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In this paper a novel approach to identify delay phenomena from time series is developed. We show
that it is possible to perform a reliable time delay identification by using quantifiers derived from
information theory, more precisely, permutation entropy and permutation statistical complexity.
These quantifiers show clear extrema when the embedding delay τ of the symbolic reconstruction
matches the characteristic time delay τS of the system. Numerical data originating from a time
delay system based on the well-known Mackey-Glass equations operating in the chaotic regime were
used as test beds. We show that our method is straightforward to apply and robust to additive
observational and dynamical noise. Moreover, we find that the identification of the time delay is
even more efficient in a noise environment. Our permutation approach is also able to recover the
time delay in systems with low feedback rate or high nonlinearity.

PACS numbers: 05.45.Tp, 89.70.Cf, 02.30.Ks, 05.45.-a, 02.70.Rr

I. INTRODUCTION

When studying dynamical phenomena in nature the corresponding underlying equations or even the relevant gov-
erning mechanisms are often not known. In fact the starting point to study many of these systems is a set of
measurements of some representative variable of interest at discrete time intervals, i.e. a black box time series, given
by the set S = {xt, t = 1, . . . , N}, with N being the number of observations. An important problem in the analysis of
time series data is the identification of delayed feedback or delayed interaction mechanisms present in the dynamics,
since delay phenomena are intrinsic to many dynamical processes. The identified delay can give information about the
interaction between the system components. It is then necessary to discriminate the presence of time delays in order
to develope suitable models for simulation and forecasting purposes. Time delayed dynamics are naturally required
and implemented to model many real systems in different fields including biology [1–3], optics [4–6] and climatology [7]
among others. Therefore, the identification from a time series of a possible delay present in the system has become
one of the key problems in the study of nonlinear dynamical systems.
Numerous approaches were previously proposed to determine the unknown delay time τS from recorded time series.

Conventional and widely applied tools are the autocorrelation function (AF) [8] and the delayed mutual information
(DMI) [9, 10]. More recently new techniques were introduced. Without being exhaustive we can mention the minimal
forecast error [11, 12], several methods from information theory [13, 14], the filling factor analysis introduced by
Bünner et al. [15], the statistical analysis of time intervals between extrema in the time series [16], and the practical
criterion recently proposed by Siefert [17]. In this paper we introduce a new approach by using quantifiers derived
from information theory, more precisely entropy and statistical complexity. It should be stressed that, in order to
evaluate these quantifiers, a particularly efficient symbolic technique, the Bandt and Pompe permutation method [18],
is used to estimate the probability distribution associated to the time series. As it is widely known, symbolic time
series analysis methods that discretize the raw time series into a corresponding sequence of symbols have the potential
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of analyzing nonlinear data efficiently with low sensitivity to noise [19]. However, finding a meaningful symbolic
representation of the original series is not an easy task [20, 21]. To our knowledge, the Bandt and Pompe approach is
the only symbolization technique among those in popular use that takes into account time causality of the system’s
dynamics. Then, important details concerning the ordinal structure of the time series are revealed [22–31].
As will be discussed in detail below, we have found that the permutation entropy is minimized and the permutation

statistical complexity maximized when the embedding delay τ of the symbolic reconstruction matches the intrinsic
time delay τS of the system. The reliability of our methodology is tested using numerical time series obtained from
the widely used Mackey-Glass equation subject to a time delay, operating in a chaotic regime. The main advantages
of our quantifiers are their simplicity and robustness to noise. Most importantly, we have found a resonance-like
behavior in the presence of observational and dynamical noise; i.e. the identification of the time delay is improved in
a noise environment.

II. PERMUTATION ENTROPY AND PERMUTATION STATISTICAL COMPLEXITY

The information content of a system is typically evaluated from a probability distribution, P , describing the
distribution of some measurable or observable quantity. An information measure can primarily be viewed as a
quantity that characterizes this given probability distribution. Shannon entropy is very often used as a first natural
approach. Given any arbitrary probability distribution P = {pi : i = 1, . . . ,M}, the widely known Shannon’s

logarithmic information measure, S[P ] = −
∑M

i=1 pi ln pi, is regarded as the measure of the uncertainty associated
to the physical process described by P . If S[P ] = 0 we are in position to predict with complete certainty which of
the possible outcomes i whose probabilities are given by pi will actually take place. Our knowledge of the underlying
process described by the probability distribution is maximal in this instance. In contrast, our knowledge is minimal
for a uniform distribution.
It is widely known that an entropy measure does not quantify the degree of structure or patterns present in a

process [32]. Moreover, it was recently shown that measures of statistical or structural complexity are necessary
because they capture the property of organization [33]. This kind of information is not discriminated by randomness
measures. The opposite extremes of perfect order and maximal randomness (a periodic sequence and a fair coin
toss, for example) possess no complex structure, then these systems are too simple and should have zero statistical
complexity. At a given distance from these extremes, a wide range of possible degrees of physical structure exists,
that should be quantified by the statistical complexity measure. Lamberti et al. [34] introduced an effective statistical
complexity measure (SCM) that is able to detect essential details of the dynamics and differentiate different degrees
of periodicity and chaos. It provides important additional information regarding the peculiarities of the underlying
probability distribution, not already detected by the entropy. This statistical complexity measure is defined, following
the intuitive notion advanced by López-Ruiz et al. [35], through the product

CJS [P ] = QJ [P, Pe] HS [P ] (1)

of the normalized Shannon entropy

HS [P ] = S[P ]/Smax (2)

with Smax = S[Pe] = lnM , (0 ≤ HS ≤ 1) and Pe = {1/M, . . . , 1/M} the uniform distribution, and the disequilibrium
QJ defined in terms of the extensive (in the thermodynamical sense) Jensen-Shannon divergence. That is, QJ [P, Pe] =
Q0J [P, Pe] with J [P, Pe] = {S[(P + Pe)/2] − S[P ]/2 − S[Pe]/2} the above-mentioned Jensen-Shannon divergence
and Q0 a normalization constant, equal to the inverse of the maximum possible value of J [P, Pe]. This value is
obtained when one of the component of P , say pm, is equal to one and the remaining pi are equal to zero. The Jensen-
Shannon divergence, that quantifies the difference between two (or more) probability distributions, is especially useful
to compare the symbol composition between different sequences [36]. The complexity measure constructed in this
way is intensive, as many thermodynamic quantities [34]. We stress the fact that the above SCM is not a trivial
function of the entropy because it depends on two different probabilities distributions, the one associated to the
system under analysis, P , and the uniform distribution, Pe. Furthermore, it was shown that for a given HS value,
there exists a range of possible SCM values [37, 38]. Thus, it is clear that important additional information related
to the correlational structure between the components of the physical system is provided by evaluating the statistical
complexity [39].
In order to evaluate the two above-mentioned quantifiers, HS and CJS , an associated probability distribution should

be constructed beforehand. The adequate way of choosing the probability distribution associated to a time series is an
open problem. Rosso et al. [23] have recently shown that improvements in the performance of information quantifiers,
like entropy and statistical complexity measures, can be expected, if the time causality of the system dynamics is taken
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into account when computing the underlying probability distribution. Specifically, it was found that these information
measures allow to distinguish between chaotic and stochastic dynamics when causal information is incorporated into
the scheme to generate the associated probability distribution. Bandt and Pompe [18] introduced a successful method
to evaluate the probability distribution considering this time causality. They suggested that the symbol sequence
should arise naturally from the time series, without any model assumptions. Thus, they took partitions by comparing
the order of neighboring values rather than partitioning the amplitude into different levels. That is, given a time
series {xt, t = 1, . . . , N}, an embedding dimension D > 1, and an embedding delay time τ , the ordinal pattern of
order D generated by

s 7→
(

xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)

(3)

has to be considered. To each time s we assign a D-dimensional vector that results from the evaluation of the time
series at times s − (D − 1)τ, . . . , s − τ, s. Clearly, the higher the value of D, the more information about the past
is incorporated into the ensuing vectors. By the ordinal pattern of order D related to the time s we mean the
permutation π = (r0, r1, · · · , rD−1) of (0, 1, · · · , D − 1) defined by

xs−r0τ ≥ xs−r1τ ≥ · · · ≥ xs−rD−2τ ≥ xs−rD−1τ . (4)

In this way the vector defined by Eq. (3) is converted into a unique symbol π. The procedure can be better illustrated
with a simple example; let us assume that we start with the time series {1, 3, 5, 4, 2, 5, . . .}, and we set the embedding
dimension D = 4 and the embedding delay τ = 1. In this case the state space is divided into 4! partitions and 24
mutually exclusive permutation symbols are considered. The first 4-dimensional vector is (1, 3, 5, 4). According to
Eq. (3) this vector corresponds with (xs−3, xs−2, xs−1, xs). Following Eq. (4) we find that xs−1 ≥ xs ≥ xs−2 ≥ xs−3.
Then, the ordinal pattern which allows us to fulfill Eq. (4) will be (1, 0, 2, 3). The second 4-dimensional vector is
(3, 5, 4, 2), and (2, 1, 3, 0) will be its associated permutation, and so on. In order to get a unique result we consider
that ri < ri−1 if xs−riτ = xs−ri−1τ . This is justified if the values of xt have a continuous distribution so that equal
values are very unusual. Otherwise, it is possible to break these equalities by adding small random perturbations.
For all the D! possible permutations πi of order D, their associated relative frequencies can be naturally computed
by the number of times this particular order sequence is found in the time series divided by the total number of
sequences. Thus, an ordinal pattern probability distribution P = {p(πi), i = 1, . . . , D!} is obtained from the time
series. This way of symbolizing time series, based on a comparison of consecutive points, allows a more accurate
empirical reconstruction of the underlying phase space of chaotic time series affected by weak (observational and
dynamical) noise [18]. To determine p(πi) exactly an infinite number of terms in the time series should be considered,
i.e., N → ∞ to determine the relative frequencies. This limit exists with probability 1 when the underlying stochastic
process fulfills a very weak stationarity condition: for k ≤ D, the probability for xt < xt+k should not depend on
t [18]. The probability distribution P is obtained once we fix the embedding dimension D and the embedding delay
time τ . The former parameter plays an important role for the evaluation of the appropriate probability distribution,
since D determines the number of accessible states, given by D!. Moreover, it was established [40] that the length
N of the time series must satisfy the condition N ≫ D! in order to obtain a reliable statistics. With respect to
the selection of the other parameter, Bandt and Pompe specifically considered an embedding delay τ = 1 in their
cornerstone paper [18]. Nevertheless, it is clear that other values of τ could provide additional information.
In this work we evaluate the normalized Shannon entropy, HS (Eq. (2)), and the SCM, CJS (Eq. (1)), using the

permutation probability distribution, P = {p(πi), i = 1, . . . , D!}. Defined in this way, the former quantifier is called
permutation entropy and the latter permutation statistical complexity.

III. NUMERICAL RESULTS AND DISCUSSION

To estimate the quantifiers, permutation entropy and permutation statistical complexity, it is necessary to fix the
embedding dimension and the embedding delay. It is clear that the condition N ≫ D! limits the possible values
for the embedding dimension. However, a study about the influence of the embedding delay is still lacking. We
hypothesize that this parameter could be strongly related, if it is relevant, with the intrinsic time delay of the system
under analysis. In order to check this hypothesis we have estimated the permutation entropy and the permutation
statistical complexity as a function of the embedding delay τ for the well-knownMackey-Glass equation, a paradigmatic
time delay system. We consider the following model equation for the Mackey-Glass oscillator [1]:

dx

dt
= −x+

ax(t− τS)

1 + xc(t− τS)
(5)

with t being a dimensionless time, τS the time delay feedback, a the feedback strength and c the degree of nonlinearity.
In particular, we choose the typical values a = 2, c = 10 and τS = 60 for which the system operates in a chaotic regime.
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Time series were numerically integrated by using the Heun’s method (also called the modified Euler’s method) [41]
with an integration step ∆t = 0.01 and sampling step δt = 0.2 time units/sample. We analyzed time series with
N = 106 data points (the total integration time was 2 · 105 time units).
In Fig. 1 we plot the normalized permutation entropy, HS , and the permutation SCM, CJS , as a function of

the embedding delay τ for different embedding dimensions (4 ≤ D ≤ 8). It can be clearly observed that these
quantifiers have sharp and well-defined minima and maxima, respectively, when the embedding delay τ of the symbolic
reconstruction is very close to the intrinsic time delay τS of the system, i.e. for τ near 300 (τS/δt = 300). These
extrema are due to an enhancement of time correlations for this value of τ , resulting in the probability distribution of
the ordinal patterns being different from the uniform probability distribution. Consequently, the permutation entropy
decreases and the permutation statistical complexity increases, revealing the presence of some degree of order. This
behavior is the hallmark of time delayed dynamics. It is interesting to note that in cases in which the system has
no delayed dynamics, the quantifiers do not develop clear extrema that could generate spurious delay identification.
We have analyzed the behavior of the permutation entropy and permutation statistical complexity as a function of
the embedding delay τ for numerical simulations of the different coordinates of the Lorenz system [42] in the chaotic
regime and we have not found pronounced extrema.
From Figs. 1b) and 1c) it can be concluded a slight time delay overestimation. This overestimation can be attributed

to the internal response time or inertia of the Mackey-Glass system. The inertia is an inherent property difficult to
determine precisely and affects most of the methods proposed to identify time delay from time series [15, 43, 44]. We
have estimated the same time delay by using the autocorrelation function (ACF) and the delayed mutual information
(DMI) since the inertia also affects these conventional techniques. It can also be seen from Figs. 1b) and 1c) that the
time delay estimation is independent of the embedding dimension value. The best discrimination is obtained for the
largest allowed value of D. By increasing the length and the number of symbols, i.e. by increasing the embedding
dimension D, more information is being included when estimating any quantifier. Thus, it is reasonable that a better
detection can be achieved with higher embedding dimensions. It is worth noting that there are other minima and
maxima for the permutation entropy and permutation statistical complexity, respectively, but being less pronounced.
These other peaks correspond to harmonics and subharmonics of the system’s time delay τS . Thus, their presence
contribute to the identification of the time delay. In the case of the permutation statistical complexity, the amplitude
of the peak associated to the delay of the system has the largest amplitude, as can be seen in Fig. 1a). We attribute
this particular behavior to a reinforcement of the system delay effect associated with the special way of choosing the
delay embedding sequence. According to the results shown in Fig. 1a), we conclude that the permutation statistical
complexity identifies the system delay better than the permutation entropy because the contrast with the base line is
higher. It was recently shown that, in some cases [39, 45, 46], the statistical complexity can be a particularly useful
and efficient information theoretical quantifier. Based on these previous conclusions, from now on, we continue the
analysis by considering that the permutation statistical complexity CJS with embedding dimension D = 8 is the best
quantifier to reach the goal of identifying the system’s time delay under study.
To go further we analyzed the case of two time delays. Numerical data were obtained extending Eq. (5) to include

two time delays by employing the same generalization followed in Ref. [47],

dx

dt
= −x+

1

2

2
∑

i=1

ax(t− τS,i)

1 + xc(t− τS,i)
. (6)

The same parameters (a = 2, c = 10) and integration method than in the one time delay case were implemented.
Figure 2 shows the behavior of the permutation statistical complexity CJS as a function of the embedding delay τ
for embedding dimensions D = 8 in the case of a Mackey-Glass system with time delays τS,1 = 60 and τS,2 = 96.
Pronounced maxima of the permutation statistical complexity for τ ∼ 300 (τS,1/δt = 300) and τ ∼ 480 (τS,2/δt = 480)
allow to identify the two time delays present in the system. Thus, multiple delays can also be identified with this
methodology. The correct identification of multiple delays which are at commensurate ratios is in general a more
complicated problem and will be addressed elsewhere.
Our next goal is to quantify the effect an observational additive noise has on the proposed approach. Since

experimental time series are naturally affected by a certain amount of observational noise it is important to check the
performance of our approach in the case of noisy time series. For this purpose a Gaussian white noise was added to
the original Mackey-Glass simulated time series. Different noise levels (NL) from 0.05 to 1, defined by the standard
deviation of the noise divided by the standard deviation of the original signal, were considered. Ten independent
realizations were taken into account in order to have better statistics. Figure 3 shows the performance of CJS for
D = 8 in the region of interest, that is around τ = 300. It can be clearly seen that our approach is very robust under
the noise influence.
In order to better measure this effect, we have estimated the ratio between the amplitude at the delay feedback peak

and the mean value of the background (the usual signal-to-noise ratio). The results are shown in Fig. 4. The resulting
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plot displays a clear maximum of the ratio ρ = Cpeak
JS /Cback

JS at an intermediate noise level near 0.2. This value can be
considered as the optimal amount of observational noise for the time delay identification purpose. It is worth noting
that according to these results the identification of the time delay is more reliable in the presence of observational
noise in the range 0 < NL < 0.4. A similar resonance-like behavior was recently found by Staniek and Lehnertz [25].
These authors analyzed the influence of a static (observational) noise in the detectability of directional coupling by
estimating a symbolic transfer entropy. The ratio of the directionality indices for noisy and noise-free time series in a
numerical example displays an analogous behavior (see for instance Fig. 3 of Ref. [25]). More importantly, the same
symbolic technique, namely the Bandt and Pompe permutation method, was adopted to estimate this quantifier.
With the aim of studying also the effect of a dynamical noise, we have simulated the Mackey-Glass system (Eq. (5))

including an additive Gaussian white noise term of zero mean and correlation D. Langevin forces of different strengths

D were considered. The results obtained for the ratio ρ = Cpeak
JS /Cback

JS as a function of different noise strengths are
shown in Fig. 5. A resonance-like behavior is also observed which indicates a better performance of the quantifier in
the presence of noise. A significant maximum for ρ is found when D is near 0.15.
We have also studied the effect that observational and dynamical noises have on the classical delayed mutual

information in order to compare with the performance of our permutation information theory approach. In the case
of the DMI the standard histogram was used to estimate the probability distribution associated to the time series.
In particular, 28 non overlapping equal sized consecutive subintervals were employed to divide the full range. Similar
results were obtained with other numbers of bins. From Fig. 6 it can be concluded that the performance of this
information theory standard approach gets worse in the presence of noise. The signal-to-noise ratio is a continuously
decreasing function of the noise level for both, observational and dynamical, noises. Thus, we stress the fact that our
permutation information approach is particularly useful and efficient for experimental data where noise is inherently
present.
It is well-known that the time delay identification becomes more difficult for smaller values of the feedback strength

or stronger nonlinearity. Rontani et al. [43, 44] have shown that the time delay signature of a chaotic semiconductor
laser with optical feedback can be blurred when the feedback rate is relatively weak. With the aim to check the
ability of the proposed approach in this more severe time delay identification scenario, we have analyzed numerical
simulations of the Mackey-Glass system with the same parameters (c = 10 and τS = 60) but low feedback strength
(a = 1.2). Moreover, additive Gaussian white noises of different intensities were added. We have also reduced
the length of simulations to N = 5 · 103 data points. Figure 7 compares the results obtained for the permutation
statistical complexity and the delayed mutual information for two different noise strengths D = 0.15 and 0.45. It can
be concluded that the time delay is clearly recovered by our approach in both cases. However, the recovery of the
time delay for DMI is less straightforward. Particularly, in the noisier scenario (D = 0.45) the time delay peak is of
the order of the fluctuating background.
Finally, in order to test the performance of the permutation statistical complexity quantifier in a system with

high nonlinearity, we analyze numerical simulations of a ring of four unidirectionally delay-coupled Mackey-Glass
oscillators in the presence of dynamical noise. It has been recently reported that the fingerprint of the time delay
can be significantly reduced in this system due to the stronger nonlinearity [48]. One hundred independent numerical
realizations of length N = 213 data points with additive Gaussian white noise of intensity D = 0.1 were considered for
this system. We find that our permutation approach is able to discriminate the presence of the time delay in about
50% of cases and the DMI is successful in only 25% of realizations. For illustrating the results obtained we show in
Fig. 8 a particular realization in which both quantifiers are successful, and, in Fig. 9, another realization in which only
the permutation quantifier is able to unveil the time delay. It is worth mentioning that our permutation approach is
successful in all realizations where the DMI gives a positive answer.

IV. CONCLUSIONS

Delay phenomena are of considerable practical importance. Thus, time delay identification from experimental time
series within an inherent noise environment is, nowadays, an important challenge. In this work we introduced a new
reliable and simple approach to perform this task. Two different information theory quantifiers estimated by using
an efficient symbolic technique, namely the permutation entropy and the permutation statistical complexity, are able
to reveal the presence of a time delay in the standard well-known Mackey-Glass system. The fingerprint of the time
delayed dynamics is associated to a minimum of the permutation entropy and, simultaneously, a maximum of the
permutation statistical complexity. Moreover, it has been shown that the latter quantifier is more sensitive for the
time delay identification purpose than the entropy quantifier. By analyzing the influence of additive observational
and dynamical noises we found a noise-enhanced phenomenon: the time delay identification can be improved by the
presence of noise. This result is particularly valuable for analyzing experimental data. We have also shown that our
permutation approach is useful for unveiling the presence of a time delay in difficult time delay identification scenarios,
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such as systems with low feedback rate or strong nonlinearity, even if only small datasets are available. A more in
depth analysis for gaining insights into the nature of the noise-enhanced mechanism together with real experimental
testing will be the goals of a next study.
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FIG. 1: (Color online) a) Permutation entropy HS and permutation statistical complexity CJS as a function of the embedding
delay τ for embedding dimensions 4 ≤ D ≤ 8 (N = 106 data points). Enlargement near the time delay τS of the system in
order to see more clearly the effect of the embedding dimension on the HS (b)) and CJS (c)) estimations. D increases from top
to bottom for HS and from bottom to top for CJS.
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FIG. 2: (Color online) Permutation statistical complexity CJS as a function of the embedding delay τ for embedding dimensions
D = 8 (N = 106 data points) in the case of a Mackey-Glass system with time delays τS,1 = 60 and τS,2 = 96.
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FIG. 3: (Color online) Semi-logarithmic plot of the permutation statistical complexity CJS as a function of the em-
bedding delay τ for different levels of observational noise. The noise level associated with the different curves (NL =
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) increases from top to bottom. The embedding dimension D = 8
and N = 106 data points. Ten independent realizations for each noise level are plotted. Since the dispersion is very small, the
differences between these ten lines are hardly distinguishable.
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FIG. 4: (Color online) Ratio ρ = C
peak

JS /Cback
JS as a function of the observational noise level. The embedding dimension was fixed

equal to 8 and N = 106 data points. Notice that the maximum ratio is obtained for a value of NL close to 0.2 and that more
reliable time delay identification are obtained with added observational noise in the range 0 < NL < 0.4. Error bars indicate
standard deviations from 10 independent realizations.

0 0.1 0.2 0.3 0.4 0.5 0.6
10

15

20

25

30

35

40

45

50

55

ρ

D

FIG. 5: (Color online) Ratio ρ = C
peak

JS /Cback
JS as a function of the dynamical noise level. The embedding dimension was fixed

equal to 8 and N = 106 data points. Observe the maximum obtained for a Langevin force D of intensity near 0.15. Error bars
indicate standard deviations from 10 independent realizations.
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FIG. 6: (Color online) Signal-to-noise ratio (ρ) for the delayed mutual information (DMI) as a function of the observational
noise level (NL) (a)) and the dynamical noise level (D) (b)). Error bars indicate standard deviations from 10 independent
realizations. The probability distributions were estimated with the usual histogram by using 28 bins.
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FIG. 7: (Color online) Comparison between the permutation statistical complexity (CJS) and the delayed mutual information
(DMI) for the Mackey-Glass oscillator with low feedback strength (a = 1.2) and different dynamical noise levels: a) and b)
D = 0.15, and c) and d) D = 0.45. The embedding dimension was fixed equal to 3 and N = 5 · 103 data points. DMI was
estimated by using a histogram with 28 bins.
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FIG. 8: (Color online) Time delay identification for a ring of four unidirectionally delay-coupled Mackey-Glass oscillators in
the presence of dynamical noise (D = 0.1). a) Permutation statistical complexity (CJS) with embedding dimension D = 3 and
b) delayed mutual information (DMI) estimated by using a histogram with 28 bins. For this realization both quantifiers are
able to identify the presence of the feedback delay at 300 time units.
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FIG. 9: (Color online) Time delay identification for a ring of four unidirectionally delay-coupled Mackey-Glass oscillators in
the presence of dynamical noise (D = 0.1). a) Permutation statistical complexity (CJS) with embedding dimension D = 3 and
b) delayed mutual information (DMI) estimated by using a histogram with 28 bins. For this realization only the permutation
quantifier is able to identify the presence of the feedback delay at 300 time units.


