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Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
E-mail: federico@ifisc.uib-csic.es, xavi@ifisc.uib-csic.es and
maxi@ifisc.uib-csic.es

Received 4 February 2010
Accepted 11 March 2010
Published 8 April 2010

Online at stacks.iop.org/JSTAT/2010/P04007
doi:10.1088/1742-5468/2010/04/P04007

Abstract. We investigate the dynamics of two agent based models of language
competition. In the first model, each individual can be in one of two
possible states, either using language X or language Y , while the second model
incorporates a third state XY , representing individuals that use both languages
(bilinguals). We analyze the models on complex networks and two-dimensional
square lattices by analytical and numerical methods, and show that they exhibit
a transition from one-language dominance to language coexistence. We find that
the coexistence of languages is more difficult to maintain in the bilinguals model,
where the presence of bilinguals facilitates the ultimate dominance of one of the
two languages. A stability analysis reveals that the coexistence is more unlikely
to happen in poorly connected than in fully connected networks, and that the
dominance of just one language is enhanced as the connectivity decreases. This
dominance effect is even stronger in a two-dimensional space, where domain
coarsening tends to drive the system towards language consensus.
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1. Introduction

A deep understanding of collective phenomena in statistical mechanics is well established
in terms of microscopic spin models. Useful macroscopic descriptions of these models
in terms of mean field approaches, pair and higher order approximations, and field
theories are also well-known. With partial inspiration from this success, collective social
phenomena are being currently studied in terms of microscopic models of interacting
agents [1]. Agents, playing here the role of spins, sit in the nodes of a network of social
interactions and change their state (social option) according to specified dynamical rules
of interaction with their neighbors in the network. A general question addressed is the
consensus problem, reminiscent of order–disorder transitions: the aim is to establish ranges
of the parameters determining the interaction rules and network characteristics for which
the system is eventually dominated by one state or option or, on the contrary, when a
configuration of global coexistence is reached [2].

Language competition falls within the context of such social consensus problems: one
considers a population of agents that can use either of two languages (two states). The
agents change their state of using one or the other language by interactions with other
agents. One is here interested in determining when a state of dominance (or extinction)
of one language is reached, or when a state of global language coexistence, with finite
fractions of the two kinds of speakers, prevails. A particular and interesting ingredient
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in this problem is the possibility of a third state associated with bilingual agents, which
have been claimed to play an essential role in processes of language contact [3, 4]. A good
deal of work along these lines originates in a paper by Abrams and Strogatz [5]. These
authors introduced a simple population dynamics model with the aim of describing the
irreversible death of many languages around the world [6]. The original Abrams–Strogatz
model (ASM) was a macroscopic description based on ordinary differential equations,
but a corresponding microscopic agent based model was described in [7]. This model
features probabilities of switching languages determined by the local density of speakers
of the opposite language, and by two parameters that we call prestige, S, and volatility,
a. Prestige is a symmetry breaking parameter favoring the state associated with one or
other language which accounts for the differences in the social status between the two
languages in competition. The volatility parameter determines the functional form of
the switching probability. It characterizes a property of the social dynamics associated
with the inertia of an agent as regards change of its current option, with its neutral value
a = 1 corresponding to a mechanism of random imitation of a neighbor in the network.
Other studies of the ASM account for the effects of geographical boundaries introduced in
terms of reaction–diffusion equations [8] or for Lotka–Volterra modifications of the original
model [9]. Another different class of models accounts for many languages in competition,
with the aim of reproducing the distribution of language sizes in the world [10, 11].

While in the original paper of Abrams and Strogatz [5] the two parameters S and a
were fitted to particular linguistic data, most subsequent work has focused on theoretical
analysis for the case of symmetrical prestige and neutral volatility. For these parameter
values (symmetric S and a = 1) the microscopic ASM coincides with the voter model [12],
a paradigmatic spin model of nonequilibrium dynamics [13]. Inspired in the modifications
proposed by Minett and Wang of the ASM [14, 15], a microscopic bilinguals model (BM)
which introduces a third (intermediate) state to account for bilingualism has been studied
for the case of symmetric S and a = 1 in [16]. In this way, this case is an extension of the
original voter model. The emphasis has been on describing the effects of the third state of
bilingual agents in the dynamics of language competition as compared with the reference
case provided by the voter model. This includes the characterization of the different
processes of domain growth [16], and the role of the network topology, like small world
networks [16] and networks with mesoscopic community structure [17, 18]. Other studies
associated with variations of the voter model dynamics and the addition of intermediate
states have also been addressed in [19]–[25].

A pending task in the study of this class of models for language competition
is, therefore, the detailed analysis of the role of the prestige and volatility in their
general dynamical properties. In addition, for the voter model, macroscopic field theory
descriptions [26, 27] as well as macroscopic and analytical solutions in different complex
networks [28] have been reported, but there is still a lack of useful macroscopic descriptions
of these models for arbitrary values of the prestige and volatility parameters. The
general aim of this paper is, then, to explore the behavior of these models for a wide
range of these parameter values, and to derive appropriate macroscopic descriptions that
account for the observed order–disorder (language dominance–coexistence) transitions in
the volatility–prestige parameter space. In particular, we analyze how the introduction
of an intermediate bilingual state affects language coexistence, by comparing the regions
of coexistence and one-language dominance of the ASM and BM in the parameter space.
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In addition, we study how these regions are modified, within the same models, when the
dynamics takes place on networks with different topologies.

The paper is organized as follows. In section 2, we introduce and study the Abrams–
Strogatz model on fully connected and complex networks. Starting from the microscopic
dynamics, we derive ordinary differential equations for the global magnetization (difference
between the fractions of speakers of each language) and the interface density (fraction of
links connecting opposite language speakers). We use these equations to analyze ordering
and stability properties of the system, that is, whether there is language coexistence or
monolingual dominance in the long time limit. In section 3, we introduce and study the
bilinguals model, following an approach similar to the one in section 2. In section 4,
we address the behavior of these language competition models and the order–disorder
transitions on square lattices. In particular, we build a macroscopic description of the
dynamics of the ASM on square lattices by deriving partial differential equations for the
magnetization field, that depend on space and time. Finally, in section 5 we present a
discussion and a summary of the results.

2. The Abrams and Strogatz model

The microscopic agent based version [7, 16] of the model proposed by Abrams and
Strogatz [5] considers a population of N individuals sitting at the nodes of a social network
of interactions. Every individual can speak two languages X and Y , but it uses only one
at a time. In a time step, an individual chosen at random is given the possibility to give
up the use of its language and start using the other language. The likelihood that the
individual changes language use depends on the fraction of its neighbors using the opposite
language. Neighbors are here understood as agents sitting at nodes directly connected by
a link of the network. The language switching probabilities are defined as

P (X → Y ) = (1 − S) σa
y and P (Y → X) = S σa

x, (1)

where σx (σy) is the density of X (Y ) of neighboring speakers of a given individual,
0 ≤ S ≤ 1 is the prestige of language X, and a > 0 is the volatility parameter. S controls
the asymmetry of language change (S > 1/2 (S < 1/2) favoring languageX (Y )), whereas
a measures the tendency to switch language use. The case a = 1 is a neutral situation, in
which the transition probabilities depend linearly on the local densities. A high volatility
regime exists for a < 1, with a probability of changing language state above the neutral
case, and therefore agents change their state rather frequently. A low volatility regime
exists for a > 1 with a probability of changing language state below the neutral case with
agents having a larger resistance to changing their state (or inertia).

Having defined the model, we would like to investigate the dynamics and ultimate
fate of the population, that is, whether all individuals will agree after many interactions in
the use of one language or not. In order to perform an analytical and numerical study of
the evolution of the system, we consider, in an analogy to spin models, X and Y speakers
as spin particles in states s = −1 (spin down) and s = 1 (spin up) respectively. Thus, the
state of the system in a given time can be characterized quite well by two macroscopic
quantities: the global magnetization m ≡ (1/N)

∑N
i=1 Si (Si with i = 1, . . . , N is the

state of individual i in a population of size N), and the density of pairs of neighbors
using different languages ρ ≡ (1/2Nl)

∑
〈ij〉(1 − SiSj)/2, where Nl is the number of links
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in the network and the sum is over all pair of neighbors. The magnetization measures
the balance in the fractions of X and Y speakers (m = 0 corresponding to the perfectly
balanced case), whereas ρ measures the degree of disorder in the system. The case |m| = 1
and ρ = 0 corresponds to the totally ordered situation, with all individuals using the same
language, while |m| < 1 and ρ > 0 indicates that the system is disordered, composed by
both kinds of speakers.

The aim is to obtain differential equations for the time evolution of the average
values of m and ρ. These equations are useful in the study of the properties of the
system, from an analytical point of view. We start by deriving these equations in the
case of a highly connected society with no social structure (fully connected network),
that corresponds to the simplified assumption of a ‘well-mixed’ population, widely used
in population dynamics. We then obtain the equations in a more realistic scenario, when
the topology of interactions between individuals is a social complex network. We shall see
that the results depend on the particular properties of the network under consideration,
reflected in the moments of the degree distribution.

2.1. Fully connected networks

We consider a network composed by N nodes, in which each node has a connection to
any other node. In a time step δt = 1/N , a node i with state s (s = ±1) is chosen with
probability σs. Then, according to the transitions (1), i switches its state with probability

P (s→ −s) = 1
2
(1 − sv) (σ−s)

a , (2)

where σ−s is the density of neighbors of i with state −s, that in this fully connected
network is equal to the global density of −s nodes. Given that the total number of
individuals is conserved we have that σ− + σ+ = 1. We define the bias v ≡ 1 − 2S
(−1 < v < 1) as a measure of the preference for one of the two languages, with v > 0
(v < 0) favoring the s = 1 (s = −1) state. In the case that the switch occurs, the density
σs is reduced by 1/N , for which the magnetization m = σ+ − σ− changes by −2s/N .
Then, the average change in the magnetization can be written as

dm(t)

dt
=

1

1/N

[

σ−P (− → +)
2

N
− σ+P (+ → −)

2

N

]

. (3)

Using equation (2) and expressing the global densities σ± in terms of the magnetization,
σ± = (1 ±m)/2, we arrive at

dm(t)

dt
= 2−(a+1)(1 −m2)

[
(1 + v)(1 +m)a−1 − (1 − v)(1 −m)a−1

]
. (4)

Equation (4) describes the evolution of a very large system (N � 1) at the macroscopic
level, neglecting finite size fluctuations. This equation for the magnetization is enough
for describing the system, given that the density of neighboring nodes in opposite state ρ
can be indirectly obtained through the relation

ρ(t) = 2 σ+(t) σ−(t) =
1 −m2(t)

2
. (5)
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Figure 1. Coexistence and dominance regions of the Abrams–Strogatz model in a
fully connected network. For values of the volatility parameter a > 1, the stable
solutions are those of language dominance, i.e., all individuals using language X
(ms = −1) or all using language Y (ms = 1), whereas for a < 1 the two languages
coexist, with a relative fraction of speakers that depends on a and the difference
in prestige of the languages, measured by the bias v. In the extreme case v = −1
(v = 1), only language switchings towards X (Y ) are allowed, and thus only one
dominance state is stable, independent on a.

2.1.1. Stability. Equation (4) has three stationary solutions

m− = −1, m∗ =
(1 − v)1/(a−1) − (1 + v)1/(a−1)

(1 − v)1/(a−1) + (1 + v)1/(a−1)
and m+ = 1. (6)

The stability of each of the solutions depends on the values of the parameters a and v.
A simple stability analysis can be done by considering a small perturbation ε around a
stationary solution ms. For ms = m±, we replace m in equation (4) with m = ±1 ∓ ε
(with ε > 0), and expand to first order in ε to obtain

dε

dt
= 2−a

[
(1 ∓ v)εa−1 − 2a−1(1 ± v)

]
ε. (7)

When a < 1, εa−1 → ∞ as ε → 0, and thus both solutions m± are unstable, whereas for
a > 1, εa−1 → 0 as ε → 0, and thus m± are stable. In the line a = 1, m+ is unstable
(stable) for v < 0 (v > 0), and vice versa for m−. The same analysis for the intermediate
solution m∗ leads to

dε

dt
= 2−(a+1)(a− 1)(1 −m∗2)[(1 + v)(1 +m∗)a−2 + (1 − v)(1 −m∗)a−2]ε. (8)

Then, m∗ is unstable (stable) for a > 1 (a < 1). In figure 1 we show the regions of
stability and instability of the stationary solutions on the (a, v) plane obtained from
the above analysis. We observe a region of coexistence (m∗ stable) and one of bistable
dominance (m+ and m− stable).

The non-trivial stationary solution, m∗, is shown in figure 2 as a function of the
parameters a and v. For the coexistence regime (a < 1), the absolute value of the stable
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Figure 2. Stationary solution m∗(a, v) for the Abrams–Strogatz model (vertical
axis) as a function of the two parameters of the model, a and v (horizontal
plane). See expression (6). Notice how m∗ approaches the values of the two
trivial stationary solutions, m− = −1 and m+ = +1, when a → 1: for v > 0,
lima→1±(m∗) = ∓1. The opposite holds for v < 0. The non-trivial stationary
solution, m∗, is effectively not defined at a = 1, and in this case the system has
only two stationary states, m− and m+. The figure illustrates the change of
stability of m∗ at ac = 1.

stationary magnetization |m∗| increases with both |v| and a. When v �= 0 the coexistence
solution includes a majority of agents using the language with higher prestige, and the
rest of the agents using the language with lower prestige. In contrast, for the dominance
regime (a > 1) |m∗| decreases with a and increases with |v|.

In order to account for possible finite size effects neglected in equation (4) we have
run numerical simulations in a fully connected network. We first notice that the solutions
m = ±1 correspond to the totally ordered absorbing configurations, that is, once the
system reaches those configurations it never escapes from them. This is because, from the
transition probabilities of equation (2), a node never flips when it has the same state as all
its neighbors. Thus, to study the stability of these solutions we have followed a standard
approach [13] that consists of adding a defect (seed) to the initial absorbing state and
let the system evolve (spreading experiment). If, on average, the defect spreads over the
entire system, then the absorbing state is unstable; otherwise if the defect quickly dies
out, the absorbing state is stable. For instance, to study the stability of m = −1, we
started from a configuration composed of N − 1 down spins and 1 up spin (seed), that
corresponds to a magnetization m = −1 + 2/N � −1, and we let the system evolve until
an absorbing configuration was reached. Whether m = −1 is stable or not depends on the
values of v and a. If m = −1 is unstable, then the seed creates many up spins and spreads
over the system, to end up in one of the absorbing states. If m = −1 is stable, then the

doi:10.1088/1742-5468/2010/04/P04007 7
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Figure 3. Probability P (t) that the system is still alive at time t, when it starts
from a configuration composed of an up spin in a sea of 105 − 1 down spins,
endowed with the Abrams–Strogatz dynamics with equivalent languages (bias
v = 0), on a fully connected network. Different curves correspond to the values
a = 0.90, 0.99, 1.00, 1.01, 1.10 and 2.0 (from top to bottom). At ac 	 1.0, P (t)
follows a power law decay with exponent δ 	 0.95, indicated by the dashed line.

initial perturbation dies out, and the system ends up in the m = −1 absorbing state.
The theory of criticality predicts that the survival probability P (t), i.e., the fraction of
realizations that have not died up to time t, follows a power law at the critical point [13],
where the stability of the absorbing solution changes. Figure 3 shows that for a fixed
value of the bias v = 0, P (t) decreases exponentially fast to zero for values of a > 1,
while it reaches a constant value for a < 1. For ac 	 1.0, P (t) decays as P (t) ∼ t−δ, with
δ 	 0.95, indicating that the transition line from an unstable to a stable solution m = −1
as a is increased, in agreement with the previous stability analysis.

Following the same procedure, we have also run spreading experiments to check the
stability transition for different values of the bias. For v = −0.02 and v = −0.2, on a
system of size N = 105, we found the transitions at a 	 1.007 and a 	 1.052, respectively.
These values are slightly different from the analytical value ac 	 1.0, but we have verified
that as N is increased, the values become closer to 1.0, in agreement with the stability
analysis on infinite large systems.

An alternative and more visual way of studying stability in the mean field limit, is
by writing equation (4) in the form of a time-dependent Ginzburg–Landau equation:

dm(t)

dt
= −∂Va,v(m)

∂m
, (9)

with potential

Va,v(m) ≡ 2−a

{

−vm− 1

2
(a− 1)m2 +

v

6
[2 − (a− 1)(a− 2)]m3

+
1

24
(a− 1) [6 − (a− 2)(a− 3)]m4 +

v

10
(a− 1)(a− 2)m5

+ 1
36

(a− 1)(a− 2)(a− 3)m6

}

. (10)
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Figure 4. Ginzburg–Landau potential from equation (10), for the Abrams–
Strogatz model with bias v = −0.1 and values of volatility a = 0.8, 1.0 and 2.0
(from top to bottom). Arrows show the direction of the system’s magnetization
towards the stationary solution (solid circles). For a = 0.8 the minimum is
around m 	 −0.5, indicating that the system relaxes towards a partially ordered
stationary state, while for a = 1.0 and 2.0, it reaches the complete ordered state
m = −1.

Va,v is obtained by Taylor expanding the term in square brackets of equation (4) up to
third order in m, and integrating once over m. We assume that higher order terms in the
expansion are irrelevant, and the dynamics is well described by an m6-potential.

Within this framework, the state of the system, represented by a point m(t) in the
magnetization one-dimensional space −1 < m < 1, moves ‘down the potential hill’, trying
to reach a local minimum. Therefore, a minimum of Va,v at some point ms represents a
stable stationary solution, given that if the system is moved apart from ms and then
released, it immediately goes back to ms, whereas a maximum of Va,v represents an
unstable stationary solution. As figure 4 shows, for a < 1 and all values of v, the single-well
potential has a minimum at |ms| < 1 (ms 	 −0.5 for a = 0.8 and v = −0.1), indicating
that the system reaches a partially ordered stable state, with fractions 0.75 and 0.25 of
down and up spins, respectively, and a density of opposite state links ρ 	 0.375. For
a > 1, the double-well potential has a minimum at m = ±1; thus depending on the
initial magnetization, the system is driven to one of the stationary solutions m = ±1,
corresponding to the totally ordered configurations in which ρ = 0.

This description works well for infinite large systems, where finite size fluctuations are
zero. But for finite systems, the absorbing solutions m = ±1 are the only ‘truly stationary
states’, given that fluctuations ultimately take the system to one of those states. Even for
the case a < 1, where the minimum is at |ms| < 1, the magnetization fluctuates around
ms for a very long time until after a large fluctuation it reaches |m| = 1, and the system
freezes.

2.1.2. The a = 1 case: the voter model. For a = 1 the ASM becomes equivalent to the
voter model. A switching probability proportional to the local density of neighbors in
the opposite state is statistically equivalent to adopting the state of a randomly chosen

doi:10.1088/1742-5468/2010/04/P04007 9
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Figure 5. Abrams–Strogatz model on a fully connected network of N = 1000
nodes with volatility a = 1. Upper panel: average magnetization m versus
time for values of the bias v = 0.8, 0.4, 0.2, 0.0,−0.2,−0.4 and −0.8 (from top
to bottom). Lower panel: average density of opposite state links ρ versus time
for v = 0.0, 0.2, 0.4 and 0.8 (top to bottom). Open symbols are the results from
numerical simulations, while solid lines in the upper and lower panels correspond
to the solutions from equations (13) and (14) respectively. Averages are over 100
independent realizations starting from a configuration with a uniform distribution
of spins and global magnetization m(0) = 0.

neighbor. In this limit of neutral volatility, a = 1, equation (4) becomes

dm

dt
=
v

2
(1 −m2), (11)

whose solution is

m(t) =
(1 +m0)e

vt − (1 −m0)

(1 +m0)evt + (1 −m0)
, (12)

with m0 = m(t = 0). For a uniform initial condition, m0 = 0, and thus

m(t) = tanh(vt/2), (13)

and

ρ(t) = 1
2

[
1 − tanh2(vt/2)

]
. (14)

In figure 5 we observe that the analytical solutions from equations (13) and (14) agree very
well with the results from numerical simulations of the model, for large enough systems,
and they also reproduce the Monte Carlo results found in [7]. This is so because finite
size fluctuation effects are negligible compared to bias effects, even for a small bias.

When the bias is exactly zero, one obtains that in an infinite large network dm/dt = 0;
thus m and ρ are conserved. However, in a finite network, fluctuations always lead the
system to one of the absorbing states [7]. To find how the system relaxes to the final state,
one needs to calculate the evolution of the second moment 〈m2〉 of the magnetization,
related to the fluctuations in m, where the symbol 〈 〉 represents an average over many
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realizations. This leads to a decay of the average density of opposite state links of the
form (see [28])

〈ρ(t)〉 = 1
2

[
1 − 〈m2(t)〉] = 〈ρ(0)〉 e−2t/N . (15)

In terms of the potential description of equation (9), we observe that when v �= 0,
Va,v has only one minimum (see figure 4); thus the system has a preference for one of
the absorbing states only, whereas if v = 0, we have Va,v = 0, and the magnetization
is conserved (m(t) = m(0) = constant). In finite systems, even though the average
magnetization over many realizations is conserved, the system is still ordered in individual
realizations by finite size fluctuations.

2.2. Complex networks

In real life, most individuals in a large society interact only with a small number of
acquaintances, and they all form a social network of connections, where nodes represent
individuals and links between them represent interactions. Thereby, we consider a network
of N nodes, with a given degree distribution Pk, representing the fraction of individuals
connected to k neighbors, such that

∑
k Pk = 1. In order to develop a mathematical

approach that is analytically tractable, we assume that the network has no degree
correlations, as happens for instance in Erdös–Renyi [29] and Barabási–Albert scale-free
networks [30]. It turns out that dynamical correlations between the states of second-
nearest neighbors are negligible in voter models on uncorrelated networks [28, 31]. Thus,
taking into account only correlations between first-nearest neighbors allows us to use an
approach, called pair approximation, that leads to analytical results in good agreement
with simulations. In this section, we shall use this approximation to build equations for
the magnetization and the density of links in opposite state.

In a time step δt = 1/N , a node i with degree k and state s is chosen with probability
Pk σs. Here we assume that the density of nodes in state s within the subgroup of nodes
with degree k is independent of k and equal to the global density σs. Then, according to
transitions (1), i switches its state with probability

P (s→ −s) = 1
2
(1 − sv) (n−s/k)

a , (16)

where we denote by n−s the number of neighbors of i in the opposite state −s (0 ≤ n−s ≤
k) and the bias v is defined as in section 2.1. If the switch occurs, the density σs is
reduced by 1/N , for which the magnetization m = σ+ − σ− changes by −2s/N , while the
density ρ changes by 2(k − 2n−s)/μN , where μ ≡ ∑

k kPk is the average degree of the
network. Thus, in analogy to section 2.1, but now plugging the transition probabilities
from equation (16) into (3), we write the average change in the magnetization as

dm(t)

dt
=

∑

k

Pkσ−
1/N

k∑

n+=0

B(n+, k)
(1 + v)

2

(n+

k

)a 2

N

−
∑

k

Pkσ+

1/N

k∑

n−=0

B(n−, k)
(1 − v)

2

(n−
k

)a 2

N
, (17)
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and, similarly, the change in the density of links in the opposite state as

dρ(t)

dt
=

∑

k

Pkσ−
1/N

k∑

n+=0

B(n+, k)
(1 + v)

2

(n+

k

)a 2(k − 2n+)

μN

+
∑

k

Pkσ+

1/N

k∑

n−=0

B(n−, k)
(1 − v)

2

(n−
k

)a 2(k − 2n−)

μN
. (18)

We denote by B(ns, k), the probability that a node of degree k and state −s has ns

neighbors in the opposite state s. Defining the ath moment of B(ns, k) as

〈na
s〉k ≡

k∑

ns=0

B(ns, k)n
a
s ,

we arrive at the equations

dm(t)

dt
=

∑

k

Pk

2 ka

[
(1 + v)(1 −m)〈na

+〉k − (1 − v)(1 +m)〈na
−〉k

]
, (19)

dρ(t)

dt
=

∑

k

Pk

2μ ka

{
(1 + v)(1 −m)

[
k〈na

+〉k − 2〈n(1+a)
+ 〉k

]

+ (1 − v)(1 +m)
[
k〈na

−〉k − 2〈n(1+a)
− 〉k

]}
. (20)

2.2.1. The a = 1 case: the voter model. In order to develop an intuition about the temporal
behavior of m and ρ from equations (19) and (20), we first analyze the simplest and non-
trivial case a = 1, that corresponds to the voter model on complex networks. A rather
complete analysis of the time evolution and consensus times of this model on uncorrelated
networks, for the symmetric case v = 0, can be found in [28]. Following a similar approach,
here we study the general situation in which the bias v takes any value. To obtain closed
expressions for m and ρ, we consider that the system is ‘well-mixed’, in the sense that the
different types of links are uniformly distributed over the network. Therefore, we assume
that the probability that a link picked at random is of type +− is equal to the global
density of +− links ρ. Then, B(n−s, k) becomes the binomial distribution with

P (−s|s) = ρ/2σs (21)

as the single-event probability that a first-nearest neighbor of a node with state s has
state −s. Here, we use the fact that in uncorrelated networks, dynamical correlations
between the states of second-nearest neighbors vanish (pair approximation). P (−s|s) is
calculated as the ratio between the total number of links ρμN/2 from nodes in state s to
nodes in state −s, and the total number of links Nσsμ coming out from nodes in state s.
Taking a = 1 in equations (19) and (20), and replacing the first and second moments of
B(n−s, k) by

〈n−s〉 = P (−s|s)k,
〈n2

−s〉 = P (−s|s)k + P (−s|s)2k(k − 1),

doi:10.1088/1742-5468/2010/04/P04007 12
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leads to the following two coupled closed equations for m and ρ:

dm(t)

dt
= vρ (22)

dρ(t)

dt
=
ρ

μ

{

μ− 2 − 2(μ− 1)(1 + vm)ρ

(1 −m2)

}

. (23)

For v = 0, the above expressions agree with those of the symmetric voter model [28].
For the asymmetric case v �= 0, we have checked numerically that the only stationary
solutions are (m = 1, ρ = 0) for v > 0 and (m = −1, ρ = 0) for v < 0, that correspond to
the fully ordered state, as we were expecting. Even though an exact analytical solution
of equations (22) and (23) is hard to obtain, we can still find a solution in the long time
limit, assuming that ρ decays to zero as

ρ = A e−t/2τ(v), for t� 1, (24)

where A is a constant given by the initial state and τ(v) is another constant that depends
on v, and quantifies the rate of decay towards the solutions m = 1 or −1. To calculate
the value of τ we first substitute the ansatz from equation (24) into equation (22), and
solve for m with the boundary conditions m(ρ = 0) = 1 and −1, for v > 0 and v < 0,
respectively. We obtain

m =

{
1 − 2vτρ if v > 0;

−1 − 2vτρ if v < 0.
(25)

Then, to first order in ρ we have

(1 −m2) =

{
4vτρ if v > 0;

−4vτρ if v < 0.
(26)

Substituting the above expressions for m and (1 −m2) into equation (23), and keeping
only the leading order terms, we arrive at the following expression for τ :

τ(v) =

⎧
⎪⎪⎨

⎪⎪⎩

μ− 1 − v

2v(μ− 2)
if v > 0;

1 − μ− v

2v(μ− 2)
if v < 0.

(27)

Finally, the magnetization for long times behaves as

m =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (μ− 1 − v)A

μ− 2
exp

[

− v(μ− 2)

μ− 1 − v
t

]

if v > 0;

−1 +
(μ− 1 + v)A

μ− 2
exp

[
v(μ− 2)

μ− 1 + v
t

]

if v < 0,

(28)

whereas the density of opposite state links decays as

ρ = A exp

[

− |v|(μ− 2)

μ − 1 − |v|t
]

. (29)

Using the expression for τ(S) from equation (27) in equation (26), and taking the limit
v → 0, we find that ρ(t) = ((μ − 2)/2(μ − 1))[1 − m(t)2], in agreement with previous
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results for the voter model on uncorrelated networks [28]. By taking μ = N − 1 � 1
in equations (28) and (29), we recover the expressions for m and ρ on fully connected
networks (equations (13) and (14), respectively), in the long time limit. This result means
that the evolution of m and ρ in the biased voter model on uncorrelated networks is very
similar to the mean field case, with the time rescaled by the constant τ that depends
on the topology of the network, expressed by the mean connectivity μ. From the above
equations we observe that the system reaches the dominance state ρ = 0 in a time of order
τ . For the special case v = 0, τ diverges, and thus equations (28) and (29) predict that
both m and ρ stay constant over time. However, as mentioned in section 2.1.2, finite size
fluctuations drive the system to the absorbing state (ρ = 0, |m| = 1). Taking fluctuations
into account, one finds that the approach to the final state is described by the decay of
the average density ρ [28]

〈ρ(t)〉 =
(μ− 2)

2(μ− 1)
e−2t/T , (30)

where T ≡ (μ − 1)μ2N/(μ − 2)μ2, depending on the system size N , and the first and
second moments, μ and μ2 respectively, of the network.

2.2.2. Stability analysis. As for fully connected networks, we assume that equation (19)
for the magnetization has three stationary solutions. Indeed, we have numerically verified
that for different kinds of networks there is, apart from the trivial solutions m = 1,−1,
an extra non-trivial stationary solution m = m∗. Due to the rather complicated form of
equation (19), we try to study the stability of the solutions in an approximate way, and
find a qualitative picture of the stability diagram in the (a, v) plane. For the general case
in which a and v take any values, we assume, as in the voter model case, that B(n−s, k) is
a binomial probability distribution with single-event probabilities given by equation (21).
Then, the explicit form for the ath moment of B(n, k) is

〈na
s〉 =

k∑

ns=0

naCk
ns

(
ρ

2σ−s

)ns
(

1 − ρ

2σ−s

)k−ns

. (31)

We also assume that, as happens for the voter model case a = 1 (see equation (26)), ρ
and m are related by ρ(t) 	 (q/2)[1 −m2(t)], where q is a constant that depends on a
and v. We note that this relation satisfies the fully ordered state condition ρ = 0 when
|m| = 1. We shall see that the exact functional form of q = q(a, v) is irrelevant for the
stability results, as long as q > 0. To simplify calculations even more, we consider that
the network is a degree-regular random graph with degree distribution Pk = δk,μ, that
is, all nodes have exactly μ neighbors chosen at random. Then, substituting the above
expression for the moments into equation (19), and replacing ρ by the approximate value
(q/2)[1 −m2], we arrive at the following closed equation for m:

dm

dt
=

(1 −m2)

2μa

μ∑

n=0

Cμ
n n

a
(q

2

)n {
(1 + v)(1 +m)n−1 [1 − q(1 +m)]μ−n

− (1 − v)(1 −m)n−1 [1 − q(1 −m)]μ−n} , (32)
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Figure 6. Stability diagram for the Abrams–Strogatz model on a degree-regular
random graph, obtained by numerical integration of equations (19), (20) and (31).
The solution m = 1 is stable above the line V1, while the solution m = −1 is
stable below the line V−1. Solid and dashed lines correspond to graphs with
degrees μ = 3 and μ = 10 respectively. In the coexistence region, where the
stable solution is m∗, the system is composed of both kinds of users, while in the
dominance region, users of either one or the other language prevail, depending on
the initial state. We observe that the region of coexistence is reduced, compared
to the model on fully connected networks (figure 1), and that there are also two
single-dominance regions where always the same language dominates.

where mute indices n− and n+ were replaced by the index n. To check the stability of
m = 1, we take m = 1 − ε in equation (32), and expand it to first order in ε. We obtain
after some algebra

dε

dt
=
μ−a

2
(〈n〉q + 〈na〉q) [V1(a) − v] ε, (33)

where the symbols 〈 〉q represent the moments of a binomial distribution with probability
q, and the bias function V1(a) is defined as

V1(a) =
〈n〉q − 〈na〉q
〈n〉q + 〈na〉q . (34)

Then, for a fixed value of a the solution m = 1 is stable (unstable), when v is larger
(smaller) than V1(a). The shape of the function V1(a) can be guessed using that for a
larger (smaller) than 1, the moment 〈na〉 is larger (smaller) than 〈n〉. Then V1(a) goes to
(〈n〉 − 1)/(〈n〉 + 1) � 1 and −1 as a approaches 0 and ∞, respectively. Also V1(a) = 0,
for a = 1. With a similar stability analysis we obtained that m = −1 is stable (unstable)
for the points (a, v) below (above) the transition line V−1(a) = −V1(a), while m = m∗ is
stable in the region where both m = −1 and 1 are unstable. In figure 6 we show a picture
that summarizes the stability regions defined by the transition lines V1(a) and V−1(a).
These lines were obtained by integrating numerically the two coupled equations (19)
and (20), with the moments defined in equation (31), and finding the points (a, v) where
the stationary solutions m = 1,−1 became unstable. We considered two degree-regular
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Figure 7. Spreading experiments: probability P (t) that the system is still alive
at time t in the Abrams–Strogatz model with bias v = −0, 2 and various values of
volatility a, showing the stability of the solutions m = 1,−1. Dashed curves decay
quickly to zero, indicating that the solution is stable, while solid curves represent
unstable solutions. (a) Degree-regular random graph (DRRG). Stability of the
solution m = −1: a = 0.25 (solid curve), a = 0.30 (dashed curve). (b) Degree-
regular random graph (DRRG). Stability of the solution m = +1: a = 1.80 (solid
curve), a = 1.85 (dashed curve). (c) Fully connected network (FCN). Stability
of the solutions m = ±1: a = 0.93 (solid curve), a = 1.07 (dashed curve). All
curves correspond to an average over 105 independent realizations on networks
with N = 105 nodes.

random graphs with degrees μ = 3 (solid lines, V3
1 (a) and V3

−1(a)) and μ = 10 (dashed
lines, V10

1 (a) and V10
−1(a)), and thus we took Pk = δk,μ in the equations. For clarity, only the

stable solutions are labeled in the picture. We observe that as the degree of the network
increases, the coexistence region expands and approaches the corresponding region a < 1
on fully connected networks.

In order to give numerical evidence, from Monte Carlo simulations, of the different
phases and transition lines predicted in figure 6, we have run spreading experiments as
explained in section 2.1, for a degree-regular random graph (DRRG) with degree μ = 3
and N = 105 nodes, and tested the stability of the homogeneous solutions m = ±1.
We first set the bias in v = 0 and, by varying a, we obtained a transition at ac 	 1.0
from dominance to coexistence, as a is decreased: in the dominance region the survival
probability P (t) decays exponentially fast to zero, indicating that m = 1 is stable, while
in the coexistence region P (t) reaches a constant value larger than zero, showing that
m = 1 is unstable (not shown). This transition is the same as the one in fully connected
networks (FCN) (figure 3). We then repeated the experiment with v = −0.2, whose results
are summarized in figure 7, where we show P (t) for different values of a. Increasing a
from 0, which corresponds to the coexistence regime (m = ±1 are unstable solutions, and
m∗ is stable), we show in figure 7(a) how in a DRRG m = −1 changes from unstable to
stable at a value 0.25 < a < 0.3, as P (t) starts to decay to zero. This corresponds to
crossing the line V3

−1 in the horizontal direction (see figure 6), and entering the monostable
region where there are only two solutions: m = −1, stable, and m = +1, unstable (m∗
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becomes equal to −1 along the transition line V3
−1). In figure 7(b) we observe how in a

DRRG m = +1 becomes stable at a value 1.80 < a < 1.85. This corresponds to crossing
the line V3

1 (see figure 6) and entering to the dominance region, where both m = ±1
are stable. Notice that for a = 1.80, P (t) first curves up and then it quickly decays to
zero at a time t 	 4000. This means that a finite fraction of realizations starting from
a system with a single down spin took, on average, a mean time t 	 4000 to end up
in a configuration with all down spins, showing that m = −1 is a stable solution. This
supports our claim that in the monostable region there exist only two solutions: m = −1,
stable, and m = +1, unstable. These results confirm the existence of a quite broad single-
dominance region in DRRG (0.30 � a � 1.85 for v = −0.2 and μ = 3), in agreement
with the stability diagram obtained in figure 6, while this region seems to be absent in
FCN. Indeed, figure 7(c) shows how this unstable–stable transition happens in a FCN at a
value 0.93 < a < 1.07, in agreement with the transition line ac 	 1.0 in FCN. Here, both
m = ±1 gain stability at the same point, and the system enters the dominance region
(see figure 1).

In summary, we find that, compared to the fully connected case, the region of
coexistence is shrunk for v �= 0, as there appear two regions where only one solution
is stable. These regions also reduce part of the dominance region. The effect of the bias is
shown to be more important in DRRGs with low connectivity μ and, as a general result,
coexistence becomes harder to achieve in sparse networks.

3. The bilinguals model

This model can be regarded as an extension of the Abrams–Strogatz model in which,
besides monolingual users X and Y , there is a third class of individuals that use both
languages, that is, bilingual users labeled with state Z. A monolingual X (Y ) becomes
a bilingual with a rate depending on the number of its neighbors that are monolinguals
Y (X), while direct transitions from one class of monolingual to the other are forbidden.
This reflects the fact that individuals that use one language only are forced to start using
both languages if they want to have a conversation with monolingual users of the opposite
language. For a similar reason, the transition from a bilingual Z to a monolingual X (Y )
depends on the number of neighbors using language X (Y ), which includes bilingual
agents. Thus, the probabilities of transitions between states are given by

P (X → Z) = (1 − S) σa
y ,

P (Z → Y ) = (1 − S) (1 − σx)
a,

P (Y → Z) = S σa
x,

P (Z → X) = S (1 − σy)
a,

(35)

where σx, σy and σz are the densities of neighboring speakers in states X, Y and Z
respectively, and S is the prestige of language X.

As in the ASM, it is convenient to consider monolinguals X and Y as particles with
opposite spins −1 and 1 respectively. Bilinguals are considered as spin-0 particles because
they are a combination of the two opposite states. Given that the model is invariant under
the interchange of −1 and 1 particles, the system is better described using the global
magnetization m ≡ σ+ − σ− and the density of bilinguals σ0, where σ−, σ0, σ+, are the
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global densities of nodes in states −1, 0 and 1, respectively. Another alternative could be
the use of the density of connections between different states ρ ≡ 2σ−σ+ +2σ−σ0 +2σ+σ0,
but numerical simulations show that ρ and σ0 are proportional. We now study the
evolution of the system on fully connected and complex networks, by writing equations
for m and σ0.

3.1. Fully connected networks

In the fully connected case, the local densities of neighbors in the different states agree
with the global densities σ−, σ0, σ+; thus, using the transition probabilities equations (35),
the rate equations for σ− and σ+ can be written as

dσ−
dt

=
(1 − v)

2
σ0(1 − σ+)a − (1 + v)

2
σ−σa

+, (36)

dσ+

dt
=

(1 + v)

2
σ0(1 − σ−)a − (1 − v)

2
σ+σ

a
−, (37)

where v ≡ 1− 2S is the bias. The rate equations for m = σ+ − σ− and σ0 = 1− σ+ − σ−
can be derived from the above two equations, and by making the substitutions σs =
(1 − σ0 + sm)/2, with s = ±1. We obtain

dm

dt
= 2−(2+a){2σ0[(1 + v)(1 + σ0 +m)a − (1 − v)(1 + σ0 −m)a]

+ (1 + v)(1 − σ0 −m)(1 − σ0 +m)a − (1 − v)(1 − σ0 +m)(1 − σ0 −m)a}
(38)

and

dσ0

dt
= 2−(2+a){−2σ0[(1 + v)(1 + σ0 +m)a + (1 − v)(1 + σ0 −m)a]

+ (1 + v)(1 − σ0 −m)(1 − σ0 +m)a + (1 − v)(1 − σ0 +m)(1 − σ0 −m)a}.
(39)

Equations (38) and (39) are difficult to integrate analytically, but an insight into its
qualitatively behavior can be obtained by studying the stability of the stationary solutions
with a and v. As in the ASM, we expect that, for a given v, an order–disorder transition
appears at some value ac of the volatility parameter, where the stability of the stationary
solutions changes. If a is small, then flipping rates are high; thus we expect the system
to remain in an active disordered state, while for large enough values of a, spins tend to
be aligned, and thus the system should ultimately reach full order. We now calculate the
transition point for the symmetric case v = 0, and then find an approximate solution for
the linear case a = 1.

3.1.1. The transition point for v = 0. For the symmetric case v = 0 one can easily verify
that the points (m = ±1, σ0 = 0) in the (m, σ0) plane are two stationary solutions
of equations (38) and (39). But there is also a third non-trivial stationary solution
(m = 0, σ0 = σ∗

0), where σ∗
0 satisfies

2σ∗
0(1 + σ∗

0)
a − (1 − σ∗

0)
(1+a) = 0. (40)
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Figure 8. Spreading experiments: probability P (t) that the system is still alive
at time t in the bilinguals model on a fully connected network, obtained from
the same spreading experiments and parameters (v = 0, N = 105) as described
in figure 3 for the Abrams–Strogatz model. The curves correspond to volatilities
a = 0.600, 0.618, 0.620, 0.622 and 0.700 (top to bottom). P (t) decays as t−δ at the
transition point 0.620 (close to the theoretical value afc 	 0.63), with δ 	 1.76,
indicated by the dashed line.

By doing a small perturbation around (0, σ∗
0) in the σ0 direction, one finds from

equation (39) that the point (0, σ∗
0) is stable for all values of a. Instead, the stability

in the m direction changes at some value afc (fc stands for fully connected). Replacing m
by ε 1 and σ0 by σ∗

0 in equation (38), one arrives at the following relation that σ∗
0 and

afc obey when the stability changes:

2 afc σ
∗
0(1 + σ∗

0)
(afc−1) + (afc − 1)(1 − σ∗

0)
afc = 0. (41)

Combining equations (40) and (41), one arrives at the following closed equation for afc:

afc ln

(
1 − afc

afc

)

= ln

(
2afc − 1

1 − afc

)

, (42)

whose solution is afc 	 0.63. Then, assuming that the transition point does not depend
on v for FCN, as happens in the ASM, we find that the (a, v) plane is divided into two
regions. In the region a < afc, the stable solution is (0, σ∗

0), representing a stable mix of the
three kinds of individuals, while in the region a > afc, the stable solutions (±1, 0) indicate
the ultimate dominance of one of the languages. From performing spreading experiments
we estimated that the transition point for a network of N = 105 nodes is around a = 0.62
(see figure 8), and we observed that this value approaches the analytical one afc 	 0.63
as N increases. We have also checked numerically the transition point when there is a
bias (v �= 0), that is, when the two languages are not equivalent. In this case we found a
transition around a = 0.675 for a bias v = −0.2 and N = 105 nodes, which represents a
small deviation from afc. However this difference is similar to the one found for the ASM
in section 2.1.1 with the same system size. Therefore, we assume that this discrepancy is
again due to finite size effects and, in the thermodynamic limit, the transition should be
at afc, for any value of v.
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We note that the transition point afc 	 0.63 is smaller than the corresponding value
ac 	 1.0 for the ASM; thus the region for coexistence is reduced in the BM. This has
a striking consequence. Suppose that there is population with individuals that can use
only one of two languages at a time, and it is characterized by a volatility a = 0.8 that
allows the stable coexistence of the two languages. If now the behavior of the individuals
is changed, so that they can use both languages before they start using the opposite
language, the population loses the coexistence and finally approaches a state with the
complete dominance of one language. In other words, within these models, bilinguals
hinder language coexistence.

3.1.2. The AB model: neutral volatility and the symmetric case. For a = 1 and v = 0,
equations (38) and (39) are reduced to

dm

dt
=

1

2
σ0m, (43)

dσ0

dt
=

1

4
(1 −m2 − 4σ0 − σ2

0). (44)

The three stationary solutions are (m, σ0) = (−1, 0), (1, 0) and (0,
√

5 − 2). Given
that the above equations are difficult to integrate analytically, we try an approximate
solution by assuming that the density of bilinguals is proportional to the interface density
ρ, something observed in our simulations, and already found in [16] for the AB model
(equivalent to the BM in the case v = 0 and a = 1). Bilinguals are at the interface
between monolinguals, for all the networks studied. Then we write σ0 	 αρ, where α is a
constant and ρ = 2σ−σ+ +2σ0(σ− +σ+) = 1

2
[(1−σ0)

2 −m2]+2σ0(1−σ0), from where we
obtain that m can be expressed in terms of σ0 as m2 = (1 − σ0)

2 + 4σ0(1 − σ0) − 2σ0/α.
Substituting this expression for m2 into equation (44), we obtain the following equation
for σ0:

dσ0

dt
=
σ0

2

(

−3 +
1

α
+ σ0

)

. (45)

We have checked by numerical simulations that α > 1/3; then the solution of the above
equation in the long time limit is σ0 ∼ e(−3+1/α)t/2. Therefore, σ0 and |m| approach 0 and
1, respectively, and the system reaches full order exponentially fast.

3.2. Complex networks

We now consider the model on complex networks. Following the same approach as in
section 2.2, it is possible to write down a set of nine coupled differential equations: three
for the densities σ−, σ0 and σ+ of node states, and six for the densities ρ−−, ρ−0, ρ+0,
ρ+−, ρ+0 and ρ++ of different kinds of links. However, due to the complexity of these
equations, we have limited our study to the investigation of the stability regions through
Monte Carlo simulations. We found that in a degree-regular random graph with mean
degree μ = 3, the stability diagram is qualitatively similar to the one in figure 6 for the
ASM, where the coexistence region corresponds to stationary states with a mix of the
three kinds of speakers. Also, the coexistence–dominance transition point for v = 0 is at
acn 	 0.3 (cn stands for complex networks). For v = −0.02, a monostable region appears
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for 0.2 � a � 0.4, while this region becomes wider for v = −0.2 (0 � a � 1.4). We
have also observed that the coexistence region disappears for |v| ≥ 0.2. Therefore, in the
BM, the region for coexistence also shrinks as the connectivity of the network decreases
(going from fully connected to complex networks with low degree), but on top of that,
there exists a shift of the critical value from afc 	 0.63 (fully connected networks) to
acn 	 0.3 (degree-regular random graphs). In summary, compared to the ASM case, the
overall effect of the inclusion of bilingual agents is that of a large reduction of the region
of coexistence.

4. Square lattices

Dynamical properties of the ASM and BM in square lattices can be explored for different
initial conditions, system sizes, and values of the prestige and volatility parameters,
through a simulation applet available online [32]. It turns out that the behavior of
these models in square lattices is very different to their behavior in fully connected or
complex networks. On the one hand, the mean distance between two sites in the lattice
grows linearly with the length of the lattice side L; thus a spin only “feels” the spins
that are in its near neighborhood, and therefore the mean field approach that works
well in fully connected networks gives poor results for lattices. On the other hand,
correlations between second-order, third-order and higher order nearest neighbors are
important in lattices, which causes the formation of same spin domains, unlike in random
networks where correlations to second-nearest neighbors are already negligible. Thus, pair
approximation does not provide a good enough description of the dynamics in lattices
either, and one is forced to implement higher order approximations (triplets, quadruplets,
etc), that lead to a coupled system of many equations, impossible to solve analytically.
Due to the fact that the mean field and pair approximations that use global quantities
such as the magnetization and the density of opposite state links to describe the system
do not give good results for lattices, we follow here a different approach to obtain a
macroscopic description. This approach, also developed in [27] for general nonequilibrium
spin models, consists in deriving a macroscopic equation for the evolution of a continuous
space-dependent spin field. Within this approach it is possible to describe coarsening
processes, that is, processes of growth of local linguistic domains caused by the motion of
linguistic boundaries (interface motion). In particular, one can explain whether the system
orders or not, or if the ordering is curvature driven (interface motion due to surface tension
reduction) or noise driven (without surface tension).

We focus here on the ASM, but this macroscopic description can also be applied for
systems with three states, such as the BM (see [25]). Given that neighboring spins tend
to be aligned—due to the ferromagnetic nature of the interactions—and also correlations
between spins reinforce the alignment between far neighbors, the dynamics is characterized
by the formation of same spin domains. Starting from a well-mixed system with up and
down spins randomly distributed over the lattice, after a small transient, if we look at
the lattice from afar we see domains growing and shrinking slowly with time, and we can
interpret this dynamics at the coarse-grained level as the evolution of a continuous spin
field φ over space and time. Then, we define by φr(t) the spin field at site r at time t,
which is a continuous representation of the spin at that site (−1 < φ < 1), also interpreted
as the average value of the spin over many realizations of the dynamics. Thus, we assume
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that there are Ω spin particles at each site of the lattice, and we replace φr(t) by the

average spin value φr(t) → (1/Ω)
∑Ω

j=1 S
j
r , where Sj

r is the spin of the jth particle inside
site r. Within this formulation, the dynamics is the following. In a time step of length
δt = 1/Ω, a site r and a particle from that site are chosen at random. The probability
that the chosen particle has spin s = ±1 is equal to the fraction of ± spins in that site
(1 ± φr)/2. Then the spin flips with probability

P (s→ −s) =
1

2
(1 − sv)

(
1 − sψr

2

)a

, (46)

where ψr → 1
4

∑
r′/r φr′(t) is the average neighboring field of site r, and the sum is over

the four first-nearest-neighbor sites r′ of site r. If the flip happens, φr changes by −2s/Ω;
thus its average change in time is given by the rate equation

∂φr(t)

∂t
= [1 − φr(t)]P (− → +) − [1 + φr(t)]P (+ → −), (47)

where the first (second) term corresponds to a − → + (+ → −) flip event. In order to
obtain a closed equation for φ (see appendix A for details), we substitute the expression
for the transition probabilities, equation (46), into (47), we then expand around ψr = 0,
and replace the neighboring field ψr by φr + Δφr, where Δ is defined as the standard
Laplacian operator Δφr ≡ 1

4

∑
r′/r(φr′ − φr) = ψr − φr. Keeping the expansion up to first

order in Δφr results in the following equation for the spin field:

∂φr(t)

∂t
= 2−a

(
1 − φ2

r

)
[

v + (a− 1)φr +
v

2
(a− 1)(a− 2)φ2

r +
1

6
(a− 1)(a− 2)(a− 3)φ3

r

]

+ 2−aa
[
1 + v(a− 2)φr + 1

2
(a− 1)(a− 4)φ2

r

]
Δφr. (48)

Equation (48) can be written in the form of a time-dependent Ginzburg–Landau equation:

∂φr(t)

∂t
= D(φr)Δφr − ∂Va,v(φr)

∂φr
, (49)

with diffusion coefficient

D(φr) ≡ 2−aa
[
1 + v(a− 2)φr + 1

2
(a− 1)(a− 4)φ2

r

]
(50)

and potential

Va,v(φr) ≡ 2−a

{

−vφr − 1

2
(a− 1)φ2

r +
v

6
[2 − (a− 1)(a− 2)]φ3

r

+
1

24
(a− 1) [6 − (a− 2)(a− 3)]φ4

r +
v

10
(a− 1)(a− 2)φ5

r

+ 1
36

(a− 1)(a− 2)(a− 3)φ6
r

}

, (51)

which is analogous to the potential for the global magnetization m in the fully connected
network case (figure 4). As we already discussed in section 2.1, for the asymmetric case
v �= 0 the ordering dynamics is strongly determined by v. When a > 1, Va,v has the
shape of a double-well potential with minima at φ = ±1, and with a well deeper than
the other; thus the system is quickly driven by the bias towards the lowest minimum,
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Figure 9. Ginzburg–Landau potential equation (52) for the symmetric case v = 0
of the Abrams–Strogatz model, with volatility values a = 0.5, 0.8, 1.0, 1.2 and 2.0
(from top to bottom). For a = 0.5 and 0.8 the system relaxes to an active state
with the same fraction of up and down spins uniformly distributed over the space,
corresponding to the minimum of the potential at φ = 0, while for a = 1.2 and
2.0 it reaches full order, described by the field |φ| = 1.

reaching full order in a rather short time. For a < 1 there is a minimum at |φ| < 1;
thus the system relaxes to a partially ordered state of language coexistence composed of
a well-mixed population with different proportions of speakers of the two languages.

Especially interesting is the analysis of the symmetric case v = 0, for which the
potential is (see figure 9)

Va(φr) = 2−a(a− 1)

{

−φ
2
r

2
+ [6 − (a− 2)(a− 3)]

φ4
r

24
+ (a− 2)(a− 3)

φ6
r

36

}

. (52)

In this bias-free case, when a < 1 the minimum is at φ = 0; thus the average magnetization
in a small region around a given point r is zero, indicating that the system remains
disordered (language coexistence). This can be seen in figure 10(b), where we show a
snapshot of the lattice for the model with v = 0 and a = 0.5, after it has reached a
stationary configuration. For a > 1 the potential has two wells with minima at φ = ±1,
but with the same depth; thus there is no preference for either of the two states, and
the system orders in either of the language dominance states by spontaneous symmetry
breaking. The order–disorder nonequilibrium transition at a = 1 is reminiscent of the
well-known Ising model transition, but with the volatility parameter a playing the role
of temperature: high volatility a < 1 corresponds to the high temperature paramagnetic
phase and low volatility to the low temperature phase. An important difference is that
the transition is here first order, since the low volatility stable states φ = ±1 appear
discontinuously at a = 1. In addition, while in the low temperature phase of the Ising
model, spins flip in the bulk of ordered domains because of thermal fluctuations, here,
spin flips in the low volatility regime only occur at the interfaces (domain boundaries).

Complete ordering for a > 1 is achieved through domain coarsening driven by surface
tension [33]. That is, as the system evolves, same spin domains are formed; small domains
tend to shrink and disappear while large domains tend to grow. Figure 10(d) shows a
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Figure 10. Snapshots of the Abrams–Strogatz model with bias v = 0 on a
128 × 128 square lattice and three values of volatility, a = 0.5 (b), a = 1.0 (c)
and a = 2.0 (d). (a) Initial state: each site is occupied with a spin +1 or
−1 with the same probability 1/2. (b) The system reaches an active disordered
stationary state, with a global magnetization that fluctuates around zero. (c) The
system displays coarsening driven by noise, characterized by domains with noisy
boundaries. (d) There is also coarsening but driven by surface tension, generating
domains with more rounded boundaries.

snapshot of the lattice for the evolution of the model with a = 2. We observe that domains
have rounded boundaries given that the dynamics tends to reduce their curvature, leading
to an average domain length that grows with time as l ∼ t1/2 [16, 25]. For the special case
a = 1 (voter model) the potential is Va = 0; there is still coarsening but without surface
tension, meaning that domain boundaries are driven by noise, as seen in figure 10(c).
As a consequence of this, the average length of domains grows very slowly with time, as
l ∼ ln t [34]–[36].

In order to compare the behavior of the language competition models described before
for fully connected and complex networks with their behavior for square lattices we have
numerically explored the stability regions in the (a, v) plane for the ASM and BM in square
lattices. The coexistence–dominance transition in the ASM for v = 0 is at ac 	 1.0, as for
fully connected and complex networks, whereas the region for coexistence is found to be
much more narrow than the ones observed in complex networks with low degree, like the
one depicted in figure 6 for μ = 3. Using the simulation applet [32] one can check that
for a given value of v �= 0, the disordered stationary state that characterizes coexistence
is harder to maintain in square lattices than in random networks: in order to have an
equivalent situation, a smaller value of a is needed in the former case.
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Figure 11. Inverse of the average interface density 〈ρ〉 versus time, on a log-linear
scale, for the bilinguals model. From top to bottom: a = 0.30, 0.20, 0.17, 0.16,
0.15 and 0.10. Averages were done over 103 independent realizations on a square
lattice of side L = 400. 〈ρ〉 decays as 1/ ln(t) at the transition point asl 	 0.16
(solid squares), corresponding to the behavior of a generalized voter transition in
two dimensions.

In the BM, apart from the narrowing of the coexistence region, we also found that
the transition point for v = 0 is shifted to an even smaller value of the volatility a than
in complex networks. To see this, in figure 11 we show the time evolution of the inverse
of the average interface density 〈ρ〉 for1 various values of a, on a square lattice of size
N = 4002. We observe that 〈ρ〉 decays to zero for values of a > 0.16, indicating that
the system orders (dominance phase), while 〈ρ〉 approaches a constant value larger than
zero for a < 0.16, and thus the system remains disordered (coexistence phase). At the
transition point asl 	 0.16 we have that 〈ρ〉 ∼ 1/ ln(t), indicating that the transition
belongs to the generalized voter class, a typical transition observed in spin systems with
two symmetric absorbing states [26, 27, 37, 38].

The fact that asl 	 0.16 is smaller than the corresponding transition points afc 	 0.63
and acn 	 0.3, together with the narrowing effect mentioned above, leads to the result
that the region for coexistence is greatly reduced in square lattices, compared to fully
connected and complex networks.

5. Summary and conclusions

We have discussed the order–disorder transitions that occur in the volatility–prestige
parameter space of two related models of language competition dynamics—the Abrams–
Strogatz and its extension to account for bilingualism: the bilinguals model. We have
analyzed their microscopic dynamics on fully connected, complex random networks
and two-dimensional square lattices and constructed macroscopic descriptions of these
dynamics accounting for the observed transitions. At a general level, we have found that
the two models share the same qualitative behavior, showing a transition from coexistence

1 The 〈· · ·〉 indicates the average over independent realizations of the dynamics with different random initial
conditions.
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to dominance of one of the languages at a critical value of the volatility parameter ac. The
fact that agents are highly volatile (a < ac), i.e., loosely attached to the language that
they are currently using, leads to the enhancement of language coexistence. In contrast,
in a low volatility regime (a > ac), the final state is one of dominance/extinction.

A more detailed comparison of the two models shows important differences: in the
mean field description for fully connected networks, and for the ASM, a scenario of
coexistence is obtained for a < 1. This is independent of the relative prestige of the
languages, v. However, the stationary fraction of agents in the more prestigious language
increases with a higher prestige. But when bilingual agents are introduced (BM), the
scenario of coexistence becomes the parameter space area corresponding to a < 0.63.
That is, the area of coexistence is reduced: agents with a higher level of volatility (smaller
a) are needed in order to obtain a coexistence regime. Within this current framework,
allowing the agents to use two languages at the same time, which is reasonable from a
sociolinguistic point of view, has the effect of making language coexistence more difficult
to achieve, in the sense that coexistence occurs for a smaller range of parameters.

Network topology and local effects have been addressed through pair approximations
for degree uncorrelated networks. For the ASM on degree-regular random networks we
find that the decrease of the network connectivity leads to a reduction, in the parameter
space (a, v), of the area of language coexistence and the area of bistable dominance,
while monostable dominance regions appear, in which only the state of dominance of
the more prestigious language is stable. To gain intuition on this result, we first notice
that in the fully connected network, the area of coexistence (a < 1) corresponds to a
situation in which the majority of the agents use the more prestigious language. The
fact that all agents are interconnected translates to a situation in which users of the less
prestigious language (the minority) are in contact with every other agent in the network.
In this situation, high volatility (agents switching their language use easily) is effective
for achieving a steady state situation with individuals continuously changing the use of
their language and making coexistence possible. In contrast, when considering a degree-
regular random network, that is, when limiting the number of neighbors in a society, the
existence of bias (v �= 0) opens the possibility for agents in the majority language to
be placed in domains without contact with the minority language. For a region of the
parameter space where there is coexistence in a fully connected network, these domains
can grow in size in a random network until they occupy the entire system. This gives
rise to the monostable region of dominance of the more prestigious language found in
complex networks with low connectivity. Compared to the fully connected case, a higher
volatility is needed in order to overcome this topological effect, leading to a reduction of
the area of coexistence. In two-dimensional square lattices the coexistence is shown to
be even more difficult to achieve, probably due to the fact that correlations with second
neighbors make the process of coarsening of formation and growth of domains easier.
The macroscopic field description introduced for square lattices accounts for the different
coarsening processes observed for large and small volatility.

The network effects described above for the ASM are also qualitatively valid for the
BM. However, the reduction of the area of language coexistence is more important when
considering bilingual agents. We find a shift of the critical value with the topology:
afc 	 0.63 in fully connected networks, acn 	 0.3 in complex uncorrelated networks, and
asl 	 0.16 in two-dimensional square lattices.
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As a final remark, we note that we have considered different topologies in order
to show the importance of network structure in social dynamics, and in particular in
language competition models. These topologies included fully connected networks as well
as networks with strong local effects associated with a small number of neighbors, that is,
random networks (short average path length) and square lattices (high clustering). Still,
real social networks display other complex features which have not been considered here
and which might influence language competition, like assortativity, community structure
and broad degree distributions [39]. In fact, the non-trivial effects of networks with
community structure have already been addressed for the BM in the case of socially
equivalent languages and neutral volatility [17]. It has been shown how a scenario of
segregated coexistence can take place, with the minority language confined to some
isolated communities. Another aspect that we have not taken into account is the fact
that social structures of both languages could, in principle, be different. One can consider
a variation of the models in which the connectivity of an individual at a given time
depends on the language that it is currently using. In this direction, it will be interesting
as a future work to study the ASM and the BM in networks with increasing complexity.

In summary, building upon previous works on language competition [5, 14, 15], we
have studied numerically and by analytical macroscopic descriptions two microscopic
models for the dynamics of language competition. We have analyzed the role of bilingual
agents and social network structure in the order–disorder transitions occurring for different
values of the two parameters of the models: the relative prestige of the languages and
the volatility of the agents. We have found that the scenario of coexistence of the two
languages is reduced when bilingual agents are considered. This reduction also depends
on the social structure, with the region of coexistence shrinking when the connectivity of
the network decreases.
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Appendix. The equation for the spin field φr

In this section we shall derive an equation for the spin field φr. We start by substituting
the expression for the transition probabilities, equation (46), into (47) and by writing it
in the more convenient form

∂φ

∂t
=

(1 + v)

2a+1
(1 − φ)(1 + ψ)(1 + ψ)a−1 − (1 − v)

2a+1
(1 + φ)(1 − ψ)(1 − ψ)a−1, (A.1)

where φ and ψ are abbreviated forms of φr and ψr respectively. We now replace the
neighboring field ψ in the terms (1 + ψ) and (1 − ψ) of equation (A.1) by ψ ≡ φ + Δφ,
where Δ is defined as the standard Laplacian operator Δφr ≡ 1

4

∑
r′/r(φr′ −φr) = ψr−φr,

and obtain

∂φ

∂t
= 2−(a+1)(1 − φ2)

[
(1 + v)(1 + ψ)a−1 − (1 − v)(1 − ψ)a−1

]

+ 2−(a+1)
[
(1 + v)(1 − φ)(1 + ψ)a−1 + (1 − v)(1 + φ)(1 − ψ)a−1

]
Δφ. (A.2)
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Because our idea is to obtain a Ginzburg–Landau equation with a φ6-potential, the right-
hand side of equation (A.2) must be proportional to φ5, and therefore we use the Taylor
series expansions around ψ = 0:

(1 + ψ)a−1 = 1 + (a− 1)ψ + 1
2
(a− 1)(a− 2)ψ2 + 1

6
(a− 1)(a− 2)(a− 3)ψ3

and

(1 − ψ)a−1 = 1 − (a− 1)ψ + 1
2
(a− 1)(a− 2)ψ2 − 1

6
(a− 1)(a− 2)(a− 3)ψ3

in equation (A.2), to obtain

∂φ

∂t
= 2−a(1 − φ2)

[

v + (a− 1)ψ +
v

2
(a− 1)(a− 2)ψ2 +

1

6
(a− 1)(a− 2)(a− 3)ψ3

]

+ 2−a{(1 − vφ)[1 + 1
2
(a− 1)(a− 2)ψ2]

+ (v − φ)[(a− 1)ψ + 1
6
(a− 1)(a− 2)(a− 3)ψ3]}Δφ. (A.3)

We then replace ψ by φ+Δφ in equation (A.3) and expand to first order in Δφ, assuming
that the field φ is smooth, so Δφ  φ. Finally, neglecting φ3 and higher order terms in
the diffusion coefficient that multiplies the Laplacian, we arrive at the expression for the
spin field quoted in equation (48).
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