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a b s t r a c t

The dynamics of a neutral dipole diffusing on a one-dimensional symmetric periodic substrate is numer-
ically investigated in the presence of an ac electric field. It is observed that the amplitude of the forced
oscillations of the dipole can be enhanced by tuning the noise strength, i.e., the substrate temperature.
Such a manifestation of stochastic resonance turns out to be extremely sensitive to the mechanical prop-
erties of the dipole. This phenomenon has immediate applications in surface physics and nanodevice
technology.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we study the diffusion of neutral short chain seg-
ments moving on a one-dimensional (1D) periodic symmetric sub-
strates. We model the chain segments as overdamped neutral
dipoles, or dimers, made up of two bound equal pointlike masses,
or monomers, carrying opposite charges and suspended in a vis-
cous medium. Elastic dimers of this kind can be used to represent,
for instance, tiny fragments of longer and more complex molecular
chains, as is often the case in DNA electrophoresis [1], or neutral
molecular segments stretched between two charged synthetic
beads [2].

Contrary to the case of a dimer in which the external field acts
in the same way on both monomers [3,4], in the case of a neutral
dipole an external electric field pulls the monomers to opposite
directions, as sketched in Fig. 1. The field, no matter whether dc
or ac, cannot induce a net dipole current, since the total force ap-
plied to the neutral dipole center of mass is zero, and the underly-
ing substrate is assumed to be symmetric under space inversion. A
significant exception is represented by devices where the diffusion
is constrained by an asymmetric geometry [5]. As a consequence,
the motion of the center of mass on a symmetric substrate is
purely diffusive [6,7]. However, the internal degree of freedom of
a dipole, when constrained to 1D and subjected to an oscillating
field of force, exhibits interesting properties, which result from
the interplay of monomer–substrate and monomer–monomer
interactions. Such properties can be relevant to a variety of physi-
ll rights reserved.
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cal and biological systems, where the particle dynamics is natu-
rally overdamped and constrained to (quasi) 1D substrates [6].
Related topics of ongoing research include colloids [8] or cold
atoms [9] in optical traps, superconducting vortices in litho-
graphed tracks [10], ion-channels [11], cell membranes [12], artifi-
cial and natural nanopores [13], etc. Moreover, one is interested in
the dimer dynamics in the force direction (directed dimer) even
when dealing with dimers periodically driven on a two-dimen-
sional (2D) substrate, as long as the transverse diffusion is not sig-
nificantly affected by the drive (for a review see Ref. [6]).

The main result of this paper is that, at variance with the case of
a single monomer in a periodic potential [14], a directed neutral di-
pole exhibits Stochastic Resonance (SR) [15,16]. The simplest
dynamical system displaying SR is a Brownian particle diffusing
in a bistable potential under the simultaneous action of a time
oscillating tilt and a fluctuating force (noise). In the system consist-
ing of a neutral dipole on a periodic potential, bistability occurs as
a purely geometric effect, as in 1D the dipole heads can exchange
coordinates by overcoming a finite repulsive energy barrier, which
results from the combined action of the substrate potential and di-
pole binding potential. Moreover, the role of the Brownian mono-
mer coordinate is played here by the relative coordinate of the
dipole constituents, so that the amplitude of the forced oscillations
of a directed dipole sitting on a periodic substrate can be optimized
by tuning the noise strength (i.e., the temperature in the case of
thermal noise). Furthermore, according to our numerical simula-
tions, such an effect is extremely sensitive to the details of the di-
mer binding potential. In conclusion, the SR mechanism we report
in this paper is highly selective with respect to the length and elas-
ticity of the dipole, so that it can have important technological
applications.

http://dx.doi.org/10.1016/j.chemphys.2010.03.013
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Fig. 1. Scheme of the system under study: A neutral dipole composed of two
interacting oppositely charged monomers moving on a periodic substrate under the
action of an ac electric field EðtÞ.
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This paper is organized as follows. In Section 2 we introduce the
model (Section 2.1), define the units, characterize the diffusion of a
neutral dipole on a sinusoidal substrate in both fully 2D (Section
2.2) and reduced 1D formalism (Section 2.3), and outline the
numerical algorithms employed in our investigation (Section 2.4).
A quantitative analysis of the dipole SR phenomenon is presented
in Section 3, with particular emphasis on the role of the binding
potential. Remarkably, a SR peak was detected for hard binding
potentials, like the quartic potentials of Sections 3.2 and 3.3, but
not for the quadratic potentials of Section 3.1. Potential applica-
tions of the SR mechanism to neutral dipoles and/or short molecu-
lar chains on a surface are discussed in Section 4.
2. Model

Earlier reports have already addressed some of the properties of
the dimer model we introduce in this section. Most notable exam-
ples are the Brownian motion of rigid dimers with constant length
in either 2D symmetric [17] or 1D asymmetric potentials [18,19],
and the effects of length oscillations on the mobility and diffusion
of a damped dimer [20,21,4,22,3]. However, no particular attention
was paid to the dimer internal dynamics, which is the main subject
of the present investigation.

2.1. Langevin formulation

We study a Brownian dipole composed of two monomers with
equal masses, m, and opposite charges, q1 ¼ �q2 ¼ �q and q > 0.
Monomers move in a 1D periodic substrate potential,
U0ðxÞ ¼ U0ðxþ LÞ, subject to an external ac electric field, EðtÞ. This
model, schematically depicted in Fig. 1, is described by two cou-
pled Langevin equations,

m€x1 ¼ �
@Uðx1; x2; tÞ

@x1
� g _x1 þ n1ðtÞ;

m€x2 ¼ �
@Uðx1; x2; tÞ

@x2
� g _x2 þ n2ðtÞ: ð1Þ

Here g is the viscous friction coefficient, while niðtÞ, with i ¼ 1;2,
represent the thermal fluctuations exerted by the substrate in equi-
librium at a fixed temperature T; niðtÞ are modeled as independent
Gaussian white noises with zero mean and auto-correlation
functions

hniðtÞnjðt0Þi ¼ 2gkBTdijdðt � t0Þ; i; j ¼ 1;2: ð2Þ

The total potential, Uðx1; x2; tÞ, takes into account the monomer–
substrate and monomer–monomer interactions, as well as the
external electric potential, that is

Uðx1; x2; tÞ ¼ U0ðx1Þ þ U0ðx2Þ þ Uintðx2 � x1Þ � qEðtÞðx2 � x1Þ: ð3Þ

For the periodic substrate potential acting upon the ith monomer
we assume a simple sinusoidal function,

U0ðxiÞ ¼ �A0 cosðkxiÞ; ð4Þ

with amplitude A0, length constant L ¼ 2p=k, and a minimum at the
origin, U0ðxi ¼ 0Þ ¼ �A0. As for the interaction potential, we will
consider two standard cases: the quadratic interaction (quadratic
dimer),

Uintðx2 � x1Þ ¼
K2

2
ðx2 � x1 � a0Þ2 ð5Þ

and the quartic interaction (quartic dimer),

Uintðx2 � x1Þ ¼
K4

4
ðx2 � x1 � a0Þ4; ð6Þ

where a0 P 0 is the equilibrium monomer distance, or dimer
length, and K2; K4 are tunable interaction, or coupling, constants.
The time-periodic electric field has a sinusoidal waveform,

EðtÞ ¼ E0 sinð2pmtÞ; ð7Þ

with amplitude E0 and frequency m. In the following we refer to
F0 ¼ qE0 as to the amplitude of the force, FðtÞ ¼ �qEðtÞ, applied to
the monomers.

2.2. Dipole dynamics as a 2D problem

The 1D motion of the Brownian dipole can be mapped into the
2D motion of a single Brownian particle in the x1—x2 plane. For con-
venience, we also introduce the x–y plane defined by the center of
mass coordinate, x, and the instantaneous half-length, y, of the di-
mer, i.e.,

x ¼ ðx1 þ x2Þ=2; y ¼ ðx2 � x1Þ=2: ð8Þ

The coordinate change ðx1; x2Þ ! ðx; yÞ is equivalent to rotating the
x1—x2 frame by an angle p=4 and rescaling the coordinate units
by a factor 1=

ffiffiffi
2
p

. On inserting the potential functions (3) and (4)
into Eq. (1), the Langevin equations in the new coordinates read

m€x ¼ �A0k sinðkxÞ cosðkyÞ � g _xþ RxðtÞ;
m€y ¼ �A0k cosðkxÞ sinðkyÞ � U0intð2yÞ þ qEðtÞ � g _yþ RyðtÞ; ð9Þ

where U0intðyÞ ¼ dUintðyÞ=dy. The two random forces,

RxðtÞ ¼ ½n1ðtÞ þ n2ðtÞ�=2; RyðtÞ ¼ ½n2ðtÞ � n1ðtÞ�=2; ð10Þ

are uncorrelated and characterized by the same effective tempera-
ture T=4, namely,

hRxðtÞi ¼ hRyðtÞi ¼ 0; hRxðtÞRyðt0Þi ¼ 0;
hRxðtÞRxðt0Þi ¼ hRyðtÞRyðt0Þi ¼ ðgT=2Þdðt � t0Þ: ð11Þ

The 2D potential corresponding to the conservative forces in the
Langevin Eq. (9),

Uðx; y; tÞ ¼ �A0 cosðkxÞ cosðkyÞ þ Uintð2yÞ=2� qEðtÞy ð12Þ

is plotted in Fig. 2(b) for a quartic dimer with zero equilibrium
length and in the absence of an external field. Note that the center
of mass coordinate x enters Uðx; y; tÞ only through the substrate
term. As a consequence, the x dependence of the minima of the rel-
evant potential surface, panel (a) of Fig. 2, is determined by the sub-
strate potential U0, alone. From the extremum conditions for
Uðx; y; tÞ, at a given time t,

@U
@x
¼ A0k sinðkxÞ cosðkyÞ ¼ 0; ð13Þ

@U
@y
¼ A0k cosðkxÞ sinðkyÞ þ U0intð2yÞ � qEðtÞ ¼ 0; ð14Þ

it follows that the extremes of this potential have coordinates
xn ¼ nðL=2Þ with integer n, corresponding to a maximum for odd
n, and to a minimum for even n (see panel (b) of Fig. 2). On inserting
the solution xn ¼ nðL=2Þ of Eq. (13) into Eq. (14), one obtains the fol-
lowing equation for yn,

� A0k sinðynÞ þ U0intð2ynÞ � qEðtÞ ¼ 0: ð15Þ
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Fig. 2. (a) Surface and contour plot of the potential U given by Eq. (3) with Eqs. (4)
and (6) in the x1—x2 coordinate frame, for zero drive, E ¼ 0, zero equilibrium length,
a0 ¼ 0, and rescaled coupling constant K4 ¼ 10�3. (b) Countour plot of the same
potential as in panel (a): comparison in the x–y and x1—x2 coordinate frames. The
stable regions are located by darker closed contour lines. The thick arrow represents
an example of most probable transition, i.e., from the origin ðx; yÞ ¼ ð0;0Þ to the
nearest neighbor minimum ðL=2; L=2Þ.
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Fig. 3. Sample of stochastic trajectory with initial conditions ðx1; x2Þ ¼ ð0;0Þ from
numerical integration of Eq. (1) at a resonant temperature T ¼ 0:9. The quartic
monomer–monomer interaction (6) has been used with K4 ¼ 0:008. Other simu-
lation parameters are: a0 ¼ 0; F0 ¼ 0:5, and m ¼ 0:02.
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Fig. 4. Effective 1D potential Usðs; tÞ, Eq. (16), at times t ¼ 0 (symmetric), s=4
(F ¼ F0, maximum tilt to the right), s=2 (symmetric), and 3s=4 (F ¼ �F0, maximum
tilt to the left). The quartic monomer–monomer interaction (6) has been used with
K4 ¼ 0:008. Other interaction parameters are: F0 ¼ 0:5 and a0 ¼ 0. In the interval
[0,1] Us approximates the total potential acting on the dimer heads during the
transition ð0;0Þ ! ðL=2; L=2Þ, see Fig. 2(b).
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The solutions for yn are very sensitive to the interaction potential,
Uint, and the external force, F0. In the absence of the interaction po-
tential, Uint ¼ 0, and the electric field, E ¼ 0, the potential (3) is an
egg-carton potential with the minima located at ðx; yÞ ¼
ðnL=2;mL=2Þ, with integer n, m. Introducing the interaction (5) or
(6) produces a distortion of the periodic egg-carton potential in
the y-direction, see Fig. 2. Whereas, the coordinates of the minima
lying on the x-axis remain unchanged, the positions of the other
minima are shifted or the minima disappear (see Fig. 2(b)).

One may now ask what are the most probable transitions of the
system in the potential energy landscape of Fig. 2. Let us consider
the x–y frame and assume that the starting configuration coincides
with the equilibrium point at ðx; yÞ ¼ ð0;0Þ. By inspecting the con-
tour lines in Fig. 2(b), one concludes that the most favored transi-
tions are those from ð0;0Þ toward one of the four nearest neighbor
minima ð�L=2;�L=2Þ. Indeed, such transitions require overcoming
lower and narrower potential barriers than, for instance, the next-
to-nearest neighbor transitions, ð0;0Þ ! ð�L;0Þ. The transitions
ð0;0Þ ! ð�L=2;�L=2Þ correspond to the situation when one mono-
mer sits at the origin (either x1 ¼ 0 or x2 ¼ 0), while the other one
jumps into a neighbor valley (x2 � �L or x1 � �L). If also the exter-
nal ac electric field is applied, the potential surface undergoes a
periodic tilting around the x-axis (see Eq. (12)), thus favoring alter-
nately transitions toward minima with y ¼ L=2 and y ¼ �L=2.

The ð0;0Þ ! ð�L;0Þ transitions describe a monomer coherently
jumping from the origin into one of the two adjacent valleys; they
are energetically unfavorable and, moreover, cannot be assisted by
the external field, which does not couple to the x coordinate. In the
x1—x2 plane the system will preferably move through a series of
vertical and horizontal steps. Diagonal steps representing next-
to-neighbor transitions will be highly suppressed. The sample of
stochastic trajectory shown in Fig. 3 clearly illustrates this dimer
diffusion mechanism (see also Refs. [23,24]).
2.3. Effective 1D dynamics

The previous section suggest an approximate 1D picture of the
system dynamics. On assuming, without loss of generality, that the
dimer motion sets out at the equilibrium point ð0;0Þ, the first most
probable transitions are oriented toward one of the four nearest
neighbor minima marked in Fig. 2(b).

On considering, for example, the transition ðx; yÞ ¼ ð0; 0Þ !
ðL=2; L=2Þ [thick arrow in Fig. 2(b)] one can introduce the coordi-
nate s along the transition path, which coincides with x2 since
x1 ¼ 0. Therefore, x ¼ y ¼ s=2 (see Eq. (8)) and in the zero temper-
ature limit Eq. (12) yields the approximate effective potential
Usðs; tÞ,

Usðs; tÞ ¼ 2Uðs=2; s=2; tÞ

¼ �2A0½cosðks=2Þ�2 þ UintðsÞ � qEðtÞs: ð16Þ

This potential motivated us to search for SR evidence. The shape of
Usðs; tÞ results from the interplay between (i) the periodic substrate
potential, (ii) the monomer–monomer interaction potential, and
(iii) the external field. For too large F0 or Kq, with q ¼ 2;4, the po-
tential is monostable, whereas in the opposite limit it becomes mul-
tistable with many minima. The dimer length a0 also plays a role as
discussed in Section 3.3. More interesting is the case plotted in
Fig. 4, for a0 ¼ 0 and three representative values of the tilt FðtÞ.
For FðtÞ ¼ 0 (t ¼ 0 and t ¼ s=2) Usðs; tÞ is symmetric with the central
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minimum at s ¼ 0 being the deepest; here s ¼ 1=m is the period of
the electric field EðtÞ, Eq. (7). However, due to the sinusoidal char-
acter of the electric field EðtÞ, the system spends most time in one
of the maximally tilted configurations with Fðt ¼ s=4Þ � F0 or
Fðt ¼ 3s=4Þ � �F0. In such configurations, either the left or the right
minimum disappear and the potential turns bistable. Moreover, the
system switches between maximally tilted configurations relatively
fast, so that SR manifestations are more likely in those
configurations.

Taking into account thermal fluctuations one can arrive at a
similar approximation by focusing on the internal degree of free-
dom, y, and analyzing the effective potential hUðy; tÞi, obtained
by averaging the total potential Uðx; y; tÞ with respect to the center
of mass coordinate, x (the average can be limited to one unit cell L),

hUðy; tÞi � hUðx; y; tÞix
¼ �A0hcosðkxÞix cosðkyÞ þ Uintð2yÞ=2� qEðtÞy: ð17Þ

Simple algebraic manipulations yield hcosðkxÞix ¼ I1ðaÞ=I0ðaÞ where
a ¼ ðA0=kBTÞ cosðkyÞ and InðxÞ is the modified Bessel function of or-
der n. The average has been taken at t ¼ 0, when EðtÞ coincides with
its average value E ¼ 0. For
a� 1; I1ðaÞ=I0ðaÞ � a=2 ¼ ðA0=2kBTÞ cosðkyÞ and the effective po-
tential can be approximated to

hUðy; tÞi � � A2
0=2kBT

� �
cos2ðkyÞ þ Uintð2yÞ=2� qEðtÞy: ð18Þ
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reported in the legends. The amplitude Y0 was obtained by best fitting the linear
response theory law (22) to our simulation data for hyðtÞi.
2.4. Numerical simulations

For numerical simulations, the Langevin Eq. (1) have been first
reformulated in terms of the intrinsic space, energy, and time units,

k0 ¼ 1=k; �0 ¼ A0; s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0m=�0

q
; ð19Þ

respectively. The definition of s0 ensures that the rescaled monomer
masses are equal to one. The units (19) were used to define the
dimensionless quantities

~t ¼ t
s0
; ~xi ¼

xi

k0
; ~x ¼ x

k0
; ~y ¼ y

k0
; ~a0 ¼

a0

k0
;

~m ¼ ms0; ~F0 ¼
k0qE0

�0
; eFðtÞ ¼ ~F0 sinð2p~m~tÞ;

~ni ¼
k
�0

ni; eRx;y ¼
k
�0

Rx;y; eT ¼ kBT
�0

; ~c ¼ gs0

m
;

eU 0intð~yÞ ¼
k
�0

U0intðk~yÞ ¼
eK q

q
ð~y� ~a0Þq ðq ¼ 2;4Þ: ð20Þ

The coupling constants of eU int were rescaled as fK2 ¼ k2
0K2=�0, for

the quadratic interaction ðq ¼ 2Þ, and fK4 ¼ k4
0K4=�0, for the quartic

interaction ðq ¼ 4Þ.
For simplicity, in the following sections we drop the tildes alto-

gether. The rescaled Langevin Eq. (1) thus read

€x1 ¼ �c _x1 � sin x1 þ FðtÞ þ U0intðx2 � x1Þ þ n1ðtÞ;
€x2 ¼ �c _x2 � sin x2 � FðtÞ � U0intðx2 � x1Þ þ n2ðtÞ; ð21Þ

where hniðtÞi ¼ 0 and hniðtÞnjðt0Þi ¼ 2cTdijdðt � t0Þ.
The damped dimensionless Langevin Eq. (21) have been inte-

grated numerically through a standard Milstein algorithm [25].
Individual stochastic trajectories were simulated for different time
lengths and time steps, so as to ensure appropriate numerical accu-
racy. Average quantities have been obtained as ensemble averages
over 104 trajectories with initial conditions (0,0); transients effects
have been estimated and subtracted.
3. Results

In this section we present our numerical results for two classes
of dipoles, respectively with quadratic, Eq. (5), and quartic binding
potential, Eq. (6). We discuss in particular the time dependence of
the stochastic averages of the internal coordinate. In the presence
of an ac electric field, hyðtÞi was fitted by the simple sinusoidal
function

hyðtÞi ¼ Y0 cosð2pmt þ /Þ; ð22Þ

with appropriate T dependent amplitude, Y0, and phase, /. The ob-
servable Y0 coincides (in linear response theory approximation)
with the amplitude of the first Fourier component of hyðtÞi and,
therefore, is best suitable to provide a direct signature of the SR
phenomenon [15].
3.1. Quadratic interaction

In the presence of quadratic monomer interaction, Eq. (5), we
found no SR evidence throughout the parameters space we ex-
plored. A selection of curves of Y0 versus T are displayed in Fig. 5
for a zero-length dipole, a0 ¼ 0, for different F0; m, and K2. The
curves of Y0ðTÞ increase monotonically with increasing T and even-
tually reach a plateau at high temperatures. This was the case even
when the parameters in Eq. (5) were chosen so as to approximate
as closely as possible the shape of the wells and barrier(s) of the
quartic potential in Eq. (6), for which SR was observed.

The absence of SR in a quadratic dimer is not accidental, but re-
flects a general property of this binding potential. It has been
shown in Ref. [26] that a necessary condition for SR to occur in a
bistable potential, U(x), is that U(x) grows asymptotically faster
than quadratic, i.e., UðxÞ / jxjq, with q > 2, at large distances from
its minima, jxj ! 1. It is only under this condition that Y0 gets sup-
pressed both in the limit of large and small T, thus implying the
existence of an optimal SR temperature, for which Y0 goes through
a maximum.

Harmonic potentials, with q ¼ 2, are a special class of symmet-
ric bistable potentials. They separate hard potentials with a q > 2,
for which SR has been reported in the earlier literature [15], from
soft potentials with q < 2, where SR is suppressed by infinite re-
turn times and slow thermalization. For q ¼ 2, an horizontal Y0

asymptote was observed at large temperatures [26], as also shown
in Fig. 5.
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No evidence of SR was detected either in the case of quadratic
dimers of finite length (no illustration shown), as a0 > 0 does not
change the confining properties of the potential.
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3.2. Quartic interaction with a0 ¼ 0

We consider now two monomers interacting through the quar-
tic potential of Eq. (6). For the reasons discussed in the previous
section, we expect quartic dimers to exhibit SR [26].

A sample of a quartic dipole stochastic trajectory in the x1—x2

plane is displayed in Fig. 3. While the center of mass of the dipole
diffuses along the line y ¼ 0, or x1 ¼ x2, due to the hard interaction
potential, the relative monomer distance remains tightly bounded,
namely, the diffusion process is confined to the neighborhood of
the x-axis. For the parameter values used in our simulations, see
Fig. 2(b), only the minima located close to y ¼ 0;�L are preserved,
while all the others disappear. Actually, the system spends most
time in the minima sitting on the axis y ¼ 0; these are the lowest
minima and exist for any tilt FðtÞ. In fact, the system jumps among
them in order to move from the leftmost to the rightmost mini-
mum of the effective 1D potential, Usðs; tÞ in Fig. 4, and vice versa.

Our fitted amplitudes, Y0 versus T, are reported in Fig. 6 for dif-
ferent frequencies of the external force. The resonant peak is en-
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hanced at small frequencies. In Fig. 7 different values of the force
amplitude are considered. For large F0 the SR peak is replaced by
a low temperature plateau. We have checked that such plateau,
at around F0 ¼ 1:5 in the top figure panel, is related to the disap-
pearance of the barrier separating the central from the lateral min-
ima of the effective potential Usðs; tÞ. Finally, in Fig. 8 we varied K4

in order to modulate the multistable profile of the effective poten-
tial Usðs; tÞ. As to be expected, for large coupling constants, the lat-
eral minima of the potential vanish (see inset in Fig. 8) and so does
the SR peak of Y0ðTÞ.
0
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Fig. 8. Zero-length quartic dimers: Y0 vs. T for different values of K4 (in the legend).
Other simulation parameters are: F0 ¼ 0:5 and m ¼ 0:01. Inset: Maximum right tilt
configurations, UsðsÞ, of the effective potential Usðs; tÞ, Eq. (16).
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Fig. 9. Amplitude Y0 vs. T for a quartic dipole with different values of a0 (in the
legends). Insets: Maximum right tilt configuration, UsðsÞ, of the effective potential in
Eq. (16) for the given values of a0. Other simulation parameters are: (a)
m ¼ 0:005; K4 ¼ 0:1 and (b) m ¼ 0:01; K4 ¼ 0:01; F0 ¼ 0:2.
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3.3. Quartic interaction with a0 > 0

In order to appreciate the role of the dimer length, we have sim-
ulated dipoles with quartic monomer–monomer interaction and
nonzero length, a0 – 0. Note that the results obtained for a certain
a0 are equivalent to those for an equilibrium length a0 þ nL, with
an integer n. Furthermore, the dynamics of the system is the same
for a given a0 2 ð0; LÞ and for the complementary value L� a0.
Therefore, it is sufficient to consider equilibrium distances in the
range ð0; L=2Þ only (see Refs. [3,4]).

The diffusion of finite length dipoles strongly depends on the ra-
tio a0=L, and so does the appearance of SR. The response of the sys-
tem for different interaction parameters and equilibrium lengths is
illustrated in Fig. 9. Note, first, that in the top panel, no SR peak is
visible for large K4 and zero a0, since the corresponding effective
potential, Usðs; tÞ, is monostable. However, setting a finite dimer
length, a0 > 0, causes an asymmetric distortion of Usðs; tÞ, which
may restore a double-well potential structure and, therefore, the
conditions for SR to take place. This can be seen by comparing
the 1D potentials (16) for the parameters used in the top panel
for the limiting cases of zero and maximum length, a0 ¼ L=2 (see
inset in Fig. 9(a)). On the contrary, for the small interaction con-
stants used in the bottom panel, a0 seems to have no remarkable
influence on the system response: the potential always has more
than one minimum (see inset in Fig. 9(b)), and SR was detected
for all a0 considered.

4. Conclusions

In this paper we have studied the occurrence of SR for neutral
dipoles confined on a periodic substrate. The combination of dipole
binding and substrate generates the bistable (or multistable) effec-
tive potential necessary for the manifestation of SR.

Such a phenomenon can be interpreted as a thermally induced
resonance, where the amplitude of the forced oscillations of a di-
rected dipole attains a maximum at an optimal substrate temper-
ature. Let us consider, for instance, an assembly of two species of
adatoms carrying opposite charges and arranged so as to form neu-
tral bound pairs, with finite dipole moment, on a crystal surface.
Suppose, next, that the surface is irradiated with e.m. waves of a
given frequency. The surface dipoles would start oscillating with
the same frequency, their amplitude depending on the adatom–
adatom and adatom–substrate interactions. Let us make, now, con-
tact with our simple dimer model. The SR quantifier, Y0=F0, plotted
in Section 3, plays the role of an electric susceptibility. This means
that the emission (absorption) power of surface dipoles can vary
appreciably with the temperature substrate. However, as the elec-
tric susceptibility of the adsorbed dipoles is maximum for an opti-
mal SR temperature, the balance of absorbed/emitted radiation is
expected to drive the local substrate temperature towards the SR
temperature of the dipoles. In a forthcoming publication we inves-
tigate such a feedback mechanism, where, contrary to standard SR,
the temperature is no longer the control parameter. Indeed, in this
picture, the stationary temperature of the surface is influenced by
the dipole SR temperature and is itself controlled by the frequency
and intensity of the e.m. radiation.
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