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Resum

L'objectiu fonamental de la fisica estadistica és daserles propietats
emergents de sistemes compostos de moltes parts que cnvet Més
en general, la denominada “ciencia dels sistemes comgléxsca reg-
ularitats que permetin entendre el comportament de sisteor@postos
per un gran nombre d’agents. En aquest context, els sisteivlégics
han estat sempre al focus d’atenci6 de la fisica delsnsegeomplexos,
i 'estructura i dinamica d’ecosistemes ha estat un deteterellevants.
En aquesta tesi s’ha estudiat I'organitzacio i evolucérdsistemes, des
del punt de vista de I'estudi de sistemes complexos, empeargines
de la dinamica no lineal i la fisica estadistica. Com aaeentral, s’ha
estudiat la fenomenologia dels “canvis de regim”: Totststema esta
exposat a canvis graduals de clima, carrega de nutriemeymeéntacio
de I'habitat. La naturalesa en general respon a aquestssagraduals
d’'una manera suau. Tanmateix estudis en ecosistemessisparels de
llacs, oceans, o terres arides han mostrat que respostes paden ser
interrompudes per canvis bruscos a estats molt diferemtagHesta tesi
s’han formulat i analitzat diversos models que permetesrpnétar aque-
stes observacions en el marc dels conceptes de bifur¢eangjcions de
fase i dinamica adaptativa. En particular s’han estudatets de cadenes
trofiques pelagiques, de competicid d’especies engtenses litorals, de
vegetacio en sabanes, i d’efectes evolucionaris i ecdogn les carac-
teristiques del parasitisme.
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Preface

... what is needed is an altogether new instrument; one thalt envisage the
units of a biological population as the established statiédtmechanics
envisage molecules, atoms and electrons; that shall dehlsuich average
effects as population density, population pressure..s&hi@ broad outline, are
some of the principal land-marks in the territory ultimatéb be covered by
Physical Biology,

Elements of Physical Biology. Alfred J. Lotka

Last century saw an increasing application of the mathealatie-
thodologies developed in the context of the Physical seigdifferential
equation modeling, stability and control concepts, stetibgrocesses,
etc.) to the understanding of biological processes. Aryegrithesis was
provided by the book “Elements of Physical Bilology” autediby Alfred
J. Lotka, in particular with results for population dynasand energetics.
The subject grew to a mature stage (see for example the takthatten
by Murray, “Mathematical Biology”) and the recent explasincrease in
the availability of precise data from living systems hassied again the
need for quantitative approaches to the modeling of celtmmsms and
ecosystems.

Xiii



This work started in the scope of the“Thresholds of Envirental
Sustainability” project lfttp://www.thresholds-eu.oyghat was an inte-
grated project in which the study of ecological discontii®siand thresh-
olds effects as the consequence of human perturbationotoyéal sys-
tems were the main related aspects. There | had the oppiyrtarwork
with two different streamsStream 2: Thresholds and points of no-return:
thresholds definition, theory and identificatiandStream 4: Thresholds
and drivers of contaminants

Researchers in the Stream 4 developed several kinds ofierqres
and collected data from them. Specifically they performedeaanosm
experiment which had the main purpose to study effects ofrmy/as a
contaminant on a pelagic system including three trophielteyalgae,
bacteria, zooplankton), under two nutrient conditionsctsa experiment
was used to investigate direct and indirect effects of theaminant on
the studied species. Firstly my collaborators and | triedroppose mod-
els that could validate these experimental data, howewestadies drove
into a different path with a more general point of view, othér the
group kept working in the original direction. Hence | coulontribute
with two different works studying regime shifts of marineosgstems,
not just considering the pyrenne case. One related to méanopdic
chains affected by contaminants, changing differentlyrtigetalities in
each trophic level. And another work related to effects afaahication
process in shallow marine ecosystems and competition eetfleating
and submerged algae.

Then at the same perspective of the Threshold project arzhiglo
change studies | drove my attention deeper inside to eaasgsthat
present complex behavior, discontinuities and non-litiear i.e., sys-
tems that act through a number of motors, including climatnge, de-
sertification, land erosion, water shortage, eutroptocapollution, bio-
diversity loss, succession, adaptation, natural dishubs, etc. Then |
could develop different ecological models and show theatéity of a
new kind of professional might be to carry out interdiseiply projects.
A professional who not only might dominate mathematicald@md bio-

Xiv



logical knowledge but might have the insight to solve, iptet and make
prediction to problems in nature. These are the qualitigsired in a pro-
fessional that work in joint programs of different areas nwéwledge and
could be the major challenge scientists shall face in the@éstury.

This thesis is divided in two parts. The first part is relatediath-
ematical tools and modeling ideas used throughout the squan where
the original contributions are presented. The main purpb#ee first part
is to introduce mathematical concepts with some illustesgxamples and
give the reader as many references as possible. This is nzghal in
order to help further students in preliminary studies andiguhem in
searching articles and books driving them deeper in thd taics.

First Part

In the first chapter the concepts of dynamical systems aredated and
represented mathematically using differential equatlanguage. Then,
studies of fixed points and analysis of stability. Finalfyainon-rigorous
way, bifurcation theory is introduced with some examplesoafimension-
one and codimension-two bifurcations. In the second clhaptee classi-
cal and established models of biological growth and intevas of pop-

ulations are depicted. Completing the tools required indtuglies of

Chapters b and 6.

Following the same logic, in the third chapter topics in dise dy-
namical systems are shown. Starting with a historical patsge and the
definition of cellular automata and followed by few concepitpercola-
tion and critical phenomena theory used in Chalpiter 7.

And finally, closing the first part, the fourth chapter putsithe
main concepts and tools of adaptive dynamics. The defingfditness,
trade-off functions and techniques for the analysis of @woh through
pairwise invadability plots (PIPs), i.e., theory used ira@te 8 are intro-
duced.

Second Part
The second part is divided in three chapters; one relatddmatrine ecol-
ogy, other related with tree patterns and fire in savannasferidst one is

XV



about sex-dependent parasitism. Basically this conettilite core of this
thesis, where ecological models can be found what help tderstand-
ing of actual problems raised from interactions of naturatabilities and
transformations of those ecosystems and human interventio

Marine Ecology

Marine ecology is the study of marine organisms and theati@iship

with other organisms and with the surrounding environm&inth as non-
living, abiotic factors and living, biotic ones. Water, hig temperature,
salinity, tides, currents, etc are some of the abiotic facty physical,

chemical and geological elements related to marine ardesbibtic fac-

tors comprises the interactions among living organismse @spect of
such interactions can be described through food chainsl fedworks

or trophic networks that describe the feeding interact@mm®ng species
within an ecosystem. Food webs evolve complex networkstefactions

in contrast with the simple linear pathway of the food chalBm®logists

often model food web relationships in terms of the flow of selaergy,

captured in photosynthesis by the phytoplankton (primaogpcers) and
passed from organism to organism by means of feeding tnansfe

Unfortunately the growing exploitation of bio-marine resces and
the growing input of nutrients and contaminants due agucal and in-
dustrial activities unbalance the correct functioning &ogilibrium of
such ecosystems and affects the economy of many coastaliavedy-
ing aquaculture, fishing and/or tourism. Because of thisraady other
reasons, interest and research activity in marine ecologjngensifying
which leads to the increasing understanding of the compitactions
evolved in the marine ecosystems.

In the first work, presented in Chapter 5, we analyze the gffect
of contaminants and nutrient loading on population dynamicmarine
food chains by means of bifurcation analysis. Contaminaitity is as-
sumed to alter mortality of some species with a sigmoidaédesponse
relationship. A generic effect of pollutants is to delayng#@ions to com-
plex dynamical states towards higher nutrient load valoetsmore coun-
terintuitive consequences arising from indirect effects described. In

XVi



particular, the top predator seems to be the species maeedfby pol-
lutants, even when contaminant is toxic only to lower tragghavels. This
work lead to the publication Bacelar et al. (2009).

Pristine coastal shallow systems are usually dominatedxtgne
sive meadows of seagrass species, which are assumed taltekgage
of nutrient supply from sediment. An increasing nutriengunis thought
to favor phytoplankton, epiphytic microalgae, as well apanunistic
ephemeral macroalgae that coexist with seagrasses. Thargrcause
of shifts and succession in the macrophyte community isrtheease of
nutrient load to water; however, temperature plays alsorgrortant role.
A competition model between rooted seagrass (Zostera a)anracroal-
gae (Ulva sp.), and phytoplankton has been developed int€f@po an-
alyze the succession of primary producer communities isdlsystems.
Successions of dominance states, with different reséi@haracteristics,
are found when modifying the input of nutrients and the sealsiemper-
ature and light intensity forcing. This chapter is relatedhe publication
Zaldivar et al.|(2009).

Patterns in Savannas
The term savanna describes ecosystems characterized byekistence
between tree and grasses. The proportions of tree and gaasgacy
greatly. On the basis of general arguments(e.g. the cotiveegixclu-
sion principle, see Hardin (1960)) pointing to the domireatthe fittest
among competing species, one can ask about which mecarmus #his
co-dominance of tree and grasses? Sarmiento (1984) fotealutais ar-
gument as the "savanna questionVhat is special about the savanna
environment that allows trees and grasses to coexist, assgapto the
general pattern in other areas of the world where either onthe other
functional type is dominant? Climate, fire, hydrology, herbivory, as
well as soil nutrients, texture and depth are all importantetermin-
ing the location of savanna. However recent studies havdigiged the
importance of fire and tree competition for water, nutrieartd light on
savannas. In Chapter 7 we focused on a spatially explititéanodel of
savanna tree and grass population dynamics including tixestactors.

XVii



This chapter is related to results in Bacelar et al. (2010)

Male Biased Parasitism
Males are often the “sicker” sex with male biased parasifisumd in a
taxonomically diverse range of species. There is condudieiaterest in
the processes that could underlie the evolution of sexedigsarasitism.
Mating system differences along with differences in lif@spnay play a
key role. We examine in Chaptelr 8 whether these factors keéylio
lead to male-biased parasitism through natural selecsikimg into ac-
count the critical role that ecological feedbacks play ie évolution of
defence. We use a host-parasite model with two-sexes anddheiques
of adaptive dynamics to investigate how mating system ardadelif-
ferences in competitive ability and longevity can selectddias in the
rates of parasitism. Male-biased parasitism is selectedvfien males
have a shorter average lifespan or when males are subjecdtegcom-
petition for resources. Male-biased parasitism evolves esnsequence
of sexual differences in life history that produce a gregt@portion of
susceptible females than males and therefore reduce thefcagoid-
ing parasitism in males. Different mating systems such asagamy,
polygyny or polyandry did not produce a bias in parasitisrotigh these
ecological feedbacks but may accentuate an existing blas.chapter is
related to results in Bacelar et al. (2011).
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Biological Models

Things should be made as simple as possible, but not anyinopées
A. Einstein

In this chapter some examples of the simplest biological etsod
will be briefly presented. They still are used to model dyremoif diverse
phenomena, such as the various manifestations of popugasocial and
economic systems and biological organisms. And some of Hremsed
in the chapterk]%,]6 and 8 of second part of this thesis.

1.1 Models of growth

Growth is a fundamental property of biological systemsuodng at the
level of populations, individual animals and plants, ashaslwithin or-
ganisms. Even in technology, growth curves are used to dstdech-
nological performance fitting a set of data and extrapagatite growth
curve beyond the range of the data. Much research has beetedev
to modeling growth processes, and there are many ways ofjdbis,
including: mechanistic models, time series, stochasfferdintial equa-
tions, etc.

1.1.1 Exponential growth: Malthus Model

The Malthusian growth model, sometimes calledekponential law of
population growth, (Malthus; 1798), describeff‘a population will grow
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4 Chapter 1.

(or decline) exponentially as long as the environment expeed by all
individuals in the population remains constgn{Turchin, 2001). The
derivation of a exponential law could be given considerithghdividuals
in the population absolutely identical (in particular, #hés no age, sex,
size, or genetic structure) and they reproduce continyouisithis way
the number of individuals can only change as a result of padlath, em-
igration, and immigration. Malthus considered a closedybatmon, with-
out immigration nor emigration, in this approach, the pagioh growth
equation can be written as following:

Z—':' =(b—d)N = N(t) =Nt (1.1)
where b and d are the birth and death positive rateb.>fd the popu-
lation grows exponentially, ib < d the population becomes extinct. Ex-
ponential growth is only realistic as long as there appeabetno limits
to growth. Many systems appear to grow in this fashion foritfitgal
periods until some capacity constraint begins to take place

1.1.2 Gompertz curve

A model that takes into account capacity constraints is Gaiajs law.
In 1825/ Gomperiz published “On the Nature of the FunctionrEgpive
of the Law of Human Mortality”, in which he showed that the average
exhaustions of a man’s power to avoid death were such thdteaehd
of equal infinitely small intervals of time, he lost equal fams of his
remaining power to oppose destructip(insor,1932), then the number
of survivors at any agewould be given by the equation:

N(t) = ke P& (1.2)
where Kk is the upper asymptote, i.e, the number of indivsluaéquilib-

rium, c is the intrinsic growth rate and b, c are positive nersb Differen-
tiating and taking the logarithm of th@ompertz equation (1.2) results
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the following equations:

(jj—:l — kche e P& = keN(t)be ™

IN(N) = In(k)+In(e ") =In(k) —be ™ = be ° =In(k) —In(N)

combining these two results the Gompertz differential équdbecomes:

‘i'j_':‘ — keN(In(K) — In(N)) (1.3)

In other words this model states that, under a given numhkadofiduals,
the rate of population increase is positively proportiotwathe natural
logarithm of the number of individuals in equilibrium divad by the given
number of individuals. This model was initially used only &gtuaries,
but recently it has been used as a growth curve in biologr@hkegonomic
phenomena, mobile phone uptake and Internet, (Chow, 1p6@ulation
in a confined space and modeling of growth of tumars, (Durliale
1967).

1.1.3 The Pearl-Verhulst logistic equation

Taking the Malthus model and adding a function that dessrthe con-
centration of nutrients, C, to limit the production of organs into the
dynamic equations, the following system results:

dN

G = boN (1.4)
dc
g = —obCN (1.5)

Performingo(o'—';l + ‘é—? itis obtained:%(c —aN) =0, thus(C+aN)(t) =
constant= Cy. In this wayC = Cy — aN, substituting this expression in
(1.4) and performing some algebraic calculation it resuts a single
equation called thiogistic equation

dN N
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where the expression1— %) is called an intrinsic growth-speed and

K is the carrying capacity, the maximum number of individutdat the
environment can support. The logistic equation can be iated exactly,
hence the development of a population, which at initial tiree0 has the
sizeNp, is:

K

N(t) = —
© 14+ 5 oe

1.7)
This equation initially developed for studies of demograpk Verhuslt

(1838), was rediscovered by Pearl and Reed (1920) , who peohts
wide and indiscriminate use.

1.1.4 The chemostat equation

The chemostat is an apparatus in which the growth of miceoosgns
can be controlled. Basically the system is formed by a mutnieser-
voir and a growth chamber, in which the microorganisms répce. The
name chemostat stands fohemical environment isstatic what means
that “the purpose of the chemostat is to have a quasi-constat argao-

ism concentration, N, and nutrient concentration, C, allogva constant
rate of harvest, (Stranndberg, 2003).

Adjusting the equation§ (1.4) arld (IL.5), substitutsdyn Eq. (1.4)
for K (C) = Kmaxg = @ Holling type Il (see sectidn 1.2.2), and introduc-
ing the inflow and outflow of nutrients from the reservoir andflow of
harvested microorganisms the following system is obtained

dN F

G = KON-CN (1.8)
dc F.F

G = “9K(ON-5C+Co (1.9)

Where\E/N represents flow of the harvested microorganism%p cor-

responds to the outflow ar@ﬁ to the inflow of nutrition. The microor-
ganisms can not reproduce indefinitely because they are aothamber
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of infinite concentration, the functiok(C) is the reproduction-rate with
upper limitKnaxandKj, is the concentration at whidk = 1K s

There are still more growth equations discussed in thelitee, for
instance, by Savageau (1980) , and in the articles thereioh Hata de-
scribed by growth equations requires different processks tonsidered,
in this way many specialized growth equations can be prapwserder
to describe different aspects on the dynamics related tgrtheth. How-
ever there are enormous number of examples that are dedtrylthese
basic growth equations mentioned before and some of thdlskenised
in later chapters of this thesis.

1.2 Interacting populations models

1.2.1 Lotka-volterra model

In 1925 Alfred Lotka explained
deeply the purpose of the new area
called physical biology, which
consists on the application of
physical principles in the study of Nz:
life-bearing systems as a whole ., f
g

1%
g&/

in contrast with biophysics that o
: L ) \ -
treats the physics of individual life &L f//
IGURE 1.1. LOTKA-VOLTERRA

processes. Among some example
employed in this area he prOposeCEREDATOR—PRE\c THE PURELY PER}

a model to describe chemical reacopic soLuTions

tions in which the concentrations

oscillates, [(Lotka, 1920). Some years hence, using the sguations,
different studies were carried out by Volterra (1926). Thampurpose
of his work was to describe the observed variations in soraeigp of fish
in the Upper Adriatic sea. The system of equations propogedotka
and Volterra describes the change of prey or host density timte, and
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assumed, for this purpose, that the number attacked peatoredas di-
rectly proportional to prey density. This model became kmasiotka-
volterra predator-prey equations:

dN;

F = 1Ny —aN;N> (1.10)
%_“tb — SaNiNp — daNy (1.12)

WhereN; is the density of prey, is the density of predator; is growth

rate of prey,d> is the mortality rate of predatog is the predation rate
coefficient andd is the reproduction rate of predators per 1 prey eaten
(predation efficiency). This model generatesitral stability , see Figure
[1.2.1 , but the &ssumptions are very unrealistic since very few compo-
nents are included, there are no explicit lags or spatialnedats, and
thresholds, limits, and nonlinearity are missingHolling, 1973).

The rate at which prey are taken by predators is known afutite
tional response depending on the behavior of both the predator and the
prey. A remarkable variety of functions has been proposetiaoacterize
the functional response. In the classical Lotka-Volteraled this rate is
the productiN; in Eq. (1.10), other functional responses are going to be
shown in the next subsectioNumerical responses defined in different
ways, however, the numerical response is usually modeledsasple
multiple of the functional response, so the numerical raspaassumes
the same shape as the functional responsedtiitéy in Eq. (1.11).

competition

Competition among two species means that the increase irofotiee

populations decreases the net growth rate of the secondaoeyice
versa. This happens when they feed on the same resourcdshey i
produce substances (toxins) that are toxic for the othexiepeA classical
competition model was also introduced.in Volterra (1926y eonsidered
in a more general parameter range_ by Lotka (1932). It is knasvthe



1.2. Interacting populations models 9

competitive Lotka-Volterra system:

dN

d—tl = Ni(rp—a11N;1 —a2Np)

d

d—l\tlz = Nz (rz — a21N1 — a22N2) (1.12)

whereN; andN, are the densities of the two competing organisms. Taking
ri1,r2 > 0, so that each species reaches a non-vanishing stabléegml
(atri/a;1 and atrp/apy) in the absence of the otheay, anday, are the
coefficients of intraspecific competition. The presencera species de-
creases the growth of the otheraf, > 0 anday; > 0. Symbiosis and
mutualism can also be represented by taking negative peeifsc com-
petition coefficients.

1.2.2 Holling types of predation

One improvement of the predator-prey Lotka-Volterra maslied add the
logistic growth of prey and besides change the type of prealatunc-
tional response, into a more realistic form. Holling in hiticke “The
functional Response of Predators to Prey Density and its RdWlimicry
and Population Regulation’, (Holling, 1965), reviewed\po@s papers,
(Holling, 119594a,b), and analyzed a series of data of inbesties and ver-
tebrates species. Basically he presented three differpes tof predation
functional response®, Holling types:

e Type I: Linear, the number of prey consumed per predator-s as
sumed to be directly proportional to prey density until ausation
value after which it remains constant, so initially the fanal re-
sponse is the same used in the Lotka-Volterra model untiraat
tion. This functional response is found in passive predalike
spiders.

P = (XN1N2, if N1 < Nt (1.13)
P = GNTNz, if N1 > Nt
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Linear with saturation Hiperbolic Sigmoidal

Figure 1.2: Holling Types. (a) Type I, (b) Type Il, (c) Type lll.

e Type II: hyperbolic functional response in which the atteate in-
creases at a decreasing rate with prey density until it besaran-
stant at satiation. This response is typical of predat@sgpecial-
ize on one or a few prey.

Ny

P=a
h-+ Nz

N, (1.14)

e Type lll: S-Shape or Sigmoidal, this functional responseuss in
predators which increase their search activity with insie@ prey
density showing a initial S-shaped rise up to a constant marxi
consumption.

N2
1
h? + N2

P=a N, (1.15)

o represents the rate of successful search (predation raticeent) and
his the half saturation of the function, see Figurd 1.2. Babidn these
three types only two variables affecting predation weresaered, prey
and predator density. They were considered by Holling inahicle of

1959 to be the only essential ones, against other charstatsrihat were
considered not to be essential, such as characteristidsegirey (e.g.,
reactions to predators, stimulus detected by predatoy, éénsity and
quality of alternate foods available for the predator anarabteristics of
the predator (e.g., food preferences, efficiency of attett}, When such
complex interactions are present, it is difficult to undemsk clearly the
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principles involved in predation. In this instance a sirfipdl situation
was taken into account where some of the variables are carmtanot
operating.

Without more explanations it is worth citing other sort oégations
functional responses in the literature:

e Gausel(1934) in his book “ The struggle for existence” , psagba
model that explained the behavior of predator-prey systeimoel-
ied by Didiniurn-Paramecium. For large density of predathr its
mortality is negligible for positive values of prey densit; > O.
In addition, the increase of predator only slightly depeadd\;.
To reduce the dependence upénthe termN1, used in the Lotka-
volterra model, was substituted R§N; in the predation functional
response.

1
P =aNZN, (1.16)

e Rosenzweig generalized the expression proposed by Gakisg ta
N; to the gth power 6< g < 1, (Rosenzweig, 1971).

P=aN{N;, 0<g<1l (1.17)

e Watt proposed another non-linear connection between theve
increase of the predator and the number of prey, (Watt,| 1959)

P=a(l—eaM)N; (1.18)

1.2.3 Rosenzweig: Paradox of Enrichment

“Instability should often be the result of nutritional erdrnent in two-
species interactioris (Rosenzweig, 1971). Rosenzweig showed for six
different predator-prey models that increasing the foqapsuin the sys-
tem can lead to destruction of the food species that are wamtgreater
abundance. The enrichment was taken increasing the pngyrnmpcapac-
ity and he showed that for a threshold value the steady satestroyed
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while a limit cycle rises. This process was called plagadox of enrich-
ment.

1.2.4 Kolmogorov general model

Kolmogorov in 1936 studied predator-prey models of the garferm:

dN;

gt N1 g(Nz,No)

d

= N h(NyNo) (1.19)

where g en h are continuous functiond\afandN,, with continuous first
derivatives. This model was reviewed by May (1972) , who ptbthat
limit cycle behavior is implicit in essentially all conveomal predator-
prey models. This model requires density dependence anresdimitation
effects at least for the prey population in contrast withdhginal Lotka-
Volterra model which invokes exponential population giowEhese sort
of nonlinear two-dimensional equations possess eithealaesequilib-
rium point or a stable limit cycle, a fact that can be guaredtby the
Poincaré-Bendixson theorem (May,(1972). In three and higher dimen-
sional systems| (Monteiro, 2006), there are two more ptessitractors
such as tori ,[(Nishiuchi et al., 2006) and strange attractor

For more detailed information in ecological models see thekb
Gurney and Nisbet (1998), Murray (2002, 2003) and NeufettHernandez-
Garcial(2009).
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Dynamical systems: Stability and
Bifurcation analysis

Science is built up with facts, as a house is with stones. Botlaction of facts
is no more a science than a heap of stones is a house.

La Science et I'hypottse. Poinca

The previous chapter presented some examples of biolagicd}
els. In this chapter will be presented characteristics angesmathemat-
ical analysis of dynamical systems, tool required in chafe[6 and B
of second part of this thesis. Some explanations of contimuarograms
used to solve numerically some results shown in chapter ib agpendix
[Al

A system can be defined by a set of interacting elements, im suc
way there are cause and effect relations in the phenomenadbar to
the elements of this set. In a dynamical system some chasditte of
the interacting elements change over time. From the Caldakented
by Newton and independently reinvented by Leibniz it is kndhat the
variation of an object (characteristigjt) in a continuous time is mea-
sured by the derivatiVQ%. In this sense the system evolution in time
can be described mathematically@)y

X = f(%,P) (2.1)

1* _ d)’(‘(tt)

d
17



18 Chapter 2.

Where f is the variation rate of thetate variables X, andp is a
parameter of the system. Whérdoes not depend on time explicitly the
system is calledutonomous Certain valuesiLimX(t) = X* with f(X*) =

0, do not change over time, depictingttionary solution of Eq. (2.1),

in other words they correspond stagnation (fixed) pointa@flow. These
equilibrium points or fixed points of a system can be classified according
with their stability and the topology of thgnhase portrai@

2.1 Stability of fixed points

According to Lyapunov, stability is a property of system &ebr in
neighborhoods of equilibria. When the initial conditioR&)), fit in with

a equilibrium point the system remains indefinitely in tham. How-
ever, when the initial conditions are inside a sphere ofusdiwhose
center is a specific equilibriunx’, it can be defined agsymptotically
stablewhen all the trajectoriesﬂﬁ), converge toX*. If this sphere has a
finite radius this point idocally sable otherwise whed — o the point

is globally stable In both cases the equilibrium point is classified as a
stationary attractor and all the set of initial conditions that converge to

this point form thebasin of attraction of this attractor.

An equilibrium point isneutrally stable when for a sphere of radius
o centered in such point there is another sphere with radalso centered
in X*, with & < €, such that every trajectory with initial condition inside
the sphere of radiud remains in the second sphere of radeuor al
t > 0. HenceX(t) does not tend t&* whent — «. When there is at
least one trajectory with initial condition belonged to &epe of radiu®
that leaves the sphere of radius a finite time the equilibrium is called
unstable

2Phase portrait, phase space or phase diagram: a plot of shensy trajectories
in the state space in which the axes are the state varialrierethanical systems the
phase space usually consists of all possible values ofiposind momentum(or speed)
variables.
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Figure 2.1. Fixed points in two dimensions. (a) Stable Node, (b) Stabiea$ (c)
Saddle Point. The equations that have been used ar&:=a}0.5x, y = -y, (b)
X: _X+yry: _X_yv (C)szvy: _y'

All this classification is based on the temporal evolutiothaf dis-
tance between a trajectoxyt) andX*, for the complicated systems mod-
eled by Eq.[(Z]1) that scientists study, explicit solutitor(t) are rarely
available. In consequence of this difficulty Lyapunov (18%veloped
a method for assessing the conditions of stability indiyedthis method
involves linearizingf atX*, letJ be the jacobian matrix of evaluated at

X*. -
of(X,B

0K Ix=x 2:2)
The eigenvaluesof J determine whethex* is stable. These are scalar
valuesA; such thaﬁdet(J —Ail) =0, i.e. the roots of the characteristic
polynomial ofJ. In this way, if the eigenvalues are all distinct, it is pos-
sible to write a exponential combination as the for geneshitgon of the
linearized system,

J

X=JX (2.3)

by
X(t) = kiVor€t" + kaVoo€" + ... + knVon€™" (2.4)

wheren is the dimension of the systerk, are the arbitrary con-
stants that are given by the initial conditions and the wsdlg are the

3] is the identity Matrix.
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eigenvectorsassociated with each eigenvalue and are determined by:

JVoi = AV, (i=12,..,n) (2.5)

Sometimes the Jacobian matrix presents equal real eiges/ah
this casemultiplicityH of the eigenvalues has to be taken into account in
order to generate linearly independent solutions. For @kauiha two-
dimensional system has two equal eigenvalugs<{ A, = A) a general
solution for thisdegenerate cases:

X(t) = k;LVo]_e?\t + szozteN (2.6)

In a n-dimensional case for eigenvalues with multiplicitythe associ-
ated functions areMt, teMt, t2ehit, .. t™-1eMit thus, in the same way as
for distinct eigenvalues, the general solution is the lirceambination of
these functions and the arbitrary constants are deternfipete initial
conditions.

In two dimensions, according to Poincarée, the fixed poiats loe
classified from the trac€ and the determinamh of theJ matrix:

o if A <0, Ay, are real and of opposite signs. The fixed point is
calledsaddle pointwhich is unstable in the sense of Lyapunov;

e if A >0andT?2—4A >0, A1 are real and with the same sign.
If T > 0 the point is called anstable node if T < 0O it will be a
stable node

e if A>0andT?2—4A <0, A1 are complex conjugated. T > 0
the fixed point is arunstable spiral, if T < 0 it is an asymptotic
stable spiral and if T = 0 the point is a neutrally stableenter,
where the eigenvalues are purely imaginary.

4The number of equal eigenvalues. If the multiplicity of agegivalue is 2, there are
two eigenvalues of this same value. If is 3 there are threenemues with this same
value and so on.
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Figure 2.2. Two dimensional degenerate cases of fixed points . (a) StdeNo
(b) Degenerate Node, (c) Line of fixed points, (d) Center. &heations that have
been used are: (= —x,y= -V, (b)X=—x+Yy,y=—x—3y, (C) X = —x+ 3y,
y=x-3y,([d)X=y,y=—X

On the lineT? — 4A = 0 are lying thestar points anddegenerate
nodeswhich are cases where the system presents two equal eigesval
In the case of star points, only the main diagonal @ different of zero
with equal elements, hence the solutions are straightiassing through
X" in the phase space. If the elements of the diagonal are \o¢ite
star is unstable, if the elements of the diagonal are negéte star is
asymptotically stable. Whef? = 4A there is a degenerate node that is
stable whenT < 0 and unstable whem > 0. If A =0, at least one of
the eigenvalues is zero and in this case there is a whadeor aplane
of fixed points. Figure[2.1 shows some of the different mentioned types
of fixed points and Figure 2.2 depicts the degenerate cas@schHand
Smale (1974, Chapter 9), give a detailed discussion oflgtabf fixed
points as well as Strogatz (2000, Chapter 5).

Observing the form of the solutioh (2.4) it can be seen thebiit-
verges to stable solution whé®e\; < 0 and diverges when at least one
eigenvalue\; is positive. All the above refers to the phase portrait of the
linearized systeni (2.3). But in the degenerate cases sunénéer, star,
degenerate node and non-isolated fixed points, the linssersydoes not
guaranty a correct picture of the phase portrait near the jpant, de-
generate points can be altered by small nonlinear termsudh sases
stability must be determined considering non-linear teainthe Taylor
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series off (X, ), (Andronov et al., 1973, Strogaiz, 2000).

As mentioned before the stability of a equilibrium point stab-
lished by the sign of the real part of its eigenvalues. Tiweefo deter-
mine the stability of this solution, taking into accountttiaafixed point
is stable wherRgA;) < O for all i, is only necessary to know if the signs
of the real parts ol; are negative or not. Edward John Routh and Adolf
Hurwitz found independently the solution to find out whethlkkthe roots
of a polynomial have a negative real part. This criteriontabgity known
asRouth-Hurwitz theorem is very helpful specially when the character-
istic polynomial for the eigenvalues of the Jacobiais of order higher
than five and it is in general impossible to calculate anedyty its roots.
The theorem says that the real part of all roots of the polyabm

AMtaA" TN %+ 4+a A +ap=0 (2.7)

are negative if all the coefficientg are positive and if all upper-left de-
terminantsA;(i = 1,...,n) of the Hurwitz matrixH are positive. If the

jacobian matrixJ is n x n so isH. TheH matrix is made in the following

way:

e The coefficients; with odd indices and increasing j are written in
the first line . In the second line are written the coefficienith
even indices and increasing j. Notice that the coefficient"ofy,
is 1. the other positions are filled up with zeros.

e The two following lines are obtained moving the first two brane
column to the right, filling-in the empty positions with zero

e The other lines are built repeating the procedure abové antic-
cupies the lower right edge of the matrix.

In this way, for example, fon = 6 the Hurwitz matrix is:
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aq a3 a3 0 0 O
1 a0 a4 as 0 O
H_0a1a3a500
0 1 a a4 as O
0 0 ap a3 a3 O
0 0 1 a a4 ag

and the upper-left determinamigi = 1,...,n) are:

a; a a; az as
A =l|a|, Dy = 11 o D3=| 1 ay a4 |,..,0N¢=|H]
0 a1 a3

In this section it was shown how different sorts of fixed psiahd
their stability characterize the topology of the phase spaee Figures
2.1 and’2.2. When the phase portrait of a dynamical systemgesa
qualitatively its topology as parameters pass througlcativalues the
system suffers a bifurcation that will be explained in thetrsection.

2.2 Bifurcation analysis

The term bifurcation was introduced by Poincaré (1885)itisdstrongly
linked to the concept dftructural stability . In a bifurcation fixed points
can be created or destroyed, or their stability can changsnwahrying
parameters. When the dynamical system does not changeyqufatlihe
flow in the phase space under small perturbations ottimrol param-
eter the system is structurally stable. In two-dimensional eyst there
is a theorem that states the necessary conditions for whielsystem
is structurally stable, it is the knowReixoto’s theorem see |(Peixoto,
1962).

In this section the foutocal bifurcations that occur in continu-
ous dynamical systems will be presented: saddle-nodechifion, trans-
critical bifurcation, pitchfork bifurcation and Hopf bifcation. Then the
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global bifurcations homoclinic and heteroclinic will be presented. Local
bifurcations are those which can be previewed studying ¢éagovial field

in the neighborhood of a fixed point or a closed trajectoryrrily this
study is made by through the eigenvalues. Global bifuroatere those
which can not be established by a local analysis.

First thenormal formsH of the simplest equilibria bifurcations of
codimension one will be depicted. An example of a codimensizo
bifurcation will be presented in the ending of this chapted although
this work is not focused on chaos behavior, there are somengq the
bifurcation diagram of the studied system that present tahaehavior
and because of this a period doubling cascade routing toschwdbbe
briefly explained.

2.2.1 Codimension-one local bifurcations

Codimension counts the number of control parameters for which fine
tuning is necessary to get such a bifurcation, i.e. the sstadimension of

a parameter space which contains the bifurcation in a pensizay. Four
local bifurcations can occur varying the values of a uniqaameter. The
normal form of saddle-node, transcritical and pitchforfutations are
given in one-dimensional systems whereas a two-dimenisgysgem is
needed for a Hopf bifurcation.

Definition 2.2.1. A dynamical systenf (211) is said to undergo a bifurca-
tion at parameter valygé = 3¢ if in any (small) neighborhood @8 € R™
there is g3 value containing dynamics that are not topologically eguiv
lent to those afy.

5A normal form of a mathematical object is a simplified formloé object obtained
by applying a transformation (often a change of coordindtes is considered to pre-
serve the essential features of the object.
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Saddle-node bifurcation

A saddle-node bifurcation is a local bifurcation in whiclotfixed points
coalesce into a single point that represents a bifurcatamt pnd then this
point disappears. The normal form of this bifurcation camd@esented
in a one-dimensional equation:

X=pB—x (2.8)

This equatiofl presents two equilibria, fox = 0, x* = +/B. When

_DV

Figure 2.3. Bifurcation diagram: Saddle-node Bifurcation. The thiilelis the
stable solution and the dashed line is the unstable one.

B < 0 there is no equilibria, whefd > 0 there are two equilibria. Then
B = 0 depicts the transition in the change of flow topology in thage
space 3 = 0 is the bifurcation pointfg. A way to analyze graphically
bifurcations is through the bifurcation diagram, see FegRr3. But in
order to visualize better this bifurcation a two-dimensibequation was
also plotted, see Figure2.4. In this case it expresses tlisi@o of a
stable equilibrium (node) with a unstable one (saddle).

Transcritical bifurcation

In the transcritical bifurcation, fixed points are not degéd nor created,
but for a critical value of the parameter they switch st&pilifhe normal

6% = B+ x? is also possible as a normal form of a saddle-node bifunsatio
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Figure 2.4. Phase space in two dimensions showing a saddle-node hifurcéa)
B <0, (b)B=0, (c)B > 0. The equation that has been used is:x&) B + x?,

y=-y.
form of this bifurcation can be:
X = BXx—x° (2.9)

Observe that this equatﬂpresents two equilibria¢ = 0 andx* = 3 and

Figure 2.5 Bifurcation diagram: Transcritical Bifurcation

the eigenvalue is given by = 3 — 2x*. Therefore the fixed point* =0
has the eigenvaluk = 3 and the fixed poink* = 3 has the eigenvalue
A = —PB hence in the bifurcation poifip = 0 these point change stability,
see Figuré 215.

"% = Bx+ x? is also possible as a normal form of a Trancritical bifurmati
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Pitchfork bifurcation

A pitchfork bifurcation occurs generically in systems wiitliersion or re-

flection symmetry. That is, an equation of motion that rermaimchanged
if one changes the sign of all phase space variables (or sttfl@aone).

This bifurcation has two types: supercritical or subcaticThe normal
form of the supercritical pitchfork bifurcation is:

X=Px—x (2.10)

(@) (b)

Figure 2.6. Bifurcation diagram: Pitchfork bifurcation . (a) Supetimal, (b)
Subcritical.

Whenf < 0 there is a stable equilibriuxi = 0 at point = 0 this
point changes stability and two other equilibka= i\/E appear with
the same stability, in this case both are stable. And the abionm for
the subcritical case is:

X = BX+x° (2.11)
In this case, fof < 0 the equilibrium ak* = 0 is stable, and there are two
unstable equilibria at* = 4+/—p. Forp > 0 the equilibrium ak* = 0 is
unstable.

Hopf bifurcation

In 1942, E. F. F. Hopf established the conditions in whichhshifur-
cation could occur in a n-dimensional system, (Hopf, 194Phis bi-
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furcation was originally studied by Poincaré (1892) anddstd by An-
dronov (19209) for two-dimensional systems. Because ofgbiaetimes
this bifurcation is called Poincaré-Andronov-Hopf bitation. A Hopf

or Poincaré-Andronov-Hopf bifurcation is a local bifuticam in which a
limit cycleﬁ arises from an equilibrium in dynamical system, when the
equilibrium changes stability via a pair of purely imagynaigenvalues.
Like in the Pitchfork bifurcation the Hopf bifurcation hasd types: su-
percritical or subcritical. To obtain this sort of bifurgat minimally a
two-dimensional system is demanded. A normal form of Hopirba-
tion could be:

X = Bx—y-+ox(x+y?),
' X+ By + oy(x% +y?) (2.12)

This system presents a unique fixed point, the origin£ 0, y* =
0). The eigenvalues arei + 3 hence the origin is asymptotically stable
for B < 0 and unstable fog8 > 0. For[3 = 0 the origin changes stability, if
o0 = —1 astable limit cycle arises in thgd > 0 region and in this case the
bifurcation issupercritical. If o = 1 while the origin is stable fo8 < 0
there is a presence otmstable limit cyclethat collapses in the transition
of stability of the origin, in this case the bifurcationgsbcritical. All
these facts can be better viewed in the polar coordinatesygihgx =

8A limit cycle is an isolated closed trajectory that can appear in the pbaeait
of nonlinear systems. An isolated trajectory means absehother closed trajectories
infinitely close. Therefore the neighboring trajectoriesstapproach or move away
from the limit cycle which is geriodic attractor or repeller. A limit cycle is asymp-
totically stable when the neighboring trajectories apphdae limit cycle otherwise it is
unstable. Itis important to differentiate limit cyclesfnalosed trajectories surrounding
center points. In the last case the closed trajectories@risolated and there could be
several of them infinitely close for close initial conditgnin addition the amplitude,
the period and the shape of a limit cycle are determined bpan@meters of a nonlinear
system while the shape, period and amplitude of closedct@jes surrounding centers
depend on the initial conditions.
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Figure 2.7. Supercritical Hopf bifurcationd = —1). (a)Bifurcation diagram.
Phase space ()< 0, (c)B=0, (d)B > 0.

o
%

(a) (b) () (d)

Figure 2.8. Subcritical Hopf bifurcationd = 1). (a)Bifurcation diagram. Phase
space (b <0, (c)B=0, (d)B > 0.

r cosd andy = r sin@ the system becomes:

i = h(r)=pr+or?
6 = 1 (2.13)

Forr = 0O there are two possibilities, the origii = 0 and a cycle with

radiusr* = \/%B, as stated before when= —1 the eigenvalue in polar

coordinates is\ = %"r* = B —3(r*)?, analyzing the cycle, fop > 0,

A = —2B and hence the limit cycle is stable. df= 1 the eigenvalue is
A =B +3r?, for B < 0, A = 4B and hence the limit cycle is unstable. See
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Figures 2.7 and 2 8.

2.2.2 Codimension-one global bifurcations

Global bifurcations can not be previewed by eigenvaluesxefifpoints,
however in 1963 V. D. Melnikov developed a method by whichass-
ble to prove the existence of homoclinic and heteroclinfaroations in
Hamiltonian perturbed systems, see (Melnikov, 1963). imshbsection
the homoclinc and heteroclinic bifurcations will be pretserbriefly .

1.0p

0.5¢ /7 N

1
-0.5} /,’ \\
/ \\
-1.0°" s ‘ ~
-1.0 -0.5 0.0 0.5 1.0
X

Figure 2.9. Phase space: Homoclinic bifurcation. The limit cycle geisel to
the saddle point (0,0) when increasifdg The dashed lines are the nuliclines for
B = —0.1 and the solid lines are the trajectorigd{ x> 4 y> = B) for the increasing
values off3, B = —0.1, 3 = —0.05,3 = —0.01 and finally = 0 that represents the
homoclinic orbit.

Homoclinic Bifurcation
A pointis called enomoclinic point when it lays down in a trajectory that

is, at the same time, a stable and unstable manifold of asgddit, this
trajectory is ehomoclinic orbitl. A bifurcation that leads to a destruction

9Homoclinic trajectory or homoclinic loop
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of a of a homoclinic orbit is omoclinic bifurcation . As an example,
the following system proposed by Hale and Kogak (1991)semés a ho-
moclinic bifurcation:

X = 2y
y = 2X-3C—-y&—x2+y’—pB) (2.14)

This system presents two fixed points, observe the inteoseof the
nullclined! in Figure[2.9. The originx* = 0,y* = 0) and the point
(X = %,y* = 0) are the fixed points of this system. The origin is always

a saddle point with eigenvaluas= % ([3 + /B2 + 16) independently of
the values of3. But the point é 0) changes stability whefvaries, and
its eigenvalue i3; = 5—14 (27[3-|— A4 \/T29P2+ 2163 - 116469 . Observe

that atp* = —2i7 the system suffers a supercritical Hopf bifurcation be-
fore which this point is a stable spiral, and than it convirts a unstable
spiral. For—zi7 < B < 0 one can see the presence of an orbitally asymp-
totically periodic orbit, alias limit cycle and & = O the periodic orbit

is absorbed by a homoclinic loop, i.e, a homoclinic biful@atappens,
see Figureg 219 and 2110, in this casefar 0 the homoclinic orbit is
destroyed.

Heteroclinic Bifurcation

When the unstable manifold of a steady point becomes théestadn-
ifold of another steady point, thus connecting two steadyntso then
the system presents a heteroclinic connection, &lesroclinic cycle
A Heteroclinic bifurcation happens when the steady points connection
is broken. Observe the following system proposed by Hale kKanghk

1ONullclines or Zero-Growth isoclines of a two-dimensionghdmical system are the
boundary between regions wherery switch signs. In this way setting either= 0 or
y = 0 the nuliclines of the system will be found. The intersatsidetweerx andy
nullclines are the equilibrium points.
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Figure 2.10. Bifurcation diagram: Homoclinic Bifurcation . (a) 2D Bifcation
diagram, (b) 3D Bifurcation diagram. The dashed lines astabie solutions and
thick lines the stable ones.

(1991):

X = B+2xy
y = 1+xX2—y? (2.15)

In Figure[2.11 depicts the phase portrait for three diffexatues of the
parameter. Af3 = 0 the system presents two fixed poin¢§,1) and
(0,—1), both of which are saddle points. The orbit in the y-axis lestw
the two points has the stable manifold(6f 1) and the unstable manifold
of (0,—1) thus the system has a heteroclinic orbit fo= 0. Forf3 #0
the saddle connection is broken hence a heteroclinic lafime happens.

2.2.3 Codimension-two bifurcations

As mentioned before the number of control parameters nacess get
a bifurcation determined the codimension of this bifurmati Therefore
when two control parameters are necessary to get a bifargatuch a
bifurcation is told to be codimension two. There are sev&dtis of codi-
mension two bifurcations, such as Bautin, Bogdanov-Takéuasp, Fold-
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: 51

Figure 2.11 Phase space: Heteroclinic Bifurcation. Dashed lines aratiiclines
and thick lines are some trajectories.
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Holpf and Hopf-Hopf bifurcations. As an example observe $kistem
that was studied by Takens (1974) and Bogdanov (1975) ,:

X =Yy

y = Bit+Bx—xX+xy (2.16)

Whenf1 > 0 there is no equilibrium. FdB; = 0 andf3, = O the origin
is the unique equilibrium and its two eigenvalues are zeror. fr < O

there are two equilibriaty/—B1,0) and(—+/—B1,0). In this wayp; =0
is a saddle-node bifurcation point. The first fixed point isaddie with
eigenvalues:

Ao = % ([32 — v —B1* \/B% —2v/—B1B2—PB1+ 8y —[31) (2.17)

the second one has the eigenvalues:

Ao = % (Bz-l- VvV —B1=E \/[35—1-2\/ —B1B2—B1—8v —[31) (2.18)

15 T T 1

Saddle-node

____________ LP
B

Homoclinic

or Bogdanov-Takens

0.5 -1 -0.5 0 0.5 1

B

(b)

Figure 2.12. Bogdanov-Takens Bifurcation. The first graph is the bifticza
diagram for3, = 0.5. The second one is the two-parameter bifurcation diagram.

For 32 < —+/—1 this point is asymptotically stable and unstable
for B2 > —y/—P1. And observing the eigenvalues of the second point
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one can see that a subcritical Hopf bifurcation happefis at —\/—f1,

the decreasinf}; from this value a limit cycles arises. Decreasing further
more the value oB; the cycle is destroyed into a homoclinic bifurcation
when it merges with the saddle point, see Fidure|2.12(a).héntivo-
parameter graph in Figure 2112(b), it can be seen that a Bogdgakens
bifurcation happens. The origin of the parameter planeades with the
origin in the cartesian plane and, as mentioned beforeptiig has two
zero eigenvalues and corresponds to the critical valueeoBtydanov-
Takens bifurcation. Three codimension-one bifurcations occur nearby:
a saddle-node bifurcation, a Poincaré-Andronov-Hopidifgiition and a
homoclinic bifurcation.

2.2.4 Period Doubling Cascade and Chaos

Differently to the previous bifurcationsgeriod doubling bifurcation or
flip bifurcation is a local bifurcation related to cycles and hascor-
respondence for equilibria in continuous systems. In tifisréation a
cycle loses its stability, while another cycle with twicetperiod of the
original cycle rises. If the secondary path is stable therb#tion issu-
percritical (subtle), conversely, when the secondary path is unsthble t
bifurcation issubcritical (catastrophic). This bifurcation requires at least
a three-dimensional phase space and a supercritical paoigaling cas-
cade converges to chaotic behavior. This can be seen in Hogviiog
example.

Rossler equations
Rossler proposed the following system in 1976:
X = —y—z

X+ay
z = b+1z(x—c) (2.19)



36 Chapter 2.

14

12 \\‘l

e
0 1 2 3 4 5 6 7 0 0.5 1 15
b b

Figure 2.13 Period Doubling Cascade and Chaos for Rossler systemingethye

b parameter and fixing = 0.2 andc = 5.7. The first picture depicts the complete
bifurcation diagram, where line betweén= 5.99 andb = 7 is the fixed point
that bifurcates in a Hopf bifurcation at b value, 5.99. Thieeotlines represent
the maximum and minimum of the cycles. The second picturgstibe higher
sequence of bifurcations amplified.

It is minimal for continuous chaos for at least three reasdtssphase
space has the minimal dimension three, its nonlinearity irimal be-
cause there is a single quadratic term, and it generatbagatic attrac-
torH with a single lobe, in contrast to the Lorenz attractor whiels two
lobes, (Lorenz, 1963).

This system presents stationary, periodic and chaotiacitirs de-
pending on the value of the parameters (a, b, ¢). The Flgd& shows
the sequence of bifurcations for certain range of parammeterthe first
plot a complete bifurcation scenario is plotted, obserat there is a sta-
ble fixed point that converts into unstable via a Hopf biftiemaat b value

HAlso called Strange Attractors, (Ruelle and Takens, 19&&dually, in many texts
in the literature, the word strange is related to the gedn@tstructure of attractor,
strange attractors are fractals and demonstrate infinitesiseilarity, while the word
chaotic refers to the dynamics of orbits on the attractoe attractor that will be shown
here is a strange chaotic attractor, but it is important &r bemind, although it will not
be shown in this thesis, the existencestrthnge nonchaotic attractors (Romeiras and
Ott,[1987).
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(@) (b) (€) (d)

Figure 2.14. Rossler Phase Space: tef 2.0, (b)b=1.0, (c)b=10.8, (d)b=0.4.
fixeda= 0.2 andc=5.7.

of 5.99 then the stable cycle loses stability through a pledioubling bi-
furcationb = 1.43. Another period doubling happen at 0.85 and then at
0.73. Afterwards a cascade of supercritical bifurcatiormues leading to

a chaotic attractor, see the last picture of Fidurel2.14.eMiaiormation
can be also found in the book lof Thompson and Stewart (2002p€h
12).

The theory of dynamical systems is not an innovation andlexce
lent books have already been published in this issue, dpetmworth
citing |Strogatz|(2000), Hale and Koc¢eak (1991), Thompsoth Stewart
(2002), Gugenheimer and Holmes (1993) and Monteiro (200@®ar-
tuguese). The purpose of this chapter was a quick review andanary
of dynamical systems theory. The graphs were drawn using alMAB
package for numerical bifurcation analysis of ODEs (Mattqidhooge
et al.,.2003), XPPAUT, (Doedel etlal., 1997, Ermentrout,Z)0énd my
own program codes, see apperdix A.
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Cellular Automata

The sciences do not try to explain, they hardly even try terpriet, they mainly
make models. By a model is meant a mathematical constructwwhith the
addition of certain verbal interpretations describes nlebphenomena. The
justification of such a mathematical construct is solely pratisely that it is

expected to work.

John von Neumann

It is known in the history of science that new areas of basic sc
ence are developed from the appearance of new technoldgiesxam-
ple, telescope technology was what led to modern astronmmypscope
technology led to modern biology and at the same way competér
nology has led to what Wolfram called in his book the new kihda-
ence, (Wolfram,, 2002), the era of cellular automata ,whogether with
simulations and other individual based modeling startedesthen. At
the beginning the standard intuition in traditional scesnmore focused
in equation-based methods or top-down approaches, showeadearest
in the agent/individual-based modeling, a bottom-up aggno thinking
that the results in this kind of modeling wouldn’t be intdneg...

However since the release of Conways Game of Life (Gardner,
1970), cellular automata have been developed and progegssised to
model a great variety of dynamical systems in different igagibn do-
mains such as physical and spatial sciences, biology, mates and
computer science, image processing (Rasin, 2006, 2010asnekell as
in the social sciences.

Historically CA were first defined and studied in the 1950’slbiin
41
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Von Neumann and Stanislaw Ulam as ideal structures for muglsklf-
reproducing “machines”, (Von Neumann, 1951, Von NeumarmhBurks,
1966), in 1970, the mathematician Jon Conway proposed ndaraous
Game of Life published by Martin Gardner in the mathematgahes
column in Scientific American_(Gardner, 1970). In 1980'steysatic
studies were pioneered by Wolfram in a family of one-dimenal cellu-
lar automata rules . Many interesting behaviors encoudiareontinuous
systems are seen in such discrete dynamical systems, asegample
in (Wolfram, 2002). In the following sections the basic theosed in the
studied model in chaptét 7 is presented.

3.1 Definition

Cellular automata (CA) are an idealization of physical@ycal systems
in which space and time are discrete, and physical qua{giate vari-
ables) take only a finite set of values. Basically it consigta grid of
cells/sites (lattice), where each cell’s value (state)adated in discrete
time steps according toteansition rule (or updating rule). The transi-
tion rules of a CA can be deterministic or, in a more geners¢cproba-
bilistic and there are several ways to implement them. Thapéemen-
tations are an essential part of the definition of a modetesihey gener-
ally produce different transients, stationary states amedsges of physical
quantities. There are three basic ways of implementing fuaie rules
which are common for practical purposes like in computeruations.
They are called parallel, sequential and random sequendzte.

3.1.1 Updating rules

The deterministic updating rules can be seen as functions which can
linear or nonlinear whose argument is the state at timigtself and the
neighboring cells, and whose value is the next state of theidered cell
at timet 4+ 1. In probabilistic or stochasticCA, local rules may have a

be
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probabilistic element to them; rather than dictating tla¢esdf an updated
cell (Coe et al.,. 2008, Domany, 1984, Grassberger|et al4,19bowitz
et al.,[1990, Szabb and Borsps, 2002).

In the models defined in terms pérallel updating rules, the state
of every cell in the model is updated together, before anfi@hiew states
influence other cells and it can be performed synchronolystedde
et al., 2001, Wang et al., 1999). Implementationswfichronous up-
dating can be analyzed in two phases. The first, interaction, catiesl|
the new state of each cell based on the neighborhood and tlageuule.
State values are held in a temporary store. The second ppdates state
values by copying the new states to the cells.

In contrastasynchronous updatingdoes not necessarily separate
these two phases: in the simplest case (fully asynchronpdating),
changes in state are implemented immediately in such a watytlie
new state of a cell affects the calculation of states in riwaging cells.
The two most common asynchronous updating implementatierihe
sequentialandrandom sequentialupdate. In the first, also known as
ordered asynchronousupdating, includes any process in which the up-
dating of individual states follows a systematic patternrf@orth et al.,
2005). In the second, also knownramdom asynchronousupdating, at
each time step, a cell is chosen at random with replacemeat(Bet al.,
1998, Cornforth et al., 2005).

3.1.2 Neighborhoods

The two most commonly used neighborhood types in a two diroaab
square lattice are the Von Neumann and Moore neighborhobd Van
Neumann neighborhoodconsists of four adjacent cells orthogonally sur-
rounding a central cell on a two-dimensional square latti¢@ey are
also called by physicists as “nearest neighbors sites”.Mbere neigh-
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borhood] comprises the eight cells surrounding a central cell on a two
dimensional square lattice, the four of Von Neumann’s oreetae four
diagonal neighbors which touch at one corner only, calleglbysicists
the “next nearest neighbors”. It was the neighborhood ugelbbn Con-
way's "Game of Life” (Gardnet, 1970). These neighborhooais be ex-
panded, and the number of cells are given(By+1)2and 2(r +1)+1
respectively, where is the range of the neighborhood=£ 0,1,2,3,...).

In Figure[3.1 Von Neumann and Moore neighborhood can be smen f
ranges 1 and 2.

(@) (b)

Figure 3.1. Most common square lattice neighborhoods: (a) Von Neumann a
(b) Moore neighborhoods. Black represents the analyzedateell, light gray the
neighborhood in the range 1 and dark gray together with kigy represent the
neighborhood in range 2.

The simplest implementation of a CA is a one-dimensionayarr
of cells (possibly two way infinite). Many examples of onesénsional
CA can be find in the Wolfram’s book “A new kind of science” (\Wol
fram,LZQ_QiZ). The most used in literature are the two-dinwerai CA,
normally representing a square lattice. However othercfaggeometrical
structures can been found in the literature such as hexdibonaycomb

lattice (Domany| 1984) and triangular lattice (Kong and @nh1991).

1This neighborhood takes its name from Edward Forrest Mdbeeinventor of the

Moore finite state machin%@%)
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In Figure[3.2 the most common neighborhood in a hexagortadaand

triangular lattice can be seen.
\/W\/\/\/\/

SRR
AN

(@)

Figure 3.2: (a) Hexagonal lattice neighborhoods. (b) Scheme of a tuikmdattice.

3.1.3 Dynamics and Boundary conditions

The dynamics begins with an initial condition that is knownthbe initial
configuration of the cellular automaton and may be given ndoaly
generated. In the systematic studies performed by WalflE®84), he
showed that starting from random initial conditions, ordan emerge or
even the system can became more and more complex and indeed so
times the produced behavior appears completely random. diffes-
ent structures (attractors) generated by cellular autameadlution were
grouped in four basic behavior classe€lass I Independently of the
initial state the output generated are lead to exactly timeesaniform
final state, analogous tiixed point. Class 2 There are many differ-
ent possible final states, but all of them consist just of #agerset of
simple structures that either remain the same forever @ategpvery few
steps, analogous tonit cycle. Class 3 A more complicated behavior is
reached and seems in many aspects random, although tsangleother
small-scale structures are seen always at some lgaetdls), analogous
to Chaotic (“strange”) attractors . Class 4 Involves a mixture of order
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and randomness: localized structures are produced ameéhteith each
other in very complicated ways. See the snapshots of therdift final
configurations of each class in Figlrel3.3.

Figure 3.3. Examples of the four basic classes of behavior seen in
the evolution of one-dimensional cellular automata fromda@m initial con-
ditions [Wolfram, [2002) and periodic boundary conditions.These fig-
ures were generated with WolfrarMathematica program with the code
ArrayPlot[CellularAutomatofrule,” Initialconditions', t]] for 250, 108, 126 and
110 rules respectively, representing class 1 to class 4.

In thereby a CA could consist of an infinite grid of cells, hoeefor
practical reasons and computer memory limitations, CA &enasimu-
lated on a finite grid rather than an infinite one. One issueldlpm is how
to handle the cells on the edges. For that, many differemdary condi-
tions arose for different problems modeled. For exaropken boundary
conditions can be found for example in a vehicular traffic models (Kai
Nagel and Michael Schreckenberg, 1992), pedestrian dysamodels
(Burstedde et al., 2001) and others (Rajewsky and Schrbeekgnl1997).

In this kind of boundary condition the elements of the mogedes-
trians, cars, etc.) are introduced/eliminated throughetiges. Fixed
boundary condition is the condition where cell values on the boundary
(virtual neighbors) are not allowed to change with timehe tase a null
value is chosen this condition is knownradl boundary condition (Cho,
2005, Rubio et all, 2004). In threflexive boundary condition the vir-
tual neighbors assume the same value of the present stagdiofrcthe
edges|(Kobuchi and Nishio, 1973, Yacoubi and Jai, 2002). fmally
the periodic boundary condition where the extreme cells are adjacent
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(Rubio et al.; 2004). In Figurie_3.4 three different schemegpresenta-
tions of the virtual neighborhood near the boundary in a sgjlztice are
represented, namely fixed, reflexive and periodic boundamditions.

0000000 O0C0C0OCO0O0 OCO0O00CO0
0000000 O0OO0CO0OO00 e000CeO0O
000000 ©00000O0 0000000}?&%@'%
0000000 000000 00000 O @ ™
0000000 0O0CO0COO0O0O 0OeeeOO
000 0000e O0Oe000 000000
00000000 | OGN o\g/o
Use values from top row of the grid
(@) (b) (©

Figure 3.4. Examples of common used boundary conditions: (a) constaumridy
ary condition, (b) reflexive boundary condition and (c) watMoore neighborhood
in the periodic boundary condition which uses left,rightsdo extend the grid hor-
izontally and the top, bottom rows to extend the grid veltyca

Some reviews of cellular automata can be found in SarkarQR00
and_Yang and Young (2005).

3.2 Percolation clusters

Percolation is a model for random connectivity, associatik systems
with a critical state. In biological systems the role of tlemgectivity of
different elements is of great importance (Green, 1993)sidadly per-
colation deals with groups of neighboring occupied siteth whe same
state in the lattice and these groups are catledters Usually, in liter-
ature, Von Neumann neighborhood is the most consideredhbergood
in the formation of these clusters, like in the example shibmeFigure
[3.5. However other kinds of neighborhood can be considesed:d (see
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(@) (b) ()

Figure 3.5. Site percolation: (a) system in which few cells at occupiediesare

randomly distributed throughout the lattice. (b) A systermwihich some cells at
occupied state are randomly distributed so that some ctustay form (encircled).
(c) A system in which enough cells at occupied state have tsetomly added so
that a probability exists of a cluster forming that spanssystem (encircled).

chaptef V). Percolation is widely observed in chemicalesystand his-
torically, it was first recognized by Flory and Stockmayeraasethod
to describe how small, branched molecules react to formrpetg, ul-
timately leading to an extensive network connected by chahtionds
(Flory,19414a,blc, Stockmayer, 1943, 1944).

The term “percolation” and the mathematical concept wete4in
duced by Broadbent and Hammersly in the late 1950s, whoextutie
spreading of hypothetical fluid particles through a randoedium, mak-
ing the distinction between diffusion and percolation gsses (Broad-
bent and Hammersley, 1957). Thereafter, percolation yhbas been
found useful to characterize many disordered systems @dledet al.,
2000). Stauffer described the application of percolatioeoty to con-
ductivity and diffusivity (Stauffer and Ahorony, 1985).

In order to understand percolation phenomena observe di§bt
In Figure[3.5(a) it is possible to see how occupied cells @stibuted
randomly. Because of the low density of this occupied cellphysi-
cal contact is encountered. In this sense no informatiomeénstystem
is exchanged. If increasing the density of occupied celhélattice a
finite probability arises for these cells to form some clusighich per-
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mits some exchange of information within the clusters, betdusters are
isolated so the information exchange is confined within edkter, see
Figured 3.5(b). If enough occupied cells are randomly addéke system,
some clusters may appear as a single cluster which spanstiteslength
or width of the system.

This spanning cluster produces
a conduit through which an uninter-
rupted flow of information is possible
across the system. This situation of
uninterrupted flow is callegbercola-
tion ( Figure[3.5(c)). The minimum
number of occupied cells in the system
necessary to have a finite probability
of percolation occurring is called the
percolation threshold or percolation
point (Kier et al.,[1999). In this pro-  Figure 3.6: Bond Percolation
cess the cells are not necessarily distributed indepelydert randomly)
in the lattice but the cells positions may be correlated, determined by
rules which depends on the cells positions in cellular aatanmodels,
like the positions of molecules in a real gas, forest fireigtoclusters of
trees or infected people in spreading diseases.

There are two types of percolation: Bond percolation arel setr-
colation. Abond percolation considers the lattice edges as the relevant
entities; asite percolation considers the lattice vertices/cells as the rel-
evant entities. In Figure_3.5 shows an example of site patiool and
Figure[3.6 an illustration of bond percolation. The transifrom a non-
percolating state to a percolating state is a kingludse transition The
major difference between percolation and other phaseiti@msnodels
is the absence of a Hamiltonian. Instead, the theory is basgekly on
probabilistic arguments (Essam, 1980). Good reviews inglation the-
ory can be found in Essam (1980), Stauffer (1979) and Fortui2800).
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3.2.1 Cluster size distribution

Once defined the problem, it is possible to study percolgilenomena
guantitatively. Since percolation is related to a randoatess, in repeat-
ing the procedure over and over clusters of different sinelsshapes will

be encountered. Hence it is possible to study the averaggsanitities
related to the clusters, studying the statistics of thesgtets. Thesize of

a cluster, scan be defined as the number of sites (bonds) belonging to it.
In percolation theory one of the statistics studies is td®sethe clusters

are distributed according to their size. Hence the numbetusiters of
sizes per lattice site can be expressed as following:
Nv ()

ns= lim

V —oo

(3.1)

whereV is the number of sites (volume) of a finite lattice awgdthe num-
ber of clusters of size on that lattice which depends also on occupation
probability p.

As illustrated in Figuré 315, depending on the density ofupied
cellsitis possible to find some clusters, increasing theideof occupied
cells when increasing the occupation probabipitythe cluster sizes and
the number of clusters increase until a certain criticahpgd;, where
the biggest cluster spans through the lattice. Near thissitiard , when
p = pe, cluster sizes become statistically correlated over lacgées, and
can even become scale invariant. Thus the distributionustets sizes
obeys a power-law:

ns0s ' (3.2)

Wherert is a critical exponent. This is the connection of percolatand
critical phenomena, what lead in the 80’s to growth of poptylaf this
subject among physicists.

2t is called by physicists as a second-order transitionesihés characterized by a
continuous vanishing of the order/control parameter
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2000

10°4

1501

1001

50

(@) (b)

Figure 3.7. (a) Snapshot of a 20002000 square lattice. Sites are randomly
occupied or empty (white cell)when occupation probability pc ~ 0.593 (which

is the percolation threshold on site percolation in the sgulatice). Occupied
sites with the same color pertain to the same cluster. (b)lagglot of the cluster
distribution shown in (a). The slope of the straight lineegivan approximated
estimate of the critical exponent
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Evolutionary dynamics

It is clearly impossible to say what the “best” phenotyperikeas one knows
the range of possibilities. If there were no constraints dlatis possible, the
best phenotype would live forever, would be impregnabler¢émators, would
lay eggs at an infinite rate, and so on. It is therefore necgssapecify the set
of possible phenotypes, or in some other way describe thslohwhat can
evolve.

Maynard Smith

The basic principle of evolution, natural selection, watined by
Darwin (1859) in his book On the origin of species. Darwin regsed
his arguments verbally, but many attempts since then hase lmade to
formalize the theory of evolution, such as population gesetRough-
garden/ 1979), quantitative genetics (Falconer and Macka96) and
evolutionary game theory (Hofbauer and Sigmund, 1998).

John Maynard Smith introduced game theory to biology in 8&0E,
including the evolutionarily stable strategy (ESS), a gapon-genetic
counterpart to the Nash competitive equilibrium (NCE) ofmgatheory
(Nash/ 1951, Roughgarden et al., 2006). An ESS is a strabegythen
played by most of the population is unbeatable by any othetegy.
“A major advantage of the ESS is that it can be resolved fronmghe
typic considerations alone without having to account e for the
(often unknown) underlying genetic detail. Moreover, bgunventing
the intricacies of diploid Mendelian inheritance, more quex ecologi-
cal interactions and adaptations can be explored than isallgyossible
with a fully genetic approach. In those cases where a corsparivith
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more complete approaches is possible, ESS-theory has heam o be
largely compatible with both quantitative genetics andylagion genet-
ics” (Geritz et al.| 1998, and references therein).

Evolutionary invasion analysis, also known as adaptivedyigs, is
a mathematical theory for studying long-term phenotypss@alution and
was formally developed during the 1990s. It links populatitynamics
to long-term evolution driven by mutation and natural sttecproviding
methods of model formulation and analysis that relate phrema on an
evolutionary time scale to processes and structures definecblogical
and population dynamical terms. A key factor is that mutdrgttegies
must be successful in an environment shaped by currentergsstrate-
gies. Successful mutations can become established amddresalter the
environment for future mutant strategies. In this way ther@ feedback
between the population dynamics (the environment) andubleigonary
dynamics.

This chapter introduces the fundamental ideas behind ixdaghyt-
namics and the methods that were used in the studies showrapier
8.

4.1 Adaptive dynamics

In adaptive dynamicsthe phenotypesare represented astrategy that
can vary continuously. Thesident population can be assumed to be in
a dynamical equilibrium when nemutants appear, and the eventual fate
of such mutants can be inferred from their initial growtreraten rare in
the environment consisting of the resident. Following thme notation
as inlGeritz et al. (1997) consider a population with a sirsgtategyx.
The growth of the population can be described by the equation

%N =M(x,Ey)-N (4.1)
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whereN is the state vector or variable of the populatith(x, Ey) is the
matrix that contains the demographic parameters for kielth, migra-
tion and depends on strateggs well as on the environmeB, = Ex(N).
Fixing condition of the environment the population wouldrease expo-
nentially with growth rate(x, Ex), which is the real leading eigenvalue of
the matrixM, i.e., the long-term exponential growth rate of the phepety
in a given environment, also calléithess(Metz et al.| 1992).

The equilibrium of the resident population is the solutibn(e, Ex) =
0 and is assumed to be unique. Adaptive dynamics considefatid of
a new mutant with strategyemerging in a population of residents with
strategyx. Since the mutant population is rare it does not contribote t
change the environment and so its fithess can be written as:

sx(Y) =r(y,Ex) (4.2)

Analysis of the mutant fitness in the environment set by thilemt,s,(y)
can determine the evolutionary behavior of the system.

If sx(y) > O the mutant can spread but it is not guaranteed to per-
sist, since random extinction can happen due the smalhithount of
mutants. But ifs,(y) < 0 the mutant population will die out. &(y) > 0
andsy(x) < 0, it means that the mutant can spread but the resident cannot
recover when its population is rare and in this situatios tammon for
the mutant to replace the resident strategy (and theretwerbe the new
resident). It is possible to assess the evolutionary behéwi re-writing
the mutant fitness expression. Since mutations are smalpissible to
apply a linear approximation of the mutant’s fitness:

(Y) = () +D(X)(y —x) (4.3)
whereD(X) is the local fitness gradient and can be defined when mutant
and resident population are equal:

0s«(y)
D(X) = ——= 4.4
=31, (4.4)
sinces(x) = r(x,Ex) = 0 for all x, the sign ofD(x) determines whether
mutants can invade. Evolution progresses in the directidhefitness
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Figure 4.1. Classification of the singular strategies according to guenrd partial
derivatives ofs(y). The small plots are the local PIPs near to the singularegiyat
in the center of each graph.

gradient until reaching a strategy for which the local fi;mgsadient is
zero, called arvolutionary singular strategy, x*.

4.1.1 Pairwise invasibility plots

In monomorphic populations, considered up to now, whereetigeeonly
one analyzed strategy, the evolution can be analyzed gralphby means
of a pairwise invasibility plot (PIP). And close to a singular strategy
there are only eight possible generic local configuratidriialB (see Fig-
urel4.1 and each configuration represents a different égohry scenario
that can be determined analytically in terms of the secadé+oderiva-
tives of s¢(y) at singular evolutionary poink(= y = x*) and interpreted
in terms of four properties of singular strateb;dﬁeﬂlz]éﬂ%].l&)ﬂb):

1. aj‘y(zy) < 0, means that* is locally ESS-stable and no nearby mutant
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can invade;

2. az‘—x(z” > 03<_y(2y) means thax* is convergence stable (CS), a popula-
tion of nearby phenotypes can be invaded by mutants thatare e
closer tox*;

3. "’3;2” > 0, means that the singular strategycan spread in other
populations when itself is initially rare;

4. f’nggW > —63@(23’), the two strategies andy can mutually invade and

hence give rise to a dimorphic population.

In practice the evolutionary behavior at the singular stygtcan
be determined by considering the ESS and CS properties ¢tink. is
ESS and CS then it is necessarily an evolutionary attracidmall be an
end point of evolution; if it is not ESS and not CS, it is an exmnary
repellor and strategies will evolve away froth If x* is ESS but not CS it
is known as a Garden of Eden strategy. Here, ¥‘aho other strategies
can invade but nearby strategies evolve away from the sangtiategy.
The phenomenon of evolutionary branching occurs wtiga CS but not
ESS. Here strategies evolve towarsdsbut when close by they undergo
disruptive selection and two distinct strategies co-eaittter side ofx*.
Branching points are at the forefront of theoretical attesip explain
speciation.

4.2 Intraspecific competition in predator-prey
models

The adaptive dynamics techniques can be understood madycley

considering a specific example. Bowers etlal. (2003) consitla clas-
sical predator-prey model and examined the evolutionamaber when
the prey had an explicit or implicit carrying capacity. Thangued that
implicit carrying capacities, where individual propestievolve and act
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on natural selection are more appropriate for evolutiomaoglels. The
model of Bowers et al! (2003) with an implicit carrying cajpags for-
mulated as follows:

dN

il N(r —hN-—cP)
i—f = P(—d+ceN) (4.5)

Here,N represents the density of the prey dhthe density of the
predator. All parameters are positive an the intrinsic growth rate of
prey, c is the rate of predationd is the death rate of the predator and
e is the rate of conversion of predation into predator birthke param-
eter h represents the susceptibility to crowding for the prey yself-
regulation) and in the absence of the predator the prey esaglocarrying
capacityN = r/h which depends on model parameters. Bowers et al.
(2003) consider the evolution of the prey parametexsdc (all other pa-
rameters are fixed). A key property of evolutionary theoh&t a benefit
through changes in one life history parameter must be baatghtost in
terms of other parameters. Therefore we link the parametansc with
atrade-off (r = f(c)) such that the benefit of an increase in host repro-
duction ratey, is bought at a cost of an increase on the predation cate,
Therefore the only evolving parameterdagandr is linked toc through
the trade-off).

The fitnesss, of a mutant prey type with parametem a resident
predator-prey environment at a stable point equilibriuneretthe resident
prey has parameteris as follows:

S=f(C)—hN-CP (4.6)

Where nowN andP denote the resident equilibrium population den-
sities and, therefore, depend only on resident parametesisgular strat-
egy,c*, occurs when:
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0s
Jc
The behavior at the singular points is determined by the BH&S a
CS properties which satisfy the following conditions:

0°3

=0 = f'(c")=P 4.7)

c=cC

ESS.@ . < 0 = f’(c) <0 (4.8)
0% 0% . hd
.wc*—@0*>0 = f(c)<W (4.9)

Therefore iff”(c*) < 0 the singular strategy is ESS and CS and is
therefore an evolutionary attractor. f (c*) > hd/e(c*)® then the sin-
gular strategy is neither ESS or CS and it is an evolutionapgltor. If
0 < f”(c*) < hd/e(c*)3 then the singular strategy is CS but it is not ESS
which leads to evolutionary branching. This example hgis how the
shape of the trade-off function (the cost structure of thderoff) deter-
mines the evolutionary behavior.

Simulations of the adaptive dynamics process can be urkeerta
to verify this evolutionary behavior. In the simulationegtpopulation
dynamics were numerically solved for a fixed tinhggccording to popu-
lation dynamical equations (4.5) starting with a monomarplepulation.
Mutant strategies were generated by small deviations drthencurrent
strategies and introduced at low density. Explicitly thived system is:

dN

at = Ni(ri—hN —ciP)
dP
5 = P(—d+ cieN) (4.10)

where i represents all non-zero populations or prey, reside mutant,
and all prey have the same susceptibility to crowding, h.nTihe pop-
ulation dynamics were solved for a further timvith strategies whose
population density fell below a low threshold consideretinet and re-
moved before considering new mutations. In this way, thampater c
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could evolve (see Bowers et|al. (2003) for further detaiy.choosing
the trade-off = f(c) = ac?+2c+a + 1 the singular strategy can become
an evolutionary attractor, a repellor or a branching pojntioosing dif-
ferent values ofi, see Figuré 412.

This example highlights how adaptive dynamics can be used-to
derstand the evolution of phenotypes (represented byrelifées in the
parametec in Bowers et al.[(2003)) and the importance of trade-offs in
determining the evolutionary behavior. These techniguése used to
examine the evolution of male-biased parasitism in chater

—_
[
-
—_
(3)
-~

(b)

e

Evolutionary Time ——
Evolutionary Time ~——s

Evolutionary Time

N el

Strategy c* Strategy c* Strategy c*

Figure 4.2. Simulations of equation§ (4.110), showing how strategyolves over
time. In each panel the singular strategy, is represented by the vertical dotted
line. The solid line represents the wagvolve in the adaptive dynamics simulation
process, i.e., the density of prey with non-zeroParameters afe=1,d = 1 and

2 *
e=1.In(a)a=-05and therefore‘% < 0 andc* is an evolutionary attractor.

In (b)a =0.8 andaz‘;z(?) > hd/e(c*)® andc* is an evolutionary repellor. In (c)

a=0.3and 0< 62;2(? < hd/e(c*)® andc* is an evolutionary branching point.
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Marine ecology






Joint effects of nutrients and con-
taminants on the dynamics of a

food chain in marine ecosystems

5.1 Introduction

Marine waters and in particular coastal waters are inangasiexposed
to anthropogenic pressures represented not only by theiganput of
nutrient and contaminants related to urban, agriculturdlindustrial ac-
tivities, but also by the exploitation of coastal areas fguaculture, fish-
ing and tourism. Since the resources of the coastal zonexateited
by different stake holders it is essential to improve thevkiedge on the
ecosystem’s vulnerability to stressors and protect thosasathrough a
sensible management.

The interaction of pollutants and nutrients on aquatic ystesns
is difficult to evaluate, since many direct and indirect effehave to be
considered. Contaminants can have instantaneous eféertis,as mas-
sive killings after an accidental contaminant release.eOtbixic effects,
such as genotoxicity and reproductive failure are lesseanidnd they act
on a longer time-scale; however, they represent an impotisdnfor the
ecosystem. Furthermore, if the contaminant is Iipodﬂ]ilhioaccumula-
tiorfd should be considered. On the other hand, an increase of thiermu
load can have the direct effect of raising the primary préidacat the
bottom of the food chain and consequently increase the otrat®n of

1The ability of a chemical compound to dissolve in fats, difsds.
2An increase in the concentration of a chemical in a bioldgieganism over time.

71
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the organic matter in the system. But the higher concenftraif organic
matter can affect the bioavailability of the contaminamtd therefore the
fate of pollutants in the aquatic environment and theiraffen the im-
pacted ecosystermn (Gunnarsson et al., 1995).

Thus, contaminants affect aquatic ecosystems througietchired
indirect effects|(Fleeger et al., 2003), from acute andtopgic toxic-
ity on sensitive species to disruption in the food web strreet Some
species might be more sensitive than others to a certainichkrbut
since the different populations are linked to each othemymetition and
predation, species which are not directly stressed maynesmdirectly
(Fleeger et &ll, 2003). Within a food web, community-lee#htions arise
from unobservable indirect pathways. These relations ninag rise to
indirectly mediated relations, mutualism and competit{gath, 2007).
In some cases environmental perturbations alter subaligritie dynam-
ics or the structure of coastal ecosystems and the effectonmuaiuce the
occurrence of a trophic cascade and eventually the exdmaif some
species/(Jackson et al., 2001). A better understandingeafethtive im-
portance of top-down (e.g. overfishing) versus bottom-ug. (@creased
nutrient input causing eutrophication) controls is esaéand can only
be achieved through modelling (Daskalov, 2002).

Sudden regime shifts and ecosystem collapses are likelgdoro
in stressed ecosystems. Catastrophic regime shifts hareretated to
alternative stable states which can be linked to a critloaghold in such
a way that a gradual increase of one driver has little infleemctil a
certain value is reached at which a large shift occurs thdifiieult to
reversel(Scheffer and Carpenter, 2003, Scheffer et all)200e shape of
ecotoxicologicﬁ dose-response curves (Suter I, 1993), showing a sharp
increase in the effect of toxic substances above a critalaley facilitates
the occurrence of regime shifts under pollutant pressure.

This study considered the combined effects of contaminabt s

3“The branch of toxicology concerned with the study of toXieets, caused by nat-
ural or synthetic pollutants, to the constituents of ectesys, animal (including human),
vegetable and microbial, in an integral context.”
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stances and nutrient load in the framework of a simple frhio food
chain model. The study was restricted to contaminants, asisktriazin
which affect the mortality in particular trophic levels,tbuhich do not
bioaccumulate neither in time nor along the food chain. Wstedying
the dynamics of simple food chain and food web models it is efgor-
tant to bear in mind that the response might depend on the leaitypof
the represented system. Chaotic dynamics, for examplessiebe more
frequent in simple ecosystem models or in models with a highlver of
trophic levels|(Fussmann and Heber, 2002). Thus, only tke diali-
tative changes of behavior occurring when increasing ewisi from low
values, and how this is changed by pollutants, will be fodusend not
the complex sequences of chaotic states which may occuglanlitrient
availability, whose details are more affected by the trogtructure of
the model.

Since no microbial recycling loop was included, sedimenbxy-
gen dynamics, or shading effects, complex eutrophicaterabior typ-
ical of coastal ecosystems (Zaldivar et al., 2003), e.@xiarcrises, al-
teration of nutrient cycling, macroalgal blooms, etc. waibit occur in the
model. The study was rather concentrated in the simplesasics occur-
ring during enrichment and its modification by contaminadiscussing
particularly the indirect effects which lead to counteuitive behavior.

5.2 Model formulation

The Canale’s chemostat model (CC) was considered, (Bodr, 41988,
2001/ Canale, 1970, Gwaltney and Stadtherr, 2007), whigh éxtension
of the tri-trophic food-chain Rosenzweig-MacArthur mo@MA) that

4s-triazine is one of three organic chemicals, isomeric wich other, whose em-
pirical formula isC3H3N3. The three isomers of triazine are distinguished from each
other by the positions of their nitrogen atoms, and areref=o as 1,2,3-triazine, 1,2,4-
triazine, and 1,3,5-triazine or s-triazine. Among otheages triazine is used in the
manufacture of resins and as the basis for various herlsicide
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has been extensively studied in theoretical ecology (Asramd Roth,

1994 LD_eEeg_and_RmaidL_lel._QLagnam_étLaL._h 098, Gerlai al.,

2004, H I, 1991, Klebanoff and H In@l&uznetsov
and Rinaldi 6 ann_and zlié; 1994). This model wasip

ously used to analyze the dynamics of a food chain consistifiacte-

ria living on glucose, ciliates and carnivorous mha@ 8,

@) but can be adapted to represent an aquatic food cliimwon-

stant nutrient input. The CC model is similar to the RMA modelt there

is an additional equation representing the input of nutiaeul it considers
the losses due to the flushing rate:

N = D(I—N)— biNN (5.1)
P = P[e1b1+N b2+PP dl—le} (5.2)
Z = z[e2b2+P bs_:_:z—dz—sz} (5.3)
F = F{egbsf ng} (5.4)

In this study the variableN, P, Z, F
represent the nitrogen concentration inf#
the different compartments of the sys-
tem (nutrient, phytoplankton, zooplank- &
ton and fish, which will be also denoted |

with the alternative names of nutrient, =
prey, predator, and top-predator, respec
tively) expressed in units ahgN/l. The
default parameters, see Talple]5.1, werd
derived from the parameters of the aquaticii

food chain model presentedlde ‘
@) and from the pelagic ecosystem

model inlLima et al.[(2002)] is the nu- Figure 5.1 _ Phytoplankton
. . . . of winter-spring proliferation
trient load or nutrient input into the Sys-i, the Catalan-Balearic sea.

tem.D is a flow rate quantifying water re- Photo:Marta Estrada




5.2. Model formulation 75

newal in the system, which affects the species through tehifig rated;
(i=1,2,3). d; are the specific mortalitieb; half saturation constants for
the Holling type-Il predation functiongy are maximum predation rates,
and g efficiencies. The following condition should be satisfiedthg
equation parameters:

ga >di+Dfi (i=1,23), (5.5)

since this “avoids the case where predator and top-predatarot sur-
vive, even when their food is infinitely abundant” (Kuznetsstal., 2001).
Contaminant toxicity is incorporated in the model by an &ase in mor-
tality.

Three different scenarios were considered in each of whieledn-
taminant affects the mortality of only one of the compartteen

C 6
dj = d\” + Ad; (%) (5.6)

j = 1,2, and 3 labels the three
trophic levels: prey, predator and
top-predatorC; is the dimension-
less concentration of the contam-
inant affecting the levelj, nor-
malized in such a way that for % %
Cj = 0.5 the toxicity achieves half

its maximum impact on mortality,

and a sigmoidal function (Figure "
6.2) has been used to model the ‘
mortality increase from a baseline ° Contaminant

value,d(o), to the maximum mor- Figure 5.2. Sigmoidal response of mor-

. (Jo) . tality to the concentration of the toxic
tality, d;” + Ad;, attained at large contaminant, according to EG.(5.6)).

contaminant concentrations. This
represents typically the shape of the dose-response ctouad when
assessing toxic effects of chemical on biological popateti(Suter I,

Mortality

1.0
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1993). Other works that have studied bifurcations due totafityr
changes in the CC model (Gwaltney and Stadtherr,|2007) hawveally

considered a linear increase. The valued]§8)f andAd; used are written
in Table[5.2.

Table 5.1 Parameters of the CC model.

Parameters value Units
Nutrient input I 015 mgNI/
Inflow/outflowrate D 0.02 day?!
Max predationrate  a; 1.00 day?!
a 050 day?
az 0047 day?
Half saturationcont b; 0.008 mg N/
b, 0.01 mgN/
b 0.015 mg N/
Efficiency e 100 -
e 100 -
es 100 -
Mortality(base values d; 0.10 day?!
d, 0.10 dayl
dz 0015 day?
Flushing rate fi 001 day?
f, 001 day?
f3 001 day?

Table 5.2 Contaminant parameters for the three compartménts], 2, 3.
j d”  Adj
1 (prey) 0.1 0.5
2 (predator) 0.1 0.3
3 (top-predator) 0.015 0.015
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5.3 Steady states

This system presents the following set of fixed points: Theiemwt-only
state (Nu):

= 1
0, (5.7)
0

Y

M N T 2
|

0.

The nutrient-phytoplankton state (NP):

N — bi(di+Df1)
alel—dl—Dfl’
| e ) .
d;+Dfy ’ '
Z = 0,
F = 0.

There are two solutions (NPZ) characterized by the absehiteo
top predator:

b1D +a;P — DI 4 /41Dl + (—b;D — a;P + DI )2

N = 2D ’
B bo(dy + Dfy)
P= a2e2—d2—Df2’ (5'9)
7 _ _(b1d1+b1Df1—|-d1N—a1e1N+Df1N)(b2-|—P)
ap(b1+N) ’
F = 0.

but only the one with the positive sign of the square root sitpe defi-
nite.

And finally there are three internal fixed points (NPZF), inieth
all species are alive. From the equation for(5.1), an equation foP
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as a function oN is obtained. Introducing it intd_(5.2) together with the
expression foZ = Z which is obtained froni(514), the following equation
for N is obtained:

[AIN® + AoNZ + AsN +Aq] = 0 (5.10)
where
AL = D(a]_e]_—d]_—Dofl),
A = —aszel — D(dl + Dfl) (2b1 — |) —+ al(leel + bz(d1—|— Dfl)
+axZ —Deyl),
Az = bi(—D(d1+Dfy)(by—21) +ay(b2(di+Df1) +aZ — Deil)),
Ay = b2D(di+Dfyl). (5.11)

The values of the remaining variables at the three internadfi
point solutions can be written in terms @fand of the three values of
N = N obtained from the cubi¢ (5.10):

N = N, B
— b1 +N
P = Do(l —N) aN
5 b3(dz+Df3)
Z = Z_a3eg—d3—Df3’ ) (5.12)
Eo_ (azezp—bzdz—szfz—dzp—szP)(bg—FZ)

ag(b2+P)

It turns out that only one of the three fixed point solutionpasitive for
the parameter values in Talplel5.1.

Mathematically there are four additional solutions butythee not
feasible biologically since they lead to negative popoladi the state
characterized by the absence of phytoplankbde-(I,P=0,Z+#0,F #0
), by the absence of nutrient and of the top-predatb=(0,P # 0,Z #
0,F =0), by the absence of the nutrient and of phytoplankke-0, P =
0,Z # 0,F # 0), and by the absence of nutrieht £ 0,P #£ 0,Z £ 0,F #
0).
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5.4 Stability and bifurcation analysis

The dynamics of the CC food-chain models has been analyzeskio
eral parameter values by direct numerical integration efrttodel equa-
tions, and by bifurcation analysis carried on with the safevXPPAUT,
(Doedel et al., 1997, Ermentrout, 2002). Background on fifferdnt
types of bifurcations can be found in (Gugenheimer and Hs|h893,
Strogatz, 2000). Only bifurcations of positive solutionsrevconsidered
and, as stated in the introduction, the routes to chaotiawaehoccurring
at high nutrient loadwere not described in detail. For low arterme-
diate nutrient load the relevant attractors are the fixeditpadescribed
above, and also two limit cycles, one involving the varialNe P andZ,
lying on theF = O hyperplane, and another one in which all the species
are present. These attractors are represented in Figure 5.3

Figure 5.3. a) Projection on the PZF subspace of a trajectory whichsstdose to
the NP fixed point, approaches the NPZ one, and finally iscédaby the NPZF
fixed point.] =0.4mgN/l, C; =C3 =0, andC; = 0.8. This shows the approximate
location of these points and that only the NPZF one is stabi¢hiese parameter
values. (b) Cyclic behavior: Thick line is a trajectory lgaglto an attracting limit
cycle on the NPZ hyperplane for= 0.1 mgN/I, C; = C; =0, andC; = 0.8 ;
dotted line is a trajectory attracted by the limit cycle ilwing all the variables for

| =0.24mgN/l,C; =C, =0, andCz = 0.2.
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5.4.1 The non-contaminant case

First, system behavior for the case of mortalities at thagdovalues was
considered, i.e. in the absence of contaminants. This aillesas a ref-
erence for later inclusion of contaminants. Figure5.4 shthe sequence
of bifurcations when increasing the nutrient input~or very low input,
only nutrients are present in the system (solution] (5.7)hew > | TBL
with

| TBL _ b1(d1+Df1)

a;e; —dy —Dfy’

phytoplankton becomes positive in a transcritical biftioza(which was
called TB1) at which the NP state (5.8) becomes stable. Sihte=
0.0008909 is very small, this bifurcation can not be clearbrsie Figure
(.4. From this value on, further enrichment leads to a linearease
of phytoplankton[(518), until a second transcritical bifation, TB2, at
which zooplankton becomes positive and the NPZ solutid) ftecomes
stable. It happens at

(5.13)

|TBZ o (d]_ +D fl)(PN Pzd]_ — PN Pza]_e]_ —b1De + PNPZp f]_)
Dey(dh —aie1 +Dfy)

(5.14)

wherePNPZ is the expression fdP in the NPZ solution, [5.9). From this
point the zooplankton starts increasing (keeping phytdfitan concen-
tration at a constant value) until a new bifurcation TB3 ascat which
the fish concentration starts to grow from zero while zooitiamremains
constant, phytoplankton increases, and nutrients dex(#as is the pos-
itive interior solution NPZF, Eq.[{5.12)). The valueldf® is given im-
plicitly by:

g ZNPZages— ZNPDf; —bsDfs

- ZNPZ g

wherezZNPZ s the expression faZ in the NPZ solution, [5.9).

One of the first counterintuitive indirect effects presenthe food-
chain dynamics has been noticed here: In the NPZF soluticrease of
nutrient input leads to decrease in nutrient concentrdtea Figuré 514).

dg

(5.15)
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Figure 5.4. Bifurcation diagrams of the four variables as a function ofria
ent input parameter. Thick lines and full symbols denote stable fixed points
and maxima and minima of stable cycles, respectively, amdlithes and open
symbols, unstable ones. The name of the fixed points is iteticaThe rele-
vant bifurcations (described in the main text) occut '@ = 0.0008909mgN/I,
ITB2 — 0.01345mgN/I, 178 = 0.05352mgN/I, 118! = 0.06101 mgN/I, and
IHB2 — 0.2298mgN/I, locations which are indicated by arrows.

The reason is the top-down control that the higher predaginis
to impose on zooplankton, leading to positive and nega&gelation on
the compartments situated one or two trophic levels b&lorespectively.
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Shortly after becoming unstable at TB3, the fixed point NPgeex
riences a Hopf bifurcation (HB1) which leads to a limit cyolethe NPZ
hyperplane. Since the whole hyperplane has become uns$igioles this
bifurcation occurs, this cycle has no direct impact on langetdynam-
ics, although it can affect transients, and it will becomievant when
adding contaminants. The steady coexistence of the thexmespat the
NPZF fixed point remains stable until a new Hopf bifurcatidB2-bccurs
at which the fixed point becomes unstable and oscillationsi\ing the
three species and the nutrients (Figuré 5.3) occur. Thelbiéization of
steady coexistence by the appearance of oscillations jmdwuald facili-
tate extinctions if the amplitude of oscillation is sufficily large, is the
well known “paradox of enrichment”, first mathematicallysdebed by
Rosenzweig (1971). A good overview of the studies connewiddthis
issue can be found in the paper of Jensen and Ginzburgl(28@86)also
Bell (2002)) Fussmann etlal. (2000), Kirk (1998), Shertzex g2002).

Gragnani et al. (1998) demonstrated that the dynamics cal€an
model for increasing nutrient supply is qualitatively damito the one of
the RMA model. After the stationary and cyclic states désatiabove,
chaotic behavior followed a different cyclic behavior witigher fre-
quency are found. Also, the maximal average density of teplgor is
attained at the edge between chaotic and high frequencigc dyathavior.
We will not further describe these states but we will conetin the
modifications arising from toxic effects of contaminantgio& dynamics,
for small and moderate nutrient loading.

5.4.2 Contaminant toxic to phytoplankton

Now the contaminan®; is introduced. It increases the mortality of phy-
toplankton according to expressidn (5.6) for 1. Expressions for the
bifurcation lines TB1, TB2 and TB3 as a functionloAndC; can be ob-
tained simply by replacing the mortality (5.6) into the @sponding ex-
pressions[(5.13)[(5.14), and (5.15), respectively. Tineesean be done
numerically for the Hopf bifurcation lines HB1 and HB2. Thesult is
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shown in the 2-parameter bifurcation diagrams of Figure 5.5
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Figure 5.5. Upper graph: Some of the bifurcations occurring as a funatimu-
trient inputl and the phytoplankton mortality, in the range of values determined
by the presence of contamina®yt affecting phytoplankton. Values &% are also
indicated in the upper horizontal axis. Lower graph: sano plit displayed in
terms ofC; instead ofd;. The name of the bifurcation lines is indicated (for the
case of the Hopf lines HB1, HB2 and HB3, the name of the fixedtgovolved in
the bifurcation is shown in parenthesis). Crossing theinaots lines involves a
qualitative change for the state attained by the systenidémregions surrounded
by continuous lines, the name of the relevant stable fixedtp@shown inside grey
squares. Crossing the discontinuous bifurcation lines @og¢involve a change in
the stable state (because, e.g., they correspond to hifunsaf already unstable
states). Immediately above the HB2 line, a limit cycle iwing all the species is
the relevant attractor for low values df (or C;). The limit cycle on thed= =0
hyperplane is the relevant attractor above the HB1 line dogdd;. Additional
bifurcations (not shown) occur in other regions of the operas above HB1 and
HB2. M is a codimension-2 point described in the main textthie upper graph
the dotted region identifies areas where chaotic solutiams been found.

Because of the sigmoidal effect of the contaminant (5.6 )nipact
is mild for C; <« 0.5, and it will saturate fo€; > 1. Thus, in both limits
the bifurcation lines become parallel to the horizontasaXihe interest-
ing behavior is for intermediate values©f, where the bifurcation lines
are displaced towards higher valueslofThat is, the first effect of the
contaminant is to stabilize the simplest solutions, thes@table at lower
nutrient load, delaying until higher nutrient loads thensiéions to the
most complex ones.

But this stabilizing effect is different for the differentlsitions, and
the most important qualitative change occurs at point M guFé5.5. Itis
a codimension-2 point at which the transcritical bifuroatifB3, involv-
ing the NPZ and the NPZF fixed points, and the Hopf bifurcatiiBi
of the NPZ point, meet. A new Hopf bifurcation line of the NP&&ui-
librium, HB3, emerges also from that point. The cycle créae HB3
consists in oscillations of all the four variables, sinmiao the cycle cre-
ated at HB2. Other characteristics of the organizing cevites that the
Hopf bifurcations change subcritical to supercritical retzder across it,
and also that a line (not shown) of saddle-node bifurcatadrike cycles
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created at HB1 and HB3 emerges also from M. There are a nurhbdr o
ditional structures in parameter space emerging from astiolpf points,
and transcritical bifurcations of cycles which were notatdsed further

here.
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Figure 5.6. Bifurcation diagrams of the four variables as a function ofrient
input parametet, at a constant high value of the contaminant affecting phyto
plankton,C; = 0.9. Thick lines and full symbols denote stable fixed points and
maxima and minima of stable cycles, respectively, and tiniesland open sym-
bols, unstable ones. The name of the fixed points is shownbiftieation points
are identified by arrows. PD is a period doubling bifurcation

Despite the complexity of the above scenario, its effecherbifur-



86 Chapter 5.

cation sequence when increasing nutrient level (up to nasedevels) in
the presence of contaminant values beyond M is rather si(spke Fig-
ure[5.6): since the lines TB3 and HB1 have interchanged otigeHopf
bifurcation HB1 in which a stable limit cycle is created irthyperplane
F = 0 occurs before the appearance of a positive NPZF equitibrAs a
consequence, fish remains absent from the system eventatalglaigh
nutrient levels. This is one of the counterintuitive out@sof indirect ef-
fects: adding a substance which is toxic for phytoplankt@kes fish to
disappear, whereas the oscillating phytoplankton lewelsradeed com-
parable with the ones at zero contaminant (see Figude 5.8)inAhe
absence of contaminant, period doubling and transitiorhtms, which
have not been analyzed in detail, occur when increasingduthe value
of I.

A different view of the transitions can be given by descridine bi-
furcations occurring by increasing the contaminant cotreéion at con-
stantl. Figure[5.Y and 518 shows that for an intermediate value ®f th
nutrient load,l = 0.15 mgN/I. The NPZF fixed point is stable at low
contaminant, but oscillations appear when crossing the H&3. Very
shortly after that, this limit cycle involving all speciep@oaches the
F = 0 hyperplane until colliding with the cycle lying on that pk which
involves only theN, P, andZ species. At this transcritical bifurcation, this
limit cycle from which fish is absent becomes stable and isotheerved
solution for largelC; or d1. As before, adding a substance which is toxic
for the bottom of the trophic chain has the main effect of sapging the
top-predator.
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Figure 5.7. Bifurcation diagrams of the four variables as a functionCef at
constant nutrient input= 0.15mgN/I. Thick lines and full symbols denote stable
fixed points and maxima and minima of stable cycles, respagtiand thin lines
and open symbols, unstable ones. BP is a transcriticaldaifion of cycles. The
name of the fixed points is shown. The bifurcation points demiified by arrows.
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Figure 5.8. Bifurcation diagrams of the four variables as a functiodgfaffected
by contaminantC;, at constant nutrient input= 0.15 mgN/Il. Thick lines and
full symbols denote stable fixed points and maxima and mirofrgtable cycles,
respectively, and thin lines and open symbols, unstabls.oBE is a transcritical
bifurcation of cycles. The name of the fixed points is showme Bifurcation points
are identified by arrows.

5.4.3 Contaminant toxic to zooplankton

As before, the mortality expressidn (b.6) fpe 2 can be inserted in the
expressions (analytical or numerical) for the bifurcasidi31, TB2, TB3,
HB1, and HB2 to elucidate the impact of the contamin@ntacting on
zooplankton, into the food chain dynamics. As in @ecase, the bifur-
cation lines become displaced to higher nutrient load \&lae that the
sequence of bifurcations of Figure 5.4 becomes delayedjteehivalues
of I.
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Figure 5.9. Upper graph: some of the bifurcations occurring as a functib
nutrient inputl and zooplankton mortalitgy, in the range of values determined
by the presence of contaminady affecting zooplankton. Values @, are also
indicated in the upper horizontal axis. Lower graph: sano plit displayed in
terms ofC; instead ofd,. Names of fixed points and bifurcation lines as in Figure
5.8, as well as the meaning of continuous and discontinuoas.| Immediately
above the HB2 line, the relevant attractor is a limit cycleniming all the species.
Additional bifurcations (not shown) occur at higher valeés. In the upper graph
the dotted region identifies areas where chaotic solutiams heen found
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Figure 5.10. Bifurcation diagrams of the four variables as a functiorCef for

a constant nutrient loald= 0.15 mgN/I. Thick lines denote stable fixed and thin
lines and open symbols, unstable fixed points and maxima amchanof unstable
cycles. The name of the fixed points is shown. The bifurcatimints are identified
by arrows.



5.4. Stability and bifurcation analysis 91

This is seen in the 2-parameter bifurcation diagram of FEguB.
At difference with theC; case, the TB3 and HB1 lines do not cross, so that
there are no further qualitative changes with respect tac#se without
contaminants (Figurle 5.4), at least up to moderate valuks of
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Figure 5.11 Bifurcation diagrams of the four variables as a functiodgfaffected
by contaminan€;, for a constant nutrient lodd= 0.15mgN/I. Thick lines denote
stable fixed and thin lines and open symbols, unstable fixadgpand maxima and
minima of unstable cycles. The name of the fixed points is shde bifurcation
points are identified by arrows.

Another view of the consequences of Fig.|5.9 can be seen in Fig
ures5.10 and 5.11, which shows the different regimes itz a fixed
intermediate value of (I = 0.15 mgN/I) and increasin@; or d;. The
most remarkable indirect effect is that, fdg < dJ B = 0.2592day !
C< CEBE’ = 0.5103), zooplankton remains constant despite the increase
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of C, which is toxic to it. The net effect of, in this range is to de-
crease the amount of fish until extinction. Only 65 > CJ B3 con-
taminant kills zooplankton until extinction @ = dJ & = 0.374day !
(C2 = CJ B2 = 0.7406).

5.4.4 Contaminant toxic to fish

The simplest bifurcation lines are shown in Figure 5.12 asatfon ofl
andCs, the contaminant affecting fish mortality. As in the casef®ige
bifurcations are delayed to higher value$ afhen contaminant is present.
As in theC; case, this delay is different for the different lines, résglin
acrossing of TB3 and HB1 in a codimension-2 point M, joiningre also
a new Hopf bifurcation HB3 of the NPZF fixed point and otheubtftion
lines (not shown).

Additional structures emerging from other codimensioneints,
such as double-Hopf points are also presented but they ve¢rgtudied
in detail. The qualitative behavior when increaslngt largeCs (Figure
[£.13) is similar to theC; case: there is a succession of N, NP and NPZ
fixed points followed by a Hopf bifurcation which leads to itistions of
theN, P andZ variables, remaining the fish absent from the system.

Only at relatively high nutrient values does the NPZF stestdye
become stable at the subcritical branch of the Hopf bifimoatiB3 be-
fore becoming unstable again at HB2. Two of the NPZF intesohltions
(5.12) which, in contrast with th€; = 0 case, are positive here, collide
at a limit point. In Figuré 5.12 the line of these points asrecfion of the
| andC3 parameters is labelled as LP.

The two solutions exist above that line, and cease to existbe
The sequence of bifurcations encountered when incre&siagconstant
intermediate values dfis also similar to th€; case of Figuré 517 in that
the NPZF stable fixed point becomes a cycle involving all tagables
when HB3 is crossed, and in that this falls onto Ehe- O plane shortly
afterwards. The details are, however, more complex beazfitbe pres-
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ence in phase space of additional unstable cycles.
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Figure 5.12 Upper graph: some of the bifurcations occurring as a funotib
nutrient inputl and fish mortalityds, in the range of values determined by the
presence of contamina@y affecting fish. Values o€; are also indicated in the
upper horizontal axis. Lower graph: same plot but displagedrms ofCs instead

of d3. Names of fixed points and bifurcation lines as in Figurd a$well as
the meaning of continuous and discontinuous lines. Imntelgiabove the HB2
line, the relevant attractor is a limit cycle involving alie species. Additional
bifurcations (not shown) occur at higher valued offhere is a region of the area
labelled as NPZF in which this stable fixed point coexisthwsitstable limit cycle
on theF = 0 hyperplane.

5.5 Discussion and conclusion

We have seen that, because of the assumed sigmoidal infloécoa-
taminant on mortality, toxic effects on our food chain moldave a dis-
tinct effect at low and at large concentrations, with ratiast transition
behavior in between.

At small and moderate contaminant concentrations the nféente
is a displacement of the different bifurcations toward$kighutrient load
values, so that transitions to states containing lesseactwmpartments,
and states without oscillations, become relatively sizdxl. Contami-
nants increase the stability of the food chain with respedstillations
caused by increased nutrient input. A similar outcome has bbserved
inlUpadhayay and Chattopadhayay (2005) for a food-chainemoom-
posed of a toxin producing phytoplankton, zooplankton asid fiopula-
tion. In that study chaotic dynamics can be stabilized byaasing the
strength of toxic substance in the system.

For higher contaminant values, in most of the cases theraeas a
ordering of the different transitions, giving rise to thgpeprance of new
bifurcations which change qualitatively the sequence afest encoun-
tered by increasing nutrient input. The main effect, evethencases in
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which such reordering does not occur (the cas€potontaminant), is
that the top predator becomes the most depleted, being evegti to
extinction. This strong impact of the contaminant on thehkigpreda-
tor occurs even in the cases in which the direct toxic effeain lower
trophic levels. It seems that the increased mortality aelotrophic lev-
els becomes nearly compensated by a debilitation of topadomtrol
exerted by higher predators. Obviously, the top predatomca benefit
from this mechanism, thus becoming the most affected.

Extrapolation of the above findings for real ecosystems may b
problematic, because of the much higher food web compléaiipnd in
nature. We believe however that the counterintuitive idireffects de-
scribed above should be kept in mind when analyzing the cexn-
sponses that ecosystems display to changes in externarsisuch as
nutrient load and pollutants, and that the detailed idesatiibn of them
performed here can help to interpret some aspects of thevioelud real
ecosystems.
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Modeling approach to regime shifts
of primary production in shallow
coastal ecosystems

6.1 Introduction

Shallow transitional water systems (McLusky and Ellio@0%) are in-
trinsically unstable and highly variable over wide tempaad spatial
scales|(Kjerfve, 1994, Zaldivar etl/el., 2008). These estesys, being
interfaces between terrestrial and aquatic ecosysterosider essential
ecological functions influencing the transport of nutrggnmhaterial and
energy from land to sea (Wall et/al., 2001). Biodiversity ediain low
values, but its functional S|gn|f|cance remains high (Sadd@95). There-
fore, shifts in diversity are likely to have important andfaund con-
sequences for ecosystem structure and functioning (Levah ,e2001).
Invasions, competitive advantages, and non-linear feddirderactions
may lead to alternating states and regime shifts (Scheffaf/ 2001),
which, once occurred, may pose limits for remediation egigs since it
may be difficult, if not impossible, returning to the origistate (Webster
and Harris, 2004).

Contrary to open seas, where primary production is domahiaye
phytoplankton, in transitional waters a considerableiporof primary
production is performed by angiosperms, epiphytic algagacroalgae
and epibenthic microalgae. In addition, shallow aquatimsgstems do

LAttached algae on natural substrates.
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not show the typical correlation between nutrient inputs elmorophy!ll-
a in water|(Nixon et all, 2001), as already demonstrateddepdr coastal
waters and lakes (Vollenweider, 1976).

Regime shift phenomena occurring in shallow coastal afelasdf
et al., 1999, Nienhuis, 1992, Sand-Jensen and Borum, 1@9%tai®m,
1999, Viaroli et al., 1996) have been already documentedesassult of
the competition between free floating plants and submergadgrogams.

Several authors have proposed a conceptual scheme thatl-cons
ers nutrient inputs as the main driver in the succession foemthi€
vegetation to phytoplankton or floating seaweeds in shaitawsitional
waters [((Borum, 1996, Hemminga, 1998, Nienhuis, 1992, Nigbal.,
2001, Valiela et &all, 1997). This conceptual scheme is basdte evo-
lution of benthic communities through several phases asetres of nu-
trients increases. In the pristine stage, the communityomidated by
phanerogams species from a relatively small number of gener Zostera,
Thalassia, Halodule, Cymodocea, and Ruppia. Nutrientlenréent leads
to an increase in epiphytic microalgae, followed by the éase in float-
ing ephemeral macroalgae as Ulva and Gracilaria which cterioe
light and nutrients thus producing the disappearance efrpeal seagrass
species. Finally, at high levels of nutrient input, physogkton growth in-
creases water turbidity enough to depress macroalgal githws leading
to a dominance of phytoplankton species.

Even though the decline of seagrasses due to anthropogenic e
trophication is a world wide phenomenon (Orth etlal., 2006rSet al.,
2006), there is no direct causality evidence from field dRi@gh et al.,
2006). In addition, it is not evident from experimental sasdwhere the
limit lies for the dominance shift between these two commgetype of
organisms are_(Hauxwell, 2004, Schramm, 1999). Field studemon-
strate that the decrease of seagrass meadows is direchedeb ni-
trogen loadings| (Hauxwell, 2004, Nelson, 2003) and the damie of
macroalgae, especially Ulvaes, becomes apparent in é&uitrepviron-

2The benthic zone is the ecological region at the lowest lefialbody of water such
as an ocean or a lake, including the sediment surface and sglsurface layers.
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ments|(Borum, 1996). An overview of seagrass responsesiiemien-
richment and/or eutrophication events is presented in iBulder et al.
(2007), whereas the evolution of several Mediterraneastabt|agoons
from pristine conditions to the present situation is suninearin Viaroli

et al. (2008).

Although nutrient loading is one of the main drivers of regishifts
in transitional waters, light and temperature have beemralsognized as
key abiotic factors controlling algal growtn (Schramm, $R9Further-
more, in transitional water ecosystems hydrological andrdgynamic
conditions affect community persistence (Dahlgreen andtsteay, 2004,
Marinov et al., 2007).

Regime shifts occurring in shallow aquatic ecosystems vaere
alyzed by Scheffer and Carpenter (2003), who developed @&amam
model with two ordinary differential equations, one comsidg floating
plants and the other for submerged aquatic vegetation (SBWinpeti-
tion between floating vegetation and SAV was found to caussralte
attractors, since floating plants out compete SAV when lighhe only
limiting factor, whereas SAV species dominate at low nutrieoncen-
trations since they are able to uptake nutrients from thersaas. The
model, although not fully validated with experimental datas the first
to provide a comprehensive explanation of several obsgyliledomena.

In this work, we have studied the regime shifts from SAV totoa
ing macroalgae in shallow brackish ecosystems. We havdap@aa ba-
sic model that accounts for the competition between Zostenana and
Ulva sp. using existing models by Bocci et al. (1997), Caffand Bocci
(1997) and Solidoro et al. (1997a,b). To deal with the abdit seagrass
to survive at low nutrient conditions, we have also incluttezldynamics
of inorganic nitrogen (nitrates and ammonium) in the watduimn and
in the sediments (Chapelle, 1995). A simple phytoplanktaaieh (Plus
et al.,.2003) has been also incorporated in the main model.

The integrated model is able to simulate successions ofrtiime
states, with different resilience characteristics acegyevith the concep-
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tual scheme. Regime shifts are found when changing nuiripat, tem-
perature and light intensity forcing functions. Finallyeainterpretation
in terms of sensitivity to initial and operating values isalissed for meso-
cosm experiments.

6.2 Methods

6.2.1 Model formulation

The model is based on previous existing and validated maeidisloped
for Mediterranean coastal lagoons, i.e. Venice lagooryjltand Etang
de Thau (France). This approach was chosen because it witsdthe
flexibility of analyzing different scenarios for these tgpef ecosystems
which are subjected to strong anthropogenic pressuresdditi@n, pre-
viously validated models can offer more robust results thate novo
approach when there is no experimental data adequate forvdiela-
tion.

Zostera marina model

The Z. marina sub-model is based on the
model described in_Bocci et lal. (1997)
and | Coffaro _and Boccil (1997). State
variables in this sub-model are: Zs|
(shoot biomass, gdwn?), Zr (rhizome- §
root biomass, gdwm?) and Nz (internal
nitrogen quota, mgNgdw).

. ) Figure 6.1. Zostera marina
Zostera growth is described as fol-
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lows:
dd_Zts = (growth,—trans— respiration;)Zs (6.1)
dd_Ztr = trang(Zs— respiration)Zr (6.2)
dd_l\:z = (uptake— growth,)Nz (6.3)

The influence of the limiting factors on Zostera growth isatidsed
with a multiplicative formulation:

growthy, = pfaxf1(1) f2(T) fa(N2) fa(Z9) f5(NO3 ) (6.4)

The functional forms as well as the parameters of the modgel ar
described in Table 6.1. Thig term has been introduced in the Bocci et al.
(1997) model to take into account that water-column niteatechment
promotes decline of Z. marina independently of algal ligiterauation.
According tol Burkholder et all (1992) this is probably dueintternal
imbalances in nutrient supply ratios.

In this formulation, the growth of rhizome depends on thesla-
cation of photosynthetic products from leaves to belowdgrbparts of
the plant. This translocation is proportional to the ratgrfwth:

trans= Kiransxgrowth, (6.5)

The parameteKans Was estimated by Olesen and Sand-Jensen
(1993) as 25% of the growth, i.eKirans = 0.25. Shoot biomass losses
are expressed as a function of shoot respiration rate a€28R, cor-
rected by the actual temperature:

respirations = SRy x f5(T) (6.6)

where

fs(T) = 0.098+ exp(.4.690+ 0.2317T) (6.7)
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Following a similar approach, rhizome-root biomass losgpsses
are considered as a function of a respiration coefficigRRbp, with a tem-
perature correction:

respiration = RRyo x fs(T) (6.8)

Internal nitrogen quota in Zostera has been modelled asdifun
of nitrogen uptake. Shoots can uptake nitrates and ammoninereas
the rhizome-root can only uptake ammonium.

uptake = (uptake+ uptake)f,(N2) (6.9)
N -
uptake = uptak@NH4 —i—uptaké\103 (6.10)
NH,
uptakdt = e | 4]NH+ (6.11)
[NH; ]+ Ks *
- . [NO3
uptakeglo3 = Vn'\]l;))g [ 3]NO (6.12)
INO; |+ Ks 3
NH, NH,
uptake = Vimay [ 4]SNH+ (6.13)
[NH/Js+Ki ™
NZmax— Nz
fu(Nz _ 6.14
u(N2) NZmax— NZnin ( )

The values of parameters are summarized in Table 6.1.

Ulva rigida model

The U. rigida sub-model is based ongs#
the model described in_Solidoro et al.j:
(19974a,b). State variables in this subj
model are: U (Ulva biomasgdwl~1) and
Nu (internal nitrogen quotangNgdw?).
The model can be written as

P

Figure 6.2 Ulva rigida
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Table 6.1 Parameters and computed quantities used in the Zosteraamaddel
from[Bacci et al.[(1997) and Coffaro and Badci (1997).

Parametel
compute: Description Value
quantities
Mo ax Maximum specific growth 0.0025h1
fa(l) () = 5k
K7 Semisaturation constant for light ~ 500kcalnt2d—!
| = loexd.(sw+ €U )7
Ew Water extinction coefficient 0.4m-1
€y Ulva shading coefficient 40gdw tm1
. _(T-T&\?
fa(T) () = exp| - ()
Tt Optimal temperature 20°C
Toidith Temperature range, sigmoid widtt 3.6°C
f3(N2) f3(N2) = 2T
N Zmin Minimum internal nitrogen quota 5.0mgNgdw?
N Znax Maximum internal nitrogen quota ~ 30.0mgNgdw?!
N Zerit Critical internal nitrogen quota 15.0mgNgdw?
2
_1_ [ Zs—ZSmax
f4(Z9) fa(Z9) =1 exp[ <7z%dm )
Z Snax Maximum shoot biomass 500gdwnt?
Zsyigth Growth dependence on space availa 5gdwn 2
_ NO; —NO3_ 2
3width
NGO o Optimal nitrate concentration 5.0mmolnt3
NGO .. Nitrate concentration range 80.0mmoln 3
SRy Shoot respiration rate &20°C 1.0042x 10 3h~1
RRyo Rhizome-root respiration rate &°C ~ 6.25x 10 %h~1
+
Vil Shoot maximum uptake for NH ~ 0.3mgNgdwh!
+
KQ‘ Hi Shoot half saturation constant for I\j] 9.29mmolINnm3
Vn';'& Shoot maximum uptake for NO  0.06mgNgdwh—!
ZN O Shoot half saturation constant for Nt 16.43mmolN 3
.
Vel Rhizome-root maximum uptake for b 0.02mgNgdwh-?
NH;

Kmax Rhizome-root half saturation consta ~ 5.0mmolNnT3
for NH;
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%~ (growth, ~ death)u (6.15)

The influence of the limiting factors on Ulva growth was désed
with a multiplicative formulation:

growthy = Unaxx 91(1) xg2(T) xg3(Nu) (6.16)

The functional forms of the algae model are described inelGl2.
As we do not consider oxygen dynamics explicitly, the mastah this
model does not follow Solidoro et al. (1997a,b) model. Irs tbase, the
mortality term has been expressed as a simple constant agmsaydde-
pendent function:

2
death, = kj + kt“exp[— (mx) ] (6.17)

Uuwidth

Like Z. marina, Ulva is able to store nitrogen, thereforei@®mibo
et al. (1997a,b), introduced the tissue concentrationisfdlement (Nu)
as a separated state variable. Its dynamics can be expeessed

%J: (uptake — growth,)Nu (6.18)

The specific uptake rate of nitrogen depends on the chenaoal f
available and on the level Nu of nitrogen tissue concemmatiHence,
uptake can be written as

uptake = (uptakeS'H‘T+uptak§o§)fu(Nu) (6.19)
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Table 6.2. Parameters and computed guantities used in the Ulva manel$oli-
doro et al.|(199/a) and Solidoro et al. (1997h).

Parameters
computed Description Value
quantities
M ax Maximum specific growth 0.0167 1
gu(1) au(l) = |+I—K|u
K} Semisaturation constant for light 23%calnt2d 1
_ 1
92(T) %(T)= L+exf—{(T-Tu))
4 Temperature coefficient 0.2°c?t
Ty Temperature reference 12.5°C
g3(Nu) g3(NU) = Qrpe
N Umin Min.value forNquota 10.0mgN/gdw
N Ugrit Critical N quota level 7.0mgN/gdw
N Umax Max. value for N quota, uptake limitatio ~ 42.0mgN/gdw
kY Mortality rate 6.2.10 3h1
k! Mortality rate due to biomass 1.0n1
Umax Growth dependence on space availabil 0.01gdwlt
+
Vil Max. specific uptake rate for ammoniur 8.5mgNgdw?h—!
vnﬁ‘& Max. specific uptake rate for nitrate  0.45mgNgdw?h—!
+
o Half-saturation for ammonium 7.14mmol/m?
Ky Half-saturation for nitrate 3.57mmol/m?
whereas
+ + NH,;
uptakg ¢ = Vi INH, ]NH+ (6.20)
INH; ]+ K™
* * NO;
uptake > = Vit ING; ] — (6.21)
NO3 | +Ky
N —Nu
fo(NU) = —max (6.22)

Numax— N Unin
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Phytoplankton model

A simple phytoplankton module was in- 0 &
troduced in the model. The module, de—‘é'

veloped for Etang de Thau (France), has
been adapted from Plus et al. (2003). Phy= = = =~
toplankton will compete for nutrients in |
the water column and will have a shad-
owing effect less pronounced than that of~"

Ulva on benthic vegetation F'g“re 63 Phymp'a”kto” of
) winter-spring proliferation in the

d Catalan-Balearic sea. Photo:

at — (growthp —deathp)P  (6.23) MartaEstrada

The influence of the limiting factors on phytoplanton growths
described with a multiplicative formulation (Plus et aD03):

growthe = P < ha (1) x ha(T) x ha(N) (6.24)
whereas mortality is also described as a function of tenmpeya

deathp = mpe’’ (6.25)

As we do not explicitly consider zooplankton grazing exiglycthe
mortality function in this model has been changed accolginghyto-
plankton nutrient uptake can be expressed as a functioneofitrient
limitation expression and phytoplankton biomass as in Blu. (2003).
The functional forms of the phytoplankton growth model adlas the
main parameters are described in Tablé 6.3.

Dissolved inorganic nitrogen (DIN) model

To model the competition between Zostera and Ulva it is resogsto
include nutrient consumption. The nutrients included an®gen in the
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Table 6.3 Parameters and computed quantities used in the phytoplankbdel
from[Plus et al.[(2003).

Parameters
computed Description Value
qguantities
W ax Maximum specific growth 0.021h1
ha (1) hy(1) = (1—e7'/)
Ik Saturation constant for 620 1kcalnt?d 1
light
ha(T) h2(T) =€
€ Temperature Coefficient 0.07°C1
I a
(N i v, e
Kn Half-saturation constant 2.0mmolm3
for N limitation
1 Wroblewski inhibition 1.5m*mmolt
factor

mo Mortality rate aOC 1.15x10°%h~!
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oxidized and reduced forms. Furthermore, in shallow wabeliés, sed-
iments play a fundamental role in the nutrient dynamics antthis case
Zostera is able to uptake ammonium from sediments (CoffadoBncci,
1997). For these reasons, the dynamics of DIN in sedimergdban
introduced as well. The model, adapted from Chapelle (1,9€&) be
written as

(a) Dissolved Inorganic Nitrogen (DIN) in the water column

d[NO_] diffusion
3 . o NOg input out putn; ~—
— Nitrify,—uptaké® "3 ut_ PUN O
dt w—Up 1 Watervol +QN03 Q 3
(6.26)
d[NH+] diffusion
4 HF input out put
— %° = —Nitrif take 4 —
dt trif—uptake'™ + watervoI-I_QNHc;+ QNHI

(6.27)

Nitrification rates in the water column are functions of watm-
perature and oxygen concentration, and they can be exprasse

Nnitrifw = Knirexp(ke T)[NH;, ] (6.28)

[NO; ] uptake (nmolNnT3h~1) can be divided into Ulva, Zostera
and phytoplankton uptake:

uptakd'® = oy(uptake * +uptake 2)-+uptakg 2 (6.29)

whereas; is a conversion factor to pass from mgN to mmol[NH;]
uptake (imoINn3h~1) can also be divided into Ulva, Zostera and phy-
toplankton uptake:

+ + +
uptakd'Hi = a(uptake * +uptake' ) -+uptake ¢  (6.30)

At the interface between the water column and the inteabtitater,
diffusion is responsible for [NO-3 ] and [NH+4 ] fluxesiolNnT3h—1).
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These fluxes can be represented as

if fusion A . _

Qﬂéﬁ: = DNO—SZB([NOs]s—[NOS]) (6.31)
if fusion Al

Qa.:} = DNH;ZB([NHM]S—[NHI]) (6.32)

whereasDy are the sediment diffusion coefficientsfh—1), A the ex-
change area (@), z the distance between the centres of the water and
sediment layers, anflis the sediment layer porosity (Chapelle, 1995).

This DIN submodel behaves as a CSTR (Continuous Stirred Tank
Reactor), where the forcing is given by the fluxes of nutgefbr exam-
ple, for nitrate it can be written:

nput _ FINO3Jinitial

Qo, N (6.33)
FINO;]
output 3
Qo = v (6.34)

where F refers to the water flonm¢/h), V the total volume (in®) and
[NG; Jinitial is the initial concentration of nitrate that ensénto the sys-
tem. (b) DIN in the sediments

NG Qdiffusion
NOgls _ Nitrifs— Ndenit— — % (6.35)
dt interstvol
d[NH+] Qdiffusion
s , PENT TN _ONH
dt = (1—0gent)Ndenit—Nitrifs — uptake interstvol
(6.36)

Nitrification in the sedimentsa\itrifs, can be described as a first
order process in ammonium concentration at the sediment:

NInitri fs = Knit x f1(T)x F2(0) x [NH; ] (6.37)
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whereas nitrate reduction can be expressed as a first ol in ni-
trate concentration at the sediment:

Ndenit= kgenitx f1(T)x f3(0)x [NO;5]s (6.38)

Nitrogen mineralization has not been taken into accourtisyhodel.
Oxygen concentration is considered constant. The valupamimeters
taken form_Chapelle (1995) are summarized in Table 6.4.

6.2.2 Forcing functions and parameters

In all the runs, the model has been forced by imposing tennerand
solar radiation sinusoidal forcing, which have the follog/form:

. t—11474
T = Ar sm(Zn(W))nLTm (6.39)

| = A {sin <2n(%))> +l} +Im (6.40)

Parameters, amplitude and mean value, were adjusted usitegpm
rological data from several Mediterranean stations, louany case, their
influence is going to be analyzed.

Nutrient inputs and flows have been maintained constannguri
each simulation run. This is not typical under natural cbods where
nutrient loadings delivered to coastal systems undergsnsehvariations
due to rainfall regimes. In addition in the Mediterraneamele region,
nutrient loadings to coastal marine systems can attairt-$¢&ion peaks
following heavy rainfall events (Plus et!al., 2006). Furthere, oxy-
gen concentrations were set constant.8g8i 2 during all simulations,
whilst in transitional water ecosystems they undergo dailgl seasonal
variations from supersaturation to anoxia (Viaroli andi€tian, 20083).
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Table 6.4 Nutrient and sediment parameters, firom ChapElle (1995).

Parameterscomputed Description Value
guantities
Knit Nitrification rate at0°C 0.008H1
fl(T) fl(T) = exp{kTT]
kt Temperature increasing rate 0.07°C?
2(0) 12(0) = gtk
knito Half-saturation coefficient for © 4.0g/m?
limitation of nitrification
RUPC Ulva stoichiometric ratio 2.5mgP/gdw
QPS Photosynthetic ratio 15
RPHY Phytoplankton respiration rate at 2.083x 10~3h~!
0°C
W Stoichiometric ratio 145@0, /gdw
RPS Oz producedN 0.21290,/mmol
Dno Diffusion coefficient for nitrate in ~ 0.00072r? /h
the sediment
DnH Diffusion coefficient for 0.00072% /h
ammonium in the sediment
A Surface of computational cell 1n?
Zs Distance between the centre of 0.5Im
water cell and sediment layer
watervol Volume of the water cell 1m?
interstvol Interstitial water volume for a cell 0.008m3
Kgenit Denitrification rate at0°C 0.0125h1
f3(O) f3(0) =1 ﬁﬁ%
[O5] Oxygen concentration 8g/n
Kdenito Half-saturation coefficient for © 2.0g/m?
limitation of denitrification
Odenit Percentage of N denitrified intooN\ 0.6
f4(O) f4(0) = =22
Kmino Half-saturation coefficient for © 0.5g/m?

limitation of mineralization
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6.2.3 Assessment of mesocosm data

Mechanistic experiments dealing with phanerogams-mégaea phyto-
plankton competition were carried out using mesocosmsnouigrolled
conditions|(Nixon et all, 2001, Taylor et/al., 1999). In tiverk we have
re-assessed the mesocosms experiments reporied by Teglo(¥999).
In these experiments (five settings, each with two replecaBontrol, C,
Low, L, Medium, M, High, H and Very High, VH) enrichment withma

monium and phosphate at several levels was performed amitsresoni-
tored from April to September.

The following assumptions were made to simulate these exper
ments:

e Light intensity was assumed to be not a limiting factor foy an
the three taxa.

e Temperature was simulated using a sinusoidal functionBg.if6.39)
with T, = 10.5 andAt = 10.1°C, respectively.

¢ Dissolved inorganic phosphorous (DIP) was not considered.

¢ Dissolvedinorganic nitrogen (DIN) was equally partitidrizetween
nitrates and ammonium in the background concentration.

¢ Initial conditions of Zostera above-ground biomass wekernacon-
stant at 56dwn1 2 whereas the influence of initial conditions of
Ulva and phytoplankton was assessed.

e A constant flowF = 5.3 x 10-3m?h~! was assumed during all the
experiment, as well as a constant concentration input oateit
[INO3Jinput = 2.4mmolnt3 and ammoniumiNH + 4Jinput = 2.4,
20.6, 387, 75.1, 1480 mmolm 3, for the different experimental
conditions (C, L, M, H and VH).
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6.3 Results

6.3.1 Competition between Zostera and Ulva

The first set of simulations was run ex-j
cluding phytoplankton, to compare with
field observations for which no phy-
toplankton data were mentioned. AtE
low DINinput concentration$5mmolrrr3)

Zostera survives and Ulva disappears e
Figure[6.5). Figure 6.4. Rocks and sub-
(Fig ) merged algae in “Abrolhos”

(Brasil). Photo: André Luis
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Figure 6.5. Zostera biomasses Zs (shoot biomass, gdwm-2) and Zr (rleizoot
biomass, gdwm-2, in green); Ulva biomasses (gdwm-2); iatlemitrogen quotas;
DIN concentrationsN O3 : blue,NH, : green) in the water column and in the sed-
iments (pore water)F = 0.1m*h~1, and[NO~3Jinput = [NH, Jinput = S5mmolnr3
(low nutrient situation).
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In addition, due to the relatively
high flow of DIN into the system, nitrogen
is not completely depleted and the dynampe=s
ics in the water column and in the sedi-
ments are tightly coupled. However, there
is a certain transient period of few years '
before the limit cycle is reached, duringFigure 6.6. Agreen tlde in Brit-

tany, beach of Saint-Michel en
which both vegetation types coexist. Gréve/Saint Efflam (IFREMER),

The contrary effect, i.e. dominanceNorthern Brittany (France)
by Ulva, may be observed at high input DIN concentrations(B®InT 2,
see Figuré 6]7). Keeping high nutrient loads, Zostera uskppear after
a few years while Ulva will tend to prevail.

Zostera Marina Ulva sp
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n
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Figure 6.7. Zostera biomasse<Zs (shoot biomassgdwn2) and Z, (rhizome-
root biomassgdwnt 2, in green) Ulva biomassegdwnt?); internal nitrogen
quotas; DIN concentrationdNQO 2 : blue, NH™ : green) in the water column
and in the sediments (pore watelf) = 0.1meh- 1, and[NO; Jinput = [NH Jinput =
50mmolm 2 (high nutrient situation).
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Figure 6.8. Ulva annual mean biomasgdwni?) as a function of nitrate (x-
axis) and ammonium loads (y-axis) mmolh'l. Top: F = 0.1m*h~; bottom:
F =0.01m*h~1.
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Figure 6.9. Zostera annual mean biomaggl(vnr?) as a function of nitrate (x-
axis) and ammonium (y-axis) loads mmolh L. Top: F = 0.1m*h~; bottom:
F=0.01m*h1.



6.3. Results 121

In order to analyze the effects of DIN inputs in the Zostdddva
competition model, we have run the model for a set of flow ctowls
with the same forcing. Fids.6.8 ahd 6.9 present the resulterims of
average biomass over the year. Zostera dominates the segitimlow
DIN concentrations whereas the opposite applies to Ulvadtition, due
to the fact that in the Zostera model the rhizome-root is mgslto only
uptake ammonium (Bocci etlal., 1997), there is an asymmetrgerning
the effects ammonium and nitrate in the figures.

Zostera Marina
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Figure 6.10. Zostera biomassesZs (shoot biomassgdwm 2, blue) and Zr
(rhizome-root biomassgdwnt 2, green) and Ulva biomassegdwnt 2). Same
parameters as in Figure 6.5, but after the fifth year of sitrariahe temperature
forcing function increases by @°C.

Since we consider explicitly the DIN dynamics, the resudtgre-
sented in Fig5.618 and 6.9 will change as a function of the flowh 1),
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assuming the same initial concentrations of nutrientselyilat low flows
depletion of DIN may occur in the water column as well as ingbdi-
ments during the periods of maximum growth. This affectsdyramics
in the system and, consequently, the competition betweetnibitaxa. In
order to highlight these differences, we have plotted tiselts obtained
with 0.1 and 001m>h~1 flows.

To verify the sensitivity of the competition in relation thanges
in temperature, several simulations were set up, with theesaonditions
as in Figuré 6.5, but with average temperature increased @@ to 2C.
Results obtained for a temperature increase’Gfdfter the fifth year are
presented in Figure 6.110. In this case, the outcome is thesigpas in
Figure[6.5 with Ulva dominating the competition. Dynamicsldiming
of the regime shift are not a simple function of the temperaitcrease, as
shifts have been observed in all the temperature rangeigdtdepending
on the initial and forcing conditions.

The model was also run changing mean temperatures (Tm) and an
nual temperature?\{) ranges, Ed.(6.39). Results are presented in Figure
[6.11, showing that an increase of both parameters tends/¢o Eiva
growth, even in environments with low nutrient concentnasi.

Finally, the results of the model were analyzed as a funafdhe
incident light. A series of simulation were run by modifyitige average
light intensity (Im) and its annual range (Al), see EQ. _(§.4Brom the
results presented in Figure 6112 it can be inferred thatefass adapted
to narrower light ranges while Ulva seems able to cope wigh kariable
light regimes|(Dahlgreen and Kautsky, 2004). However gh&ga certain
realm of lighting conditions within which Zostera dominaven at high
DIN concentrations. All simulated results showed that ystesm was in
a transient and the final limit cycle was reached after a feavs/e
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(a) Zostera

(b) -
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Figure 6.11. Zostera and Ulva annual mean biomagdwm 2) as a function of
mean temperatures, Tm, and its amplitude of annual vania#d, for the low
nutrient regimeF = 0.1m*h~1 and[N O3 Jinput = [NH; Jinput = 5mmolm 3.
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Figure 6.12 Zostera and Ulva annual mean biomagdwm 2) as a function of
mean light intensity)m, and its amplitude of annual variatiod, , for the high
nutrient regimeF = 0.1m*h~1 and[N O3 Jinput = [NH, Jinput = 50mmolm 3,
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6.3.2 The influence of phytoplankton on competition be-
tween Zostera and Ulva

The partitioning of primary production among the differéemta was an-
alyzed under different set of conditions as a function of DMpNuts with
high F = 0.1m*h~1) and low flows F = 0.01m*h™1), see Figur& 6.13.
Overall, phytoplankton was able to compete with Ulva forriaumts in
the water column, thus favoring Zostera due to its lower ety ef-
fect. At high DIN loadings phytoplankton outcompeted botlivdJand
Zostera, thus becoming the dominant group. This is due logteer max-
imum growth rate (021h~1) compared to Ulva (@17h~1) and Zostera
(0.0025h~1) when no nutrient, temperature or light limitation exists.

6.3.3 Assessment of mesocosm experiments

The model has been used to simulate the mesocosm experimaiots

tested competition between Z. marina, Ulva lactuca andgphghkton

under several nutrient enrichment conditions (Nixon e€t2001, Taylor

et al.,.1999). The authors concluded that no significantetiéloading

could be detected for Z. marina, epiphytic material, driiamoalgae or
for all plant components combined. This contradictory lesould be

due to several reasons; therefore in this work we have toi@dsess two:
sensitivity to initial conditions and transient behavior.

Concerning the sensitivity to initial conditions, resutgained from
two identical runs imitating the mesocosm experimentsyhilt different
initial biomass of Ulva and phytoplankton are reported igsHi6.14 and
[6.15, as an example. In the first case, Zostera biomasseagett steadily
with nutrient enrichment, from C to M and decreased from M ¥Rt In
parallel, Ulva and phytoplankton increased with nutriemi@hment from
C to VH (Figurel6.14). However, in the second case (Fiqur&)6 dven
though Ulva and phytoplankton behaved in a similar way bth delayed
dynamics and with different values, Zostera showed a diffebehavior
with higher biomasses at higher concentrations.
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6.4 Discussion

The simulated results from the competition between ZosteddUIva are
in agreement with field observations. For example, DIN cotregions
around~ 5 mmol m® are typical from Etang de Thau (France), which
is covered by Zostera meadows; whereas high DIN concemsati 50
mmolm? have occurred during some years in Sacca di Goro (ltaly)hvhi
is dominated by Ulva. Similar observations have also beported by
Nelson (2003) with Ulva starting to appear at DIN concerdrat higher
than 18.0mmolm.3. However, the regime shift would be moneiato
since, with such high Ulva biomasses, Zostera would disappet only
due to nutrient competition, but also due to alteration afireent bio-
geochemistry (Holmer et al., 2003) and anoxic crises tnggeff by the
biomass decomposition (Zaldivar et al., 2003).

Biomasses and UlvaZostera competition are more correlated with
DIN loads than with mean DIN concentrations, since with higbwth
rates nutrients become depleted. This is one of the reasbgdiald
observations are difficult to use for defining a regime shaftie.

Simulation outcomes evidenced that system responses téoatN
ings are complex depending on multiple parameters. For pkaren-
vironmental conditions, such as temperature and lighnhsitg, seem to
play an important role in controlling the competition beemédenthic and
pelagic species. Therefore, attempts to develop a simglentscale
for detecting regime shift in benthic vegetation seems wssible. This
is probably one of the reasons why experimental obsen&atod meso-
cosm data do not provide a clear threshold/range of valuesefpme
shifts.

The results of simulations considering the influence of terafure
and light intensity can be informative on climatic conditsoand depths
at which Zostera is able to grow when competing with Ulva bgvj-
ing plausible values at which regime shifts will occur. Th@wgations
can also help the debate on how changes in incident lightdrsipe and
intensity would affect the benthic vegetation.
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The simulation of mesocosm experiments highlighted treabtbdel
of benthic vegetation is very sensitivity to initial (biosgconcentra-
tions) and operating (temperature, light intensity, DINV&) conditions.
Such result is in agreement with high variability detectedata, where
biomasses differed by a factor of two between the experiategplicates
(Taylor et al.,. 1999). In addition, transient regimes lastder (years)
than the duration of the experiments (months); therefesylts could be
not adequate to demonstrate the effects of nutrient ensahion plant
competition. Differences could be amplified by manipulasice.g. when
setting mesocosms with sediment transfer and phanerogansptant-

ing.

6.5 Conclusions

In this work a competition model has been developed with timecd an-
alyzing the succession of primary producer communitieastal shal-
low ecosystems and identifying possible nutrient thredd@thich cause
shifts between alternative stable states.

The integrated model is able to simulate succession of damei
states, with different resilience characteristics aceogyavith the concep-
tual scheme that sees floating macroalgae as the optimaletibonp for
light, and submerged phanerogams as most efficient in reogvand
storing nutrients from the sediments and from the watenaluT he shift
from phanerogams to macrolgae, and finally to phytoplandtominated
communities, conformed to the general theory of successi@moastal
lagoons|(Viaroli et al., 2008). Field observations suppioetview that in
nutrient poor ecosystems, rizophytes dominate until threynat limited
by light penetration (depth effect) or by turbidity and simadby floating
vegetation and phytoplanktan (Dahlgreen and Kautsky, pd@4reasing
loading rates support the development of macroalgae, thdé loaded
water masses become dominated by phytoplankton.

Regime shifts are found when changing the input of nutridmis
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also, model simulations were sensitive to environmentaihg: temper-
ature and light.

Overall, model runs evidenced a clear tendency towarddtrsim
seagrass to macroalgae under increasing temperature®veow is ex-
pected that the occurrence and severity of the shifts wiliteespecific
depending on local conditions and past history. These teepoint out
that one of the possible outcomes of an average air temperatrease
will be the increase in macroalgae and decrease in bentigietaton.
However, the results of the analysis of a competition modehben two
species are not sufficient to sustain this point.

The model shows a high sensitivity to initial conditions aallvas
to forcing parameters, but this effect is also observed isagoem exper-
iments (Taylor et all, 1999). Furthermore, model simulaishow that,
when initial conditions do not correspond to steady statelitmns, sea-
grasses communities require time periods to attain stetadg, svhich
usually are longer than the duration of the mesocosm expetsnIn ad-
dition, ecosystems, as other nonlinear dynamical systanessensitive
to initial conditions and even a small difference may drive system to
a completely different position in state space after a cettene (Pahl-
Wostl,[1995). Our results suggest that this is probably thémeason
behind the high variability found by Taylor et al. (1999) hetr exper-
iments, which did not allow finding a clear correlation beéwenutrient
increase and regime shifts.

In its present form, the model does not take into considamnaev-
eral important aspects such as hydrodynamics, bufferipgaty (de Wit
et al.,[ 2001, Viaroli et al!, 2008), salinity, organic netrt, oxygen, zoo-
plankton and bacteria as well as interactions between Uidaaguacul-
ture activities. In order to develop a more realistic agsesd of regime
shifts in terms of range of concentrations and temperatuesplan to
consider a real case study in which the studied taxa coekidure ef-
forts will aim to implement the competition model using a 3dio-
dynamic approach such as COHERENS (Luyten et al.,'1999) fiauT
lagoon (France).
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Patterns in Savannas
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Savanna-Fire Model

7.1 Introduction

Savanna ecosystems are characterized by the robust eredsif trees
and grass. The mechanisms allowing for the persistencetbftyypes of
plants, despite their obvious competition, and governivggopulation
dynamics and spatial arrangement of savanna trees are/ poakérstood
(Bond, 2008, Scholes and Archer, 1997). Of the many potethtingng
mechanisms investigated, local-scale interactions anti®s have re-
ceived increasing attention in recent years (Barot et 891 Calabrese
et al.,[2010. Mever et al., 2008, 2007a.b. Scanlon et al.7 20fegand
et al.,.2006).

Such tree-tree interactions can roughly be divided intodlasses:
facilitative and competitive. Facilitation among treesrpotes tree clus-
tering and may be mediated by a variety of mechanisms. Amloesget
are dispersal limitation, improvement of local resourcaditons, and
protection from fire[(Belskv et al., 1989, Calabrese et &11.(R Hochberg
et al., 1994, Holda, 2005, Scanlon et al., 2007). Alterreyivcompeti-
tion among trees for water, nutrients, and light may alleviae tree-grass
competition, favoring their coexistence, and tends to mienseparation
among trees (Barot etlal., 1999, Calabreselet al., 2010, \Mé¢gé, 2008).

There is evidence for both classes of interactions in thargaa lit-
erature; sometimes coming from the same region. For exarspleral
studies have found evidence consistent with competitichénKalahari
(Jeltsch et al., 1999, Mevyer et al., 2008, Moustakas et 80622008,
Skarpe| 1991), while others have found evidence suggeftailgation
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(Caylor et al.| 2003, Scanlon et/al., 2007). Indeed, one ekty diffi-
culties in understanding the forces structuring savareegopulations is
that both classes of local-scale interactions often ocogether and it is
not obvious whether the net effect of local interactions lagl positive or
negative/(Bonad, 2008).

Further studies, both empirical and theoretical, are ne¢oddet-
ter understand the interplay between the opposing forceecifically,
studies that focus on a limited number of processes anditfteractions
should help illuminate the conditions under which positv@egative lo-
cal interactions structure savanna tree populations. dvsssiannas that
receive~ 400— 800 mm of mean annual precipitation (MAP) are par-
ticularly interesting because there is evidence from swystess that,
in addition to local-scale interactions, fire plays also partant role.
(Bucini_ and Hanan, 2007, Sankaran et al., 2005). Both ofetli@stors
can act strongly on juvenile trees and can contribute to aodeaphic
bottleneck through which juvenile trees must pass to réetd the adult
population.

In contrast to forest tree species, savannatrees are oftesfire re-
sistant,|(Hoffmann et al., 2003), thus savanna fires badgioatn the grass
layer and the young trees included in it, leaving adult tee®, affect-
ing only tree recruitment and not adult survival (Gignowakt 199'75].
Recent studies highlighting the importance of tree contipatiand fire
on savannas are Calabrese et/al. (2010), D’Odorico et &6{2&Hanan
et al. (2008), Higgins et al. (2000), Mevyer et al. (2008), Idi@kas et al.
(2006, 2008), from which we might expect a kind of tug of watwmeen
these forces, the outcome of which affects both the tressgralance of
the savanna and the spatial arrangement of adult trees.

1See Box 1.
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Box 1. Fire : disturbance or disaster?

From human point of view, a
wildfire is a disaster that can
wreak havoc and shake the
sense of security and economic
well-being. In nature, how-
ever, there are no disasters
only disturbances. Fire sets in
motion a cycle of death, decay,
and re-birth that is vital to all
ecosystems.

Fire can also prepare seedbeds
for germination by burning
leaf litter. Some seeds require
mineral soil for germination,
and fire can release nutrients in
the soil and make them avail- Figure 7.1. Fire in the savanna grass-
able for sprouting plants. Like- lands of Kruger National Park, South
wise, fire can remove overstory Africa, September 1992. Photo: J. S.
plant material permitting sun- L€vine, NASA

light to bathe the lower plant strata. In fact, naturally wting fires
are essential for the survival of many plant species. Traeb as the
jack pine actually depend on heat from fire to break open #wsds for
germination.

Regarding savanna, fire has an important role on its dynanmien-
tenance and evolution. Tree resistance to fire dependsyangethe
presence of morphological traits that protects criticgduies and on the
food reserves for successful recovery. But the regulafisasanna fire,
the low flame height, and the short time of exposure to flame gilult
trees other possibilities of resistance. Species in fiogegprecosystems
exhibit a diversity of adaptations to burning, such as lagéohydrate
reserves and thick bark. The differences in fire-relatetstraay largely
explain the greater capacity of savanna species to pendiseisavanna
environment.
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The role of fire in mesic savannas is two-fold. On the one hand,
provides an indirect way for grass to compete against trdeshigher
recovery rates of grasses compared to juvenile trees maks tre dom-
inant form of vegetation shortly after a fire has destroyethb®n the
other hand, several studies have suggested that adultda@eprotect
vulnerable juveniles from fire, thus increasing their cleanof survival
(Hochberg et all, 1994, Holdo, 2005). Exactly how such mtide works
has not been intensively studied. However, given the fregoecurrence
of fires in many savannas, it seems likely that the proteatitect may
be one of the most common forms of positive facilitation agpeavanna
trees, and the dominance of grass after fire could be as iangas tree-
tree competition in restricting the amount of tree-covethim savanna.

Recently, Calabrese etlal. (2010) studied the interacteiwéden
competition and fire in a highly simplified savanna model. yT flieowed
that these two forces interact non-linearly with sometiswagrising con-
sequences for tree population density and spatial pattéowever, be-
cause Calabrese et al. (2010) treated fire in a non-spagigtilycit man-
ner, only the negative impact on trees, and not the proteetifect, was
included and thus could not fully tease apart how these astitig local
interactions function in combination.

Here, we focus on a spatially explicit lattice model of sanatree
and grass population dynamics under the influence of cotigretnd
fire. The model is an extension of the semi-spatial modelstuoy Cal-
abrese et all (2010). Importantly, both competition anddne explicit
spatial processes in the new model. This allows us to stugygtty how
adult trees influence the survival probabilities of neatbyepiles. Com-
petition was treated the same way as in Calabrese| et al. )\ 20t0fire
was implemented in a similar manner as in the Drossel-Schir@iest
Fire Models (Bak and Chen, 1990, Drossel and Schwabl, 1992)ur
model, however, grasses and juvenile trees are the flamrobJdets, in
contrast to adult trees being flammable in the original DebSshwabl
model. We highlight the ranges of conditions under whichalanter-
actions result in net positive and net negative influencegiegnile tree
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survival, and we demonstrate how these local interactiffiestahe spa-
tial structure of adult tree populations.

In this Chapter, after this introduction, we briefly deserthe mod-
eling ideas behind explicit fire models (Sett.17.2), and tf&ec.[7.8),
after reviewing the previous model by Calabrese et al. (2046 intro-
duce our new Savanna-Fire model. In Sects| 7.4and 7.5 weloe e
effect of fire on the tree-grass balance and in the charattdeceffec-
tive tree-tree interactions, respectively. We concludé waidescription of
tree patterns and tree cluster statistics (Sect. 7.6). Anfsamncloses the
chapter.

7.2 Spatially explicit fire models

In 1990 Bak and Chen introduced a toy model to demonstraterties-
gence of scaling and fractal energy dissipation. Two yestes IDrossel
and Schwabl made an extension of this model by introducingpdning
parameterf. This is the forest fire model we adapted in order to im-
plement the fire spread in savanna. This model is one of theshas-
ied models of non-conservative self-organized critigglBak and Chen,
1990, Clar et al., 1999, 1996, Drossel and Schwabl, |1992ssbeager
and Kantz, 1991, Schenk et al., 2000) and has four simpls.riilee first
three are the same as in the Per Bak and Chen model and theifodue

to the lightning parameter introduced by Drossel and Schwab

The forest fire model is a probabilistic cellular automatedfirted
on ad-dimensional hypercubic lattice &f sites, initialized with a com-
bination of burning trees and green trees, and updated htteae-step
with the following rules: (i) A burning tree becomes an emgite. (ii) A
green tree becomes a burning tree if at least one of its rnes&ghbors
Is burning. Some immunity can be introduced in this rule hsd & green
tree becomes a burning tree with probability L (Clar et al.| 1996). (iii)
At an empty site a tree grows with probabilipy (iv) Trees in the lat-
tice spontaneously (i.e., without the need of a burning m=ag) become
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burning trees with probability. This model is very rich in behavior, and
depending on the parametdrandp it displays spiral-like shapes, critical
states and phase transitions.

7.3 Savanna-Fire Model (SFM)

Our model is run in a square lattice with periodic boundamditions.
We use a lateral size &f= 200 sites, so that there ae= L x L = 4 1¢*
lattice sites in the simulation domain, each site represargquare of 5
meters side size. In the previous savanna model (SM) of @zdalet al.
(2010) each site in the lattice could be in one of these twigstagrass
occupied or tree occupied.

In the Savanna-Fire model (SFM) introduced here, a combimat
between the previous SM and the Drossel-Schwabl Forestriadel
presented in the previous section is made, but the flammaaterials
being grass and juvenile trees which are the predominaetsstasavan-
nas (Gignoux et al., 1997, Hoffmann et al., 2003), insteaith®trees of
the Drossel-Schwabl Forest Fire model. In this way the firadtuded
in a explicit way being a possible state in the dynamics. Sotsaility to
fire leads to distinguish between adult trees and juvergkestrbeing only
the later flammable. In this way in addition to the two stateSM, grass
and adult trees, three more states are considered in SFMatedch site
on the lattice can be in one of the following five states:

Grass (G)

Juvenile Tree (JT)

Adult Tree (AT)

Burning (B)

Ashes (A)
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We distinguish two sets of neigh-
bors for each lattice site (see Figlirel7.2):
the near neighborhood consists of the
sites sharing an edge or a corner with
the central one (Moore neighborhood).
We assume this is the spatial scale at
which there is direct competition effects _
between trees, as well as direct ianuencEIgure 7.2 Spreading seeds

. . ) fom a central adult tree could
for fire pro.pagatlon. The‘ar nelghbor- reach both thenear(light gray)
hood consists of the sites sharing edgesd far (dark grey) neighbor-
or corners with therearones, and will be hoods of that central site. Spread-
assumed to be the farther sites to whicfy9 of fire and tree-tree com-

) petition occurs only within the

We note that fire propagation is a°ore neighborhood (sites shar-
ing edges or corners) is used.

process much faster (the spread rate may

be around 2 m/s, see Cheney and Gould (1995)), than the hyguiakes

for growth, reproduction, death, and the rest of ecologicaéscales for

both trees and grass. Thus we implement the burning procetspoof

the previous savanna model Calabrese ket al. (2010), bugamti a faster

scale. More specifically, at each model time step, time ath&in an

amount ofAt = 0.1 years, and the whole lattice is scanned in parallel to

check for one of the following updates:

1. Growth: A random number is drawn for each site occupied by a
juvenile tree so that with probabilitgAt it becomes an adult tree.
Thusa ! is the mean time for a juvenile tree to become adult.

2. Reproduction and establishment: Each adult tree in thedaends
seeds, with probabilit3At /24, to each of the 24 sites pertaining
to its nearand far neighborhood (see Fid. 7.2). If the seed lands
on a site in a state which is not G nor A, then nothing happens
(establishment fails). If instead a site occupied by grasshbes is
reached a juvenile tree is established.

3. Competition: there is a probabilii: that a juvenile tree survives
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from competing adult trees neighbors. This probability wfvs/al
due to competitior. depends only on the competition exerted by
neighboring adult treed®, = e %, whered is the competition pa-
rameter andz is the number of adult trees in theearneighbor-
hood.

Death: A random number is drawn for each site occupied by an
adult tree, so that with probabilityAt this tree dies. Thua~!is

the lifetime of adult trees. This mortality could be sportans or
originated by external agents (e.g. harvesting).

Recovery: At each time step, each ash site may recovegiags
with probability pAt, so thatp~ is the mean recovery time of grass
from ashes. Note that this forces a delay between succeggsve
fronts, thus difficulting all the lattice to be burnt out ameds com-
pletely disappearing giving place to grassland formation.

. Spontaneous burning: There is a “lightning parametgrso that

fire appears spontaneously on the lattice with this ratectifg

grass and juvenile trees. More explicitly, lattice sitesugued by
G and JT are checked so that with probabifiy¢t /N they become
burning sites.

. Fire propagation and extinction: After updating withtak above

processes, a new pass through the lattice is done, so thahié s
fire has been introduced in the previous step, fire propagagio
simulated until complete extinction. It is assumed that griocess
is fast and occurs at small time steps, much smaller thahttke
0.1 years introduced above. Itis implemented in the followiay:

a) Each G and JT site is checked and if at least one site imeigs
neighborhood is in the B state, the site also burns with proba
bility P,. This models fire propagation on grass and juvenile
trees. We will use a constant ignition probabilly=1—1,



7.3. Savanna-Fire Model (SFM) 149

with | animmunity parameter reducing from unity the proba-
bility of burning by contact, thus giving some stochastimeo
ponent to the fire propagation process. Note that, since adul
trees do not burn, fire has less chances to reach JT (and G)
sites which are surrounded by some adult trees. In this way
the inclusion of fire in a explicit way implements the protec-
tion effect from adult trees.

b) End of burning: All sites that were burning before entering t
previous step (a) are set to ashes.

Processes a) and b) are repeated until there are no remauning
ing sites. Then time advancesAhand the algorithm repeats again
from step (1) on the updated lattice.

Table 7.1 Parameters

Parameters Units
a mortality rate 0.10r0.2year?
b sent offspring constant rat 1 year!
0 competition coefficient vary
f lightning parameter 0.2-1year?
a growth rate 0.2 year?!
p recovery rate 4year?
I Immunity 0.3

The parameters used (see tablé 7.1) are based in the one€#étem
abrese et al. (2010), but with a few modifications. The patante,
death of adult trees, anfl, lightning parameter, were changed accord-
ing tolHanan et all (2008, p 852) and Gignoux €t al. (1997, p.55v
mesic savannas fire frequency is about once per year or eweEneach
three years. The growth rai®,was changed according to Hochberg et al.
(1994, p 219), so that a tree takes on average 5 years to hega t
produce (i.e. this is the mean time a juvenile tree becoma# atter
seedling).

We note that the main facilitative interaction, the dispeos seeds
from adults to promote new trees, occurs at the spatial sfalee first
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and second neighborhood, whereas the main competitiveadnés dif-

ficulting the development and juveniles, occurs at shorigadces, the
first neighborhood. This is exactly the opposite situatisriree one be-
lieved to occur in nutrient-poor arid savannas and otherednsystems,
namely short distance facilitation by local improvemenhomidity, and

long range competition among trees mediated by long surnfaots.

In this last case, tree patterns are expected to be neaitydpein space
(Rietkerk et al., 2004, Rietkerk and van de Koppel, 2008)r Shwation

IS more appropriate for mesic savannas, and would tend togi®tree
clustering. But the occurrence of fire may alter the naturthefinterac-
tions in a variety of ways, which we investigate in the follog.

7.4 The tree-grass balance and phase transi-
tion

As expected, stronger tree-tree competition displacesdlegrass coex-

istence towards the grass side (Figuréd 7.3, left). The mwdslrun for

3000 years until an asymptotic state was reached in whichesfenmed

the measurements described in Figuré 7.3. Simulations pexfermed
to determine under what conditions we have a transition fawannas to

grassland.
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Figure 7.3. Density of adult trees (i.e., the number of adult trees didithy the
total number of lattice sites) versus competitionléft graph) and versus lightning
(f, right graph). Average over 500 snapshots in the long-tisyengtotic state.
Parameters in Table 7.1 bat= 0.1 and in the right grapb= 0.01.
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In the previous study by Calabrese et al. (2010), howevexiso
tence was observed even for high competition. This is alemtlicome
in our SFM for small fire ratef (see Figuré 713). For largdr, however,
competition could drive tree extinction, which did not heppn the Cal-
abrese et al. (2010) model. The lightning frequericturns out to be
the parameter most easily driving this savanna-grasstangition: The
right part of Figuré 73 shows a phase transition towardssimad by tree
extinction by increasingd.

The indirect effect of fire on the tree-grass balance occecailise
increasing fire destroys grass and juvenile trees, but thesasill be re-
placed soon by grass, which grows faster. For frequent fisentbuld re-
sultin lack of tree renewal and finally in tree extinction.i§ mechanism
and the subsequent extinction was somehow built-up in theitien of
the fire parameter of the previous model by Calabrese et@L0j2 Here
the mechanism appears as a consequence of the explicinpeeskfire.

In Figure[7.8 we can see that the transition from the coaxigtestate to
grassland driven by increasirigs favored by larger grass recovery rates.
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Figure 7.4. Density of adult trees (i.e., the number of adult trees didithy the
total number of lattice sites) versus adult tree mortality. (Parametersb = 1,
a=0.2,1=03,p=4,f=0.33.

A smooth transition forest-savanna is also present in thaei(&ig-
ure[7.4). Tree cover increases when adult tree life spaeases (i.e. de-
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creasinga value). However, when using reasonable values for tree mor-
tality in savannas, the region of parameters in which fa&sge is reached

is strongly reduced and basically only the savanna-gnadgiansition

can be found.

7.5 Positive and negative effects of surround-
ing adult trees on juvenile’s: Protection and
competition

In addition to affecting the tree-grass competition, fire &lso an indirect
effect on tree-tree interactions. In fact, it introduces plositive effect of
juvenile-tree protection by surrounding adult trees. ldeorto analyze
this effect in detail we run simulations in which only the f@pagation
process (6) above occurs. The lattice is initialized fuliyfvgrass except
for one unique site occupied by a juvenile tree, and a numbeadolt
trees, from 1 to 8, occupying random positions in the Moorightzor-
hood of the chosen JT. Once with this initial condition, oparkling is
allowed so that a lattice site chosen randomly among theeS b#comes
burning and fire begins to propagate. Step (6) in the SFM #lgoris
repeated until fire disappears.

Juvenile trees sufficiently protected by adult trees witllmarn. An
example is seen in Figure 7.5, where the pass of a fire frorst wloeaffect
a juvenile protected by five adult trees.

The effect has been quantified by repeating this burningopodt
1000 times for each number of AT neighbors, from 1 to 8. Theldipay
site and the position of the surrounding neighbors is changdahese
realizations. The resulting survival probability(z;) is shown in Figure
[7.8. The protective effect of an increasing number of ATdéaity seen
when the immunity parameter is not too small. For very sinaibtection
is only effective when the juvenile is completely surrouthdg adults, i.e.
Z1 = 8.
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20 22 2 26 28
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Figure 7.5. Protection effect: Selected snapshots from an exampldasiim with
5 adult trees (blue) surrounding a juvenile (green). Imrtyuparametet = 0.3.
Time runs from left to right and then from the upper to the lowsv. A fire front
(red) advances downwards, converting grass (yellow) isteea (white), but the
juvenile survives. Only a 18 10 area of the whole 200 200 lattice is shown.

In order to better quantify the impact of this protectiveeeffon the
survival of juveniles and recruitment into adults, we estiennow how
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the number of adult treeg in the near neighborhood of a site affects
a ‘recruiting probability’P, (z,), defined as the probability that a grass
or ash site becomes successfully colonized by a tree seadydugiven
time-step, in such a way that the resulting JT would survivecessive
fires and become adult. This probability is a product of ssvactors.

T
0.8}
0.6¢
0.4} J

0.2} /

o

00f

01 2 3 4 5 6 7 8 9
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Figure 7.6. The protection effect: The probabilify; (z1) of a juvenile surviving
one fire as a function of the number of surrounding adult tieets first neigh-
borhood. This probability has been obtained from 1000 zatibns of the process
in which fire is initiated at one grass site, as describedéntéit, using immunity
| =0.3.

First, the grass or ash site should receive in that time stegssfrom
the adult trees in the near or in the far neighborhood (thebmuraf adult
trees there ig; € (0,8) andz € (0,16), respectively). This is given by
ps(z1,22) = 1— (1— BAt/24)2"%. Then, the seed, turned on a juvenile
tree, should survive competition at successive time stépshns given
by the factoP. = exp(—dz;). Sincea? is the growth time from juvenile
to adult treeaAt 1 time steps occur during the growth, and é*ﬁ%) is
the total survival factor to adulthood under competition.

Finally, the growing JT should resist the first and succesBres
occurring during its growing tima~1. The survival to a single fire is the
function p¢(z1) numerically calculated and shown in Figlrel7.6 for the
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case in which the considered site is surrounded jugj bgees in the near
neighborhood (i.ez; = 0).

An estimation of the survival probability to successivedjrerhich
neglects any correlations arising from successive firetéramd from
the lattice configuration beyond the immediate neighbodsomould be
p(z1)7/3, sincef /ais the expected number of fires suffered by the JT
during its growing timea—. The probabilityps(z;,z;) depends on the
number of AT both in the near and in the far neighborhood. eoists-
tence with the calculation gbs (z1) we will takez, = 0. This (as in the
case ofps(z1)) will underestimate the probability of establishment,-sur
vival and recruitment, as the trees in the far neighborhaoaal compete
with the central one. In this way we will obtain an estimatadrthe re-
cruitment probability? (z1) which would be smaller than the exact one.
Thus, if this function shows positive effects of surrourgadult trees (as
it will do), the result has an enhanced value, since it isiabthin aworst
casesituation.

Summarizing all the factors above, with = 0, our estimation of
the recruitment probability of a grass site surrounded;gdult trees is

iz~ [1- (153 ) |e Hra? (7.1)

This is plotted in Figuré 717, and reveals both the positive #ne
negative effects of the presence of neighboring trees @auember that
the positive effects are underestimated). For medium galfithe compe-
tition parameter and above four neighboring adult treegptsitive pro-
tective effect of fire (in combination with local dispersal)jercomes the
negative effect of direct competition, but for high valuésompetition
the negative effect predominates. For frequent fire, howehe protec-
tion effect is no longer effective.
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Figure 7.7. Estimation of the recruiting probabilit; (z1), as a function of the
number of adult treeg; in the near neighborhood, from Ed._(I7.1), showing the
positive and negative effects of these neighbors. (a) anid-40.3, f = 0.33/year
(triennial fire). (c)l = 0.3, f = 1/year(annual fire).
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7.6 Clustering patterns

7.6.1 Spatial pattern under different fire scenarios

We characterize spatial patterns of adult trees by the paielation func-
tion, g(r):

PAA(r)

g(r) AL (7.2)
Paa Is the proportion of pairs of adult trees at a distanaeith respect
to the total number of pairs of sites at that distance, andié#m®minator
is the expected value of this ratio under a random distioutvith the
density of the adult treega. At large distances(r) is expected to ap-
proach 1, as correlations indicating a departure from randistribution
would decay. For short distancegr) characterizes how the particles are
packed together (see Dieckmann etlal., 2001, chap. 14)ewvdligher
than 1 indicating a proportion of pairs at that distance tgrethan in the
random case, and a smaller proportion indicated by valugssohaller
than 1. We will not use the Euclidean distance ifdout instead we will
measureg in number of cell layers so that{1) andg(2) will denote the
pair correlation function for the first and for the second Mooeighbor-
hood, respectively.

Comparison of Figure 7.8 with the results of Calabrese ¢2allL0)
shows that all the patterns found in the SM model are predsotere.
In that case the patterns can be understood from the facthibed is di-
rect competition only between nearest neighbors, whehesfatilitation
effect of local seed dispersal reaches first and second lm&ighin con-
sequence, all these patterns have an enhanced probab#ifysdaving
other ATs as second neighbors (far Moore neighborhoodgeas By the
high value ofg(2). As in/Calabrese et al. (2010), two types of configu-
rations are distinguished by having a valueggtf) smaller or larger than
1, i.e. smaller or larger proportion of ATs in the near neigtiimod than
the one expected from a random distribution. The balancedsst posi-
tive and negative tree-tree interaction effects deteraiinese values. The
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Figure 7.8. Patterns in the SFM. Parameters as in Table 1@ad4.0,d = 0.02.
Regular casef = 0.10. Clumped case:.60. The central panel shows an interme-
diate state { = 0.24) in whichg(1) = 1, which indicates the same number of AT
near pairs as in a random case.

casgy(1) < 1is aregularcase in which trees appear more regularly spaced
than in the random case. The cagé) > 0 is aclumped staten which,
although the density of near-neighbor pairs is still snal@n the one

of far-neighbor pairs, it is larger than in the random cadee Tansition
between the two states, that in the SM model was ruled by trepeter

o (representing the probability of surviving fire), is herdateined by
the explicit fire parametef.

In the clumped patterns just described, plotted in Figu® the
clusters areopenin the sense that there are more neighbors in the far
neighborhood than in the near neighborhood. This a cleactedf the
competition existing in the near neighborhood, and was tthedumped
state present in the previous SM model. The novelty hereais th ad-
dition, there is a second type of clustered state not prdasetiite SM
model. A clumped state made dbsedclusters is shown in Figute 7]10.
The clusters are closed in the sense that there are more ghbwes in
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Figure 7.9. Savanna configuration in the clumped state at paramater$.2,
b=1,a=0.2andl =0.3,0=0.02,p=4, f =0.55 and an example of open cluster
of ATs, the typical configuration here. The right panel shoes pair correlation
function for this and similar parameters, similar to the anthe SM model in the
clumped state. The yellow represents grass state, greguvitrgle tree state and
blue the adult tree state.

the near neighborhood than in the far neighborhood. Thesptsitive
effect of fire protection (and local dispersion) has cormgljebvercome
the competition effect occurring in the near neighborhddtk transition
from one type of pattern to the other occurs when changingdinepe-
tition or the lightning parameters,and f, as shown in Figure 7.11 and
[7.12.

7.6.2 Cluster size distributions

A cluster is a group of neighbor sites occupied by the same tfveg-

etation (e.g. adult trees). The distribution of clusteesiis a powerful
indicator of the different mechanisms occurring in ecaosys{Pascual
and Guichard, 2005, Pascual et al., 2002). The distribstadrsizes of
adult-tree clusters in regions of southern Africa have hegastigated
by Scanlon et al. (2007), finding that in most cases a powelffitacan

describe the data (although the fit was not of uniform qugli§canion
et al. (2007) showed that resource constraints, togettiepaesitive local
interactions of the type identified in the previous sectmoyld generate
cluster size distributions similar to the observed ones.
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Figure 7.10. Savanna configurationin the clumped state at paramete3.2,b =
1,a=0.2andl =0.3,6=0.008,p=4, f =0.65 and an example of closed cluster
of ATs, the typical configuration here. The right panel shoes pair correlation
function for this and similar parameter, which is differ¢éatthe one in the SM
model in the clumped state because the maximum(iof occurs ar = 1, i.e. in
the near neighborhood. Colors are the same as in Higure 7.9.

Figure[7.18 shows the cumulative adult-tree cluster sis&ribu-
tions from our model. The Moore neighborhood has been usddfine
clusters. It is seen that, although the distributions havesils (and even
plateaux at large sizes, see the snfatlirves in Fig[ 7.13), a single power
law does not provide a good description except in particoplaameter
ranges. One of such cases in which cluster size distribfitow a rel-
atively good power law is seen in Fig. 7113 fatv 0.9. Inspection of
the tree distributions above and below such value indidht®sa perco-
lation transition occurs precisely at that point: there giant adult-tree
cluster spanning the whole area for smaller lightning, ared gliscon-
nected tree patches for higher values. Power-law clussgnillitions are
observed close to the percolation transition. Then, pdawrbehavior
in our model seems to be associated to pleecolationrmechanism dis-
cussed in Pascual and Guichard (2005), although in a pagana@ige not
as broad as suggested there. The reason is not difficult &rstadid: tree
cover in Fig. [7.1B is just of 0.4 fof ~ 0.9, and can not be increased
much more (see Fi@. 4.3, right panel), which makes difficuéttain per-
colation through the whole lattice because of the absencernyflarge
clusters. By atrtificially changing parameters, in paréecukeducing tree
mortality (see Fig. alfadensity), larger tree densitiesldde achieved
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Figure 7.11 Values of the pair correlation function for near neighboirpg(1)
and for far neighborg(2). Left graph: Parameterst =0.2,b=1,a=0.2 and

| =0.3,p=4.0, f =0.33. Closed clusters occur for< 0.0014 and open ones for
0> 0.0014. The second graph corresponds the same as in the ldftibfoe fixed

0 = 0.003 and varying lightning parametér

which makes easier to cross a percolation transition whewvingahe

remaining parameters. In such situations, we observe mbrest power-
law behavior (not shown), but the system is then closer ta@sfadhan

to a realistic savanna. We do not find systematic correldi&giween the
small-scale character of the tree patterns (regular, ohaingpen, closed,
...) and the type of cluster-size distributions, despite oauld expect
that positive short-range correlations would favor poveers (Scanlon
et al.,.2007). This can be explained because in our modeaigtrgosi-

tive correlations are generally associated to lower tegsiies (compare
Figs.[7.11 witH 7.9) which are far from the percolation pgaintce large

clusters are necessarily absent.

7.7 Summary

We have introduced a model for the savanna structure whicldes,
in addition to the standard ecological interactions and fetition, the
explicit effect of spatial fire. Fire introduces some effeettree-grass
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Figure 7.12. Pair correlation functions showing the transition opewsed clusters.
Parametersa =0.2,b=1,a=0.2and =0.3,p=4.0. (ad=0.001. (b)6=10.01

and tree-tree interactions which are important in shapiegabraphy
and spatial pattern. First, the presence of fire improvespeditiveness
of grass because of its faster recovery after a fire. Secahdi ees
may provide protection against fire to juveniles surroungethem. This
gives a positive tree-tree interaction which can overcdmekplicit tree-
tree competition for resources. As a result of these diredtiadirect
interactions a variety of tree distributions are obserwveldich we have
characterized by the pair correlation function. As the shamge positive
interactions gain importance as compared to the negates, @succes-
sion of regular to clumped states is observed. Clumpedsstate have
“open” clusters, as the ones present in the previous Calalmteal. (2010)
model, but also “closed” for the cases with stronger posiinteractions.
Adult-tree cluster-size distributions are of power-layeyin some cases
because of the proximity of a percolation transition, butrfaich of the
realistic parameter range tree cover is small and far frorogb&ting. The
tails of the distributions, although fat, seem to decayefatttan power
laws, as in fact is seen to occur in several of the sites reddny Scanlon
et al. (2007).
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Figure 7.13 Adult-tree cluster-size distributions, represented byanseof the
complementary cumulative distributions. Parameters inl€l@.1 buta = 0.1
and= 0.01. Power-law behavior is found aroufid: 0.9, when adult-tree biomass
fraction reaches values around 0.4. At lower value$ @figher tree biomass), a
plateau develops at large cluster size.
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Male Biased Parasitism






Life history and mating systems
select for male biased parasitism
mediated through natural selec-
tion and ecological feedbacks

8.1 Introduction

Sex bias in parasitism is often found across a diverse rahtgxa, with
males commonly the ‘sicker’ sex (Zuk, 1990, 2009). Althosghh male-
biased parasitism is the most commonly reporied (Ferraail 2004,
Perkins et all, 2003, Poulin, 1996, Schalk and Forbes, 198jher rates
of parasitism and less investment in immunity have also begorted for
females|(McCurdy et al., 1998, McKean and Nunney, 2005, Zui e
2004). It remains unclear what processes can account feviased par-
asitism and in particular the higher prevalence of diseasadles. One
possibility is that males exhibit different behavior theadls to greater ex-
posure (i.e. larger home ranges or more risk of infectionafoy given
exposure _because of damage caused by fighting) (Bundy| Fo88if
and Amos; 2010). Bias may also result from underlying déffexes in
life-history characteristics between males and femalesofféd and Wil-
son, 2002) including the idea that the larger physical simegrowth rates
of males make them a more accessible and attractive tangpafasites
(Moore and Wilson, 2002). There is also clear evidence ofyasiplog-
ical basis for differences in susceptibility with for exae@ndrogenic
hormones in males (testosterone in vertebrates) actingpreds the im-
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mune system (Alexander and Stimson, 1988, Folstad and K462,
Moore and Wilson, 2002).

Beyond physiological mechanisms, it has been proposedifiat
history theory could explain immune differences from anpive point
of view in relation to sex-specific reproductive strategiesparticular, it
has been argued that the reduced investment in resistadae te trade-
offs between male mating effort and immune defence. In tbénhario
as the strength of sexual selection on males increases, dgaitade of
the sex differences in immunocompetence will increase.sherce the
argument is that a reduced immune systems may be the unbietace
of being male due to sexual selection (Zuk, 1990, 2009). okatig on
from this a polygynous mating systems should lead to gretfferences
in male biased parasitism and under polyandry females dhmiimore
susceptible (Zuk, 1990, 2009). The basic assumptions eéthieas have
recently been examined theoretically by Stoehr and Kokk®§2 who
determine optimal allocation of resources between immyusiiirvival and
reproduction in males and females, under varying levelewfal selec-
tion. This theory has shown that sexual selection may exphaile-biased
parasitism [(Stoehr and Kokkd, 2006, Zuk, 2009). In additibtoore
and Wilson|(2002) carried out a meta-analysis using two oreasof the
strength of sexual selection (mating system and sexuabi&zerphism)
and showed that sexual selection was associated with dexetti€es in
parasitism.

There is a large body of theoretical work that has emphagtzed
importance of ecological feedbacks to the evolution of liefence to
infectious disease (see Boots et al. (2009) for a reviewis dtear from
this theory that host life-history is critical to level offéace that evolves.
In particular, it is often, although not always the caset thereased re-
sistance to parasites is more likely to evolve for longdivests (Miller
et al.,.2007a). Differences between males and femalesnmstef their
life-histories may therefore be enough to explain the enahof different
levels of investment in defence through natural rather #exual selec-
tion. In particular differences in ecological feedbacksasen males and
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females due to differences in their life-histories may updethe evo-
lution in reduced investment by males in defence and thexefsult in
higher transmission of infection. Furthermore, the eciaigfeedbacks
due to monogamous and polygynous mating systems may hdeecdif
effects on the evolution of male and female investment ieief. In par-
ticular, different mating systems could cause differertgras in the way
in which densities of males and females feedback into théuggoary
dynamics.

A recent model (Restif and Amas, 2010) has shown the impogtan
of epidemiological feedbacks in determining male-biasdgitism through
natural selection. Restif and Amos (2010) develop a modi axplicit
genetics (two diploid loci with a link between genotype aripotype)
to investigate how the evolution of sex-specific investmenmmune de-
fenses (through recovery from, or tolerance to, infecteme) affected by
a combination of life-history trade-offs and pre-existidifferences be-
tween male and female phenotypes (in particular an impasegdecific
difference in exposure to disease). Our aim is to invesifatv the mat-
ing system and differences in competitive ability and lontyebetween
sexes influence the level of resistance to infection thatvego Our study
additionally differs from Restif and Amos (2010) in that weaaine the
effect of mating system on the level of evolved resistanaaith sex and
we do not impose pre-existing sex-specific differences seake param-
eters. We also examine the effects of mating system and ifesti$tory
under natural selection that includes epidemiologicakayits, focusing
on how ecological feedbacks affect the evolutionary precéd/e find
that differences in lifespan are enough to explain maledoigmrasitism.
Differences in the mating system act only to accentuate astiey bias.
Our work further emphasizes the importance of includinglepiiologi-
cal feedbacks when studying the evolution of defence.
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8.2 Methods

The underlying host-parasite framework is based on theiclasapproaches
for modelling the population dynamics of directly transiedt micropar-
asites (see Anderson and May (1981)) and which have beersaially
extended to understand the evolution of host resistancet$b al., 2009,
Boots and Haraguchi, 1999). This framework is modified fwiftg the
techniques of Lindstrom and Kokko (1998) and Miller et 20Q7b), to
represent a two-sex host parasite model that considersytiandcs of
males and females separately. This is achieved by repnegdtths as
the harmonic mean function proposed by Caswell and Weelg6j1that
depends on the densities of the two sexes and declines tanzére ab-
sence of either sex. This function can also be modified tocqimiate
different mating systems (monogamy, polygyny and poly;aﬁ]drThe
theoretical framework is therefore represented by thefohg system of
nonlinear ordinary differential equations for the demsitof susceptible,
S, and infectedl, males and females, represented by the subseniptsd
f respectively.

O ZB(Sn S1)(1—tnH) — S~ BuSn(l1 +In)

% = BmSn(lf +1m) — (dm+a)Im (8.1)
ds 1

Gt = 2B(Sn SO -arH) —diS —BrSi(lr + Im)

% = BtSt(It +1m) — (di + o)l

HereH = S; + Sn+ It + Iy is the total host density. Births are
divided equally between males and females according to dneadmic

IMonogamy: males and females have one mate. Polygyny: a raslenbre than
one female mate. Polyandry: a female has more the one mage mat
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birth function, B(Sy, St) , which describes the dependency of the birth
rate on the density of either sex and mating strategy. Tha bite is
modified due to density-dependent competition for res@mgth the pa-
rameterq, and the population has a natural death rdtelnfection can
occur through contact between susceptible and infectadidugls with
transmission coefficienf3, and the disease induces an additional mor-
tality while infected at rater. (The subscripts on some parameters dis-
tinguishes between male and female specific parameters. hditmonic
birth function, B(Smw, St) , is derived from|(Caswell and Weeks, 1986),
and takes the following form.

CmSmCt St

S

(8.2)

Here,cy andcs represent the contribution that males and females
make to the birth rate ankl represents harem size and can be manipu-
lated to represent different mating systems. When 1 it represents a
polygynous mating system (births are maximized when femnekeeed
males), wherh < 1 it represents polyandry (births are maximized when
males exceed females) and whegs-= 1 it represents monogamy (births
are maximized when males and females are equally abund2asyvell
and Weeks, 1986).

To examine the evolution of parasite resistance we folleatéth-
niques of adaptive dynamias (Boots et al., 2009, Geritz.¢il8b8). We
assume a ‘mutant’ strain of host can occur at low density &gt to
invade the established ‘resident’ strain which is at itsildzpium density.
The mutant male host strain differs from the resident stiraiterms of
its transmission coefficierfd,, compared t@, for the resident (a similar
difference can occur for the female transmission coefficien we will
use ‘7’ to represent the mutant parameters). In line witlviores studies
into the evolution of host resistance it is assumed and thsrefit in
terms of increased resistance to infection is bought at aicdsrms of a
reduced birth rate (Boots and Haraguchi, 1999). For thidystve impose
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the trade-oficy, = g(Bm) andcs = g(B+) . The trade-off is defined by
<l— Bm—pBmin >

Bmax—Bmin
Bm—pBmin
<1 + meaXmein>

which is a smooth curve between the minimum and maximum val-
ues of the birth and transmission rates and in which the pateycon-
trols the curvature (and therefore cost structure) of theéeroff, see Fig-
ure[8.1. (We will discuss other possible trade-offs later.)

(8.3)

Cm = Cmax— | (Cmax— Cmin)

5.0F
4.5
4.0f
3.5/
3.0/
2.5-
2.0F

Birth contribution parametec)

5 10 15 20
Transmission Coefficier{3)

Figure 8.1. A trade-off with accelerating costs as defined by [Eq.](8.8)aPeters
areCmin - 2, CmaX: 5, Bmin - 1, BmaX: 20 andy: 40

The fitness is the long-term exponential growth rate of a phen
type in a given environment. We initially consider the sitoa where
the female parameters are fixed and we allow the male parafiye{and
Cm Via the trade-off) to evolve. A proxy for the fithed, can be cal-
culated as the determinant of the jacobian matijxat the steady state
(S, St lm, 5 Sme Tm) = (S5, S5, 15, 12,0,0) (Miller et all,12005) where

05 05
== @4

0Sn Olm
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and thereforeR, can be represented by the following expression

R = b (1} 411t S omIPm) S~ Gn)
2(F +Sh)

(8.5)

whereH" = S§,+S; +1n+1f

The fitness proxyR, can be used to determine the position of evolution-
ary singular points and the evolutionary behavior at thgder point.
Evolutionary singular points are determined when the fangsadient

5%'3 - = 0 which equates to solving the following expression

=l + amCt St (1 — gmH*)g/ (Bm) = O (8.6)

2(3 + Sn)

The evolutionary behavior at the singular point is deteaditby
analyzing the second order partial derivativeRo¥ith respect to the mu-
tant and resident parameters (Geritz et al., 1998). Prestudies have
assessed how the trade-off cost structure or underlyinglptpn dynam-
ics can influence the evolutionary behavior and also induotugonary
branching leading to diversity in host strateqles (Boot 2009, Boots
and Haraguchi, 1999). The focus here is to examine whetliiereht
levels of resistance can evolve between males and femateallolv us
to concentrate on this issue we ensure that the underlyipglation dy-
namics are point equilibrium and that the trade-off has cefiitly accel-
erating costs that the singular point is an evolutionarglstattractor. We
can then assess how the position of the singular point clsaag®ther
life history parameters are varied.

To examine the coevolution of male and female resistancp-pro
erties we determine the female fitness function (which dépem the
evolving parametefBs andcs via the trade-off). The male singular points
are plotted againgt; (for a fixed female strategy using the method out-
lined above) and the female singular points (against a fixale strategy)
are plotted againf}, . The intersection of these lines produces a coevolu-
tionary attracting singular point (Restif and Koella (2p0®te that again
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the trade-off is chosen to ensure the population dynamicib#xa point
equilibrium and that the singular point is a coevolutionstgble attrac-
tor). Using this method it is possible to determine how thevedutionary
singular point varies with changes in underlying life higtparameters.

8.3 Results

The evolutionary behavior is dependent on feedbacks tisat isrthe eco-
logical dynamics and therefore it is useful to first underdtaow changes
in life history parameters will affect the equilibrium déyf the differ-
ent classes in the model system (Fidure 8.2). Increasesg inaiem size,
h, or the overall birth rate leads to an increase the totalitleabmales
and females (equally since the sex ratio is 50:50). If theerdelath rate
is reduced (relative to the female death rate) then thera inaease in
the overall density of males (through an increase in inttatales) and
a decrease in female density. As the male death rate is sentehen
there is an increase in the overall density of females (ijin@an increase
in susceptible females) and a decrease in male density.dikme¢hat the
prevalence of infection decreases as the male death ragases (relative
to the female death rate). When there is a reduction in thgpetitron pa-
rameter for males there is an increase in male density thrmegeases in
susceptible and infected males and female density in baitegtible and
infected classes is reduced. When there is an increase aothpetition
parameter for males then overall male density and femadeted density
decreases while female susceptible density increasesovEnall suscep-
tible density remains constant as the competition parangetaried but
the proportion of susceptible males to susceptible femddeseases as
the competition parameter for males is increased. Alsopteealence of
infection remains relatively constant when the male coitipatparam-
eter is less than the female parameter but the prevalenceases when
the male competition parameter is greater than the femasesier.

When interpreting the remaining results it is worthwhileaking
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Figure 8.2. Changes in the density of the different classes as othenyeeas
are varied whereo’ representsS;, ‘o' representds, ‘0’ representsSy and ‘w’
represent$,. Parameter values (unless varied in the figure)care- c; = 3.79,
On=0qf =0.25,dn=dif =1, am=0a; =1,Bmn=PBs =1.6625h=1. Ina)hais
varied, b)cy, is varied, c)dy, is varied and djy, is varied. In a) and b§; = S, and
I+ = Im so the results are just shown for males.
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Figure 8.3. Change in the singular value of disease transmission foesy@j,
when males can evolve ( and females do not evolve). Parasnedires (unless
varied in the figure) are; = 3.79,gm =09 = 0.25,dn=df =1, an=as =1,
Bt = 1.6625,h = 1. The parameters for the trade-off (Eq._{8.3)) Brgr = 1,
Bmax= 20, Cmin = 2, Cmax= 5 andy = 40. In a) harem sizd, is varied, b) death
rate,dn, is varied and ¢) male competitiap, is varied.

that a decrease/increase in disease transmission equateisitrease/decrease
in disease resistance and that male biased parasitismsosban(3,, >

Bt.

8.3.1 Evolving male characteristics.

The results when the male characteristics are allowed tlveamainst

fixed female parameters are shown in Figuré 8.3. As harenirgizeases
the level of resistance to disease in males increases (tgelar value of

Bm decreases). The evolved level of disease resistance irs medeeases
as the male death rate increases and the male competitiametar in-

creases. The decrease in disease resistance in males ppase$o de-
creased levels of prevalence of infection (see Figure 8Higlwreduces
the need to avoid infection (as individuals are less likelyoecome in-

fected). Male-biased parasitism is therefore evident updé/androus

mating systems and when males have a higher death rate er mudfe

severe competition than females.
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Figure 8.4. Change in the coevolutionary singular value of diseasesinéssion,
By, and B} plotted against changes in harem sike,Parameter values ag, =

gs = 0.25,dn=df = 1,aym = a; = 1. The parameters for the trade-off (Eg. (8.3))
are as in Fig.8]3. a) shows the relative value§pfand; at the coevolutionary
singular point and b) shows the actual valug3ffat the coevolutionary singular
point (note the value db; is identical here).

8.3.2 Coevolving male and female characteristics

When both male and female characteristics are allowed tg@variation
to the harem size does not produce a bias between male antkfema
fection rates (Figure 8.4a). Both males and females wilhevimcreased
levels of resistance as harem size increases (Figure &14byponse to
the associated increases in prevalence.

When the male death rate exceeds that of females then makdbia
parasitism can result from coevolution (Figlre]8.5a). Hheeincreased
death rate for males means they have, on average, a shtesgaln and
this increases the possibility of dying from natural causefere becom-
ing infected. This is reflected in the fact that the properiod female to
male susceptible increases as the male death rate incresises there
are more susceptible females than males it implies thatlésnzaie more
likely to be infected and therefore males can afford to evdlecreased re-
sistance. When male biased parasitism occurs the biaasesas harem
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Figure 8.5. Change in the coevolutionary singular value of diseasestméssior;,
andf} plotted against changes in a) male death mdeand b) male competition,
Om- Parameter values (when not varied in the figure)dare- ds =1, qn =0 =
0.25,0m=0a¢ =1, Bm = Bs = 1.6625. The parameters for the trade-off (Eq)8.3))
are as in Fi.8]3.

size decreases. Here, as harem size decreases the prewailenfec-
tion decreases and the evolved level of disease resistatceases (and
therefore transmission of infection increases) for bottesiand females
(Figure[8.4). This accentuates the relative bias in thestrassion of in-
fection between males and females in a multiplicative manne

A similar response occurs when male competition exceedstha
females (Figuré_8l5b) and can again be attributed to changes pro-
portion of female to male susceptible as the male competgarameter
increases. When the male competition parameter is redusled bthat
of the female parameter the evolved level of resistanceiremalatively
constant. This occurs as the prevalence of infection alsaires relatively
constant and therefore there is no selection for a changesiatance to
infection.
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8.3.3 Generality of results for other trade-offs

We have undertaken the above analysis when the level ofipanas3,
is traded-off against the competition parametgg = g(f3)), and where
we have imposed a trade-off such that a decrease in panas#is for fe-
males results in an increase in the parasitism rate for njles: 9(Br)).
We find the results are analogous to those presented aboeechBimges
in the mating system do not produce a bias in parasitism leztweales
and females. Male biased parasitism occurs when the malesahshort
lifespan (or where appropriate suffer increased compaliiin compari-
son to females. Again the type of mating system can only daaémthis
bias rather than cause it.

8.4 Discussion

Differences in the rate of parasitism between sexes, iriqodat male
biased parasitism, is often observed in nature (see MoaieV¥itson
(2002), Skorping and Jensen (2004), lZuk (1990, 2009)). Vemnexed
whether parasite bias between the sexes could arise as la obsue
mating system or through differences in the underlyinghifgory char-
acteristics between males and females through naturalteeiedue to
the epidemiological feedbacks that they cause. As such wexam-
ining the evolutionary ecological implications of lifedtory and mating
system in isolation from the role that they may play in sexagéction.
Male-biased parasitism was selected for when males haverteslifes-
pan than females or when males were subject to greater ciiopdéor
resources than females (provided the overall level of caitipewas not
too low). Changes to the mating system did not produce a higarna-
sitism but could accentuate an existing bias. In particataharem size
decreases an existing male bias in parasitism is increasadesult of
a decrease in overall prevalence. We therefore predict mate biased
parasitism when males have shorter life spans than fenrale®noga-
mous or polyandrous species.
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Selection for biased rates of parasitism requires there torloler-
lying differences in the life history characteristics oflemand females.
Male-biased mortality rates have been reported in vertelaad inver-
tebrate systems (Promislow, 1992, Ralff, 2002) and it haankshown
to have a positive correlation with male-biased parasitisfoore and
Wilson, 2002). It has therefore been suggested that makedi para-
sitism may drive the increased mortality rates in males (Mand Wil-
son,)2002). Our study indicates the converse, that makefiparasitism
may evolve as a consequence of male-biased mortality. (&aod Wil-
son (2002) noted this as a possible interpretation of thepigcal find-
ings.) We show that increased mortality in males leads terihces in
the population dynamics, with a greater proportion of spsbke females
than males. This reduces the likelihood of infection for@sand so they
can afford to evolve decreased resistance. Fundamentalgrgument is
that non-disease causes of higher mortality in mpissemay select for
the observed decrease in immune investment. This incraaseritality
can come from processes such as increased risks from langyge size
or fighting over females. By examining how natural selectqperates
through the ecological feedbacks we show in general teratsftmales
are shorter lived they will invest less in resistance.

The mating system, determined by the choice of the harem size
does not directly select for differences in parasitism leetwvmales and
females in our models. However, we do find that differencesfén
history characteristics that select for parasitism biasx@saccentuated by
the mating system. This is because as the harem size retoiedpreva-
lence levels also reduce leading to selection for reduceeldeof host
resistance. The mating system, which in this study actsdwaarmonic
birth function, affects population density and the ovelalkl of disease
resistance that evolves. If there is less selection fostasce then given
an existing bias, it becomes accentuated. Taken as a whaleesults
on the importance of mating systems are very different tedhexpected
from sexual selection theory and shown in comparative stu¢vioore
and Wilson| 2002, Stoehr and Kokko, 2006, Zuk, 1990, 200@nheagally
polygynous species are expected to have stronger selesttbtherefore
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more male biased parasitism. Our results show that for a05€e% ra-
tio the ecological feedbacks that operate due to naturatseh affect
males and females equally. Therefore, the mating sypemsedoes not
lead to a sexual bias through ecological feedbacks. Fumibrer, the ef-
fect of mating system on accentuating existing biases ranster to the
prediction from sexual selection studies. Monogamous tygmairous
mating systems are more likely to accentuate the bias anefftine show
male biased parasitism. Therefore the selection presduset ecologi-
cal feedbacks may run counter to those that result from $eelection.
The outcome will depend on the relative strength of the dbffiéselection
pressures in particular natural systems.

The model results can be used to examine when female biased pa
asitism can evolve. By swapping the male and female labelsomu-
lation classes and parameters it would indicate the femalksetd para-
sitism could evolve if females had higher mortality ratesvere subject
to greater competition for resources that males. This éurémphasizes
the idea that it is differences in the underlying mortatityhpetition rates
between the sexes that can drive a bias in their rates ofipamnas The
evolved bias would be accentuated in monogamous or polygy/nat-
ing systems (since when the labels are swapped a value df indicates
polygyny). This is again counter to the ideas from sexuaan stud-
ies in which polyandrous mating systems are predicted tdyme female
biased parasitism (Zuk (1990, 2009)).

The mating system can have important consequences for fite po
ulation dynamics that are exhibited and can lead to comekité&ycles,
chaos) dynamical behaviar (Lindstrom and Kakko, 1998, |éikt al.,
2007b). Recently, the population dynamical effects of nimdesed par-
asitism for different case mortalities and both monoganang polyga-
mous mating systems (Miller etlal., 2007b) have been exainifiee pop-
ulation dynamics exhibited (point stability, cycles, chadid not show
clear trends with increasing male-biased parasitism aa@titcome de-
pended on a complex interaction between the hosts matirigrsysle-
mography and parasite virulence (Miller et al., 2007b). éHere focus
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on the situation where the underlying population dynamresad a sta-
ble point equilibrium to allow analysis of the fithess exjgiea. We also
choose the trade-off to ensure the singular point is an &oolary sta-
ble attractor. Studies which examine the evolutionary tiendor non-

equilibrium underlying dynamics are rare but report thatekiolutionary
behavior would not change for trade-offs where an attrastpredicted
under equilibrium conditions (Hoyle etlal., 2010, White kt2006). We
would therefore expect our finding to extend to non-equilitorunderly-

ing dynamics.

Our results confirm previous general work on the evolutioresfs-
tance to parasites (Boots et al., 2009, Miller et al., 2007 #)at we find
that the evolved level of host resistance increases as drage lifespan
of the host increases. This result is linked to increaseéldeof preva-
lence which occur as lifespan increases. In our study theajmece lev-
els also increase as the harem size increases or as theflevetpetition
for resources is reduced (until the competition for resesiiis low) (Fig-
ure[8.2). As prevalence of infection increases it is beradfic evolve
higher levels of resistance in an attempt to avoid infectidirough-
out we have assumed that there is no long-lived immunity afteovery
from infection. In principle this may have important congegces with
circumstances under which longer-lived individuals doineést more in
immunity. As such male biased parasitism may be less likeljisease
with long lasting immunity, but a full theoretical analy$ias not as yet
been carried out.

This theoretical study examines the evolution of maledxgsara-
sitism in the context of the complex epidemiological feetksan disease
systems. A recent paper has also shown the importance oérajue
logical feedbacks to the evolution of male biased parasi{Restif and
Amos,/2010). In a comprehensive study, they examine howereifitial
exposure between males and females affects various asyfeickgest-
ment in immunity under a range of trade-offs including oneveen re-
covery and lifespan (Restif and Amos, 2010). The model ohesudiploid
genetics mapped onto a quantitative trait and fundameritadludes the
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epidemiological feedbacks caused by different investsiender monog-
amous mating systems. Restif and Amos (2010) show that eeldine
vestment in males can evolve when there is more exposurerasifes
(achieved by imposing differences in some of the diseasectaistics
between males and females). Their results further emphésezimpor-
tance of epidemiological feedbacks. Our model system doesalude
explicit genetics but allows female/male phenotype charégstics to be
inherited directly from the maternal/paternal parent eesipely. This is
clearly a simplification of inheritance but where direct garisons can
be made with the study of Restif and Amos (2010) our resuésgaal-
itatively similar. Our study does not impose underlyingfetiénces in
disease characteristics but focuses on the role of hostifitery and mat-
ing system. We have shown that male-biased parasitism cdwveess a
consequence of sexual differences in life history charesties that pro-
duce a greater proportion of susceptible females than m@lesresults
extend to different choices of trade-offs. Future studiesusd extend
the analysis to examine the importance of the choice of Uyidgrin-
fectious disease framework and the representation of tbesex birth
function that may include assessing the effects of a nomlezpx ratio.
Throughout we are focusing on the role of natural selectidhé context
of epidemiological feedbacks. Future work could combing épproach
with models of sexual selection in order to gain a full unterding of the
mechanisms that underpin male biased parasitism. The cechigienetic
and quantitative trait model of Restif and Amos (2010) cdaddextended
to provide a framework in which to examine these differeicpsses.
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Conclusion and perspectives

In this thesis different models of non-linear ecologicalteyns with regime
shifts were explored. Different sort of mathematical as@yvere used,
either equation-based models or individual-based modhzH.of the re-
sults were obtained in marine ecology using analysis ireckfiitial equa-
tions. One part explored patterns in savanna using a cebuwigmata
tool and the last part focused on adaptive dynamics to stuolyigonary
behavior in mating systems. In this chapter the main result¥e sum-
marized divided by chapters, following the same order prieskin the
body of the thesis.

Chapter b: Joint effects of nutrients and contaminants endi>
namics of a food chain in marine ecosysterrsthis work a model for
a marine food chain (nutrient, phytoplankton, zooplankiad fish) was
analyzed by means of the tools of dynamical systems theagli{gtive
and numerical analysis of differential equations, andrbdtion theory),
aiming at considering the join effects of nutrient supply @ollution by
a contaminant on the system dynamics. Contaminant havkig éffects
in each species of the trophic chain was introduced in theatimdalter-
ing their mortalities. The influence of contaminants on gggemortalities
was assumed to have a sigmoidal dose-response relation&higpgen-
erates delay in the transitions to complex dynamical statesrring at
higher nutrient load values. Apart from that, more counteitive conse-
qguences arise from indirect effects related to the norafhities pertained
to the food chain dynamics. In particular, the top predaganss to be
the species more affected by pollutants, even when contarhis toxic
only to lower trophic levels. Besides, contaminants insecthe stability
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of the food chain with respect to oscillations which woulcwcunder
increased nutrient input.

Chapter 6: Modeling approach to regime shifts of primaryqwo-
tion in shallow coastal ecosystena this work a competition model be-
tween rooted seagrass (Zostera marina), macroalgae (plyaad phy-
toplankton has been developed to analyze the successiomrg pro-
ducer communities in these systems. This model is an intgdjraodel
that uses previous existing and validated models develtgpddediter-
ranean coastal lagoons. In order to deal with the abilityeafgsass to
survive at low nutrient conditions, the dynamics of inongamtrogen (ni-
trates and ammonium) in the water column and in the sedinhentsalso
been included. The model described successions of donenstates,
with different resilience characteristics when changimguit of nutrients
and the seasonal temperature and light intensity forciihg. fhodel sim-
ulations show a general agreement with the experimentaltsagported
in literature concerning thresholds of nutrient conceidres at which a
regime shift occurred. Namely the model shows the algaenblpbe-
nomenon caused by eutrophication process (high nutrigatdg also a
regime of Ulva dominance, the dominance of Zostera in lowients
concentrations dissolved in the water column and the regimevhich
both vegetation types coexist. Apart from competition kestw rooted
seagrass and macroalgae, the model showed the implicatidmes pres-
ence of phytoplankton in the system and showed that phyt&da is
able to compete with Ulva for nutrients in the water coluniust favor-
ing Zostera due to the lower shadowing effect.

Chapter T:[Savanna-Fire ModeBavannas are characterized by a
discontinuous tree layer superimposed on a continuous ¢gger. Sa-
vannas occur across a wide range of climatic, edaphic, aolkbgcal
conditions covering approximately one fifth of the eartlaiad area. In
some countries these grass- dominated ecosystems arecg@lriiotic
resource playing important roles in both the configuratiomedural land-
scapes and in local economies. lIdentifying the mechanisiasfacil-
itate tree-grass coexistence in savannas has remainediatg@etr chal-
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lenge in ecology and is known as the "savanna problem”. swhark, a

model was proposed to combine the previous savanna modab(€se

et al., 2010) with the Drossel-Schwabl forest fire, theref@presenting
fire in a spatially explicit manner. The model was used to @ghow

the pattern of fire-spread, coupled with an explicit, firérewable tree
life stage, affects tree density and spatial pattern. Texesity depends
strongly on both fire frequency and tree-tree competitioth @mder ex-

treme conditions can drive tree extinction (grassland)weier fire fre-

quency appears to be the crucial factor on tree extinctigninBreasing

fire frequency a phase transition happens between the sayeoexis-

tence) state and grassland. Since fire is an explicit stateeimodel, fire

fronts can spread following different paths that can leadiff@erent reg-

ular or clumped patterns, the last ones of compact- or opesters type.

In the study of cluster distributions , we find fat tails whiapproach

power-law behavior in some cases.

Chapter 8: Life history and mating systems select for madedi
parasitism mediated through natural selection and ecaabieedbacks
In a range of ecological systems, there is evidence thateted bf in-
fection from parasites is higher in males than in female®viBus the-
oretical studies have shown that this has implication fer glpulation
dynamics of the host. In this study, modern game-theoletjmaroaches
(adaptive dynamics) was used to examine the circumstamcks which
male-biased parasitism would evolve. A system of ordinaffemrntial
equations that represents a host-parasite system and iats@udishes
between males and females was examined. In addition stweiesper-
formed examining the evolution of resistance to infectidrewmales and
females have a trade-off between the level of host resistand the birth
rate. Male-biased parasitism was selected for when malesaahorter
lifespan than females or when males were subject to greatepetition
for resources than females (provided the overall level ofipetition was
not too low). Changes to the mating system did not produceas ibi
parasitism but could accentuate an existing bias. In paatias harem
size decreases an existing male bias in parasitism is setess a result
of a decrease in overall prevalence. Therefore the modedigisemore
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male biased parasitism when males have shorter life spansféimales
in monogamous or polyandrous species.

Open jobs

Different tools in the analysis of complex and non-lineasteyns
were used to study different problems in biology during thissis. How-
ever during these years much more was done in searchingstitey phe-
nomena to be analyzed and understood. | will list some wdwisare still
in process and that are worth finishing.

Hysteresis: Shifting baselines affect ecosystem restorédrgets

The idea is to provide a sci-

. P entific framework to study ecosys-

. Prod tems impacted by human pressures
. P { that could be reverted to their orig-
g P : inal condition by suppressing the
270 f.-"'/ 1 pressure (e.g.eutrophication/ olig-

' o o 1 otrophication)|/(Duarte et al., 2009).

ot T~ — _q The starting point was to analyze

Coor s models that have alternative attrac-

. tors subjected to random spatial
Figure 9.1.  Phosphorous values (P) di . this hel th d
in a lake modell(Carpenter et al., 1999): |spe.r5|on, IS helps the under-
9P — F — SP+ I piga — DO?P in the standing of ecosystem response to
presence of quenched (static) disordermultiple shifting baselines in order
K is a static Gaussian white noise. Smallt0 set reliable targets for restora-
cycles can be found inside the hystere-t. fforts. Ti del h
sis cycle hardly changing forward and lon etforts. 1wo models were cho-
backward in response to slow shifts in S€n, the Carpenter model (Carpen-
the control parameter (nutrient load).  ter et al., 1999) and the Noy-Meir

model (Noy-Meir| 1975). Similarly

tolVan Nes and Scheffer (2005) some studies were performebsierve
the effect of static gaussian noise. Preliminary analysis performed
using a dynamical colored noise in the spatial heteroggiaeitl adding

heterogeneity in all parameters and changes in the cordranpeter of
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each time step.

A continuous model of Savannas
This work is a complementary study of the mean field approtionaof
Calabrese et al.(2010) work. The idea is the obtain thenpette tree dis-
tribution in savanna (see Figure ©.2) through a continuoodehadding
the non-local interactions in the competition term:

0)

: :be—éfH(r—r’)pl(rCt)dr’
P1 o+1—pa(r,t)

(pa(r,t) — pa(r,t)?) —ap(r,t)

(9.1)

whereH is the step-function kernel—:l(r)={ é’ :]]: : i 2;

Some stability analysis was performed using the same theding
studies of pattern formation in Lépez and Hernandez-ag@004) (Fig-
ure[9.3). Uniform and periodic patterns can be obtainedithsita chal-
lenge to model clumped states in terms of continuous fields.
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Figure 9.2. Spot pattern in savanna model. Parameters:0.33,6=25,a0 =1
andb = 8. Right: growth rate of a function of wave number.

The effects of prey switching on predator persistence inegopedator-
two prey system with a refuge

In many predator-prey situations, the predator has a pezfqrey.
However, in many cases this preferred prey has a refuge inhwhis
safe from predation. If it does not search for alternate,resy predator
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Figure 9.3. Adult tree biomass versus related fire parameter in blackraneiad
the maximum eigenvalue of the coexistence solution. Thiogsl represent the
stable homogeneous solution, what means that no patteesani this region.

may well go extinct. Each time the preferred prey attemptsitoease
its population beyond the refuge, the predator switchepriéglation to
its preferred prey, driving the population back into smailinbers in the
refuge (Bergerud, 1933).

In this work a system of four
ordinary differential equations is
studied to describe one example of
== % — such a predator-prey system. A
= P - case in point is a predator-prey sys-
tem on the island of Newfound-
land in Atlantic Canada, where
the predator population, Canada

Figure 9.4. Lynx preying on snowshoe |vny prefers the snowshoe hare, but

hare. switches to the arctic hare when the
former population becomes scarce. Studies of equilibribtheir stabil-
ities was analyzed. The next step is to determine the @iteriperiodic
solutions and persistence.
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Numerical continuation Programs

Al XPPAUT

Although there is a good explanation of how XPPAUT can be tsedn-
tinue your equations in the webpalgiep://www.math.pitt.edu/ bard/xpp/
xpp.htm] a breath explanation to start using AUTO from XPP will be
given in this appendix. Besides some tips are given in oéetp the
reader to get rid of some trick problems. In the home pagel ¢iefore
you can download the XPPAUT program and follow the instutgihow

to install it.

XPP is a freely available tool
written in C-language for solving
differential equations, difference
equations, delay equations, func-
tional equations, boundary value
problems, and stochastic equations.
Besides, it contains the code for
the popular bifurcation program,
AUTO, (Doedel et al., 1997). It can
be used in the following platforms: Figure A.1: XPP window.
Linux, MacOs, Unix and Windows.

Before start using XPPAUT it is needed to write the studiesteay
into aodefile. This file must contain the system to be studied, thedhiti
conditions, the parameter values and , if wanted, some noahepeci-
fications, such as the time step size, the amount of time ¢giate, the
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parameter range and tolerance error in the algorithm usédei®@e the
following example of an ode file.

# RMA model
dX1/dt=X1*(R*(1-X1/K)-A2*X2/(B2+X1))
dX2/dt=X2*(E2*A2*X1/(B2+X1)-A3*X3/(B3+X2)-D2)
dX3/dt=X3*(E3*A3*X2/(B3+X2)-D3)

# D3=0.015+0.015*cont"6+h"6

#The initial condition
#par D2=0.01,D3=0.005
X1(0)=0.181022
X2(0)=0.0333333
X3(0)=1.65108

#D2=0.01,03=0.015
X1(0)=0.0939155
X2(0)=0.128571
X3(0)=1.57478

#The parameters

par D2=0.01,03=0.015
par R=0.5,K=0.2

par A2=0.4,B2=0.1,E2=1
#par h=0.5,cont=0

par A3=0.05,B3=0.3,E3=1

#The XPP options

@ total=2000, bounds=1000

@ Nmax=2000, Ds=0.005,Dsmin=0.001

@ EPSL=1e-06,Dsmax=0.01,EPSU=1e-06,EPSS=1e-06
@ ParMin=0, ParMax=0.3

@ Xmin=0,Ymin=0

@ Xmax=1,Ymax=1

done
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Figure A.2. Auto window: Bifurcation Diagram showing fixed points andipéic
solutions.

Bifurcation analysis must be started from either a fixed pomn
a periodic orbit. Sometimes, there are complicated pammneemnes in
which AUTO calculation is too slow or does not converge. Tivathis
kind of numerical complications i)the tolerances (EPSLSEPEPSU)
can be reduced, which sets the default value td*1But usually the better
value of the tolerances is 10 or ii)the study can be started from another
fixed point value in order to scape from the complicated zdgoame-
ters. In the ode file example two set of initial conditions barobserved,
the set of initial conditions considered by XPP will be thsetlane you
write. Regarding parameters, AUTO considers the first patanwritten
as the one to continue the solutions. But the parameterseahdnged
as well as the numerical specifications in the XPP menu wittioanging
the ode file.

XPP can be used to calculate fixed points and then the resulieca
written in the ode file to avoid calculating them again. Totowure a fixed
point, go to the AUTO window : click on “Run” and then on “Stead
state”. Using the system of equations cited in the examgdifurcation
diagram like in the first picture of Figute_A.2 will be found.o Tollow
periodic solutions, grab a HP point that designates a Hdpfdation and
click on “Run” and select “Periodic” as shown in the seconctynie of
FigurelA.2 and a branch of periodic solutions will appear.

In order to analyze changes in the phase portrait of thesysteen
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Figure A.3: Two-parameter bifurcation Diagram.

varying two parameters select “Axes” then “Two parametarsd a win-
dow will appear to select the main parameter and the secoraingea
ter. Never start continuations from two parameter calgultst continue
from one parameter and afterwards grab the special poirgtsitly two-
parameter curves. As in the same situation with startingtppproblems
with convergence and speed of calculus can occur, in thisth@ynain
and second parameter can be switched to obtain completpaveoneter
curves, see Figuie A.3.

The AUTO window is not convenient to edit the plot. Consedlyen
the postscript is generated without any possibilities @fge except by
using a postscript editor afterwards. However, from the AU&indow
the bifurcation diagram data can be saved, which can be adedtb
make nicer figures using XPP or another software. Recenilgstposted
on the XPP’s webpage a link to a worthwhile Matlab functioattbrders
the messy diagram outputs of XPPAUT and generates graphveaic
be modified using the graph tools of Matlab. But | have made mg o
Matlab program to solve some plotting problems when theee‘lsiX”
points, that means failure to converge. FiglurelA.4 showsesplots of
AUTO data using Matlab, all the plots are related to the sdamme in
Figure[A.3. The first plot shows a “messy” plot where all theeh are
connected and the lines with convergence failure can notitrénated.
The second plot was generated by my own code in matlab anchdseca
seen all the lines are disconnected, allowing to cut the sirmlde lines
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o o e om - os R S S S
Bifurcation parameter Bifurcation parameter

Figure A.4: “Make-up of plots”

as showed in the third plot.

%Copyright by Flora Souza Bacelar
%Plot bifurcation diagrams in Matlab that have been saved BpAUT
Y%Tlested Under Matlab version 7.4.0.287 (R2007a)

[file_in,path] = uigetfile(".dat’,".dat file saved by AUTO (XPPAUT);
file_name = [path filein];

b=Iload(file_ name);

linhas=size(b(:,1),1);

a=zeros(linhas+2,5);

a(1:linhas,1:5)=b(1:linhas,1:5);

figure;

m=0;

for i=1:linhas+1

if a(i,4)==a(i+1,4);
m=m-+1,
c(m,1)=a(i,1);
c(m,2)=a(i,2);
c(m,3)=a(i,3);
c(m,4)=a(i,5);
else
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m=m+1;

c(m,l)=a(i,1);
c(m,2)=a(i,2);
c(m,3)=a(i,3);
c(m,4)=a(i,5);
size(c(:,1),1);

if a(i,4)==1%STABLE STEADY STATE
plot(c(:,1),c(:,[2 3])Jinestyle’,-" [linewidth’,3,color’,’k");
hold on;
elseifa(i,4)==2%JNSTABLE STEADY STATE
d=zeros(m+2,4);
d(1:m,1:4)=c(1:m,1:4);
n=0;
for j=1:m+1
if d(j,4)==d(j+1,4);
n=n+1,
f(n,1)=d(j,1);
f(n,2)=d(j,2);
f(n,3)=d(j,3);
else
n=n+1;
f(n,1)=d(j,1);
f(n,2)=d(j,2);
f(n,3)=d(j,3);
plot(f(:,1),f(:,[2 3]),linestyle’,--" /linewidth’,1,color’ 'k");
hold on;
f=zeros(1);
n=0;
end

end

elseifa(i,4)==3%STABLE PERIODIC ORBIT
plot(c(1:5:length(c),1),c(1:5:length(c),[2 3]hiestyle’, o’ linewidth’,2,
'Markersize,8,color’,’r’ 'Markerfacecolor,’r);
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hold on;

else%a(i,4)==4%4JNSTABLE PERIODIC ORBIT

plot(c(:,1),c(:,[2 3])Jinestyle’,) o’ /linewidth’,2, Markersize 8, color’,'b");
hold on;

end

c=zeros(1);

m=0;

grid on;

axistight

end

end

Of course before starting bifurcation analysis with AUTGside-
sirable to know the studied system making some analytiodies, when
possible, and numerical analyses in order to obtain thedstieg param-
eter region in which the bifurcations are laid.

A.2 Matcont

Matcont is a freely available graphical Matlab package far $tudy of
dynamical systems. This package can be downloaded fromebpage:
http://www.matcont.ugent.be/.

Like XPPAUT, using this tool

IS possible to integrate numerically e e
the equations and to do the continu- yeren

ation of equilibrium and periodic so- Boint

lutions with respect to a control pa- parivat 11’

rameter. Among many possibilities Bratus

of this tool usage it is also possible
continue a equilibrium in two and

Figure A.5. Matcont window.
three control parameters.
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Matcont contains a folder with

1ol
) o some systems as an example. In
lame systemn .

Coarenatee (17277 order to write a system to be stud-
Parameters |RK.A2 A3 B2 53 E2E3D203 . ..

Tme ied, the better way to do it is choos-

Derivatives 1stord  2ndord 3rdord 4thord  Sthord X

meicdy oo oc ing one among of the examples and
e then modify and rename it. In this

)
X2'=X2MED AZXN(B2+X1)-AFX(B3+X2)-D2)
X3'=X3ES ATH2(B3+X2)-D3)

way follow these steps: open the
Matcont window, see Figure_A.5,
choose “Select” and then “Systems
| and click in the option “Edit/Load”
ok | Concal | instead of the option “New”. As a
result a window, Figure Al6, will ap-
Figure A.6. Matcont system window.  pear in which it possible to write the

system.

Since the Matlab platform is being used,

all the graph tools therein can be used. And also —

it is possible to see simultaneously the continu- __pauso_|
ation evolution in all variables and in a three di- _resurre_|

stop

mensional space. For that it necessary to select
the “wmdovy” option and add how many pIotsFigulre A7. Matcont re-

wanted. With Matcont, there are no problems,me window.

with mixed data or lines in the plots. However,

is better stop the process of continuation of each bifusogbioint. This
allows to access separately each branch of equilibria. {8, selecting
the control parameter and the fixed point to continue, clobmipute”,
then “forward”. The calculation will stop when a bifurcatigoint is
detected and a small window with three options will appeeg, Bigure
[A7l. Select “stop” option, and immediately, rename the @nésurve.
To extend the curve select it and restart from the last pdithecurve.
This will permit to access each branch of the curve in ordexdib them
separately.

In order to illustrate, see Figufe A.8, that shows all thedeins
that compounds the Matcont tool.
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There are others softwares that can be used to study dynaysca
tems, see the webpage http://www.dynamicalsystemsvaigig. All of
them have advantages and disadvantages, just choose thieabfiies a
personal style of working. In the present thesis both XPPAldd Mat-
cont were used. Auto runs faster the continuations whilecbtatseems
to be more stable in the complicated range of parametersionexit be-

fore.

Sprr— - |oy AT =loix =I5l x|
F Selert Cormpits. et ns Hep W =
[ Coordinates b |
] e X1 0093915503
| Systern - RMA X2 012857143 ST T — -
| Curve EP_EP(1) %3 1 14493080.024 ) Toget arted, selct MATLAE HelporLetios o the Help e x
. PointType  EP Parameters mateont
CuveTws EP & b lhirst point found
Bngent vestor to first point found
Derivatives 55555 K 02 Lol - 52, x - { 0.093918 0.128571 -0.000000 0.193725 )
Duration D2 0.19372459 o) x|
) 2Dplot:t =Tk
SERS - Eranch point g sl Fie Bk Yew et Tocs Desiop Mo Hep inbutes Pk =
A2 04 D& hAaM® v 08 =0
A3 005 = — - i
e
o LimiCycle B2 01 o
j‘m‘”' - o] B3 03
= E2 1 0st
= Continuation Data E3 1
=
-, InitStepsize 0.5 Eigenvalues ik
] MinStepsize 1e-5 Rel1] -0.053172
MaxStepsize 01 Re[2] -0.053172 o7
el Corrector Data Rel3] 1734726018
© MaxNewtonlters 3 Im[1] 0153843 Bk n =100 %]
MaxCorriters 10 Im[2] -0.153843
?/Aa):e‘gtlters 10 Im3] 0 T 05k pause
arTolerance 1e-006
FunTolerance 1e-006 m g resume
TestTolerance 16-005 | starter =loix| __stop |
Adapt 3 Initial Point = 03
Stop Data X1 0.0939155
MaxNumPoints 2000 X2 0128571 o2
ClosedCurve 50 3 157478
R FY A BV F G e T A cR 05 B P
figure,plot(x,¥2)
$2=(.02) o/ (184, 04) ¢ i a3 & . L . . . . . . . |
2= (x.74) L/ (10a4x.04) 5 & D2 001 o 01 U T A T ?
figure, plot(x,52) ,— o
E-%-- 2/09/08 14:18 —-% cps Bo1S
mateont © A2 o4
B-%-- 3/09/08 9:57 ——% A3 ,—0 05
watcont
. cB2 0.1
4 start. B3 fo3 B
& nicio| €) Bandsia de entrad... | @ evade - Englsh Sp... | ) Ebados Florama... | ) Erdretorio Cimate.. | - Winkak -[Ebada... | & Yap-tesinattaste,. [ amarian - L ddebe thstrator ... | [B [« I 10t

Figure A.8: Matcont windows.
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From 23/04/2009 to 05/07/2009 under the supervision of Dr: A
drew White, Department of Mathematics, Heriott-Watt Umnsity,
Edinburgh (Scotland)
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e From 14/10/2009 to 15/12/2009 under the supervision ofeRsuir
Dr. Herb Freedman, Department of Mathematical and Steaisti
Sciences , University of Alberta , Edmonton (Alberta), Gdana

Workshops and Schools

e Summer School -PHYSBIO - Stochastic processes, fluctuatiod
noise, St. Etienne, France, 13. Aug. - 08. Oct. 2006

e Transylvanian Summer School Series - International Waygsin
Complex Systems and Networks, Sovata, Romania, July 15-20,
2007.

e Workshop on Dynamics and Evolution of Biological and Social
Networks, Mallorca, Spain 10-20 February, 2008.

Submitted Papers

1. T.R. Pinho, S. ; S. Bacelar, F. ; S. Andrade, R. F.; |. Fresedrfl.;
A Model of Vascular Tumor Response to Chemotherapy Combined
with Anti-Angiogenic TherapyBulletin of Mathematical Biology
(December 2009).

2. Flora Souza Bacelar; Roberto F. S. Andratlee dynamics of the
HIV infection: a time-delay differential equation apprdéaéhysi-
cal Review E, (April 2010).

3. Bacelar, F. S., Calabrese, J. M., Hernandez-GarcjaS&anna-
fire model: Combined effects of tree-tree establishmenpetition
and spatially explicit fire on the spatial pattern of treesavannas
Preprint submitted to Journal of Theoretical Biology (210

Published Papers
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1. Bacelar, F.S.; Dueri, S.;Hernandez-Garcia, E. ; Xalt).M..

Joint effects of nutrients and contaminants on the dynamwiics
food chain in marine ecosystemdlathematical Biosciences 218
(2009) 24-32 .

. Zaldivar, J.M.;Bacelar, F.S.; Dueri, S.; Marinov, D.iaMli, P.;

Hernandez-Garcia, E.Modeling approach to regime shifts of pri-
mary production in shallow coastal ecosysténkcological Mod-
elling 220 (2009) 3100-3110

. Flora S. Bacelar, Andrew White, Mike Bootdfe history and mat-

ing systems select for male biased parasitism mediateddihroat-
ural selection and ecological feedbag¢ki®urnal of Theoretical Bi-
ology 269 (2011) 131 - 137.

Seminars Given

. Investigations on the HIV dynamics with a system of timkyed

functional equations.

Instituto Mediterraneo de Estudios Avanzados (IMEDEA)Ngrsitat
de les llles Balears.

May 30th 2006.

Regime shifts in shallow coastal ecosystems: Competit@ween
Floating and Submerged plants.

Istituto de Fisica Interdisciplinar y Sistemas complejé43C).
February 26th 2008.

Savanna-Fire Model: Combined effects of tree-tree éstabent
competition and spatially explicit fire on the spatial pattef trees
in Savannas.

Mathematical Biology Seminar Series: Centre for Matheoaéti
Biology. Dept. of Mathematical and Statistical Sciences.
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University of Alberta
November 16th 2009.

4. Savanna-Fire Model: Combined effects of tree-tree éshabent
competition and spatially explicit fire on the spatial pattef trees
in Savannas.

Istituto de Fisica Interdisciplinar y Sistemas complejé33C).
March 3rd 2010.

Conference Presentations

[O] = Oral presentation,_[P= Poster presentation

1. “Caracterizag@o de Fotomultiplicadords XVIII Seminario estu-
dantil, UFBA, Brazil. October (1999]0]

2. “Desenvolvimento de instrumendagpara detecgo de luz de baixa
intensidad®g XIX Seminario estudiantil, UFBA, Brazil. October
de (2000)[Q]

3. “Propriedadesticas e de transporte de sistemas semicondutores
XIX Seminario estudantil, UFBA, (Brazil), March (2002p]

4. “Estudo de um modelo de eqdag diferenciais ordi@wrias para
descrever a diamica de infecgo pelo HIV', XXVI encontro Na-
cional de Fisica da matéria condensada, Pocos de CéBtagil),
May (2004).[P]

5. “Estudo de um modelo de eqdas diferenciais ordi@rias para
descrever a diamica de infecgo pelo VIH, 1l Bienal da Sociedade
Brasileira de Matematica, UFBA, (Brazil), 27 octuber (2RQP]
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6. “Duas escalas de tempo em um modelo de dipsmdiferenciais
com retardo temporal para a infegg pelo VIH, XXIlI Encontro
de Fisicos do Norte e Nordeste, Feira de Santana-Ba, (B1@&4
12 november (2004]P]

7. “Duas Escalas de tempo em um modelo de etpmgdiferenci-
ais com retardo temporal para infe&g pelo VIH, X Congresso
Brasileiro de Fisica Médica poster, Salvador, (Brazp-29 may
(2005).[P]

8. “Analise comparativa de modelos angémicos de diferentes ter-
apias do @ncer’, XXIIl Encontro de Fisicos do Norte e Nordeste”,
Macei6-Al, Brazil. October (2005]0]

9. Presented by S. T. R. PINH®@ ‘tomparative analysis of nonlinear
time delayed angiogenic models of cancer therdpie&NHO, S.
T.R.; BACELAR, Flora Souza ; ANDRADE, R. F. S..

XIX Latin American Workshop on Nonlinear Phenomena (LAWNSEP,0
Bariloche (Argentina), (2005])0]

10. Presented by R. F. S. Andradavestigations on the HIV dynamics
with a system of time delayed differential equatibnsndrade, R.
F. S.; BACELAR, Flora Souza ; SANTOS, Rita Maria Zorzenon
Work shop on Immunology, International centre of condenmsatt
ter physics, Brasilia (Brazil), (2005]0]

11. Presented by S. T. R. PINH@\a0 Angio@nica em Modelos de
Terapias de @ncef’, PINHO, S. T. R. ; ANDRADE, Roberto Fer-
nandes Silva ; BACELAR, Flora Souza .

XXIX Encontro Nacional de Fisica da Matéria Condensadsl¥
ENFMC), Sao Lourenco (Brazil), (2006D]

12. “Integration of Langevin Equations with Multiplicative sei Us-
ing a split-step schemePHYSBIO- Non-equilibrium in Physics
and in Biology, St. Etienne, France. October (2006).



Curriculum 229

13.

14.

15.

16.

17.

18.

“A comparative Analysis of time-delayed models of canceathe
pies at the vascular stage. 2nd Conference of the BioSimadvlet
Excellencg Calas Vifias, Mallorca (Spain). 18-22 October (2006).

[P]

Presented by J.-M. Zaldivar-Comengd@ésrhodelling approach to
nutrient-driven regime shifts in shallow coastal systewmmpeti-
tion between seagrass and macroalgae-M. Zaldivar-Comenges,
F.S. Bacelar, S. Dueri, E. Hernandez-Garcia, P. Viaroli.

6th International Congress on Industrial and Applied Mathgcs
(ICIAMOQ7). Zurich, (Switzerland). 16-20 July (2007F]

Presented by E. Hernandez-Gard®egime changes in competing
floating-submerged plant ecosysténisS. Bacelar, J.-M. Zaldivar-
Comenges, S. Dueri, E. Hernandez-Garcia.

European Conference on Complex Systems (ECCS07). Dresden,
Germany, 30 September - 6 October (2007).

“Regime changes in competing floating-submerged plant gcosy
tems, F. S.Bacelar, J.-M. Zaldivar-Comenges, S. Dueri, Ertdadez-
Garcia.

XV Congreso de Fisica Estadistica, FiSES'08 Salamanta2@?
March (2008)[P]

“Join effects of nutrients and contaminants on the dynanfies o
food chain in marine ecosystemy$=lora S. Bacelar, Sibylle Dueri,
Emilio Hernandez-Garcia and José-Manuel Zaldivar.CoOhgreso
de Fisica Estadistica, FiSES'08 Salamanca, 27 -29 M&aa8)).

[P

“Savanna-Fire Model: Combined effects of tree-tree esthbient
competition and spatially explicit fire on the spatial pattef trees

in savannas, Flora S. Bacelar, Justin M. Calabrese, Volker Grimm,
Richard Zinc, Emilio Hernandez-Garcia. PATRES meefagis,
25 -27 March (2009)[0]
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19

20.

21.

22.

23.

24.

. Presented by R. F. S. Andrad®rhodel of partial differential equa-
tions for the propagation of HIV in TCD" cells’, Andrade, R. F.
S.; B. S. Marinho, Euler; Bacelar, Flora Souza
XXXII Encontro Nacional Fisica da Matéria Condensada KX
Brazilian Meeting on Condensed Matter Physiégjuas de Lindoia,
State of Sao Paulo, from May 11 to 15 (200@)]

“Savanna-Fire Model: Combined effects of tree-tree esthbient
competition and spatially explicit fire on the spatial pattef trees

in savannas, Flora S. Bacelar, Justin M. Calabrese, Volker Grimm,
Emilio Hernandez-Garcia. XVI Congreso de Fisica Hstah,
FisEs’09 Huelva,10-12 September (2009).

“The evolution of male-biased parasitisrilora S. Bacelar, An-
drew White, Mike Boots. XI Latin American Workshop on Nonlin
ear Phenomena, Lawnp09 Buzios(RJ), Brazil, 05-09 OctabéR).
[P]

“A model of partial differential equations for the propagatiof
HIV in TCD4" cells’, Roberto F. S. Andrade, Euler B. S. Marinho,
Flora S. Bacelar. Xl Latin American Workshop on NonlineaePh
nomena, Lawnp09 Buzios(RJ), Brazil, 05-09 October(2009).

“The evolution of male-biased parasitism in different n@asys-
tems, Flora S. Bacelar, Andrew White, Mike Boots. Darwin09-
International Workshop on 150 Years after Darwin: From NMale
lar Evolution to Language

Palma de Mallorca, November 23 - 27, 2009).

“Savanna-Fire Model: Combined effects of tree-tree esthbient
competition and spatially explicit fire on the spatial pattef trees

in savannas$, Flora S. Bacelar, Justin M. Calabrese, Volker Grimm,
Emilio Hernandez-Garcia. CMPD3 Conference on Commutat
and Mathematical Population Dynamics from May 31 to June 4,
2010 - Bordeaux, Franc@]
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25.

26.

“Combined effects of tree-tree establishment competitahspa-
tially explicit fire on the spatial pattern of trees in savas,
Flora S. Bacelar, Justin M. Calabrese, Emilio Hernar@aezia.
Emergence and Design Robustness: General Principles guid Ap
cations to Biological, Social and Industrial Networks,3&, Palma
de Mallorca, 21-25 September (2018}

Presented by Emilio Hernandez-Gar&avanna-Fire Model: Com-
bined effects of tree-tree establishment competition goadialy
explicit fire on the spatial pattern of trees in savanria§lora S.
Bacelar, Justin M. Calabrese, Emilio Hernandez-Gardtaner-
gence and Design Robustness: General Principles and Applic
tions to Biological, Social and Industrial Networks, IFISRalma
de Mallorca, 21-25 September (2010)]

Computer Skills

Programming languages: Fortran 77, Python,
Operating systems: Windows, Unix (basic)
Mathematics: Matlab, Mathematica.

Typesetting: ATEX, Word.

Languages
Portuguese Mother-tongue
Spanish Correct(written and spoken)
English Correct(written and spoken)
French Basic level

Last updated: December 2, 2010
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