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Wave-Unlocking Transition in Resonantly Coupled Complex Ginzburg-Landau Equations
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We study the effect of spatial frequency forcing on standing-wave solutions of coupled complex
Ginzburg-Landau equations. The model considered describes several situations of nonlinear counter-
propagating waves and also of the dynamics of polarized light waves. We show that forcing introduces
spatial modulations on standing waves which remain frequency locked with a forcing-independent
frequency. For forcing above a threshold the modulated standing waves unlock, bifurcating into a tem-
porally periodic state. Below the threshold the system presents a kind of excitability.

PACS numbers: 82.20.—w, 42.65.Sf, 47.20.Ky

Different physicochemical systems driven out of equi- A+ v,0,A = pnA + (1 + ia)o’A
librium may undergo Hopf bifurcations leading to rich . . 2 2
spatiotemporal behavior. When these bifurcations occur (1 +iB)AI" + ¥IBI)A + €B.
with broken spatial symmetries, they induce the forma-B — v,0,B = uB + (1 + ia)d*B
tion of wave patterns described by order parameters of the (4 BB + yIAP)B + €A. (2)

form
xtie. ik tie. Due to the resonant coupling with coefficieat pure
W= Aelrtiod 4 pertiatiod + e, () traveling waves are not solﬂtio?ws of these equatFi)ons any
where the slow dynamics of the wave amplitudesnd more, and generic arguments of bifurcation theory allow
B obey complex Ginzburg-Landau equations. This isa characterization of the possible uniform amplitude solu-
the case, for example, for Rayleigh-Bénard convection iions depending on the various dynamical parameters of
binary fluids, Taylor-Couette instabilities between coro-the system [6]. Here also, standing waves may be stabi-
tating cylinders, electroconvection in nematic liquid crys-lized as the result of phase locking between the waves
tals [1], or for the transverse field of high Fresnel numberandB. Predictions based on (2) in theindependent case
lasers [2]. Symmetry breaking transitions are usually venhave been successfully tested for azimuthal waves in an an-
sensitive to small perturbations or external fields. Fomulus laser with imperfea®(2) symmetry [7]. However,
example, it has been shown that a spatial modulation athe combined effect of the complex coupling coefficient
the static electrohydrodynamic instability of nematic lig- and the spatial degrees of freedom has not been explored.
uid crystals modifies the selection and stability of the re- In this Letter, we study Egs. (2) with the following pa-
sulting roll patterns. In particular, the constraint imposedrameter restrictions: imaginary linear coupling coefficient
by a periodic modulation of the instability point may lead (e = ivyp), negligible group velocity,, and weak and real
to a commensurate-incommensurate phase transition [3jonlinear cross-coupling ter@y < 1). We will, however,
In the case of Hopf bifurcations, external fields inducingmaintain the spatial derivative in the right-hand side of (2),
spatial or temporal modulations strongly affect the selecand this will be crucial for the results below. We will
tion and stability of the resulting spatiotemporal patternsshow that the spatial forcing introduces spatial modula-
For example, standing waves may be stabilized by purelyions of the standing wave solutions whideand B remain
temporal modulations at twice the critical frequency [4,5],frequency locked with a forcing-independent frequency.
or by purely spatial modulations at twice the critical waveBy increasing the forcing, these stable modulated waves
number [6], in regimes where they are otherwise unstablenerge with unstable ones in saddle-node bifurcations with
including domains where the bifurcation parameter is benontrivial global structure. This wave-unlocking transition
low the critical one. results in a mixed state with limit cycle temporal behav-
External forcings that break space or time translationaior. The threshold value of the forcing and the limit cycle
invariance, but not the space inversion symmetry ofrequency are calculated analytically. Modulated standing
the wave amplitudes, induce linear resonant couplingsvaves can also be induced by strong enough temporal forc-
between the complex Ginzburg-Landau equations (CGLEng [8].
which describe the dynamics of the amplitudes of left The parameter regime explored here would be appropri-
and right traveling waves. In the case of forcingsate in physical situations where a spatial forcing modulates
that break the space translation invariance, the couplinthe frequency of the Hopf instability and induces a purely
coefficiente is in general complex, and the correspondingimaginary resonant forcing (a purely realwould appear
coupled CGLE may be written, in one-dimensional geo-due to a spatial modulation of the distance to the instabil-
metries, as ity point). Possible systems should have negligible group
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velocities, as in some circumstances in binary fluid conharmonics is negligible and, to lowest order in— &2,
vection [9] or liquid crystals [10], and weak coupling such an approximate solution takes the form

as in viscoelastic convection [11]. Up to now, the parame-
ter range considered here best applies to several situations
in laser physics. The first one corresponds to taking into B = /(%@ (ge~iketin) 1 Rkxtdotd)y = (i)

account transverse effects in inhomogeneously broadened . ) .
(y < 1) bidirectional ring lasers [12]. The purely imag- with 6 and )y arbitrary, andg fixed by the forcing. O

inary resonant coupling is a consequence of conservati\/%nd R are real numbers (pos_|t|ve or neggtlve_) and, for
(off-phase) backscattering [13], or, alternatively, a spatiaF'mall Y, .|R| <« Q| (an equivalent solution is found
modulation of the refraction index of the laser medium. Inlntirchangl_lngg ande)h. luti be ai ithi
fact, a spatially periodic refractive index is the mechanisrqhe \gls;r?z:teilc?r?ri]n?ert thS:tigg lcj)?c()g)s CSZfin? glv?g Vit n
used for single frequency selection in index coupled dis- +p iR the chanpe of variables' to the :%elitud;s of
tributed feedback lasers (DFB). A second situation is thah - ¢ d 'I' | gl ed s gi P

of the transverse vector field in a laser near threshold [14]. €.x andy linearly polarized components gives

The parametetyp corresponds to a detuning splitting be- A, = V2C. codkx + Po)e! (ot Tot )

tween light linearly polarized in different orthogonal direc- . ; g

tions, produced, for example, by small cavity anisotropies. Ay = V2Csinlkx + gro)e! 0T, 6)

In this case,A and B are not the amplitudes of left or These equations describe at each peitite superposition
right traveling waves, but the amplitudes of the two inde-of two dephased harmonic motions with different ampli-
pendent circularly polarized components of light, that istudes and a frequency, independent of forcing. This

A = (A, + iAy)/2 andB = (A, — iA,)/v/2, whereA, identifies the solution (5) with an elliptically polarized
andA, are the linearly polarized complex amplitudes of standing wave pattern in which the orientation of the el-
the vector electric field with a spatially transverse depentipse and its ellipticity vary periodically in the spatial co-
dence. Weak couplingy < 1) favors linear polarization ordinatex. In the limit of no forcing,R = 0, the ellipse
(Al = |Bl). We will often use the light-polarization ter- degenerates in a linearly polarized standing wave with an
minology, because it gives a clear physical insight into theangle of polarizationy = kx + . Inthis interpretation,
states found for the general set of Eqgs. (2) of broad appli-

cability within the parameter restrictions above.

Two families of solutions of the coupled CGLE (2) can
be distinguished. The first family corresponds to traveling
waves forA and B with the same amplitude, frequency,
and wave number
A — Qoe—ikx+ia)t+i(90+ljlo)’
B = Qoe—ikx+iwt+i(90—l/fo). (3)
Without forcing(yp = 0), the constant global and relative
Daf

phasesg, and ¢, are arbitrary, the amplitude i€} =

(w — k?)/(1 + ), and the frequency is wy = —ak? —
B(1 + y)03. With forcing, the global phase and the 0.2
amplitude remain unchanged, but the relative phase is oo L

-

A= ei(00+wgt)(Qei(kx+i¢0) + Reﬁi(kx+1//07¢))

fixed by sim2¢, = 0; the two allowed values ofy, give
two solutions with frequencies = wo *= yp. The phase _oal

Reallﬁly]

instabilities of these solutions were discussed in [14].

The second family of solutions can be searched in the D4, , B
form of two waves 0.4 -02 00 02 04
Real[A ]

A= eiwot a einkx, B = ei(uot b einkx, 4
; ! ; " ) FIG. 1. Modulus (left) and phase (right) o for yp, =

; 0.012 < yp.. The horizontal axis is space (256 units), and the
frequency locked to a frequency, independent of vertical is time (1000 units). Gray levels range from black

forcing. Foryp = 0, the exact solutions of (2) in this (0) to white (the maximum of the modulus @ for the
form only have two terms|a;| = [b—i| = Qo. The phase). This numerical solution has been obtained from (2)
effect of a small forcing in this solution is to generatewith g8 = 0.2, y = 0.5, o = 0.2, and @ = 2.6. The initial
higher harmonics, while keeping, fixed and the relative condition is a standing wave witb = w, and k = 0.123.
phase between, andb_; arbitrary. Now, the remaining Bottom: polarization representation of the solution at a given

o point x. For yp = 0 one has linear polarization (indicated by
coefficientsa,, andb, are not zero and can be calculatedthe straight line) which becomes elliptical fors # 0. An

perturbatively inyp. Close enough to the threshold for equivalent solution has the major axis of the ellipse along the
a modek (u — k? = 0), the amplitude of higher order second and fourth quadrants.
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the first family of solutions (3) would correspond to lin-
early polarized traveling waves with frequeneyand an
angle of polarization). In such a case, the forcing fixes
the direction of polarization so that only or y linearly
polarized waves remain. On the contrary, forcing in (5)
grows an ellipse from a linearly polarized standing wave
keeping the frequency unchanged.

Elliptically polarized standing wave patterns are ob-
tained from a direct numerical integration of the coupled
CGLE as shown in Fig. 1. Increasing the forcing, these
solutions become unstable through a bifurcation in which
0 and R become time dependent. As shown in Fig. 2,
the solution beyond this instability oscillates between the
two equivalent elliptically polarized standing wave pat-
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terns found for smallyp. In addition, from the numerical
simulations, one finds that the peri@dof these oscilla-
tions decreases beyond the critical valyg.. One has
T %« yp — yp. (see Figs. 3 and 4).

A quantitative description of the instability, including

the determination of the critical forcingp. and the period
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FIG. 2. Same as Fig. 1 but using = 0.0145 > yp,.

of the oscillations, can be performed by an amplitude

analysis. Close to the threshold for tkemodes, the
equations for the slow time evolution @ and R can

be found by substitution of (5) into (2) and neglecting

contributions from higher order harmonics. Defining
Xe'® = Q + iR, we find
X=(u—K)X - (1+ yXx°
X3
-1+ ycosz¢)7 SiF2d ,
. X2
b =-(+ ycosz¢)7sira<b cos2®d
XZ
+ Bysin¢ 73irﬂ<b — ypSing,
¢ = B + ycoRp)X?co2d + yX?sing

— 2yp cosp cod . (7)

Po(+) = £(+) + m—-,

Po(=) = 7~ £() +m - ©)
wherem = 0, 1,2, 3, and
N G Vi : 4yp
&(x) 1 arcsm(1 )Xo R (10)

Heteroclinic orbits connect the saddles and the stable
nodes with the same. When yp grows, saddles and
nodes approach by pairs and at the critical value,

_ (=)0 —y)
VB + )3 + )’
they merge and disappear via inverse saddle-node bifurca-
tions. The interesting point is the global structure of the
bifurcation: The presence of the heteroclinic connections

gives rise to the birth of limit cycles (one for each value
of ¢). This is similar to the Andronov—van der Pol bi-

(11)

Ypc

The fixed points of (7) represent the polarized standingyrcation [15] that appears in several types of excitable
waves solutions (5). These points can be determinedystems [16]. The difference is that, due to symme-

exactly in the limiting case o3 = 0. The interesting
solutions have two allowed values @: ¢y = 2n +
1)@ /2,n = 0, 1; and for each value op, there are eight
fixed points: Four are stabler) and the other four are
saddle point§—). The corresponding values &f and ®
are

p — K

+)2 =
X = G i T )

><|:5+3'y

* \/(1 - y)?

_ 8L+ 9B + y)ys
(w — k2 ’
(8)
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tries, here we have several pairs of fixed points merging,
instead of just one pair. The periodic behavior is illus-
trated in Fig. 2 by the periodic alternation of the trajec-
tory between the “ghosts” of the disappeared elliptically
polarized states corresponding to the fixed points. Be-
low the bifurcation, small perturbations around the stable
solutions decay, whereas perturbations above a threshold
push the system along the heteroclinic trajectory toward
another stable fixed point. Since the size of the pertur-
bation required for such switches decreases by increasing
vp, and vanishes agp., the multistability of this system
can be seen as a kind of excitability [17]. A different
consequence of the multiplicity of stable states is their
possible coexistence in space, leading to the formation of
domains with different polarizations along theaxis.
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FIG. 3. Period of the oscillation§l') of Q0 and R, obtained

sions for yp., X, and ®.. Therefore, for smallg, the
previous analysis is still meaningful as explicitly seen in
the numerical results of Figs. 3 and 4.

In summary, in the absence of forcing, and for the pa-
rameter regime considered here, there are solutions for
the amplitudest and B of the coupled CGLE which cor-
respond to linearly polarized standing waves. We have
shown that an imaginary coupling between them trans-
forms these solutions into standing waves with spatially
periodic elliptic polarization. Increasing the forcing, an
instability of these solutions appears, via the unlocking of

from the numerical solution of the coupled CGLE using thethe underlying wave amplitudes, and the solutions acquire

parameters given in Fig. 1. The dashed line is a least squar

fitting from which yp. = 0.0138.

Close to the instability atyp., the time dependent

&Ptime-periodic behavior. Locally, this bifurcation is of the

saddle-node type, but the presence of heteroclinic connec-

tions between the fixed points gives rise to the appearance

of a limit cycle when stable and unstable points merge.
Financial support from DGICYT Projects PB94-1167

behavior of the solution can be obtained reducing the,,q pg94-1172 is acknowledged.
problem to a phase dynamics by elimination of the

variableX. We have (in the limi{8 = 0)
(p — K1 — y)sidd

5+3y - (= poosta T 7 (12)

which for yp = vyp. yields the following time behavior:

tan(2d) = tan(zcbc)[l + 20y -

B —

7Pc)/7Pc

Yp — YpPc

X tar<(5 + Sy)m\/mt>j|’ (13)

whered, = &, Eq. (9), foryp = yp..
An approximative analysis of Eqgs. (7) f@ # 0 indi-
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