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Wave-Unlocking Transition in Resonantly Coupled Complex Ginzburg-Landau Equations
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We study the effect of spatial frequency forcing on standing-wave solutions of coupled complex
Ginzburg-Landau equations. The model considered describes several situations of nonlinear counter-
propagating waves and also of the dynamics of polarized light waves. We show that forcing introduces
spatial modulations on standing waves which remain frequency locked with a forcing-independent
frequency. For forcing above a threshold the modulated standing waves unlock, bifurcating into a tem-
porally periodic state. Below the threshold the system presents a kind of excitability.

PACS numbers: 82.20.–w, 42.65.Sf, 47.20.Ky

Different physicochemical systems driven out of equi-
librium may undergo Hopf bifurcations leading to rich
spatiotemporal behavior. When these bifurcations occur
with broken spatial symmetries, they induce the forma-
tion of wave patterns described by order parameters of the
form

C  Aeikcx1ivct 1 Be2ikcx1ivct 1 c.c., (1)

where the slow dynamics of the wave amplitudesA and
B obey complex Ginzburg-Landau equations. This is
the case, for example, for Rayleigh-Bénard convection in
binary fluids, Taylor-Couette instabilities between coro-
tating cylinders, electroconvection in nematic liquid crys-
tals [1], or for the transverse field of high Fresnel number
lasers [2]. Symmetry breaking transitions are usually very
sensitive to small perturbations or external fields. For
example, it has been shown that a spatial modulation of
the static electrohydrodynamic instability of nematic liq-
uid crystals modifies the selection and stability of the re-
sulting roll patterns. In particular, the constraint imposed
by a periodic modulation of the instability point may lead
to a commensurate-incommensurate phase transition [3].
In the case of Hopf bifurcations, external fields inducing
spatial or temporal modulations strongly affect the selec-
tion and stability of the resulting spatiotemporal patterns.
For example, standing waves may be stabilized by purely
temporal modulations at twice the critical frequency [4,5],
or by purely spatial modulations at twice the critical wave
number [6], in regimes where they are otherwise unstable,
including domains where the bifurcation parameter is be-
low the critical one.

External forcings that break space or time translational
invariance, but not the space inversion symmetry of
the wave amplitudes, induce linear resonant couplings
between the complex Ginzburg-Landau equations (CGLE)
which describe the dynamics of the amplitudes of left
and right traveling waves. In the case of forcings
that break the space translation invariance, the coupling
coefficiente is in general complex, and the corresponding
coupled CGLE may be written, in one-dimensional geo-
metries, as

ÙA 1 yg≠xA  mA 1 s1 1 iad≠2
xA

2 s1 1 ibdsjAj2 1 gjBj2dA 1 eB ,

ÙB 2 yg≠xB  mB 1 s1 1 iad≠2
xB

2 s1 1 ibdsjBj2 1 gjAj2dB 1 eA . (2)

Due to the resonant coupling with coefficiente, pure
traveling waves are not solutions of these equations any
more, and generic arguments of bifurcation theory allow
a characterization of the possible uniform amplitude solu-
tions depending on the various dynamical parameters of
the system [6]. Here also, standing waves may be stabi-
lized as the result of phase locking between the wavesA
andB. Predictions based on (2) in thex-independent case
have been successfully tested for azimuthal waves in an an-
nulus laser with imperfectOs2d symmetry [7]. However,
the combined effect of the complex coupling coefficiente

and the spatial degrees of freedom has not been explored.
In this Letter, we study Eqs. (2) with the following pa-

rameter restrictions: imaginary linear coupling coefficient
se  igPd, negligible group velocityyg, and weak and real
nonlinear cross-coupling termsg , 1d. We will, however,
maintain the spatial derivative in the right-hand side of (2),
and this will be crucial for the results below. We will
show that the spatial forcing introduces spatial modula-
tions of the standing wave solutions whileA andB remain
frequency locked with a forcing-independent frequency.
By increasing the forcing, these stable modulated waves
merge with unstable ones in saddle-node bifurcations with
nontrivial global structure. This wave-unlocking transition
results in a mixed state with limit cycle temporal behav-
ior. The threshold value of the forcing and the limit cycle
frequency are calculated analytically. Modulated standing
waves can also be induced by strong enough temporal forc-
ing [8].

The parameter regime explored here would be appropri-
ate in physical situations where a spatial forcing modulates
the frequency of the Hopf instability and induces a purely
imaginary resonant forcing (a purely reale would appear
due to a spatial modulation of the distance to the instabil-
ity point). Possible systems should have negligible group
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velocities, as in some circumstances in binary fluid con-
vection [9] or liquid crystals [10], and weak coupling such
as in viscoelastic convection [11]. Up to now, the parame-
ter range considered here best applies to several situations
in laser physics. The first one corresponds to taking into
account transverse effects in inhomogeneously broadened
sg , 1d bidirectional ring lasers [12]. The purely imag-
inary resonant coupling is a consequence of conservative
(off-phase) backscattering [13], or, alternatively, a spatial
modulation of the refraction index of the laser medium. In
fact, a spatially periodic refractive index is the mechanism
used for single frequency selection in index coupled dis-
tributed feedback lasers (DFB). A second situation is that
of the transverse vector field in a laser near threshold [14].
The parametergP corresponds to a detuning splitting be-
tween light linearly polarized in different orthogonal direc-
tions, produced, for example, by small cavity anisotropies.
In this case,A and B are not the amplitudes of left or
right traveling waves, but the amplitudes of the two inde-
pendent circularly polarized components of light, that is,
A  sAx 1 iAydy

p
2 andB  sAx 2 iAydy

p
2, whereAx

and Ay are the linearly polarized complex amplitudes of
the vector electric field with a spatially transverse depen-
dence. Weak couplingsg , 1d favors linear polarization
sjAj  jBjd. We will often use the light-polarization ter-
minology, because it gives a clear physical insight into the
states found for the general set of Eqs. (2) of broad appli-
cability within the parameter restrictions above.

Two families of solutions of the coupled CGLE (2) can
be distinguished. The first family corresponds to traveling
waves forA and B with the same amplitude, frequency,
and wave number

A  Q0e2ikx1ivt1isu01c0d,

B  Q0e2ikx1ivt1isu02c0d. (3)

Without forcingsgP  0d, the constant global and relative
phases,u0 and c0, are arbitrary, the amplitude isQ2

0 
sm 2 k2dys1 1 gd, and the frequencyv is v0  2ak2 2

bs1 1 gdQ2
0 . With forcing, the global phase and the

amplitude remain unchanged, but the relative phase is
fixed by sin2c0  0; the two allowed values ofc0 give
two solutions with frequenciesv  v0 6 gP . The phase
instabilities of these solutions were discussed in [14].

The second family of solutions can be searched in the
form of two waves

A  eiv0t
X
n

aneinkx , B  eiv0t
X
n

bneinkx , (4)

frequency locked to a frequencyv0 independent of
forcing. For gP  0, the exact solutions of (2) in this
form only have two terms,ja1j  jb21j  Q0. The
effect of a small forcing in this solution is to generate
higher harmonics, while keepingv0 fixed and the relative
phase betweena1 andb21 arbitrary. Now, the remaining
coefficientsan andbn are not zero and can be calculated
perturbatively ingP . Close enough to the threshold for
a modek sm 2 k2 ø 0d, the amplitude of higher order

harmonics is negligible and, to lowest order inm 2 k2,
an approximate solution takes the form

A  eisu01v0tdsQeiskx1ic0d 1 Re2iskx1c02fdd ,

B  eisu01v0tdsQe2iskx1c0d 1 Reiskx1c01fdd , (5)

with u0 andc0 arbitrary, andf fixed by the forcing. Q
and R are real numbers (positive or negative) and, for
small gP, jRj ø jQj (an equivalent solution is found
interchangingQ andR).

A visualization of these solutions can be given within
the polarization interpretation of (2). DefiningC6eiz6 ;
Q 6 eifR, the change of variables to the amplitudes of
thex andy linearly polarized components gives

Ax 
p

2 C1 cosskx 1 c0deisv0t1u01z1d,

Ay 
p

2 C2 sinskx 1 c0deisv0t1u01z2d. (6)

These equations describe at each pointx the superposition
of two dephased harmonic motions with different ampli-
tudes and a frequencyv0 independent of forcing. This
identifies the solution (5) with an elliptically polarized
standing wave pattern in which the orientation of the el-
lipse and its ellipticity vary periodically in the spatial co-
ordinatex. In the limit of no forcing,R  0, the ellipse
degenerates in a linearly polarized standing wave with an
angle of polarizationc  kx 1 c0. In this interpretation,

FIG. 1. Modulus (left) and phase (right) ofA for gP 
0.012 , gPc. The horizontal axis is space (256 units), and the
vertical is time (1000 units). Gray levels range from black
(0) to white (the maximum of the modulus or2p for the
phase). This numerical solution has been obtained from (2)
with b  0.2, g  0.5, m  0.2, and a  2.6. The initial
condition is a standing wave withv  v0 and k  0.123.
Bottom: polarization representation of the solution at a given
point x. For gP  0 one has linear polarization (indicated by
the straight line) which becomes elliptical forgP fi 0. An
equivalent solution has the major axis of the ellipse along the
second and fourth quadrants.
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the first family of solutions (3) would correspond to lin-
early polarized traveling waves with frequencyv and an
angle of polarizationc0. In such a case, the forcing fixes
the direction of polarization so that onlyx or y linearly
polarized waves remain. On the contrary, forcing in (5)
grows an ellipse from a linearly polarized standing wave
keeping the frequency unchanged.

Elliptically polarized standing wave patterns are ob-
tained from a direct numerical integration of the coupled
CGLE as shown in Fig. 1. Increasing the forcing, these
solutions become unstable through a bifurcation in which
Q and R become time dependent. As shown in Fig. 2,
the solution beyond this instability oscillates between the
two equivalent elliptically polarized standing wave pat-
terns found for smallgP. In addition, from the numerical
simulations, one finds that the periodT of these oscilla-
tions decreases beyond the critical valuegPc. One has
T 22 ~ gP 2 gPc (see Figs. 3 and 4).

A quantitative description of the instability, including
the determination of the critical forcinggPc and the period
of the oscillations, can be performed by an amplitude
analysis. Close to the threshold for thek modes, the
equations for the slow time evolution ofQ and R can
be found by substitution of (5) into (2) and neglecting
contributions from higher order harmonics. Defining
XeiF ; Q 1 iR, we find

ÙX  sm 2 k2dX 2 s1 1 gdX3

2 s1 1 g cos2fd
X3

2
sin22F ,

ÙF  2 s1 1 g cos2fd
X2

2
sin2F cos2F

1 bg sin2f
X2

2
sin2F 2 gP sinf ,

Ùf  bs1 1 g cos2fdX2 cos2F 1 gX2 sin2f

2 2gP cosf cot2F . (7)

The fixed points of (7) represent the polarized standing
waves solutions (5). These points can be determined
exactly in the limiting case ofb  0. The interesting
solutions have two allowed values off: f0  s2n 1

1dpy2, n  0, 1; and for each value off, there are eight
fixed points: Four are stables1d and the other four are
saddle pointss2d. The corresponding values ofX andF

are

X0s6d2 
m 2 k2

2s3 1 gds1 1 gd

3

∑
5 1 3g

6

s
s1 2 gd2 2

8s1 1 gds3 1 gdg2
P

sm 2 k2d2

#
,

(8)

FIG. 2. Same as Fig. 1 but usinggP  0.0145 . gPc.

F0s1d  js1d 1 m
p

2
,

F0s2d 
p

4
2 js2d 1 m

p

2
, (9)

wherem  0, 1, 2, 3, and

js6d 
s21dn11

4
arcsin

4gP

s1 2 gdX0s6d2 . (10)

Heteroclinic orbits connect the saddles and the stable
nodes with the samef. When gP grows, saddles and
nodes approach by pairs and at the critical value,

gPc 
sm 2 k2ds1 2 gdp
8s1 1 gds3 1 gd

, (11)

they merge and disappear via inverse saddle-node bifurca-
tions. The interesting point is the global structure of the
bifurcation: The presence of the heteroclinic connections
gives rise to the birth of limit cycles (one for each value
of f). This is similar to the Andronov–van der Pol bi-
furcation [15] that appears in several types of excitable
systems [16]. The difference is that, due to symme-
tries, here we have several pairs of fixed points merging,
instead of just one pair. The periodic behavior is illus-
trated in Fig. 2 by the periodic alternation of the trajec-
tory between the “ghosts” of the disappeared elliptically
polarized states corresponding to the fixed points. Be-
low the bifurcation, small perturbations around the stable
solutions decay, whereas perturbations above a threshold
push the system along the heteroclinic trajectory toward
another stable fixed point. Since the size of the pertur-
bation required for such switches decreases by increasing
gP , and vanishes atgPc, the multistability of this system
can be seen as a kind of excitability [17]. A different
consequence of the multiplicity of stable states is their
possible coexistence in space, leading to the formation of
domains with different polarizations along thex axis.

1958



VOLUME 76, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 11 MARCH 1996

FIG. 3. Period of the oscillationssT d of Q and R, obtained
from the numerical solution of the coupled CGLE using the
parameters given in Fig. 1. The dashed line is a least squares
fitting from which gPc  0.0138.

Close to the instability atgPc, the time dependent
behavior of the solution can be obtained reducing the
problem to a phase dynamics by elimination of the
variableX. We have (in the limitb  0)

ÙF  2
sm 2 k2ds1 2 gd sin4F

5 1 3g 2 s1 2 gd cos4F
1 gP , (12)

which for gP $ gPc yields the following time behavior:

tans2Fd  tans2Fcd

"
1 1

q
2sgP 2 gPcdygPc

3 tan

√
s5 1 3gd

p
gPc

r
gP 2 gPc

s1 1 gds3 1 gd
t

!#
, (13)

whereFc  F0, Eq. (9), forgP  gPc.
An approximative analysis of Eqs. (7) forb fi 0 indi-

cates that this parameter appears squared in the expres-

FIG. 4. The amplitudes ofQ and R of the solution shown
in Fig. 2 exhibit the periodic oscillations given by Eq. (13).
The time has been scaled using the value ofgPc obtained from
Fig. 3. The dotted line corresponds togp  0.0155, the dashed
line to gp  0.0140, and the lines in between to the other
points of Fig. 3.

sions for gPc, X, and Fc. Therefore, for smallb, the
previous analysis is still meaningful as explicitly seen in
the numerical results of Figs. 3 and 4.

In summary, in the absence of forcing, and for the pa-
rameter regime considered here, there are solutions for
the amplitudesA andB of the coupled CGLE which cor-
respond to linearly polarized standing waves. We have
shown that an imaginary coupling between them trans-
forms these solutions into standing waves with spatially
periodic elliptic polarization. Increasing the forcing, an
instability of these solutions appears, via the unlocking of
the underlying wave amplitudes, and the solutions acquire
a time-periodic behavior. Locally, this bifurcation is of the
saddle-node type, but the presence of heteroclinic connec-
tions between the fixed points gives rise to the appearance
of a limit cycle when stable and unstable points merge.
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