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Preface

A prominent feature of many complex system is their ability to self-
organize. One characteristic example of such behavior is the phenomenon
of synchronization. Synchronization refers to the emergence of a precise tim-
ing between the constituent elements as a result of mutual interaction [1].
This coherent activity arises in a variety of systems such as mechanical os-
cillators, lasers, chemical reactions, cell populations, and social behaviors. In
particular, neuronal synchronization is a fundamental mechanism for the es-
tablishment of temporal coordination in the brain. A large number of exper-
iments associates temporal correlations with cognitive and behavioral brain
functions [2]. Moreover, converging evidence from different studies suggest
that abnormal and abrupt synchronized activity of neurons might play a key
role in brain diseases as schizophrenia [3] or epilepsy.

Generally the behavior of complex systems is sculpted by multiple and
weak interactions with similar agents. This is the case of nerve cells whose
communication and coordination rely on the network in which they are em-
bedded. In this work we study how the network structure and axonal conduc-
tion delays alter the temporal coordination of coupled neurons. We find: i) at
a local scale, that interacting neurons display in-, out- and anti-phase firing,
ii) at a global scale, random connections are required for a coordinated firing,
iii) axonal latencies give rise to a resonant effect with the internal period of
the oscillatory neurons.

To gain insight into the effects of the delay in the synchronization proper-
ties, we will consider two kind of delay configurations: one in which the delays
are homogeneous and another in which they are heterogeneous. Since experi-
mental data about axonal distributions of conduction velocities in fibers is lim-
ited, specially in the case of humans, we explore different distribution shapes
modeled as a general gamma distribution function. For heterogeneous delays
we observe that global synchronization in a random network is lost when the
variance of the delay distribution is large (02 ~ 2 ms?). On the contrary, the
scale free topology is more robust and maintain globally synchronized regions
even for larger variances. In this context, we also investigate how the balance
between the network synchronizing effect and the dispersive drift caused by
inhomogeneities in natural firing frequencies across neurons is resolved.

In the first part of this work we introduce the dynamical system to be
studied and some tools that we use in the next chapters, as synchronization
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indicators. In Chapter 2, we study single cells properties that can be related
to the synchronization phenomena. This is followed by Chapter 3, where we
present the main results, to show how the network structure and the dynam-
ics interact to build a macroscopic behavior. Finally, we summarize the results
in Chapter 4.



Chapter 1

Introduction

The histological studies of Ramon y Cajal and many others in the 19" cen-

tury led to the general consensus that the cells of the central nervous system
can be divided into two categories: nerve cells (or neurons), and glial cells.
Despite the fact that the human brain contains an enormous number of nerve
cells, which can be classified by its morphological and physiological features
into at least thousand different types, all of them share the same basic archi-
tecture. They are specialized for generating electrical signals in response to
chemical and other inputs, and transmitting them to other cells [4].
Glial cells, in contrast, are not capable of electrical signaling; nevertheless,
they have several essential functions in the brain: they support cells, produce
the myelin used to insulate nerve axons, guide migration of neurons, regu-
late properties of presynaptic terminals, etc. [4]. However recent research is
changing dramatically the role of glial cells in the brain [5].

In this chapter we first introduce the basic physiological and morphologi-
cal properties of the neuron, describing its principal properties, including the
ion channels and the generation of electrical impulses. This is followed by
Section 1.2 devoted to describe the Hodgkin and Huxley neural model. Then,
in Section 1.3, we continue with a brief description of the chemical and electri-
cal process, by which the information encoded by action potentials is passed
on at synaptic contacts to the next cell, a process called synaptic transmission.
In Section 1.4 we briefly overview the phenomenon of synchronization in dy-
namical systems and define some useful tools to characterize synchronization.
Finally, in Section 1.5 we review some fundamental properties of complex net-
works.

1.1. Electrophysiology of Neurons

Neurons are the basic structural components of the brain. A neuron is an
individual cell, specialized by architectural features that enable fast changes
of voltage across its membrane as well as voltage changes in neighboring neu-
rons. Four morphological regions can be distinguished in a neuron: the cell
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body or soma, the dendritic branches, the axon, and presynaptic terminals.
Each region plays a different role in the generation, propagation and trans-
mission of signals between nerve cells [4].

apical
dendrite

collaterals

Figure 1.1: Diagrams of three schematic neurons, adapted from [6]: A) a cortical pyramidal
cell. B) a Purkinje cell. C) a Stellate cell of the cerebral cortex.

The nucleus of the cell is contained in the soma, the metabolic center. From
there the extensive branching arises, the most characteristic specialization for
communication that they have. The dendrites are the principal receptors for
collecting and integrating incoming signals from other nerve cells. Moreover,
a variety of branching shapes can be observed in different areas of the brain
(see Figure 1.1); the number of inputs that a neuron receives depends on the
complexity of the dendritic tree. In contrast, the axon extends away from
the soma, and its principal role is to carry information away from the cell
body and towards the output terminal. It can conduct signals, called action
potentials, along distances ranging from 0.1 mm to 3 m. The nerve impulses,
with amplitude of 100 mV and duration of about 1 ms, are initiated at the
origin of the axon and from there they are conducted down the axon [6]. Ax-
ons terminate at the synapses where the voltage signal opens ion channels
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that mediate the release of neurotransmitters into the synaptic cleft, a pro-
cess termed exocytosis. The transmitted neurotransmitters diffuse across the
synaptic cleft and bind to the receptors on the postsynaptic cell membrane.
This process opens or closes ion channels altering the membrane potential
of the postsynaptic neuron (see Section 1.3 for a detailed description of the
chemical synapses).

1.1.1. Nernst Potential

Neuronal signaling depends on rapid changes in the membrane potential
of nerve cells; this electrical activity is sustained and propagated via ionic
currents through neuron membranes. A wide variety of membrane ion chan-
nels allow ions, predominantly sodium (Na*), potassium (K*), calcium (Ca*?),
and chloride (C1~ ), to move into and out of the cell. The flow of ions across
the membrane is controlled by channels that open and close in response to
voltage changes, and both internal and external signals [7].

Asin all cells, neurons are enclosed by a membrane, which acts as a bound-
ary separating the interior of the cell from the external environment. Its se-
lectively permits the passage of some material and restricts the passage of
others. This insulating feature causes the membrane to act as a capacitor
separating the charges from the interior to the exterior surface. To maintain
ion differences concentration across the membrane, there are selective pumps
that expend energy to carry ions against their concentration gradient. A po-
tential difference across the cell is created by the difference ion concentra-
tion in both sides of the membrane. These two forces, the concentration and
electric potential gradients, regulate the flow of ions through the membrane,
governing the dynamics of the cell [8].

The Nernst Equation describes how a difference of ionic concentrations
between two phases can result in a potential difference across them [8]. As an
example, in the interior of the cell the concentration of K* ions is higher than
outside, these ions diffuse out of the cell because of the gradient, producing an
outward current. The positive charge accumulates in the exterior of the cell,
creating an electrical potential across the membrane. The diffusion process is
slowed down by the electrical potential, since the K* ions are repelled from
the positive charge from the exterior of the membrane and attracted to the
negative charge into the interior. At some point the concentration gradient
and the electrical potential gradient counterbalance these opposite forces and
the net current is zero. The value of such equilibrium potential is given by
the Nernst equation [7]:

RT | [Tongy)
Eion = —1 >
oF [Tony, |

(1.1)

where T is the temperature in Kelvin degrees, F is the Faraday’s constant
(96, 480 coulombs/Mol), R is the universal gas constant (8, 315 mJ/(K Mol)), z is
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the valence of the ion, [Ion,,; and [Ion;,] are the ions concentration outside and
inside the cell. Equilibrium potentials for K* ions, called reversal potential,
Ey, typically fall in the range between —70 mV to —90 mV, for Na* ions the
equilibrium potentials Ey,, is 50 mV or higher and E, for Ca™? channels is
higher, around 150 mV [6].

1.1.2. Ionic Currents

The potential of the extracellular fluid outside a neuron is defined, by con-
vention, to be zero. In an inactive state a neuron has an excess of internal
negative charge that causes the potential to be negative. At this equilibrium
point the currents of ions are balanced, but if the balance of ion flow is modi-
fied by opening or closing channels the potential can change [6]. We label the
different types of channels in a cell membrane with an index x, where x can
be K, Na, Cl, Ca, etc. The net current of the x ion is proportional to the differ-
ence of the membrane potential (V') and the reversal potential of the specific
ion (E,), (V — E,), the electrochemical driving force. The membrane current
per unit area is written then as:

I, = g.(V — E,), (1.2)

where the positive parameter ¢,(mS/cm?) is the x conductance per unit area
due to these channels. We assume that the reversal potential (£,) of the spe-
cific ion x remains constant, this means that the restorative mechanism, the
ionic pumps, acts on a time scale that does not allow the battery to run down
[9]. The total membrane current (/,,) over the different types of channels is:

In =Y _g.(V - E,). (1.3)

Generally, ionic currents in neurons are not Ohmic, the conductance de-

pends not only on time but also on membrane potential, pharmacological
agents, neurotransmitters, etc [7]. The variety, complexity and diversity of
neuronal dynamics are in part due to this variability [6].
It is possible to represent the electrical properties of the cell in terms of a
equivalent circuit as the one shows in Figure 1.2. If we assume that the mem-
brane acts as a capacitor, separating charge from the interior to the exterior,
the capacitive current /. can be written as follow:

av
I.=C—, 14
7 (1.4)
where C' is the capacitance of the membrane and V' is the membrane potential
(the difference between the inside and outside). Applying the Kirchhoff’s law

to the circuit of the Figure 1.2 we get that the total current I is:

I = fo + I, (1.5)
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Figure 1.2: Equivalent circuit diagram for one-compartment neuron model (Adapted from
Izhikevich 2007 [7]).

where I. is the capacitive current and 7, the ionic current. This equation can
be written as:

AV
& NI4T 1.
= ;ﬁ (1.6)

If there are not additional currents then 7 = 0, but usually a neuron is not iso-
lated and receives synaptic currents or external applied currents. These types
of models described by a single variable V are known as single compartment
models.

1.1.3. Voltage-Dependent Conductances

Among the cells of the body, only neurons (and muscle cells) can generate
electrical pulses that can be carry out rapidly over long distances [4]. In the
last sections we saw how the membrane potential can change by the influx of
ions across the cell membrane. In this section we will see how the electrical
pulses are generated due to the nonlinearities of the active membrane conduc-
tances. The fundamental excitable elements of nerve cells are ion channels.
They can be thought to have gates that modify the permeability of the pore
to ions. The gates can be divided into two types: those that open channels
(activation) and those that close channels (inactivation). These gates are con-
trolled by the membrane potential, intracellular and extracellular agents (as
neurotransmitters).



8 Introduction

In 1938 Kenneth Cole and Howard Curtis made an experiment that gave a
clue about how are generated actions potentials in the squid giant axon [10];
they measured ionic conductances during the generation of an action poten-
tial and observed a dramatic increase in their values. Later on, the voltage
clamp experiments done by Hodgkin and Huxley confirmed these observa-
tions, and systematically varying the membrane potential they measured the
conductances of sodium and potassium, giving a complete description of the
ionic mechanism of spikes’ generation [11]. They observed that a brief depo-
larization can activate voltage-dependant sodium conductances, generating a
positive feedback loop; the membrane potential increases, the sodium chan-
nels open generating an inward sodium current that tends to increase even
more the membrane potential. Something similar occurs with the potassium
channels, the channels open and the K* ions flows outward. Nevertheless,
they differ in two aspects: (1) their rate of onset and offset and (2) their in-
activation. The sodium conductances turn on and off more rapidly than the
potassium, at all potentials. Moreover, the sodium conductances have inac-
tive gates that turn off the channels where the others do not; the potassium
current is flowing until the membrane is repolarized.

The generation of an action potential involves a series of steps: when a
perturbation depolarizes the membrane, as we said, the Na* channels open
rapidly and depolarize further the membrane, generating a quick excursion of
the potential to values close to 100 mV. The duration of the spike is limited by
two factors: the slower outward currents of K™, that are also activated when
the membrane is depolarized and the gates of Nat channels that become in-
active. A transient hyperpolarization (brief increase in the negativity) follows
the action potential in almost all neurons, because the K channels are slow
and do not have inactive gates [12].

The transition between open and close states in a single channel is stochas-
tic by nature. The probability to find the activation gate in the open state is
denoted with the letter m for Na® and n for K* ions, and the probability to
find the inactivation gate in the open state is denoted by % for Na* ions. In
the Figure 1.3 we plot a schematic diagram of the gating membrane channels.
The simple cartoon of gating is a channel switching between two states, one
with the pore open and other with the pore close. This kinetic model takes the
form of the following diagram:

ay (V)
By(V)

where C'(O) corresponds to the close (open) state and the transition probabili-
ties (V') and 3,(V) depend on the membrane potential. The fraction of open
channels is denoted by y. The rate of change of y has two contributions: the
gates close at time ¢, that change to open at time ¢ + dt with the opening rate
a,(V') and the gates open at time ¢ that become close at ¢ + dt, at the close rate

0,
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B,(V). The difference between the two fluxes represents the rate of change in
y over time:

dy_

Y — oy (V)1 =) = BV, .

This equation can be written in other useful form:

d
(V) = ye(V) —y (1.8)
dt
where 7,(V) = m and y.(V) = %; Yso(V') represents the frac-

tion of open channels at equilibrium at the membrane potential V. Thus, at a
fixed V' y approaches the limiting value y., exponentially with time constant
(V).

B
lipid bilayer
0, == i = activation
i, KA = % gate
N
= o : ' inactivation
A [~ sensor |} | ., gate
e e Pt I*
b PR~ ———2 'Y gate : -
selectivity =7, aqueous - e
filter / pore ey , o
o4, T channel Y e
i) protein | ;
! = { extracellular | I intracellular
“ A= | I
extracellular |- ~['1L  intracellular ' =

4

LY

anchor T .
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Figure 1.3: A schematic diagram of membrane channels gates. A) a cartoon of a persistent
conductance: a gate is open or close according to the membrane potential. The channels
are also selective to specific ions. B) In this draw we can observe two types of gates, one of
activation and the other of inactivation. Only the middle panel shows an activated channel
that allows the passage of ions. Figure adapted from [6].

In the case of Na' channels there are two different gates, for activation
(m) and inactivation (h), that are independent. So, the probability to find a
fraction of Na® channels open is proportional to mh. In the last section, we
write the membrane current per unit area for a specific ion as a conductance
(per unit area) times the potential (equation 1.2). The value of g, is propor-
tional to the density of ion channels (maximum conductance) multiplied by
the probability to find the channels open: g, = g4,y-
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1.2. Neuron Models

In the following section we describe one of the most important neuron mod-
els proposed by Hodgkin and Huxley. Several models derived from this, often
called Hodgkin-Huxley type models or conductance-based models, they can
describe spike generation in almost all neurons recorded [7]. It is important
to mention that we are considering nerve cells as an idealization of point neu-
ron (electrically compact); therefore, we are not considering propagation of the
spikes along the axon neither integration of synaptic input over the dendritic
tree.

1.2.1. The Hodgkin-Huxley Model

Hodgkin and Huxley wrote, in 1952, a series of five papers describing and
modeling their pioneer experimental work on the generation of action poten-
tials in the giant squid axon. They developed one of the most important mod-
els of nerve cells in computational neuroscience.

The HH model is a four-dimensional dynamical system, its state is deter-
mined by the membrane potential (1), and the gating variables n for persis-
tent Kt and m and h for transient Na® currents [11]. As it was explain in
section 1.3, for a small patch of membrane the total current has two contri-
butions: one from the capacitive current and the other from ionic currents.
These contributions can be written as in equation (1.6). The complete set of
ordinary differential equations for the HH is described below:

OV =1 = gnam®*h(V = Viva) = ggn*(V = Vi) = g1.(V = Vi), (1.9)
= (oo (V) = n)/ma(V),
1= (Moo(V) —m)/Tm(V),
h= (hoo(V) = B)/Ta(V'),

where the dependent rates where fitted to:

V + 55

an(V) = 00— T )

Bn(V) = 0.125exp (—0.0125(V + 65)),
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V 440
1 —exp(—0.1(V + 40))’

an(V)=0.1

B (V) = dexp (—0.0556(V + 65)),

an(V) = 0.07 exp(—0.05(V + 65)),

1

1+ exp(—0.1(V +35)) (1.10)

Br(V)

As we can see in the equation 1.9, three major currents control the poten-
tial: a sodium, a potassium and a leaky current. From their measurements
they inferred that the potassium conductance involves four independent ac-
tivation gates (the term n* in the equation 1.9), and the sodium conductance
involves three independent activation gates (m?) and one inactivation gate h.
The exponents of m and n were chosen to best fit the experimental data. To il-
lustrate the generation of an action potential with the model in Figure 1.4 we
plot the membrane potential, the gating variables and the currents after an
injected pulse of current. It is interesting to notice the different time scales
in the fast activation of sodium current and the relatively slower negative
feedback from potassium current and sodium inactivation, as we mentioned
before in Section 1.1.3.
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Figure 1.4: Generation of an action potential in the Hodgkin and Huxley model in response
to a current pulse. In the top panel we plot the membrane voltage (mV) in response to a small
positive perturbation and an intermediate pulse that generates an action potential. In the
other panels we plot the gating variables, the conductances and the applied current. Figure
adapted from [7]. In this schematic draw the rest membrane potential is shifted to zero as in
the original work of Hodgkin and Huxley.

The maximal conductances and reversal potentials are: gy, = 120 mSem 2,
gk = 36 mSem~2 and ¢g;, = 0.3 mSem~2, Ey, = 50 mV, Ex = —77 mV and
Er = —54.5 mV. The values of the reversal potentials and transition rates are
taken from [6], which differ from the original values of the HH experiment,
because the rest membrane potential is shifted close to zero, for convenience.
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1.3. Intercellular Communications

Neurons have the special ability to communicate and interact with other
cells. This section is devoted to the cellular mechanism for signaling between
neurons. There are primarily two ways for neuron cells to communicate with
their neighbors: electrical or chemical. Electrical synaptic transmissions, also
called gap junctions, are rapid and they do not produce inhibitory actions or
long changes in the electrical properties of the postsynaptic cell. In contrast,
chemical synapses can produce excitatory or inhibitory actions in the postsy-
naptic cell, and they produce electrical changes that last from milliseconds to
minutes. Another major difference is that, in chemical synapses the message
is mediated by the release of neurotransmitters from the presynaptic cell and
received by receptors in the postsynaptic cell. We will discuss in the following
section the main characteristics of both types of synapses. However, we would
like to emphasize that synaptic communication in the brain relies mainly on
chemical mechanisms [8, 13].

1.3.1. Chemical Synapses

Chemical synaptic transmission begins when an action potential reaches
the presynaptic terminal and activates Ca*? channels, generating an influx
of Ca*? ions. The rise of intracellular Ca*? concentration causes the vesicles
to fuse the presynaptic cell membrane and release the neurotransmitters into
the synaptic cleft between pre and postsynaptic sides of the synapse. A neuro-
transmitter is a chemical substance that will bind to specific receptors in the
postsynaptic cell membrane, and initiates changes in its membrane potential
[8]. A schematic diagram of this process is represented in Figure 1.5.

Synaptic interactions are traditionally classified as excitatory or inhibitory
depending on the effects that produce either depolarizing or hyperpolarizing
the membrane potential of the postsynaptic cell. In both cases the activation
of the receptors in the postsynaptic cell results in the opening of certain ion
channels and, thus, in an excitatory or inhibitory postsynaptic current (called
EPSC or IPSC). Glutamate and GABA are the major excitatory and inhibitory
neurotransmitters in the brain. In addition, the principal receptors for glu-
tamate are AMPA and NMDA, presenting different characteristics. On the
other hand, the principal receptors for GABA neurotransmitters are GABA
and GABAg, they also generate ionic currents with different features in the
postsynaptic membrane potential [6].

A simplified model of this type of synapses describes the transmitter-
activation ion channel as a time dependent conductivity g,,,(t). Therefore,
when a spike arrives at the presynaptic terminal the channel will open and
the conductivity increases. The current through this channel depends also on
the postsynaptic membrane potential, as it is detailed below:
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Figure 1.5: Signal transmission in a chemical synapse: A) when a neuron fires, the action
potential travels down through the axon and reaches the presynaptic terminal, where the
Ca™? channels are activated. B) the rise of the intracellular Ca®? concentration causes the
release of neurotransmitters in the synaptic cleft. C) the neurotransmitters bind to specific
receptors in the postsynaptic cell and initiate changes in its membrane potential. Figure 6.5
from [9]

ISyn = gsyn(t)(v(t) - Esyn)a (111)

where V' is the membrane potential of the postsynaptic neuron and E,, is the
reversal potential; the specific value of the E,,, depends, as before, on the type
of channels that are activated (Section 1.1.1). It is common to use a value E,,
equal to zero for excitatory synapses and —75 mV for inhibitory synapses [14].
These values of E,,, will produce respectively a negative (inward) current
and a positive (outward) current; therefore, increasing and decreasing the
membrane potential of the cell.

Typically a superposition of exponential functions is used for modeling
gsyn(t); a standard choice is:

j’m (exp (—t/74) — exp (—t/7,)) (1.12)

where the characteristic times 7, and 7, are the rise and decay time of the
synapse. For example, AMPA receptors are characterized by fast response to
presynaptic spikes and quickly decaying currents; in contrast NMDA recep-
tors are significantly slower. Moreover, typical values of the rise and decay
time for AMPA receptors are ranging between 0.09 ms and 1.5 ms, and be-
tween 3 ms and 40 ms for NMDA [14].

To summarize, the net current through the membrane of the postsynaptic
neuron is:
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]syn = - Z Gsyn (t - tspike) (V(t) - Esyn) 5 (113)

spikes

where ¢,,,, is the maximum synaptic conductance, ¢, is the time of the
presynaptic action potential, and the sum is extended over the train of presy-
naptic spikes that occur at time ¢;..

1.3.2. Gap Junctions

One way that cells can interact is simply by passing ionic currents between
each other. This type of synapses is called gap junctions or electrical coupling.
Cardiac cells and many others interact by this mechanism, with ions directly
flowing from one cell to the other [9]. A major difference between chemical
and electrical synapses is that transmission across electrical synapses is ex-
tremely rapid, as a consequence of the direct flow of ions from the presynaptic
to the postsynaptic cell. Furthermore, gap junctions are bidirectional and
localized.

This type of synapse is usually modeled as a net current proportional to
the difference between the pre and postsynaptic membrane potential:

Il = —gsn(V;(t) = Vi), (1.14)

syn

where I’ is the gap-juntional current that flows from cell j to cell ¢, and g,

syn

is the net coupling conductance of all the junctions.

1.4. Synchronization

In order to study synchronization properties of a neural network in the
following chapters, we define in this section some useful tools as the phase of
the oscillators, synchronization indexes and phase response curve.

1.4.1. Phase of Oscillation

Regular firing activity of neurons in the brain has been well documented
in many areas, for example interneurons in the Hippocampus fire quite regu-
larly [15]. We use this neural oscillators as a motivation to carry our research
based on synchronization properties of a network of neural oscillators. To
characterize the synchronization in the network we use an order parameter
based on the phase difference between elements. We should begin by defining
the phase of the oscillators. In general terms, the phase is a mapping of the
state of the system along the limit cycle! onto the line of real numbers [17].

1a limit cycle is a periodic solution to a system of differential equations that is stable to
small perturbations [16].
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Several definitions of the phase are possible and not equivalent. In our case,
the phase ¢;(t) of the spiking neuron i, is defined as a linear interpolation
between the time of two pulses [1]:

=TT <t < (1.15)
Te+1 — Tk
where 7, is the time of the k" spike, and when the neuron is not firing the
phase is defined as ¢;(¢) = 0. Figure 1.6 illustrates a time trace of the mem-
brane potential of a Hodgkin an Huxley neuron model and the parametriza-
tion of its phase.
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Figure 1.6: Time trace of the membrane potential of one neuron described by the Hodgkin
and Huxley model and its phase.

1.4.2. Synchronization Indexes

To characterize the synchronization among neighbors in our network, we
employ an indicator s;(¢) defined as follow:

_ 1 o ((0i(t) — &;(t)

si(t) = o Z sin (# : (1.16)
jev(i)

where the sum runs over v (i) all the neighbors of the neuron i, and n; is the

number of connected neighbors to this neuron. By averaging over elements
and integrating in time, we get the local synchronization indicator:

loc : 1 g 1 &
§ie = lim — 0 sti(t) dt, (1.17)

=1
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This index gives a measure of the local synchronization over the network
units.

To characterize the synchronization among all the neurons in the network,
we used the index:

si(t) = 1 E;Sirﬂ (M) , (1.18)

where the sum now is extended over all the neurons in the network. By aver-
aging over elements and integrating in time, we get the global synchroniza-

tion indicator:
Golob _ Tlim —/ ( )> dt. (1.19)

These two order parameters are zero if the phases of the oscillators are
equal, one if they differ by = and 0.5 if they are randomly distributed. To ex-
emplify, I enclose the time traces of two neurons synchronized in-phase and in
anti-phase Figure 1.7, with synchronization indexes zero and one respectively.
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Figure 1.7: Time traces of the membrane potential of two neurons synchronized in-phase
(left) and in anti-phase (right), with synchronization indexes zero and one respectively.

1.4.3. Phase Response Curve

As we mention, oscillatory activity is observed in a variety of brain func-
tions [2]. It is possible to characterize the behavior of single units without
knowing the precise mechanism of oscillation. The phase response curve pro-
vides a powerful tool to characterize this type of activity. If a neuron is in a
tonic firing regimen a brief perturbation can change the timing of the follow-
ing spike. The magnitude of the phase shift of the next spike depends on the
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exact timing of the stimulus relative to the phase of oscillation. By stimulat-
ing the neuron at different phases, we can measure the phase response curve
(also called phase resetting curve PRC, or spike time response curve STRC),
defined as [7, 18, 19]:

Tnew

T, (1.20)

PRC(¢) =1 —

where T,,.,, is the time at which the perturbed spike occurs, 7}, the natural pe-
riod of oscillation and ¢ = 1= is the time of the stimulus relative to the oscil-
latory cycle. A positive Value of the function means advance of the next spike
and a negative value means delay of the next spike. In the case of a Hodgkin
and Huxley neuron, the PRC depends not only on the type of synapses but
also on the temporal dynamics of synaptic activation. I enclose a PRC of a
HH neuron in regular spiking regimen stimulating the cell with a Heaviside
step function (equivalent to a small perturbation) and computed with the ad-
joint method [20] in XPPAUT [21] see Figure 1.8.
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Figure 1.8: Phase response curve of a HH neuron computed with the adjoint method in
XPPAUT and stimulated with a Heaviside step function.

We will see in the next section how to relate the shape of the PRC with
synchronization properties at least for two identical coupled neurons. PRCs
are popular among experimentalist because they provide a way to quantify
the behavior of the oscillators. They have been computed for many biological
oscillators [18, 19], including neurons [22, 23]. This approach is relevant as
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a means of: it is possible to extract main features of neuron models and real
neurons that affect the synchronization properties.

1.5. Networks

The behavior of a complex system is shaped by the interactions among
their components. Thus, the interaction between the dynamics of the con-
stituent elements and the architecture of the networks is a crucial issue to
be studied. During the last two decades a large effort has been devoted to
study the evolution, structure and function of complex networks [24, 25, 26],
the nodes of the networks can be social agents, molecules, web pages or neu-
rons, for instance. In the next section we introduce some basic definitions and
properties of networks that will be used in the next chapters to explore the
effect of the network structure into the network dynamics.

1.5.1. General Properties

A complex network can be represented as a graph G = (N, E), its mathe-
matical abstraction. It is composed by a set of N nodes (or vertices), connected
by a set of E links (or edges). The degree (or connectivity) &; of a node ¢ is the
number of connections that link it to the rest of the network. The graph G can
be represented by a matrix, called adjacency matrix A, with values a;; = 1 if
a link exists 2 between node i and j and 0 otherwise. This is a N x N matrix,
where N is the total number of vertices [27].

The simplest topological characterization of a graph is the degree distri-
bution P(k), which indicates the probability of a node chosen at random to
have a degree k. The first moment of the distribution (k) is the mean degree
of G. For example the Erdos-Rényi random graph [28] has a Poisson degree
distribution for a large value of V, while the degree distribution of a scale free
network is a power law, P(k) o k=7, where v is the exponent of the distribution
[26].

Graph topology can be described by a variety of measures. In this work we
will describe some of them: the average shortest path lengths, diameter and
clustering coefficient.

The Path length (d; ;) is the minimum number of edges that connect node
i with node j, and L = (d, ;) is the average shortest path length. Random and
complex networks have short mean path lengths while regular lattices have
long mean paths [29]. It has an important role in transport and communica-
tion within a network. The maximum value of d;; is called the diameter of
the graph.

The clustering coefficient measures the number of connections that exists
between the nearest neighbors of a node relative to the maximum number of

2considering undirected graphs
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possible connections, average over all vertices. Random networks have low
clustering whereas complex networks or regular latices have high clustering
coefficient.

1.5.2. The Small world property

The topology of many real networks, biological, technological or social net-
works, is neither regular nor random but it lies somewhere in between. On
the one hand, there are shortcuts, links that connect distant areas of the net-
work. This means that with a few steps it is possible to link all nodes of
the network, having a short characteristic path length. On the other hand,
these networks present a high clustering coefficient, like regular lattices, most
nodes are connected with a few neighbors vertices. Watts and Strogatz pro-
posed an algorithm to generate this type of network topology [30]. They con-
sidered a random rewiring procedure, starting from a regular lattice with N
vertices and E links, and they rewire each edge at random with probability
p. Therefore, varying the rewiring probability it is possible to construct a reg-
ular lattice p = 0 (none of the links are rewired) or a random network p = 1
where all the edges are rewired. In between 0 < p < 1 it is possible to find
networks with the characteristic described before.

1.5.3. Scale-free distributions

The degree distribution of large networks, as the WWW or citation pat-
terns in science, follows a power law distribution. This means that the proba-
bility P(k) that a node interacts with k other nodes decays as P(k) oc k=7 [31].
In biological systems the degree exponent ranges between 2 and 3. These
networks present few nodes (or hubs) connected to many others vertices and
a large number of poor connected vertices. A power law decay of the degree
distribution implies a lack of characteristic scale in the network. Power laws
have the property of having the same functional form at all scales. From this
feature it comes the term scale free networks [25]. Barabasi and Albert [31]
demonstrated that scale free networks can be originated attaching new ver-
tices by the mechanism of preferential linking.

In Chaper 3 to study the influence of the network structure into the dy-
namics we implement small world networks, with the algorithm proposed by
Watts and Strogatz [30], and scale free networks with the algorithm described
by Barabasi and Albert [31], both models explained above.



Chapter 2

Single neurons as elemental
constituents of networks

Several studies have focused the attention on the synchronization proper-
ties of coupled neurons. A major contribution to understand the different pro-
cess to achieve synchronization among neuron models is based on the analysis
of the phase response curve (PRC or phase resetting curve). As we mentioned
in the introduction the PRC measures how much a given perturbation can
change the time of the next spike in a neural oscillator.

Different types of PRCs have been found. Hansel and collaborators [32]
made a distinction between neurons with type I response, with a positive
PRC, and neurons with type II, with positive and negative PRC. Neurons
with a positive PRC advance the next spike in response to a brief pertur-
bation, while they delay the next spike if the PRC is negative. It has been
shown that a pair of coupled neurons with type I PRC can synchronize in-
phase with inhibitory synapses, while they can synchronize in anti-phase if
the coupling is excitatory. However, fast excitatory connections can produce
in-phase synchronization in models with type II PRC and fast inhibitory con-
nections, anti-phase synchronization [33, 34].

It has been also shown that the temporal dynamics of synaptic activation
plays a crucial role in determining if excitation or inhibition synchronize spik-
ing responses [33]. As we will see, a way to observe how the timing affects the
synchronization is by computing the PRC of a neuron for different rise and
decay times of the synapse (see Section 1.3.1). For excitatory synapses and
increasing the rise time the negative part of a HH PRC becomes positive, and
the neuron looses the capability to delay the next spikes. Therefore, a pair of
coupled neurons looses the capability to synchronize in-phase with excitatory
synapses.

We begin to explore the PRC of a Hodgkin and Huxley model for different
rise time of the synapse. We look how do stable solutions change with these
parameters in a network motif of two reciprocally coupled neurons.

We also study the effect of an explicit axonal conduction delay in the con-
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nections. It has been shown that the delay can change the stability of dif-
ferent solutions (in-,anti- or out of phase) in coupled neurons modeled by the
quadratic integrate and fire [7]. We investigate this effect for two Hodgkin
and Huxley neuron reciprocally connected.

2.1. Effects of the temporal dynamics of synap-
tic activation on the PRC

We begin by computing the Phase Response Curve of an isolated neuron.
The neuron receives a constant bias density current of 7 = 10 yA/cm?, leading
to regular spiking with a period of 14.65 ms. By stimulating the neuron at dif-
ferent phases of the cycle (i.e., time of the stimulus ¢, relative to the oscillatory
cycle Ty), we can measure the phase response curve (See Section 1.4.3). The
PRC can be computed stimulating the neuron with a step function or a delta
pulse. We stimulate the neuron with a synaptic current composed by two ex-
ponential functions as it was described in Section 1.3.1, mimicking the effect
of a chemical synapse. The rise time of the synapse indicates how fast the
synaptic current reaches the maximum. If the time rise is small the synapse
is fast, while if the rise time is large it takes more time to reach the peak and
the synapse is slow. We continue exploring the effect of this parameter on the
PRC.

In Figure 2.1 we plot in red the PRC of a neuron with an excitatory fast
synapse. The negative part of the curve indicates that the neuron delays the
time of the next spike in response to a brief perturbation, and the positive
part indicates that the neuron advances the time of the next spike. Therefore,
if the stimulus arrives soon after the spike discharge, the neuron delays the
next spike. At that time, the neuron is recovering from hyperpolarization.
Thus, the potassium current decays and the sodium current de-inactivates
(see Figure 1.4), both process are slowed by the depolarization [2], delaying
the time of the next spike. If the stimulus arrives in the last part of the cycle,
the neuron is ready to fire and it advance the time of the next spike. We
will see that, with this type of PRC, a pair of identical coupled neurons can
synchronize in-phase (without an explicit axonal delay).

If the rise time of the synapse is larger, the synapse is slow and the shape
of the PRC changes. We plot in Figure 2.1 the PRC of a neuron stimulated
with a slow synapse, with rise time of 3.5 ms. The neuron looses its ability
to delay the time of the next spike, the PRC becomes positive. We observe a
transition from type II to type I PRC increasing the rise time of the synapse.



2.2 Conduction delays in the connections 23

0.04

0.03

0.02

PRC(9)

0.01

1,=0.1 ms,74=3 ms
1,=3.5 ms,1;=4 ms

0 0.2 0.4 0.6 0.8 1
Stimulus phase (¢)

Figure 2.1: Phase Response Curve for a fast (red) and slow (green) excitatory connection,
the rise time is 0.1 ms and the decay time is 3 ms for the red curve and the 3.5 ms and 4 ms
for the green curve.

2.2. Conduction delays in the connections

In order to study the effect of an explicit axonal conduction delay in the
connections, we perform numerical simulations with two reciprocally cou-
pled HH neurons. In Figure 2.2 we plot the synchronization index (see Sec-
tion 1.4.2) as a function of the delay for two excitatory coupled neurons (red)
and for two inhibitory coupled pair (green), for a fixed value of the coupling
strength. As before, an index value of zero means in-phase synchronization,
whereas a value of one represents an anti-phase state.

In the excitatory case, for low delay values the synchronization index is
zero, thus the neurons are synchronized in-phase. This behavior can be un-
derstood from the PRC. The neuron that fires earlier in an oscillatory cycle
advances the spike time of the other neuron (later firing), which in turns de-
lays the spike of the earlier firing neuron [2]. Both neurons adjust their tim-
ing and they finally spike in-phase. This is observed for type II PRC neurons
coupled by fast excitatory synapses [32] (see Figure 2.3 as an example).

As the delay is increased the anti-phase solution emerges. For delays close
to multiples of the natural period of firing (7, = 14.65 ms), the in-phase solu-
tion appears for excitatory synapses. Changes in the delay time reveal a res-
onant effect in the synchronization. On the contrary, for inhibitory synapses
the opposite behavior is observed, when the delay is small the neurons are
synchronized in anti-phase and a transition to an in-phase solution is ob-
served as the delay is increased. If the delays are close to multiples of the
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Figure 2.2: Synchronization index of two fast coupled HH neurons as a function of the delay
in the connections, for fast excitatory (red dots) and fast inhibitory (green dots) synapses. In
this case the rise time is 0.1 ms and the decay time is 3 ms. A resonant effect is observed,
switching between the in-phase to anti-phase solutions. In both cases the coupling is weak,
it is set t0 gmqee = 0.15 mS/em?.

natural period the anti-phase solution emerges.

In the last section we described how the PRC of a HH regular spiking
neuron changes with the rise time of the synapse. Now we will see how the
synchronization properties of a pair of coupled neurons are modified by the
PRC change. A pair of coupled neurons looses its ability to synchronize in-
phase subject to excitatory synapses without delay, see Figure 2.4. If the
delay is non zero and close to multiples of the natural period the neurons are
synchronized out of phase. Only for smaller values of the delay, relative to
the natural period, the neurons synchronize in-phase. We observe a resonant
effect but for delays shifted with respect to the natural period (Figure 2.2). In
the case that the coupling is inhibitory the opposite behavior is observed.
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Figure 2.3: Schematic diagram of two excitatory coupled neurons: fast mutual excitation
synchronizes in-phase neurons with type II PRC (as the HH model). The natural period of
oscillations in the absence of perturbation is T}, the dashed line represents the spike time of
isolated neurons and the solid line the perturbed spikes. In the diagram the neuron number 1
fires earlier, the effect of this spike in neuron number 2 advances the next spike. Whereas, the
effect of the spike of neuron 2 delays the next spike of neuron 1, reducing phase differences
in the next cycles. Figure adapted from [2].
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Figure 2.4: Synchronization index of two slow coupled HH neurons as a function of the delay,
for slow excitatory (red dots) and slow inhibitory (green dots) synapses. In this case the time
rise is 6 ms and the time decay is 3 ms.



26

Single neurons as elemental constituents of networks




Chapter 3

Neural Networks

In the previous chapter we have studied the effect of the delay in the con-
nections in a pair of coupled neurons, as well as the effects that other factors
have in the synchronization (e.g., the type and time of the synapses). In this
section, we investigate how the topology of a network affects the synchroniza-
tion properties. With this purpose, we implement an ensemble of neurons
reciprocally connected placed in different network topologies (regular, small
world, etc.). We explore the stability of the solutions and study how do they
change with the delay, as we did before, for a pair of coupled neurons (see
Chapter 2).

3.1. Effects of the topology

3.1.1. Homogeneous delay

We begin by considering an ensemble of identical neurons, whose dynam-
ical behavior is described by the Hodgkin and Huxley model [11]. The net-
work is composed by N=10? units, connected with reciprocal delayed chemical
couplings, modeled as two exponential functions (see Section 1.3). In the net-
work, each neuron is connected on average with four neighbors. We start
considering fast excitatory synapses, with rise and decay times 0.1 ms and
3 ms, respectively. We concentrate on the response of the system when all
the units are in a regular spiking regime, subject to an external bias density
current of I=10 pA/cm?.

We study the influence of different topologies on the local and global syn-
chronization properties of the network (see Section 1.4.2). We analyzed five
different types of topologies: regular, small-world, random, scale-free and all-
to-all (see Section 1.5).

Figure 3.1 shows the contour plot of 5S¢ and S9°* when the coupling be-
tween the neurons and the delay in the connections vary for a regular, small
world, random, scale free and an all-to-all network. Changes in the delay time
reveal a resonant effect in the synchronization as in the case of two coupled
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spiking neurons (Chapter 2). In-phase solutions (white regions in Figure 3.1)
appear for delays close to (or multiple of) the natural period of the neurons
corresponding, in this case, to 7y = 14.65 ms. These in-phase regions slightly
shift when the coupling strength increases, probably caused by a small reduc-
tion of the natural period due to the stronger interaction. At a local scale, the
regular, small-world, random and scale free networks exhibit also anti-phase
synchronization (blue regions in top panel Figure 3.1) where the neurons fire
in two clusters with a difference of phase m between them. This dynamical
regime is not observed in the fully connected network. Between the in-phase
and anti-phase regimes we also find regions where the neurons fire in an out-
of-phase regime (green areas in Figure 3.1).

Interestingly, while synchronized firing activity between one neuron and
its neighbors (local synchronization) is found in all networks that were consid-
ered, a high randomness in the connections is required for a coherent global
synchronized activity. From Figure 3.1 it can be observed that the random
network exhibits regions of global synchronization that are not present in the
regular or small world networks. This global synchronized activity is also
found in the scale-free and all to all network. These results might be relevant
for the brain, where certain diseases, like Alzheimer or Schizophrenia [3], are
associated with synchronization aspects (decreasing or increasing synchro-
nized activity) and also with a change in the functional topology.
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Figure 3.1: Local and global synchronization indexes for the different network topologies as
a function of both the coupling strength and the delay in the connections. An index value of
zero represents an in-phase state, whereas a value of one represent an anti-phase state.

To illustrate the activity of the network, we show in Figure 3.2 raster plots
of 100 neurons, for a regular, random and scale-free topologies. In the right
y-axis we plot the value of the synchronization index. From top to bottom
rows the value of the delay is set to 12, 14 and 16 ms respectively. It can be
seen how the local synchronization is lost for higher delay values. From left to
right we can observe how a global synchronized state emerges when we vary
the topology of the network, from a regular to random and scale free.
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Figure 3.2: Raster plots of spikes for 100 neurons for different network topologies. The
coupling strength is fixed to 0.8 mS/cm? and delays are: 12-14-16 ms (from top to bottom). On
the right y-axis it is plotted the value of the local (green) and global (blue) synchronization
index.

As we mentioned before, for a motif of two neurons reciprocally coupled
(Chapter 2), the delay can change the stability of the solutions. If the neurons
are connected via excitatory synapses they synchronize in-phase without de-
lay and for delays multiples of the natural period, and they synchronize in
anti-phase in other cases. Interestingly, if the neurons are immersed in a
network, local the dynamics is the same, as it is reflected in the local syn-
chronization index. In our network each neuron is connected on average to
four neighbors. However, it could happen that the local dynamics differs if
the neurons were connected with more than four neurons.

A pair of coupled neurons connected by inhibitory synapses synchronize in
anti-phase without delay or with delays multiples of the natural period. To
compare this situation with a network, we performed numerical simulations
in a network of randomly connected neurons coupled via inhibitory synapses.
In Figure 3.3 we plot the local and global synchronization indexes for this
case. As in the case of two coupled neurons, for delays multiples of the natu-
ral period the neurons synchronize in anti-phase. In the same way, the delay
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changes the stability of the solutions, as it is reflected in the local synchro-
nization index.
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Figure 3.3: Local and global synchronization indexes for a random network as function of
both the coupling strength and the delay in the connections. In this case the neurons are
connected via fast inhibitory synapses

3.1.2. Heterogeneous delays

To gain insight into the effects of the delay in the synchronization proper-
ties we consider heterogeneous delays in the connections. We explore differ-
ent possible distributions chosen from a general gamma distribution function,
with probability density function given by:

r1€2p(7)

f(r)y=r Tk (3.1)
where k and 0 are shape and scale parameters of the v distribution. The mean
delay of the distribution is given by (7) = k0 and the variance by 02 = k6%. We
implemented two configurations: one in which the variance of the distribution
is maintained fixed and another in which the variance is varied proportional
to the mean value of the delay. In both configurations the mean value of the
delay is varied between 0.2 to 40 ms (as in the homogeneous case).

As it happens with the homogeneous configuration, heterogeneous delays
also develop a resonant effect in the synchronization indexes (even in the all-
to-all topology), as it is shown in the Figure 3.4-3.5. This effect is clearly
reflected in the shape of the local synchronization index (top panel Figure 3.4-
3.5). To reach a global synchronized state, we find that a high randomness
in the connections is required (middle panel Figure 3.4-3.5), although this
effect is lost when the variance of the delay distribution is ~ 2 ms? or larger.
Whereas, the scale free topology is more robust and maintain certain globally
synchronized regions even for large variances in the distribution of delays
(bottom panels Figure 3.4-3.5 ).
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Figure 3.4: Local and global synchronization indexes for different network topologies as a
function of both the coupling strength and the mean delay in the connections. Delays were
generated according to a gamma distribution. The mean value is varied between 0.2 to 40
ms, and the variance is kept constant at 0.5 ms? in the middle panel and 2 ms? in the bottom
one.

To characterized the different states of the system we display raster plots
of a fraction of the neurons, for regular, random and scale free topologies (Fig-
ure 3.6). From top to bottom rows the value of the delay is set to 12, 14 and
16 ms respectively. Local synchronization is lost for large delay values. From
left to right it can be observed how a global synchronized state emerges when
we vary the topology of the network (from regular to random and scale-free).
The values of the synchronization indexes are almost the same, as compared
to the case of homogeneous delays.
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Figure 3.5: Local and global synchronization indexes for different network topologies as a
function of both the coupling strength and the mean delay in the connections. Delays were
generated according to a gamma distribution. The mean value is varied between 0.2 to 40
ms, and the variance is kept proportional to the delay, at 1 % of the mean delay in the middle
panel and 10 % of the mean delay in the bottom one.

The main difference with respect to the homogeneous case in the random
network resides at the mean firing rate of the neurons. In the heterogeneous
case, the mean firing rate is almost flat for mean delays 14 and 16 ms while
for the same values in the homogeneous distribution there is still a level of
synchronization reflected in the mean firing rate.
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A) B)

Figure 3.6: Raster plots of a fraction of the neurons for a regular, random and scale free
topologies (from left to right in each panel A and B). The coupling strength is 0.8 mS/cm?
and delays are 12-14-16 ms from top to bottom. On the right y-axis it is plotted the value of
the local (green) and global (blue) synchronization indexes. In panel A the variance is kept
constant at 0.5 ms? while in panel B the variance is assumed to be proportional to 1% of the
mean delay.

3.1.3. Heterogeneous currents

The assumption considered up to now, that all the neurons in the network
are in a regular spiking regimen is an ideal situation. For this reason, and
with the aim of exploring a more realistic situation, we allow the natural fre-
quencies of the neurons to be different to each other. In the Hodgkin-Huxley
model, the pulsating frequency of the neurons depends on the injected cur-
rent I,. Thus, we modeled the dispersion of frequencies by assuming that
each neuron receives an external density current that follows a Gaussian dis-
tribution with mean value I, = 9 yA/cm? and dispersion o;, = 2.5 uA/em?,
allowing some neurons to operate in the sub-threshold state. It is known that
a single HH-type neuron enters into a periodic regime if the external current
is greater than ~ 6 yA/cm? (if the initial current is zero) [14]. Consequently, in
our simulation ~ 10 % of the neurons are in a steady state before the coupling
is turned on and also for low coupling strength.

The effect of the distribution of natural frequencies requires an increase of
the coupling strength needed to achieve a global synchronous state, as it can
be seen in Figure 3.7. The global synchronized regions are reduced for almost
all networks that we have considered. Nevertheless, in the fully connected
case, the synchronized area quasi merges in a single region at high coupling
values, almost losing the resonant character of the delay. As in the homo-
geneous frequency case, three different states of in-phase, out-of phase and
anti-phase appear for S'°° (see Figure 3.7) although these regions are shifted
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with respect to the homogeneous case.

Moreover, global in-phase synchronization is more difficult to achieve and
only the random and the scale-free networks exhibit this state at high cou-
pling intensities but only for some particular values of the delay time. In all
the cases the predominant state is the one in which the neurons spike with-
out a well defined phase relationship corresponding to the out-of-phase state
indicated by green areas in Figure 3.7.

Another important observation that can be pointed out from the present
analysis concerns the annihilation of repetitive firing observed in some neu-
rons in the networks. As we mentioned before, for low coupling ~ 10 % of the
neurons are in a excitable state (they do not fire when isolated), as it is shown
in the Figure 3.7. Enhancing the coupling strength the number of non firing
neurons increases, reaching a maximum value for couplings ~ 0.15 mS/cm?.
As it is expected, increasing further the coupling all the neurons reach the
regular firing regime.

Experimental and theoretical investigations have been carried out to un-
derstand the mechanisms by which repetitive firing are suppressed by short
pulses [35, 36]. It was computationally verified that a stable and an unstable
periodic solution coexist with a stable singular point for a particular interval
of injected currents in the Hodgkin and Huxley model [36]. As far as we know,
the suppression of repetitive firings was not reported before in a network of
Hodgkin and Huxley neurons.

Small World Random Scale-Free All to all
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Figure 3.7: Contour plots of local and global synchronization indexes (top-middle panels)
in the coupling delay-phase space for a heterogeneous ensemble of neurons, and for different
topologies. Density plots of the number of non-spiking neurons (bottom panel).
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Chapter 4

Conclusions

To summarize, we have performed extensive numerical simulations of cou-
pled Hodgkin-Huxley neurons to uncover the collective behavoir in different
networks.

First, we have studied synchronization properties of a pair of coupled neu-
rons, and we have explored the effects of the synapse timings and the types
of synapses on the PRC of an isolated neuron. We correlated the synchro-
nization phenomena with the shape of the PRC, and then we compared these
results with those of a network of neurons reciprocally connected.

Second, we observed that only certain network topologies allow for a co-
ordinated firing at both local and long-range scale simultaneously. At a local
level, we found that all the considered topologies exhibit three different op-
erating regimes: in-phase, out-of-phase and anti-phase. Besides the network
architecture, axonal conduction delays are also observed to play an important
role in the generation of coherent dynamic. Such communication latencies not
only set the phase difference between the oscillatory activity of remote neu-
rons but also determine whether the interconnected cells can set in a coherent
firing or not.

Third, the effect of heterogeneous delay in the dynamics of coupled neu-
rons was also explored. On the one hand, global synchronization in a random
network is lost when the variance of the delay distribution is large (02 ~ 2
ms?). On the other hand, the scale free topology is more robust and maintain
globally synchronized regions even for large variances in the distribution of
delays.

Finally, we have also investigated the effects of inhomogeneities in nat-
ural firing frequencies on the synchronization properties. The presence of
inhomogeneities in the frequency difficults the occurrence of coordinated fir-
ing states. When neurons are not identical, but possess a certain distribution
of the natural frequencies of firing, the region of phase synchronization de-
creases emphasizing the importance of having small diversity in the system
for a coherent response to occur.

Besides the mechanisms studied here, other aspects could be consider as
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well. Inhibitory neurons and mixed networks of type I and II PRC might play
a significant role and will be consider in detail in future studies.
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