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Abstract. We study the synchronization of locally coupled noisy phase
oscillators that move diffusively in a one-dimensional ring. Together with the
disordered and the globally synchronized states, the system also exhibits wave-
like states displaying local order. We use a statistical description valid for
a large number of oscillators to show that for any finite system there is a
critical mobility above which all wave-like solutions become unstable. Through
Langevin simulations, we show that the transition to global synchronization is
mediated by a shift in the relative size of attractor basins associated with wave-
like states. Mobility disrupts these states and paves the way for the system to
attain global synchronization.
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The synchronization of oscillators is a widespread phenomenon in nature [1]–[3]. In biology,
synchronization can occur at scales that range from groups of single cells to ensembles of
complex organisms [4]. When oscillators hold fixed positions in space and the interaction that
drives synchronization is short ranged, spatial and temporal patterns can self-organize. This is
the case for cardiac tissue, where cells generate spiral patterns that shape the heartbeats [5].
Also in central pattern generators, the oscillating neural network self-organizes to produce
coordinated movements of the body [6].

A different situation arises when the oscillators are not fixed in space but are able to move
around. The problem of synchronization of moving oscillators has many applications in the
domain of chemistry [7], biology [8] and technology [9]. Small porous particles loaded with
the catalyst of the Belousov–Zhabotinsky reaction behave as individual chemical oscillators,
undergoing a density-dependent synchronization transition as the stirring rate is increased [7].
The same particles support wave propagation in the form of dynamic target and spiral patterns
when the particles are not moving [10]. This phenomenon illustrates a wider scenario: mobility
and mixing remove local defects and patterns, enabling global order. This effect has far-reaching
consequences in finite systems. For example, in ecosystems of competing populations with
cyclic interactions, biodiversity can be sustained if dispersal is local, but it is lost when dispersal
occurs over large length scales [11]. The dynamics of such cyclic competition was described by
a complex Ginzburg–Landau equation near a Hopf bifurcation, displaying complex oscillatory
patterns indicative of biodiversity for low mobility, while in the case of high mobility diversity
is wiped out [12, 13].

In this paper, we study the effects of mobility—spatial diffusion—on the macroscopic
collective dynamics of locally coupled, moving phase oscillators subjected to noise, in a
one-dimensional ring. When oscillators are fixed in space, these systems can exhibit a series
of steady states where local order is present [14]–[16]. Such states have been called m-twist
solutions [16] (figure 1). Here, we show that mobility can destabilize all m-twist solutions,
enhancing the stability of the synchronized solution. We find that in finite systems there is a
critical mobility above which either the synchronized or the disordered state is stable.
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Figure 1. The system, equations (1) and (2), exhibits different kinds of states:
(a) disorder, (b) partial synchronization and twisted states, e.g. (c) 1-twist and
(d) 2-twist. Each dot (x, θ ) represents an oscillator. Parameters in arbitrary
units: N = 1000, L = 2π , r = L/100, ω = 0, γ = 0.1 and

√
2D = 0.01.

In (a),
√

2C = 0.35, and in (b)–(d),
√

2C = 0.10. States (b)–(d) coexist. The
snapshots were taken after 15 000 time units, starting from random initial
conditions.

1. Diffusing phase oscillators

We consider an ensemble of N identical phase oscillators that diffuse on a ring of perimeter
L. Oscillators are coupled to other oscillators in their local neighborhood, within an interaction
range r. The dynamics of phase and position is described by

θ̇i(t)= ω− γ

 1

ni

∑
|xi −x j |<r

sin(θi − θ j)

 +
√

2Cξθ,i(t), (1)

ẋi(t)=
√

2Dξx,i(t), (2)

where i = 1, . . . , N is the oscillator label, θi(t) and xi(t) are the phase and position of the i th
oscillator at time t , ω is the autonomous frequency and γ is the coupling strength—whose
inverse characterizes the typical relaxation time of the interaction. Each oscillator interacts
with its ni neighbors in the range r through the coupling function in brackets, which defines
an attractive interaction towards the local average of the phase.With the definition of the
coupling adopted here, the thermodynamic limit is well defined, and the system reduces to
the noisy Kuramoto model for r = L/2 [17]. The fluctuation terms ξθ,i and ξx,i represent
two uncorrelated Gaussian noises such that 〈ξθ,i(t)〉 = 〈ξx,i(t)〉 = 0 and 〈ξθ,i(t)ξθ, j(t ′)〉 =

〈ξx,i(t)ξx, j(t ′)〉 = δi, jδ(t − t ′). The strength of angular fluctuations is determined by the angular
diffusion coefficient C , while the spatial diffusion coefficient D determines the mobility of
oscillators. The random movement of the oscillators described by equation (2) is not affected by
the presence of other oscillators, so in steady state the spatial density is uniform and the number
of neighbors is on average constant, n = ni = Nr/L . Both the phase θi(t) and position xi(t) are
periodic variables such that 06 θi(t)6 2π and 06 xi(t)6 L .

2. Global order parameter

The system described by equations (1) and (2) displays a range of states illustrated in
figure 1. We can characterize global order by the order parameter Z , defined as the absolute
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Figure 2. Twisted states affect the ensemble average of the global order
parameter, 〈Z〉. (a) 〈Z〉 versus scaled angular diffusion C/γ for D/γ = 0.03
(green squares) and D/γ = 0.39 (blue dots). For small D/γ , 〈Z〉 does not reach
1, even for C = 0. Vertical dotted lines correspond to the values of C/γ in
(b). (b) 〈Z〉 versus scaled mobility D/γ for C/γ = 0.11 (orange triangles) and
C/γ = 0.25 (red diamonds). Note that as D is reduced, 〈Z〉 decays. Vertical
dotted lines correspond to the values of C/γ in (a). (c) The histogram of Z splits
into two different peaks at low and high values of Z for low values of D/γ ,
but displays only one peak at high Z for high D/γ . The other parameters are
N = 1000, L = 2π , r/L = 0.01, ω = 0 and γ = 0.1.

value of the population average of the complex unit vectors of the oscillator phases Z(t)=

N−1
|
∑

j eiθ j (t)| [18]. In figures 2(a) and (b), we plot the ensemble average of the global
order parameter 〈Z〉, computed over 100 different random initial conditions and realizations
of the noise. In each individual realization, we measured the value of Z after 5000 time units,
corresponding to 5 × 105 integration steps of 0.01 time units. Mobility introduces a dramatic
change in the ensemble average of the order parameter 〈Z〉. When mobility is large enough,
the system displays global synchronization as C → 0 (blue dots in figure 2(a)). However,
when mobility is reduced, global order is compromised, as indicated by the green squares
in figure 2(a). Increasing mobility D results in an increase of the ensemble average 〈Z〉

(figure 2(b)). The cause for this behavior can be traced back to the existence of twisted states,
which display local order but have themselves a vanishing global order parameter (figures 1(c)
and (d)). We constructed histograms of the value of the global order parameter Z over 600
different realizations, in which the order parameter was measured after 1000 time units. Due to
the presence of twisted states, 〈Z〉 results from the average of a bimodal distribution P(Z), with
a peak related to the twisted states and the other to global synchronization. Above a critical value
of the mobility, twisted states are no longer observed and P(Z) becomes unimodal (figure 2(c)).
Thus, although a global order parameter is not suited to capture the complexity of a system with
local interactions, its statistics reflects the existence of twisted states.

3. Statistical description

The role of twisted states can be studied using a statistical description that is valid when the
number of oscillators is large. Given that the oscillators have identical autonomous frequencies
ω, it is convenient to make the transformation θ → θ −ωt to a rotating reference frame. We
coarse-grain the microscopic model and describe the system in terms of ρ(x, θ, t), the density
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of oscillators at position x with phase θ , which obeys the Fokker–Planck equation

∂tρ(x, θ, t)= D∂xxρ(x, θ, t)+ C∂θθρ(x, θ, t)

+
γ

n(x)
∂θ

[∫ L

0
dx ′

∫ 2π

0
dθ ′g(x − x ′) sin(θ − θ ′)ρ(x ′, θ ′, t)ρ(x, θ, t)

]
, (3)

where g(x − x ′) is a kernel accounting for the range and relative strength of local interactions,
while

n(x)=

∫ L

0
dx ′

∫ 2π

0
dθ ′g(x − x ′)ρ(x ′, θ ′, t)

denotes the effective number of oscillators in this range. In this paper, we choose g(x − x ′)= 1
for |x − x ′

|< r and g(x − x ′)= 0 otherwise, as in equation (1). The derivation of equation (3)
relies on the assumption that ρ2(x, θ, t; x ′, θ ′, t)= ρ(x, θ, t)ρ(x ′, θ ′, t) [19].

Since the movement of the oscillators is purely diffusive, see equation (2), the spatial
density of the oscillators is uniform in steady state,

∫ 2π
0 dθρ(x, θ, t)= N/L ≡ ρ0, and n(x)=

2rρ0. For small N , fluctuations in the spatial density can induce the formation of gaps in which
the nearest oscillator is beyond the range of interaction. In this paper, we consider large densities
such that the lifetime of these gaps is much shorter than other typical timescales.

3.1. Local order parameter

The statistical description (3) can be cast in a more transparent form by introducing a local mean
field. Local order can be characterized by a local order parameter [14, 15]

R(x, t)eiψ(x,t)
=

∫ L

0
dx

∫ 2π

0
dθ ′

g(x − x ′)

n(x)
eiθ ′

ρ(x ′, θ ′, t), (4)

where R(x, t) is a measure of local order and ψ(x, t) is the local average of the phase.
Equation (3) can be expressed in terms of this local order parameter as

∂tρ(x, θ, t)= D∂xxρ(x, θ, t)+ C∂θθρ(x, θ, t)+ γ R(x, t)∂θ(sin(θ −ψ(x, t))ρ(x, θ, t)), (5)

reflecting the fact that ψ(x, t) acts as a local mean field and R(x, t) is a local modulation to the
coupling strength.

4. Transition from disorder to local order

Equation (3) has a trivial steady state ρ(x, θ, t)= ρ0/2π ≡ ρd that corresponds to the disordered
state of the system. We study the stability of ρd by inserting ρ(x, θ, t)= ρd + ε f (x, t)cos(`θ)
in equation (3) and keeping terms of order O(ε) [20]. Linear stability analysis reveals that
the disordered solution ρd becomes unstable for `= 1 when the angular diffusion is such that
C < C∗, with

C∗
= γ /2. (6)

This threshold is independent of ρ0 and D, and determines the value of C below which local
order sets in. The critical C∗ given by equation (6) coincides with the existence [17] and
stability [20] threshold displayed by globally coupled noisy oscillators.
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Figure 3. Twisted solutions and local order. (a) Angular distribution of steady-
state twisted solutions, equation (8). (b) The local order parameter Rm decreases
with increasing angular fluctuations for all solutions, equation (12). (c) The local
order parameter of twisted solutions also decreases with mobility, but global
order is not affected, equation (12). The range of interaction is r/L = 0.01.

5. Local order solutions

Once local order has set in, the system also supports twisted solutions. We specifically look
for steady state-solutions to equation (5) of the form ρs(x, θ)= f (θ −ψ(x)). Such wave-like
solutions describe densities in which the angular distribution has the same shape but is centered
at position-dependent phases ψ(x). Setting ∂tρ = 0, we obtain an ordinary differential equation
for f , (

C + D
(
ψ ′(x)

)2
)

f ′(ϕ)+
(
γ R(x) sin(ϕ)− Dψ ′′(x)

)
f (ϕ)= W (x), (7)

which we can solve together with periodic boundary conditions in phase and space. We
select solutions with ψ ′′(x)≡ 0, corresponding to the twisted states observed in numerical
simulations (figures 1(c) and (d)). These solutions display spatially uniform local order, R(x)=

R. Periodicity of the phase then implies W (x)= 0, and periodicity of space sets the wave
numbers k = 2πm/L with m being an integer. We obtain the m-twist steady-state solutions

ρs(x, θ)=N exp

[
γ R

Deff
cos(θ − kx)

]
, (8)

whereN is a normalization constant such that
∫ 2π

0 dθ
∫ L

0 dxρs(x, θ)= N = Lρ0, see figure 3(a).
We have introduced the effective diffusion coefficient

Deff(k)= C + k2 D, (9)

which is a combination of angular diffusion C , and mobility D scaled by the square of the wave
number k. Effective diffusion competes with the local coupling γ R and controls the width of
the angular distribution, which has a mean 〈θ〉 = kx and variance

σ 2
= 1 − I1(γ R/Deff)/I0(γ R/Deff), (10)

where

In(z)=

∫ 2π

0
dθ cosn θ exp (z cos θ) (11)

is the modified nth-order Bessel function of the first kind. The functional form of the
steady-state angular distribution equation (8) is known as the circular normal distribution [21].
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4-twist solutions exist, respectively, see equation (14). An increasing number
of coexisting twisted solutions can be found with decreasing mobility D and
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5.1. Effective diffusion controls the local order parameter

The m-twist solutions described by equation (8) exist if and only if the self-consistency
condition obtained by inserting equation (8) into (4) is fulfilled,

Rm = sinc(kr)
I1(γ Rm/Deff)

I0(γ Rm/Deff)
, (12)

where sinc(x)= sin(x)/x , see figures 3(b) and (c). Using equation (12) in (10) the variance of
the distribution can be written as σ 2

= 1 − Rm/sinc(kr). A trivial solution to equation (12) is
Rm = 0. Apart from this, an expansion of equation (12) for Rm � 1 reveals that non-vanishing
solutions

Rm ≈

√
8Dcγ −2 (Dc −Deff)

1/2 (13)

exist for Deff 6 (γ /2)sinc(kr)≡ Dc. Again, we see that Deff controls the growth of the local
order parameter Rm characterizing the emergence of twisted solutions, through changes in phase
fluctuations C and mobility D (figures 3(b) and (c)).

5.2. Existence of twisted solutions

We can unfold the effects of spatial and angular fluctuations by writing Deff in terms of its
components D and C . Setting Rm = 0 in equation (13), we obtain

C + (2πm/L)2 D = (γ /2)sinc (2πmr/L), (14)

where we have expressed k in terms of L to stress system size dependence. For each value of m
and range of interaction r , the surface in parameter space defined by equation (14) encloses the
region where the m-twist solution exists. There are two ways in which fluctuations can destroy
twisted solutions: by increasing either angular fluctuations or mobility. Mobility gets amplified
for higher-order modes as m2, causing twisted solutions to disappear sequentially as mobility
increases (figure 4).
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Figure 5. The domains of existence and stability of m-twist solutions do not
coincide. The 1-twist solution exists below the solid green line, equation (14),
but it becomes stable below the dashed purple line, determined numerically. The
purple dots show the stability of the 1-twist state of the Langevin equations (1)
and (2). The open circle in (a) corresponds to the limit case D = C = 0 studied
in [16].

For m = 0, equation (14) reduces to C = C∗
= γ /2 and corresponds to global

synchronization. The existence of global synchronization in steady state is not affected by
mobility, as indicated by the dotted red line in figures 4(a) and (c). However, the existence
of twisted solutions in finite systems is controlled by angular diffusion C , mobility D and range
of interaction r as indicated by equation (14) (figure 4).

As L → ∞, the critical value of the spatial diffusion coefficient diverges for all m.
Therefore, in the infinite system size limit, all twisted solutions coexist with global
synchronization for any finite D. This result is in agreement with [22] and indicates that identical
noisy phase oscillators cannot exhibit a global synchronized state in 1D in this limit.

5.3. Stability of twisted solutions and states

While existence and stability thresholds coincide for the global order solution, equations (6)
and (14), this is not the case for m-twist solutions in finite systems (figure 5). We address the
stability of the 1-twist solution by performing a numerical study of equation (3), using a finite
difference scheme. To estimate the stability boundary, we continue a stable twist solution until
it becomes unstable against small perturbations. We find that the instability is of modulational
type. The m-twist solutions become stable only after the corresponding local order parameter Rm

becomes larger than a certain value, i.e. twisted solutions become stable with a finite amplitude
(figure 5). For vanishing spatial and angular diffusion C = D = 0, we encounter the system
studied by Wiley et al [16], see the purple open circle in figure 5(a). The numerical solution
seems to approach this point as C/γ → 0, but the numerics become lengthy in this limit.

We next compare the continuum Fokker–Planck description (3) with the discrete system,
by means of Langevin simulations of equations (1) and (2). To measure the stability of the
1-twist state in Langevin simulations, we prepare the system in the 1-twist state by randomly
positioning the oscillators in space and setting their phase to θ(x)= 2πx/L . We first let the
system relax for 1000 units of time, so that the stationary shape of the angular distribution
is reached. Then, we compute the ensemble average of the twist 〈m〉, where 〈. . .〉 denotes an
average over 100 realizations of the numerical simulation, which we performed for different
sets of parameter values C , D and r/L . To evaluate the stability of the 1-twist solution, we
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figure 2.

set a threshold on the average twist: when 〈m〉 falls below 0.05, we take the 1-twist state to
be unstable. Simulations were performed with N = 1000 and L = 2π . Other parameters are
indicated in figure 5. The stability threshold in figure 5(a) was found by varying r for various
fixed values of C , in figure 5(b) by varying D for fixed values of r and in figure 5(c) by varying
C for fixed values of D. We find good agreement between the stability of the 1-twist state of the
discrete system and the stability of the 1-twist solution found by numerical integration of the
Fokker–Planck equation.

6. Attraction basins

Twisted solutions coexist with global order and among themselves (figure 4). As mobility is
increased from low values, twisted solutions become unstable one by one, e.g. figures 4(c)
and 5(c), and global order is enhanced, resulting in an increase of the value of the ensemble
average of the global order parameter as displayed in figure 2(b). Angular fluctuations can also
destabilize twisted solutions (figure 4). However, while increasing the angular fluctuations can
decrease the number of twisted solutions competing with global order, the width of the angular
distribution corresponding to global order also grows as a consequence of increasing the angular
fluctuations. The interplay between these two competing effects may be the cause of the non-
monotonic behavior observed in the ensemble average of the global order parameter as angular
fluctuations C increase, see green squares in figure 2(a). For these reasons, it is interesting to
explore the size of the attraction basins of the different states that the discrete system exhibits.

The fraction of realizations B(m) in which the system ends up in a particular state after
a short time, starting from random initial conditions, is a measure of the size of the attraction
basins of the state. The coexistence of twisted states with up to m = 5 is shown in figure 6(a) for
low-mobility and -phase fluctuations, corresponding to the bottom left corner of figure 4(c). As
C is decreased, the attraction basin corresponding to global order shrinks, while the attraction
basins of the m-twist states expand (figure 6(b)). Decreasing C does not necessarily yield global
order at the ensemble level, because the global ordered state shares the phase space with the
m-twist solutions: the observed value of 〈Z〉 results from the competition between an increase
in local order for m = 0 and a decrease of B(0), see figure 2(a). An increase in the mobility
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D leads to a contraction of the attraction basin of the m-twist states, in favor of global order
(figure 6(c)). When all m-twist solutions are unstable, B(0)= 1, and the global order state is the
only attractor below C∗, see also figure 2(b).

7. Discussion

We have investigated the effects of mobility in a generic 1D model of locally coupled
moving phase oscillators, and showed that oscillator mobility dramatically affects the collective
behavior of finite systems. More specifically, our results show that in low-dimensional systems
global synchronization is compromised by the presence of multiple m-twist states exhibiting
local order. At the onset of local order, the system can fall into the global synchronized state.
However, the coexistence of local order m-twist states implies that the attraction basin of the
global synchronization state is reduced. The strong mobility of the oscillators destabilizes these
m-twist states and thus promotes global synchronization.

In this paper, we have considered a high density limit such that the connectivity of the
system is never interrupted by gaps. In the dilute limit, gaps in the connectivity play a crucial
role in the synchronization dynamics. This problem was studied in the context of moving
neighborhood networks, and under the assumption of a fast exchange of neighbors, a mean-
field condition for the existence and stability of the global synchronization state has been
derived [23]. According to this study, whenever the global synchronized state is stable the
system reaches global synchronization, regardless of its spatial dimensionality. In other words,
the study overlooks the possibility of coexistence of multiple solutions. Our findings reveal a
different role for mobility, unrelated to the existence and stability of the global synchronization
state: mobility disrupts all these multiple solutions except for the global synchronized state.
Extensions of the current study to dilute systems will be further investigated.

Two-dimensional systems display a similar phenomenology, although the competing local
order states can now take other forms, e.g. vortexes [24]. It has been recently reported that
chaotic oscillators moving in a two-dimensional space can synchronize provided that the
spatial dynamics is fast enough [25]. A related albeit different scenario occurs with chaotic
advection mixing in two-dimensional systems, where the synchronization of excitable media
is enhanced by strong mixing [26, 27]. These results indicate that mobility may also enhance
synchronization in two-dimensional systems. We speculate that global synchronization may be
achieved by destabilizing local deffects, as we show here for 1D systems. Further work is needed
to clarify these issues.

The theoretical framework introduced here may provide insights into other related
problems, as when movement is coupled to the oscillator phases. In this case, synchronization
can be interpreted as collective motion [28]. As a result of this coupling, strong spatial
fluctuations and clustering effects dominate the system dynamics [29], and global order prevails
even in the thermodynamic limit [30].

Finally, a compelling biological application of our framework may be found in the
vertebrate segmentation clock, where global coupling provides a useful effective description
of the system because of the high mobility of cells [31]: by precluding the appearance of
local defects, mobility promotes global synchronization. Moreover, it has been recently shown
that mobility decreases the relaxation times to achieve synchronization in a model of the
segmentation clock that allows for flipping between neighboring cells [32]. However, this
system also hosts spatial patterns [33], and mobility is not accounted for in current distributed
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models. It will be interesting to see how mobility affects the synchrony recovery times and
pattern reorganization after perturbation in such models.
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