels of preva-
lence which occur as lifespan increases. In our study the prevalence lev-
els also increase as the harem size increases or as the level of competition
for resources is reduced (until the competition for resources is low) (Fig-
ure 8.2). As prevalence of infection increases it is beneficial to evolve
higher levels of resistance in an attempt to avoid infection. Through-
out we have assumed that there is no long-lived immunity after recovery
from infection. In principle this may have important consequences with
circumstances under which longer-lived individuals do notinvest more in
immunity. As such male biased parasitism may be less likely in disease
with long lasting immunity, but a full theoretical analysishas not as yet
been carried out.

This theoretical study examines the evolution of male-biased para-
sitism in the context of the complex epidemiological feedbacks in disease
systems. A recent paper has also shown the importance of epidemio-
logical feedbacks to the evolution of male biased parasitism (Restif and
Amos, 2010). In a comprehensive study, they examine how differential
exposure between males and females affects various aspectsof invest-
ment in immunity under a range of trade-offs including one between re-
covery and lifespan (Restif and Amos, 2010). The model includes diploid
genetics mapped onto a quantitative trait and fundamentally includes the
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epidemiological feedbacks caused by different investments under monog-
amous mating systems. Restif and Amos (2010) show that reduced in-
vestment in males can evolve when there is more exposure to parasites
(achieved by imposing differences in some of the disease characteristics
between males and females). Their results further emphasize the impor-
tance of epidemiological feedbacks. Our model system does not include
explicit genetics but allows female/male phenotype characteristics to be
inherited directly from the maternal/paternal parent respectively. This is
clearly a simplification of inheritance but where direct comparisons can
be made with the study of Restif and Amos (2010) our results are qual-
itatively similar. Our study does not impose underlying differences in
disease characteristics but focuses on the role of host lifehistory and mat-
ing system. We have shown that male-biased parasitism can evolve as a
consequence of sexual differences in life history characteristics that pro-
duce a greater proportion of susceptible females than males. Our results
extend to different choices of trade-offs. Future studies should extend
the analysis to examine the importance of the choice of underlying in-
fectious disease framework and the representation of the two-sex birth
function that may include assessing the effects of a non-equal sex ratio.
Throughout we are focusing on the role of natural selection in the context
of epidemiological feedbacks. Future work could combine this approach
with models of sexual selection in order to gain a full understanding of the
mechanisms that underpin male biased parasitism. The combined genetic
and quantitative trait model of Restif and Amos (2010) couldbe extended
to provide a framework in which to examine these different processes.
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9
Conclusion and perspectives

In this thesis different models of non-linear ecological systems with regime
shifts were explored. Different sort of mathematical analysis were used,
either equation-based models or individual-based models.Half of the re-
sults were obtained in marine ecology using analysis in differential equa-
tions. One part explored patterns in savanna using a cellular automata
tool and the last part focused on adaptive dynamics to study evolutionary
behavior in mating systems. In this chapter the main resultswill be sum-
marized divided by chapters, following the same order presented in the
body of the thesis.

Chapter 5: Joint effects of nutrients and contaminants on the dy-
namics of a food chain in marine ecosystems. In this work a model for
a marine food chain (nutrient, phytoplankton, zooplanktonand fish) was
analyzed by means of the tools of dynamical systems theory (qualitative
and numerical analysis of differential equations, and bifurcation theory),
aiming at considering the join effects of nutrient supply and pollution by
a contaminant on the system dynamics. Contaminant having toxic effects
in each species of the trophic chain was introduced in the model by alter-
ing their mortalities. The influence of contaminants on species mortalities
was assumed to have a sigmoidal dose-response relationship. This gen-
erates delay in the transitions to complex dynamical statesoccurring at
higher nutrient load values. Apart from that, more counterintuitive conse-
quences arise from indirect effects related to the non-linearities pertained
to the food chain dynamics. In particular, the top predator seems to be
the species more affected by pollutants, even when contaminant is toxic
only to lower trophic levels. Besides, contaminants increase the stability
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of the food chain with respect to oscillations which would occur under
increased nutrient input.

Chapter 6: Modeling approach to regime shifts of primary produc-
tion in shallow coastal ecosystems. In this work a competition model be-
tween rooted seagrass (Zostera marina), macroalgae (Ulva sp.), and phy-
toplankton has been developed to analyze the succession of primary pro-
ducer communities in these systems. This model is an integrated model
that uses previous existing and validated models developedfor Mediter-
ranean coastal lagoons. In order to deal with the ability of seagrass to
survive at low nutrient conditions, the dynamics of inorganic nitrogen (ni-
trates and ammonium) in the water column and in the sedimentshave also
been included. The model described successions of dominance states,
with different resilience characteristics when changing input of nutrients
and the seasonal temperature and light intensity forcing. The model sim-
ulations show a general agreement with the experimental results reported
in literature concerning thresholds of nutrient concentrations at which a
regime shift occurred. Namely the model shows the algae bloom phe-
nomenon caused by eutrophication process (high nutrient levels), also a
regime of Ulva dominance, the dominance of Zostera in low nutrients
concentrations dissolved in the water column and the regimes in which
both vegetation types coexist. Apart from competition between rooted
seagrass and macroalgae, the model showed the implicationsof the pres-
ence of phytoplankton in the system and showed that phytoplankton is
able to compete with Ulva for nutrients in the water column, thus favor-
ing Zostera due to the lower shadowing effect.

Chapter 7: Savanna-Fire Model. Savannas are characterized by a
discontinuous tree layer superimposed on a continuous grass layer. Sa-
vannas occur across a wide range of climatic, edaphic, and ecological
conditions covering approximately one fifth of the earth’s land area. In
some countries these grass- dominated ecosystems are a principal biotic
resource playing important roles in both the configuration of natural land-
scapes and in local economies. Identifying the mechanisms that facil-
itate tree-grass coexistence in savannas has remained a persistent chal-
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lenge in ecology and is known as the ”savanna problem”. In this work, a
model was proposed to combine the previous savanna model (Calabrese
et al., 2010) with the Drossel-Schwabl forest fire, therefore representing
fire in a spatially explicit manner. The model was used to explore how
the pattern of fire-spread, coupled with an explicit, fire-vulnerable tree
life stage, affects tree density and spatial pattern. Tree density depends
strongly on both fire frequency and tree-tree competition and under ex-
treme conditions can drive tree extinction (grassland). However fire fre-
quency appears to be the crucial factor on tree extinction. By increasing
fire frequency a phase transition happens between the savanna (coexis-
tence) state and grassland. Since fire is an explicit state inthe model, fire
fronts can spread following different paths that can lead todifferent reg-
ular or clumped patterns, the last ones of compact- or open-clusters type.
In the study of cluster distributions , we find fat tails whichapproach
power-law behavior in some cases.

Chapter 8: Life history and mating systems select for male biased
parasitism mediated through natural selection and ecological feedbacks.
In a range of ecological systems, there is evidence that the level of in-
fection from parasites is higher in males than in females. Previous the-
oretical studies have shown that this has implication for the population
dynamics of the host. In this study, modern game-theoretical approaches
(adaptive dynamics) was used to examine the circumstances under which
male-biased parasitism would evolve. A system of ordinary differential
equations that represents a host-parasite system and also distinguishes
between males and females was examined. In addition studieswere per-
formed examining the evolution of resistance to infection when males and
females have a trade-off between the level of host resistance and the birth
rate. Male-biased parasitism was selected for when males have a shorter
lifespan than females or when males were subject to greater competition
for resources than females (provided the overall level of competition was
not too low). Changes to the mating system did not produce a bias in
parasitism but could accentuate an existing bias. In particular as harem
size decreases an existing male bias in parasitism is increased as a result
of a decrease in overall prevalence. Therefore the model predicts more
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male biased parasitism when males have shorter life spans than females
in monogamous or polyandrous species.

Open jobs

Different tools in the analysis of complex and non-linear systems
were used to study different problems in biology during thisthesis. How-
ever during these years much more was done in searching interesting phe-
nomena to be analyzed and understood. I will list some works that are still
in process and that are worth finishing.

Hysteresis: Shifting baselines affect ecosystem restoration targets
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Figure 9.1. Phosphorous values (P)
in a lake model (Carpenter et al., 1999):
dP
dt = F − SP+ r Pq

Pq+Kq − D∇2P in the
presence of quenched (static) disorder.
K is a static Gaussian white noise. Small
cycles can be found inside the hystere-
sis cycle hardly changing forward and
backward in response to slow shifts in
the control parameter (nutrient load).

The idea is to provide a sci-
entific framework to study ecosys-
tems impacted by human pressures
that could be reverted to their orig-
inal condition by suppressing the
pressure (e.g.eutrophication/ olig-
otrophication) (Duarte et al., 2009).
The starting point was to analyze
models that have alternative attrac-
tors subjected to random spatial
dispersion, this helps the under-
standing of ecosystem response to
multiple shifting baselines in order
to set reliable targets for restora-
tion efforts. Two models were cho-
sen, the Carpenter model (Carpen-
ter et al., 1999) and the Noy-Meir
model (Noy-Meir, 1975). Similarly

to Van Nes and Scheffer (2005) some studies were performed toobserve
the effect of static gaussian noise. Preliminary analysis was performed
using a dynamical colored noise in the spatial heterogeneity and adding
heterogeneity in all parameters and changes in the control parameter of
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each time step.

A continuous model of Savannas
This work is a complementary study of the mean field approximation of
Calabrese et al.(2010) work. The idea is the obtain the patterns of tree dis-
tribution in savanna (see Figure 9.2) through a continuous model adding
the non-local interactions in the competition term:

ρ̇1 = be−δ
∫

H(r−r ′)ρ1(r ′,t)dr′ σ
σ+1−ρ1(r, t)

(ρ1(r, t)−ρ1(r, t)
2)−αρ(r, t)

(9.1)

whereH is the step-function kernel:H(r)=

{
1, i f r ≤ R;
0, i f r > R.

Some stability analysis was performed using the same theoryin the
studies of pattern formation in López and Hernández-Garcı́a (2004) (Fig-
ure 9.3). Uniform and periodic patterns can be obtained, butit is a chal-
lenge to model clumped states in terms of continuous fields.
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Figure 9.2. Spot pattern in savanna model. Parameters:σ = 0.33,δ = 2.5, α = 1
andb = 8. Right: growth rate of a function of wave number.

The effects of prey switching on predator persistence in a one predator-
two prey system with a refuge.

In many predator-prey situations, the predator has a preferred prey.
However, in many cases this preferred prey has a refuge in which it is
safe from predation. If it does not search for alternate prey, the predator
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Figure 9.3. Adult tree biomass versus related fire parameter in black andin read
the maximum eigenvalue of the coexistence solution. Thick lines represent the
stable homogeneous solution, what means that no pattern arises in this region.

may well go extinct. Each time the preferred prey attempts toincrease
its population beyond the refuge, the predator switches itspredation to
its preferred prey, driving the population back into small numbers in the
refuge (Bergerud, 1983).

Figure 9.4. Lynx preying on snowshoe
hare.

In this work a system of four
ordinary differential equations is
studied to describe one example of
such a predator-prey system. A
case in point is a predator-prey sys-
tem on the island of Newfound-
land in Atlantic Canada, where
the predator population, Canada
lynx prefers the snowshoe hare, but
switches to the arctic hare when the

former population becomes scarce. Studies of equilibria and their stabil-
ities was analyzed. The next step is to determine the criteria for periodic
solutions and persistence.
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A
Numerical continuation Programs

A.1 XPPAUT

Although there is a good explanation of how XPPAUT can be usedto con-
tinue your equations in the webpagehttp://www.math.pitt.edu/ bard/xpp/
xpp.html, a breath explanation to start using AUTO from XPP will be
given in this appendix. Besides some tips are given in order to help the
reader to get rid of some trick problems. In the home page cited before
you can download the XPPAUT program and follow the instructions how
to install it.

Figure A.1: XPP window.

XPP is a freely available tool
written in C-language for solving
differential equations, difference
equations, delay equations, func-
tional equations, boundary value
problems, and stochastic equations.
Besides, it contains the code for
the popular bifurcation program,
AUTO, (Doedel et al., 1997). It can
be used in the following platforms:
Linux, MacOs, Unix and Windows.

Before start using XPPAUT it is needed to write the studied system
into aodefile. This file must contain the system to be studied, the initial
conditions, the parameter values and , if wanted, some numerical speci-
fications, such as the time step size, the amount of time to integrate, the

201
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parameter range and tolerance error in the algorithm used. Observe the
following example of an ode file.

# RMA model
dX1/dt=X1*(R*(1-X1/K)-A2*X2/(B2+X1))
dX2/dt=X2*(E2*A2*X1/(B2+X1)-A3*X3/(B3+X2)-D2)
dX3/dt=X3*(E3*A3*X2/(B3+X2)-D3)

# D3=0.015+0.015*contˆ6+hˆ6

#The initial condition
#par D2=0.01,D3=0.005
X1(0)=0.181022
X2(0)=0.0333333
X3(0)=1.65108

#D2=0.01,D3=0.015
X1(0)=0.0939155
X2(0)=0.128571
X3(0)=1.57478

#The parameters
par D2=0.01,D3=0.015
par R=0.5,K=0.2
par A2=0.4,B2=0.1,E2=1
#par h=0.5,cont=0
par A3=0.05,B3=0.3,E3=1

#The XPP options
@ total=2000, bounds=1000
@ Nmax=2000, Ds=0.005,Dsmin=0.001
@ EPSL=1e-06,Dsmax=0.01,EPSU=1e-06,EPSS=1e-06
@ ParMin=0, ParMax=0.3
@ Xmin=0,Ymin=0
@ Xmax=1,Ymax=1

done



A.1. XPPAUT 203

Figure A.2. Auto window: Bifurcation Diagram showing fixed points and periodic
solutions.

Bifurcation analysis must be started from either a fixed point or
a periodic orbit. Sometimes, there are complicated parameter zones in
which AUTO calculation is too slow or does not converge. To solve this
kind of numerical complications i)the tolerances (EPSL, EPSS, EPSU)
can be reduced, which sets the default value to 10−4, but usually the better
value of the tolerances is 10−7 or ii)the study can be started from another
fixed point value in order to scape from the complicated zone of parame-
ters. In the ode file example two set of initial conditions canbe observed,
the set of initial conditions considered by XPP will be the last one you
write. Regarding parameters, AUTO considers the first parameter written
as the one to continue the solutions. But the parameters can be changed
as well as the numerical specifications in the XPP menu without changing
the ode file.

XPP can be used to calculate fixed points and then the result can be
written in the ode file to avoid calculating them again. To continue a fixed
point, go to the AUTO window : click on “Run” and then on “Steady
state”. Using the system of equations cited in the example the bifurcation
diagram like in the first picture of Figure A.2 will be found. To follow
periodic solutions, grab a HP point that designates a Hopf bifurcation and
click on “Run” and select “Periodic” as shown in the second picture of
Figure A.2 and a branch of periodic solutions will appear.

In order to analyze changes in the phase portrait of the system when



204 Chapter A.

Figure A.3: Two-parameter bifurcation Diagram.

varying two parameters select “Axes” then “Two parameters”and a win-
dow will appear to select the main parameter and the second parame-
ter. Never start continuations from two parameter calculus, first continue
from one parameter and afterwards grab the special points tostudy two-
parameter curves. As in the same situation with starting points, problems
with convergence and speed of calculus can occur, in this waythe main
and second parameter can be switched to obtain complete two-parameter
curves, see Figure A.3.

The AUTO window is not convenient to edit the plot. Consequently
the postscript is generated without any possibilities of change except by
using a postscript editor afterwards. However, from the AUTO window
the bifurcation diagram data can be saved, which can be used later to
make nicer figures using XPP or another software. Recently itwas posted
on the XPP’s webpage a link to a worthwhile Matlab function that orders
the messy diagram outputs of XPPAUT and generates graph which can
be modified using the graph tools of Matlab. But I have made my own
Matlab program to solve some plotting problems when there are “MX”
points, that means failure to converge. Figure A.4 shows some plots of
AUTO data using Matlab, all the plots are related to the second one in
Figure A.3. The first plot shows a “messy” plot where all the lines are
connected and the lines with convergence failure can not be eliminated.
The second plot was generated by my own code in matlab and as can be
seen all the lines are disconnected, allowing to cut the undesirable lines
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Figure A.4: “Make-up of plots”

as showed in the third plot.

%Copyright by Flora Souza Bacelar
%Plot bifurcation diagrams in Matlab that have been saved by XPPAUT
%Tested Under Matlab version 7.4.0.287 (R2007a)

[file_in,path] = uigetfile(’∗.dat’,’.dat file saved by AUTO (XPPAUT)’);
file_name = [path file_in];
b=load(file_name);

linhas=size(b(:,1),1);
a=zeros(linhas+2,5);
a(1:linhas,1:5)=b(1:linhas,1:5);
figure;
m=0;

for i=1:linhas+1

if a(i,4)==a(i+1,4);
m=m+1;
c(m,1)=a(i,1);
c(m,2)=a(i,2);
c(m,3)=a(i,3);
c(m,4)=a(i,5);
else
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m=m+1;
c(m,1)=a(i,1);
c(m,2)=a(i,2);
c(m,3)=a(i,3);
c(m,4)=a(i,5);
size(c(:,1),1);

if a(i,4)==1%STABLE STEADY STATE
plot(c(:,1),c(:,[2 3]),’linestyle’,’-’ ,’linewidth’ ,3,’color’ ,’k’ );
holdon;
elseifa(i,4)==2;%UNSTABLE STEADY STATE
d=zeros(m+2,4);
d(1:m,1:4)=c(1:m,1:4);
n=0;
for j=1:m+1
if d(j,4)==d(j+1,4);
n=n+1;
f(n,1)=d(j,1);
f(n,2)=d(j,2);
f(n,3)=d(j,3);
else
n=n+1;
f(n,1)=d(j,1);
f(n,2)=d(j,2);
f(n,3)=d(j,3);
plot(f(:,1),f(:,[2 3]),’linestyle’,’- -’ ,’linewidth’ ,1,’color’ ,’k’ );
holdon;
f=zeros(1);
n=0;
end

end
elseifa(i,4)==3;%STABLE PERIODIC ORBIT
plot(c(1:5:length(c),1),c(1:5:length(c),[2 3]),’linestyle’,’o’ ,’linewidth’ ,2,
’Markersize’,8,’color’ ,’r’ ,’Markerfacecolor’,’r’ );
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holdon;
else%a(i,4)==4;%UNSTABLE PERIODIC ORBIT
plot(c(:,1),c(:,[2 3]),’linestyle’,’o’ ,’linewidth’ ,2,’Markersize’,8,’color’ ,’b’ );
holdon;
end
c=zeros(1);
m=0;
grid on;
axistight
end

end

Of course before starting bifurcation analysis with AUTO itis de-
sirable to know the studied system making some analytical studies, when
possible, and numerical analyses in order to obtain the interesting param-
eter region in which the bifurcations are laid.

A.2 Matcont

Matcont is a freely available graphical Matlab package for the study of
dynamical systems. This package can be downloaded from the webpage:
http://www.matcont.ugent.be/.

Figure A.5: Matcont window.

Like XPPAUT, using this tool
is possible to integrate numerically
the equations and to do the continu-
ation of equilibrium and periodic so-
lutions with respect to a control pa-
rameter. Among many possibilities
of this tool usage it is also possible
continue a equilibrium in two and
three control parameters.
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Figure A.6: Matcont system window.

Matcont contains a folder with
some systems as an example. In
order to write a system to be stud-
ied, the better way to do it is choos-
ing one among of the examples and
then modify and rename it. In this
way follow these steps: open the
Matcont window, see Figure A.5,
choose “Select” and then “Systems”
and click in the option “Edit/Load”
instead of the option “New”. As a
result a window, Figure A.6, will ap-
pear in which it possible to write the
system.

Figure A.7. Matcont re-
sume window.

Since the Matlab platform is being used,
all the graph tools therein can be used. And also
it is possible to see simultaneously the continu-
ation evolution in all variables and in a three di-
mensional space. For that it necessary to select
the “window” option and add how many plots
wanted. With Matcont, there are no problems
with mixed data or lines in the plots. However,
is better stop the process of continuation of each bifurcation point. This
allows to access separately each branch of equilibria. So, after selecting
the control parameter and the fixed point to continue, click “compute”,
then “forward”. The calculation will stop when a bifurcation point is
detected and a small window with three options will appear, see Figure
A.7. Select “stop” option, and immediately, rename the present curve.
To extend the curve select it and restart from the last point of the curve.
This will permit to access each branch of the curve in order toedit them
separately.

In order to illustrate, see Figure A.8, that shows all the windows
that compounds the Matcont tool.



A.2. Matcont 209

There are others softwares that can be used to study dynamical sys-
tems, see the webpage http://www.dynamicalsystems.org/sw/sw/. All of
them have advantages and disadvantages, just choose the onethat fits a
personal style of working. In the present thesis both XPPAUTand Mat-
cont were used. Auto runs faster the continuations while Matcont seems
to be more stable in the complicated range of parameters mentioned be-
fore.

Figure A.8: Matcont windows.
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Poincaré-Bendixson, 12
Routh-Hurwitz, 22

Theory of evolution, 57
Top-down, 41, 72, 81
toxin, 8
Trade-off, 62–64, 172, 173, 176–

178, 180–183, 186, 187
Cost structure, 177
Function, 63

Transition rule, 42
Trophic

Cascade, 72
Chain, 86
Levels, 73, 75, 81
Structure, 73

Two-parameter curve, 204

Ulam, S., 42
Updating rule, 42

Asynchronous, 43
Deterministic, 42
Ordered asynchronous, 43
Parallel, 43
Probabilistic, 42
Random asynchronous, 43
Random sequential, 43
Sequential, 43
Stochastic, 42
Synchronous, 43

Volterra, Vito, 7
Von Neumann, J., 42



INDEX 217

Wolfram, S., 42

XPP, 201, 203, 204
XPPAUT, 79, 201, 204, 209



218 INDEX



Curriculum vitæ

Flora Souza Bacelar

Personal Information

Date of birth: 04/01/1978

Place of birth: Salvador of Bahia

Country: Brazil

E-mail: florabacelar@ifisc.uib-csic.es

URL:
http://www.ifisc.uib-
csic.es/people/people-
detail.php?id=585

Education

• (January 2001) Graduate in Physics.
Universidade Federal da Bahia (UFBA-Brazil).

• (October 2004) Master degree in Physics.
Universidade Federal da Bahia (UFBA-Brazil).

219



220 Curriculum

Thesis Advisor: Prof. Roberto Fernandes Silva Andrade.
Title: Um modelo de equações diferenciais funcionais comretardo
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tardo temporal para a dinâmica de infecção pelo VIH ”.
SUPERVISOR: Rorberto Fernandes Silva Andrade.

5. PHD studies. Scholarship sponsor: European community.
THRESHOLDS integrated project(Thresholds of Environmental Sus-
tainability), http://www.thresholds-eu.org/index.html.
PERIOD: 01/02/2006-30/09/2007.
CENTER: Instituto Mediterraneo de Estudios Avanzados (CSIC-
IMEDEA)-Cross-Disciplinary Physics Department.
SUPERVISOR: Emilio Hernández Garcı́a .

Research Lines

• Statistical Physics

Phase transitions;

Nonequilibrium instabilities.

• Biological Physics and Nonlinear phenomena
in ecology and in Life Science:

Bifurcation theory of dynamical systems;

Stochastic Differential Equations;

Delay differential equations;

Spatiotemporal pattern formation;

Population dynamics of ecological systems;

Predator-prey models;

Individual-based models (Cellular Automata).



Curriculum 223

• Evolutionary dynamics

Evolution of disease(biological trade-offs for evolution)

Phenotypic evolutionary models(evolutionary branching/speciation)

Participation in Research Projects

1. ”Fı́sica Biologica”. Program: 28001010002P-5 FÍSICA - UFBA
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descrever a din̂amica de infecç̃ao pelo VIH”, II Bienal da Sociedade
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de Fı́sica Estadı́stica, FisEs’08 Salamanca, 27 -29 March (2008).
[P]

18. “Savanna-Fire Model: Combined effects of tree-tree establishment
competition and spatially explicit fire on the spatial pattern of trees
in savannas”, Flora S. Bacelar, Justin M. Calabrese, Volker Grimm,
Richard Zinc, Emı́lio Hernández-Garcı́a. PATRES meetingParis,
25 -27 March (2009).[O]



230 Curriculum

19. Presented by R. F. S. Andrade “A model of partial differential equa-
tions for the propagation of HIV in TCD4+ cells”, Andrade, R. F.
S.; B. S. Marinho, Euler; Bacelar, Flora Souza
XXXII Encontro Nacional Fı́sica da Matéria Condensada (XXXII
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