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“En el sentido místico de la creación que nos rodea, en la expresión
del arte, en el anhelo hacia Dios, el alma crece en altura y encuentra
la satisfacción de algo implantado en su naturaleza... La búsqueda de
la ciencia (también) nace de un esfuerzo que la mente está impelida a
seguir, un cuestionamiento que puede ser suprimido. Ya por la búsqueda
intelectual de la ciencia o por la búsqueda mística del espíritu, la luz
llama con señas y el propósito que brota de nuestra naturaleza responde”.

Sir. Arthur Eddington
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Resumen

Fenómenos tales como sincronización, oscilaciones, formación de patrones, crec-
imientos de fases, segregación y diferenciación, consenso, entre otros, son ejem-
plos de comportamientos colectivos que ocurren en una variedad de contextos,
tales como sistemas físicos, químicos, biologicos, e incluso en sistemas sociales
y económicos [1–8]. Estos efectos son el resultado de las interacciones entre
los elementos que constituyen el sistema. El concepto de sistemas complejos se
aplica a este conjunto de elementos cuyos comportamientos o estructuras glob-
ales no son susceptibles de ser derivados trivialmente a partir del conocimiento
del comportamiento de los elementos constituyentes. El estudio de compor-
tamientos colectivos en términos de una descripción macroscópica basadas en
interacciones locales, es un tema bien estudiado por la Física Estadística. Debido
al éxito de esta disciplina al establecer una conexión entre los comportamientos a
nivel micro y macro, los fenómenos colectivos en sistemas sociales se empiezan
a estudiar cada vez más a partir de modelos microscópicos basados en agentes
que interaccionan entre ellos siguiendo los métodos y conceptos de la Física Es-
tadística. En problemas de dinámica social, los agentes se consideran nodos de
una red donde cambian su estado (opción social) en función de unas reglas de
interacción local con sus vecinos en la red.

En esta tesis abordamos diferentes aspectos del problema de formación de
opinión y la emergencia del consenso versus polarización en sistemas sociales
desde las perspectivas de la Física Estadística y de los Sistemas Complejos. Para
ello consideramos diferentes mecanismos que capturan procesos básicos para la
interacción local, basados en distintas reglas sociales. Adicionalmente, y como
aporte al estudio del consenso social, incluimos dos nuevos ingredientes que for-
man el núcleo principal de esta tesis: la competencia entre interacciones locales
versus globales, y la co-evolución entre la estructura de la red y la dinámica de

xi



xii RESUMEN

los nodos. En este trabajo, las interacciones locales se refieren a interacciones
entre primeros vecinos (entorno local), mientras que las interacciones globales
tienen en cuenta las interacciones con todos los elementos del sistema (entorno
global) y/o con campos exógenos al sistema.

Los efectos de la competencia entre las interacciones locales y globales son anal-
izados en el contexto de la teoría del aprendizaje social (todos los agentes del
sistema aprenden de una señal externa) usando una variación del modelo de
umbral introducido por Granovetter [9], en el modelo de confianza limitada para la
formación de opinión propuesto por Deffuant et al. [10] y en el modelo de disem-
inación cultural introducido por Axelrod [11]. Mediante este enfoque, se analiza
el mecanismo del aprendizaje social en la dinámica de umbrales bajo la influen-
cia de una señal externa que cambia aleatoriamente en el tiempo. Encontramos
que, dependiendo de la intensidad de la señal y del umbral para el cambio de
opinión de los individuos, el sistema es capaz de aprender de la señal externa.
También hemos estudiado los efectos de los medios de comunicación de masas
en los modelos Deffuant y de Axelrod [12–15]. En este análisis hemos explorado
diferentes formas de medios de comunicación de masas, modelados como dis-
tintos tipos de campos que interactúan con el sistema. Hemos considerado un
campo externo, un campo global y un campo local. Dentro del contexto de las
ciencias sociales, el campo externo se interpreta como una propaganda que tiene
como objetivo imponer una opinión o un estado cultural específico en el sistema,
mientras que un campo global puede ser interpretado como una moda global
que refleja la opinión o la tendencia global del sistema. La tendencia de una
opinión o un estado local es modelada como un campo local. En contra de lo que
se espera intuitivamente, se encuentra que la interacción con un campo fuerte
desordena el sistema, mientras que la interacción con campos débiles es capaz de
ordenar el sistema en dirección del estado del campo. Mostramos que este efecto
es independiente de la naturaleza externa o endógena del campo; sin embargo
los resultados muestran que campos locales son más eficientes en promover el
consenso que campos globales [12]. Para el caso de interacción con un campo
externo, mostramos que el sistema para ciertos valores de parámetro, puede
ordenarse en un estado distinto al que trata de imponer el campo. Esto ocurre
cuando se incluyen interacciones de largo alcance en el sistema. Este efecto se
observa en redes completamente conectadas, en redes de pequeño mundo y en
redes libre de escala [13].

En la parte final de esta tesis analizamos el paradigma de la co-evolución en
dos modelos distintos [16, 17]. Investigamos este problema en el modelo de
Axelrod, y en un modelo donde combinamos una dinámica de umbrales con
un mecanismo basado en la regla de la mayoría para la dinámica de los nodos.
Independientemente de las reglas de evolución en estos modelos, encontramos
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que para ciertos valores de parámetros, ambos sistemas muestran una transi-
ción hacia un estado de fragmentación donde el sistema se rompe en distintos
grupos, y en cada uno de estos grupos se alcanza el consenso. Adicionalmente,
mostramos que la transición ocurre cuando las escalas de tiempo que gobiernan,
tanto la dinámica de la red como la dinámica de los nodos, son del mismo orden
[17]. En particular mostramos que en el modelo de Axelrod co-evolutivo la fase
de fragmentación es estable frente a la presencia de una deriva cultural que es
modelado como ruido aplicado sobre el sistema [16].

Esta tesis quiere contribuir a la comprensión de los mecanismos subyacentes en
problemas de consenso social y formación de opinión en donde la competición
entre interacciones locales y globales está presentes, estudiando los fenómenos
colectivos emergentes en distinto modelos de agentes en interacción en los que
las dinámicas de ordenamiento, la naturaleza de la red son analizadas en detalle.
Adicionalmente nuestros resultados en los estudios de la dinámica co-evolutiva
de grupos culturales aportan detalles que ayudan al entendimiento al problema
de la segregación y a la formación de comunidades.
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Chapter 1

Introduction

1.1

Complexity and Social Sciences

The concept of Complex Systems has evolved from Chaos, Statistical Physics
and other disciplines, and it has become a new paradigm for the search of mech-
anisms and an unified interpretation of the processes of emergence of structures,
organization and functionality in a variety of natural and artificial phenomena in
different contexts [1–8]. The study of Complex Systems has become a problem of
enormous common interest for scientists and professionals from various fields,
including the Social Sciences, leading to an intense process of interdisciplinary
and unusual collaborations that extend and overlap the frontiers of traditional
Science [18–26]. The use of concepts and techniques emerging from the study of
Complex Systems and Statistical Physics has proven capable of contributing to
the understanding of problems beyond the traditional boundaries of Physics.

Phenomena such as the spontaneous formation of structures, self-organization,
spatial patterns, synchronization and collective oscillations, spiral waves, seg-
regation and differentiation, formation and growth of domains, consensus phe-
nomena [1–8, 11, 27–29] are examples of emerging processes that occur in various
contexts such as physical, chemical, biological, social and economic systems, etc.
These processes are the result of interactions and synergetic cooperation among
the elements of a system. The general concept of Complex System has been
applied to sets of elements capable of generating global structures or functions
that are absent at the local level. Understanding the complex collective behavior
of many particles systems, in terms of macroscopic descriptions based on local
interaction rules of evolution leading to the emergence of global phenomena is
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CHAPTER 1. INTRODUCTION

at the core of Statistical Physics and it is relevant in Social Sciences. An exam-
ple of this micro-macro paradigm that shows a close relationship between both
fields, Statistical Physics and Social Science, is Schelling’s model of residential
segregation, mathematically equivalent to the zero-temperature spin-exchange
Kinetic Ising model with vacancies [30, 31].

Within this framework of the applications of concepts of Complex Systems to
Social Science, there is a large number of physicists, economists, sociologists and
computer scientist who are studying social systems and characterizing mecha-
nisms involved in the processes of opinion formation, cultural dissemination,
spread of disease, formation of social networks of interaction. This has led to the
establishment of links between various disciplines and to an increasing inter-
disciplinary collaboration between different areas of knowledge [16, 19, 20, 23–
26, 32–41].

It may seem unconventional that physicists study dynamical models of social
systems. However, the attempt to explain social phenomena as any other phys-
ical phenomena is not new. These ideas, somehow, were anticipated by several
social scientists of the nineteenth century. Auguste Comte, considered as the
father of Sociology, was heavily influenced by Newtonian and Galilean Mechan-
ics. He thought that Physics could apply to all natural phenomena, including
the social phenomena. In his famous classification of sciences, Comte assumed
that all scientific disciplines are eventually some kind of applications or branches
of Physics. In this classification, Comte distinguishes differences in Physics ap-
plications, separating them into two main areas: Inorganic Physics and Organic
Physics. This separation also contains a list of different disciplines, such as, Celes-
tial Physical (Astronomy), Terrestrial Physics (Geology); Physiological Physics
(Biology), etc. In this scheme, there was room for Social Physics, which would
be devoted to studying positively the social phenomena. Comte proposed to
develop this science in his famous treaty “Cours de Philosophie Positive” [42].

A typical social system is composed of a number of individuals that interact
among them, showing nontrivial collective behavior. The consideration of these
phenomena is the key for a qualitative and quantitative study from the point
of view of Statistical Physics and Complex Systems [20, 43]. In particular, the
paradigm of Complex Systems in the context of social systems means that collec-
tive social structures emerge from the interactions among individuals. In other
words, we assume that many social phenomena are collective processes similar
to those taking place in many nonequilibrium dynamical systems composed by
many elements. In this regard, a variety of models have been proposed to ex-
plain the formation of structures from the interactions between agents of social
systems. Many of these models address the question of the emergence of social
consensus: the aim is to establish when the dynamics of a set of interacting agents

2



1.1. COMPLEXITY AND SOCIAL SCIENCES

that can choose among several options, reaches to a consensus in one of these
options, or when a state coexistence of several options prevails (polarization )
[41]. The parameters of these models drive transitions between consensus and
polarization. This change in the global state of the system between consensus
and polarization could be seen as the analogous an order-disorder transition in
Statistics Physics.

In this context, different models considered in the last few years account for
different mechanisms of interaction that capture the essence of various social
behaviors through simple interaction rules:

• Imitation (voter model [44]).

• Social pressure (Spin Flip Kinetic Ising models [45])

• Homophily (Axelrod model for cultural dissemination [11])

• Majority convinces (Sznajd model [46])

• Threshold model (Granovetter model [9]) or complex contagions [47]

• Bounded confidence (Deffuant model [10] and Hegselmann and Krause
[48])

• Semiotic dynamics Naming Game for the emergence of a shared language
[49–51])

• Interaction through small groups (Galam model [52])

• Cost-benefit optimization in the framework of game theory [53–56]

• Imitation, prestige and volatility in language competition [50, 57–61]

The emergence of consensus or polarization depends on the mechanism of in-
teraction and on a second ingredient, namely the network of interactions that
defines who interacts with whom. These networks of interaction can be seen
as the skeleton a Complex Social System. In section 1.2 we review the main
concepts and basic models of networks that we use throughout the thesis.

In this thesis, we address different aspects of the consensus problem considering
different interaction mechanism and studying the effects of different topologies
of the interaction networks. The two key new issues that we introduce in this
work are the competition between local and global interaction (section 1.3) and
the concept of co-evolution dynamics of the states of the agents and network of
interaction (section 1.4).

3



CHAPTER 1. INTRODUCTION

1.2

Complex Networks

The study of the interrelations among interactive elements has revealed the ex-
istence of underlying networks of connections in many systems [62–66]. It has
been found that systems as diverse as the World Wide Web, Internet, telecommu-
nication networks, dynamical social groups, economic corporations, metabolic
flows in cells, neurons in the brain, etc., show common network structures and
share similar properties of self-organization. The topological structure of the
interaction network can be considered as an esential ingredient of a Complex
System. In this regard, the interaction in complex networks is a recent new
paradigm in Statistical Physics. [67].

The approach of Statistical Physics in the study of interaction networks has
revealed the ubiquity of various striking characteristics, such as the small-world
effect: although each node has a number of neighbors much smaller with respect
to the total number of nodes, only a small number of hops suffices to go from
any node to any other on the network. This has prompted the investigation of
the effect of various interaction topologies on the behavior of agents connected
according to these topologies, highlighting the relevance of small-world and
heterogeneous structures [68–70].

More precisely, a network is a set of elements, which we will call vertices or nodes,
with connections among them, called, edges or links. Complex networks research
can be conceptualized as lying at the intersection between graph theory ∗ and Sta-
tistical Mechanics, which endows it with a truly multidisciplinary nature. While
its origin can be traced back to the pioneering works on percolation and random
graphs by Flory [71], Rapoport [72], and Erdos and Renyi [73], research in com-
plex networks from the view point of physics became a focus of attention only
recently. The main reason for this was the discovery that real networks have char-
acteristics which are not explained by random connectivity. Instead, networks
derived from real data may involve community structure, power law degree
distributions and hubs, among other structural features. Three particular de-
velopments have contributed particularly to the ongoing related developments:
Watts and Strogatz’s investigation of small-world networks [63], Barabási and
Albert’s characterization of scale-free models [74], and Girvan and Newman’s
identification of the community structures present in many networks [75]. The
introduction of the models by Watts-Strogatz, and Barabasi-Albert to explain and
study the basic features observed in real networks, have triggered a revolution
in the field of Statistical Physics, with the number of contributions to the field

∗Term used by mathematicians
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constantly increasing until today. Physicists became interested in the formation,
structure and evolution of complex networks, as well as in the topological effects
on social interaction problems, such as opinion dynamics, cultural diffusion or
language competition [20]. The study of complex networks has attracted the
attention of the general public during these years, and several popular science
books have been published on the topic[64, 76].

1.2.1 Basic concepts

In mathematical terms a network is represented by a graph. A graph is a pair
of sets G = {P,E} where P is a set of N nodes (or vertices) P1,P2, ...,PN and E is
a set of edges (links or ties) that connect two elements of P. Networks can be
directed or undirected. In directed networks [77, 78], the interaction from node
i to node j does not imply an interaction from j to i. On the contrary, when the
interactions are symmetrical, we say that the network is undirected. Moreover,
a network can also be weighted [79, 80]. A weight is defined as a scalar that
represents the strength of the interaction between two nodes. In an unweighted
network, instead, all the edges have the same weight (generally set to 1).

In this Section, we define basic concepts that characterize complex networks

Adjacency matrix

An adjacency matrix represens which vertices of a graph are adjacent to which
other vertices. Specifically, the adjacency matrix of a finite network G on N
vertices is the N × N matrix where the nondiagonal entry ai j is the number
of edges from node i to node j, and the diagonal entry aii, depending on the
convention, is either once or twice the number of edges (loops) from vertex i
to itself. Undirected graphs often use the former convention of counting loops
twice, whereas directed graphs typically use the latter convention. There exists
a unique adjacency matrix for each graph (up to permuting rows and columns),
and it is not the adjacency matrix of any other graph. In the special case of a
finite graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.
If the graph is undirected, the adjacency matrix is symmetric. The relationship
between a graph and the eigenvalues and eigenvectors of its adjacency matrix is
studied in spectral graph theory.

5



CHAPTER 1. INTRODUCTION

Degree and degree distribution

The degree ki of a node is the number of links adjacent to a node i, that is the
total number of nearest neighbors of a node i in a network.

The degree distribution P(k) is the average fraction of nodes or vertices of degree
k: P(k) = 〈N(k)〉/N. Here, N(k) is the number of nodes of degree k in a particular
graph of the statistical ensemble. The averaging is over the entire statistical
ensemble. Some networks can be degree-homogeneous, where each node i has
the same number of connections, such as lattice networks. While, other networks
might have certain degree of heterogeneity in the connections of the nodes. For
example, in a random network, each node is connected (or not) with probability
p (or 1 − p). In this case the P(k) is a binomial distribution. Other example are
networks where the degree distribution follow a power law: P(k) ∼ k−γ, where
γ is a constant. Such networks are called scale-free networks and have attracted
particular attention for their structural properties.

Clustering coefficient

In graph theory, a clustering coefficient is a measure of the extent to which nodes
in a graph tend to cluster together. Evidence suggests that in most real-world
networks, and in particular social networks, nodes tend to create tightly knit
groups characterized by a relatively high density of ties. In real-world networks,
this likelihood tends to be greater than the average probability of a link randomly
established between two nodes [63, 81].

The definition for clustering coefficient quantifies the local cliquishness of its
closer neighborhood, and it is know as local clustering coefficient Ci:

Ci =
2ε

ki(1 − ki)
, (1.1)

where ki is the degree of node i and ε is the number of links between its ki
neighbors. From this definition, the clustering coefficient of the whole network
is defined as the average over all nodes Ci:

C ≡
1
N

N∑
i=1

Ci (1.2)
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where N is the total of nodes in the system. In a social network, it can be
interpreted as a measure of the probability that the friends of a given agent are
at the same time friend of each other.

Average path length

The average path length l is the average number of steps along the shortest
paths for all possible pairs of network nodes. It is a measure of the efficiency of
information or mass transport on a network. Average path length is one of the
three main measures of network topology, along with its clustering coefficient
and its degree distribution. The average path length depends on the system
size. Regular d-dimensional lattice display an average path length which scales
with system size as l ∼ N1/d, while, the Complex Networks are characterized by
shorter path lengths, which scale as l ∼ ln(N), where N is the system size.

Community structure

Although there is not an agreed common definition about what is a community
in the field of complex networks theory, the most usuall one is the following: a
set of nodes is a community if a network can have a non homogeneous structure
formed by a group of vertices strongly connected among them but with few links
connecting them to the rest of the network (see Figure 1.1). These networks have
a modular (or community ) structure [82]. Several other definitions can be found
in the ref. [83]. A given community division of a network can be evaluated by
computing its modularity, a measure introduced by Newman and Girvan [82].

The most interesting features that display the real social networks are: a) short
average path length, b) large clustering coefficient and c) broad degree distribu-
tions.

1.2.2 Basic complex networks models

Modeling networks is an important tool to improve the understanding of real
networks. In this section, we present a brief introduction of the three most
important network models that we use on the course of this thesis: Erdös-Rényi
random networks [73], Watts-Strogatz small world networks [63] and Barabśi-
Albert scale free networks [74].
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Figure 1.1: An example of a random network with community structure
formed by 64 nodes dividend in 4 community. From [84]

Erdös-Reny random network

The random network, developed by Rapoport [72] and independently by Erdös
and Reny [73], can be considered the most basic model of complex networks. In
their 1959 paper [73], Erdös and Reny introduced a model to generate random
graphs consisting of N vertices connected by m edges, which are chosen ran-
domly from the N(N − 1)/2 possibles edges. Another alternative model defines
N vertices and a probability p of connecting each pair of vertices. The average
degree of a node in a random networks is:

〈k〉 = p(N − 1) =
2m
N
. (1.3)

When dealing with the large network size limit (N → ∞), 〈k〉 diverges if p is
fixed. Instead, p is chosen as function of N to keep 〈k〉 fixed: p = 〈k〉/(N − 1). So,
the probability of a randomly chosen node having degree k is binomial:
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1.2. COMPLEX NETWORKS

P(k) =

(
N − 1

k

)
pk(1 − p)N−1−k (1.4)

For large N and 〈k〉 fixed, this distribution approaches Poisson distribution with
mean value 〈k〉:

P(k) u
〈k〉ke−〈k〉

k!
, (1.5)

which is sharply peaked at 〈k〉.

The small world model

Many real social networks are characterized by having a short average path
length, like the random network, but with a large cluster coefficient, if it is
compared with a random graph (see table 1.1). This characteristic is known as
small world property. This concept originated from the famous experiment made
by Milgram in 1967 [85], who found that two US citizens chosen at random were
connected by an average of six acquaintances.

The small-world networks were identified as a class of random graphs by Dun-
can Watts and Steven Strogatz [86]. They noted that graphs could be classified
according to two independent structural features, namely the clustering coef-
ficient and average node-to-node distance, the latter also known as average
shortest path length. Purely random graphs, built according to the Erdös-Rényi
model, exhibit a small average shortest path length (varying typically as the log-
arithm of the number of nodes) along with a small clustering coefficient. Watts
and Strogatz measured that in fact many real-world networks have a small av-
erage shortest path length, but also a clustering coefficient significantly higher
than expected by random chance. Watts and Strogatz then proposed a novel
graph model, currently named the Watts and Strogatz model, with (i) a small
average shortest path length, and (ii) a large clustering coefficient.

To construct a small-word network, one starts with a regular lattice of N vertices
in which each vertex is connected to k nearest neighbors in each direction, total-
izing 2 connections, where N � k � log(N) � 1. Next, each edge is randomly
rewired with probability p. When p = 0 we have an ordered regular lattice with
high number of loops but large distances and when p→ 1, the network becomes
a random graph with short distances but few loops. In this way, changing the
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CHAPTER 1. INTRODUCTION

Figure 1.2: The Watts-Strogatz random rewiring procedure, which inter-
polates between a regular ring lattice and a random network keeping the
number of nodes and links constant. N = 20 nodes, with four initial near-
est neighbors. For p = 0 the original ring is unchanged; as p increases the
network becomes increasingly disordered until for p = 1 a random. From

[63]

parameter p, we observe a transition between a regular lattice and a random net-
work as shown in figure 1.2. There exists a sizable region in between these two
extremes for which the model has both short path lenghts and high clustering
coefficient (see Figure 1.3)

Alternative procedures to generate small-world networks based on addition of
edges instead of rewiring have been proposed [87, 88]. The degree distribution
in Watts-Strogatz small world networks is similar to that of a random graph:
it has a pronounced peak at k = k0 and decays exponentially for large k. Thus
the topology of the network is relatively homogeneous, with all nodes having
approximately the same number of links [67].

10
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Figure 1.3: .Characteristic path length l(p) and clustering coefficient C(p) for
the Watts-Strogatz model. Data are normalized by the values l(0) and C(0)
for a regular lattice. Averages over 20 random realizations of the rewiring

process; N = 1000 nodes, and an average degree 〈k〉 = 10. From [63].

Barabasi-Albert scale free networks

As we mentioned above, many real networks display small network properties.
However, empirical results demonstrate that many large networks are also scale-
free, that is, their degree distribution P(k) follows a power law for large k [65, 67].
Furthermore, even for those networks for which P(k) has an exponential tail, the
degree distribution significantly deviates from a Poisson distribution. In this
case, a random graph or small-world model can not reproduce these features.
The origin of the power law in networks was first addressed in a seminal paper
by Barabási and Albert [74], where they showed that the degree distribution of
many real systems are characterized by an uneven distribution of connectedness.
In these networks, the nodes have a random pattern in the connections, some
nodes are highly connected while others have few connections (see fig. 1.4-a).
In this direction, they propose a simple model with two ingredients:
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a b

Figure 1.4: (a) An example of Scale-free networks of Barabási-Albert. (b)
Degree distribution for the BA-network. N = m0 + t = 35; with m0 = m = 1
(circle), m0 = m = 3 (square), m0 = m = 5 (diamond), m0 = m = 7 (triangle).
The slope of the dashed line is γ = 2; 9. Inset: rescaled distribution with
m, P(k)/2m2 for the same parameter values. The slope of the dashed line is

γ = 3 From [67].

• Growth: Starting with a small number N0 of nodes all conected among
them, at every time step, a new node is added with m(≤ N0) edges that link
the new node to m different nodes already present in the system.

• Preferential attachment: When choosing the nodes to which the new node
connects, we assume that the probability P that a new node will be con-
nected to node i depends on the degree ki of node i, such that: Π(ki) = ki∑

j k j
.

After t times steps this procedure results in a network with N = t + N0

and mt +
N0(N0−1)

2 edges. Numerical simulations show that this network
evolves into a scale invariant form with the probability that a node has k
links following a power law P(k) ∼ k−γ, with γ ≈ 3 (see fig. 1.4).

Dynamical properties of this model can be addressed using various analytic
approaches: The continuum theory [89] master-equation approach [90] and the
rate-equation approach [91]. All these approach are studied and summarized in
detail in ref. [67].
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Path Length (L) Clustering (C) Degree Dist. P(k)
Regular Network L ∼ N1/d C ∼ N0 P(k) = δ(k − z)

Random E-R Network L ∼ ln(N) C ∼ N−1 Poisson
Samall-World Network L ∼ ln(N) C ∼ N0 Exponential
B-A Scale-free Network L ∼ ln(N)

ln(ln(N)) C ∼ ln(N)2

N P(k) ∼ k−3

Table 1.1: Complex Networks Characteristics. Here N is the number of
nodes.

To finish this brief introduction about of the paradigmatic models for complex
networks, we summarize in table 1.1 the most important characteristics of these
networks:

1.2.3 Social Networks

A social network is a set of individuals (or organizations) called "nodes," which
are tied (connected) by one or more specific types of interdependency, such as
friendship, kinship, common interest, financial exchange, dislike, sexual rela-
tionships, or relationships of beliefs, knowledge or prestige. In the language of
social network analysis, the individuals are called actors and the connection ties.
Actors and ties can be defined in different ways depending on the questions of
interest.

Social network analysis has a history stretching back at least half century and
has produced many results about of social influences, social groupings, disease
propagation, communication of information. In this way, an intersting review
of the historical development of social networks theory during the 20th century
is presented by Borgatti et al. [92].

The Social Sciences have a long history in the study of real-world networks. Of
particular interest among the early works on the subject are: friend-ship patterns
within small groups [93]; the so-called women study [94], social networks of
factory workers in the late 1930s in Chicago [95]; the mathematical models of
Anatol Rapoport [72], who was one of the first theorists, to stress the importance
of the degree distribution in networks; the studies of friendship networks of
school children [96, 97]. Studies of business communities [98–100] and of patterns
of sexual contacts [101–103].

In the sixties, Milgram published his famous experiment on the small world
phenomena [85, 104]. The experiment proby the distribution of path lengths in
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an acquaintance network by asking participants to pass a letter to one of their
first-name acquaintances in an attempt to get it to an assigned target individual.
Most of the letters in the experiment were lost, but about a quarter reached the
target and passed on average through the hands of only about six people in doing
so. This experiment was the origin of the popular concept of the six degrees of
separation," although that phrase did not appear in Milgram’s writing, being
coined some decades later by Guare [105]. A brief but useful early review of
Milgram’s work and work stemming from it was given by Garfield [106].

In the last years, social networks have become the focus of considerable attention
in the applied mathematics and statistical physiscs community [20, 64, 65, 76,
107]. Onnela et al. [108] studied a mobile telephone network with more than
4 million users. They constructed social links between two users when they
found a reciprocal call between two agents, and the strength of the social tie was
defined as the aggregated duration of calls they shared. It is important to stress
that they could confirm Granovetter’s theory of the strength of weak ties [109].
Strong ties are found within communities, while weak ones tend to connect dif-
ferent clusters. They found that a successive removal of the weak ties results in a
phase transition-like network collapse, while the same removal process starting
by the strong ties has little impact in the overall structure of the network. In
this regared, an interesting analysis of real social data is made by Leskovec and
Horvitz [110] . They presented a study of anonymized data capturing a month
of high-level communication activities within the whole of the Microsoft Mes-
senger instant-messaging system. They examined characteristics and patterns
that emerge from the collective dynamics of large numbers of people, rather than
the actions and characteristics of individuals. This dataset contains summary
properties of 30 billion conversations among 240 million people. From the data,
they construct a communication graph with 180 million nodes and 1.3 billion
undirected edges, creating the largest social network constructed and analyzed
to date. In this work they report on multiple aspects of the dataset finding that
the graph is well-connected and robust to node removal. They confirmed "six
degrees of separation" finding that the average path length among Messenger
users is 6.6. Also, they found that people tend to communicate more with each
other when they have similar age, language, and location, and that cross-gender
conversations are both more frequent and of longer duration than conversations
with the same gender.

Other studies of real social networks deal with social phenomena such as author
collaboration networks [111], sexual contacts [103] or citation networks [112].
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1.3

Local and global interactions

There is a variety of processes occurring in spatiotemporal dynamical systems
where both, spatially local and global interactions contribute in different and
competing ways to the emergence of collective behavior. Some examples in-
clude Turing patterns [113] (with slow and fast diffusion), Ginzburg-Landau
dynamics [5], surface chemical reactions [114], sand dunes (with the motions
of wind and of sand) [115], and pattern formation in some biological systems
[4]. Recently, the collective behavior of dynamical elements subject to both local
and global interactions has been experimentally investigated in arrays of chaotic
electrochemical cells [116].

Local interactions mean that individual elements of the system interact with
each other within a local environment, where the local environment is much
smaller than the size of the system. In other words, each element only interacts
with an immediate neighborhood. On the other hand, in global interactions
each individual element experiences the influence of a common environment
acting on the entire system. Mean field coupling and externally applied fields
are examples of a global interaction.

Systems where the evolution of the state of any element depends only on the
interactions with other elements in the system are called autonomous dynamical
systems. If the elements in a system interact with an external field, the term forced
or driven system is employed. Mean field coupling is an example of a global
interaction in an autonomous system, while an external field gives a global in a
forced system. The phenomena of pattern formation and collective behavior in-
duced by external forcing on spatiotemporal systems, such as chemical reactions
[27, 28] or granular media [29], have also been considered. The analogy between
external forcing and global coupling in spatiotemporal dynamical systems has
recently been explored in the framework of coupled map lattice models [117–
119]. It has been found that, under some circumstances, the collective behavior
of an autonomous spatiotemporal system with local and global interactions is
equivalent to that of a driven spatiotemporal system possessing similar local
couplings as in the autonomous system.

The addition of a global interaction to a locally coupled system is known to be
able to induce phenomena not present in that system, such as chaotic synchro-
nization and new spatial patterns. However, the classification and description
of generic effects produced by external fields or global coupling in a nonequi-
librium system of locally interacting units is still an open general question. The
common wisdom for equilibrium systems is that under a strong enough external
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field, local interactions become negligible, and the system orders following the
external field. For nonequilibrium nonpotential dynamics [120] this is not nec-
essarily the case, and nontrivial effects might arise depending on the dynamical
rules. Moreover, it has shown that the addition of a global interaction in the
autonomous system allows for chaotic synchronization that is not possible in a
large coupled map system possessing only local interactions. [117, 118]

This problem of the competition between local and global interaction is, in par-
ticular, relevant for recent studies of social phenomena in the general framework
of Complex Systems. The aim is to understand how collective behaviors arise in
social systems. Several mathematical models, many of them based on discrete-
time and discrete-space dynamical systems, have been proposed to describe a
variety of phenomena occurring in social dynamics where local and global in-
teractions are present [35–41, 62]. However, a global picture of the results of the
competition between the local interaction among the agents and the interaction
through a global coupling field or an external field is missing.

In a general framework, we consider interaction fields that originate either exter-
nally (driven dynamics) or from the contributions of the elements in the system
through a global or a local function of their internal variables (autonomous
dynamics). In the context of Social Science an external interaction field is inter-
preted as a specific state or opinion being imposed on all elements by controlled
mass media, while the presence of either a local or global interaction function de-
scribes a social system subject to endogenous cultural influences, or information
feedback.

1.4

Co-evolution Dynamics

As we have mentioned above, the dynamics of collective phenomena in a system
of interacting units depends on both the topology of network of interactions
and the interaction rule among connected units. In this context, the effects of
these two ingredients on the emergent phenomena in fixed networks have been
extensively studied [20, 67].

However, many real-world systems observed in physics, chemistry, biology and
Social Sciences can be regarded as dynamical networks of active elements where
the coupling connections and the states of the elements evolve simultaneously.
In this case the links that connect a pair of elements in a system can move
or appear and disappear as the system evolves on many timescales. These
modifications in the network’s topology do not occur independently from the
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nodes’ states but as a feedback effect: the topology determines the evolution of
the nodes’ states, which in its turn determines how the topology can be modified
[16, 17, 33, 55, 62, 66, 121–125]; i.e., the network becomes adaptive.

The feedback between the state variables and the topology of the network can
give rise to a complicated mutual interaction between a time varying network
topology and nodes’s states. Systems that display this feedback loop between
the topology and states are defined as co-evolutionary dynamical systems or
adaptive networks [124].

One of the first works that implement co-evolutionary dynamics were intro-
duced by Zimmerman et al. in the context of game theory [55, 62, 66, 125].
In these papers, the authors have shown that cooperation is favored in the pris-
oner’s dilemma spatial game when agents can change their neighborhood. More
precisely, links between cooperators are naturally maintained; in the case of a
link between a cooperator and defector, the cooperator may want to break the
interaction, but not the defector, so that these reactions are balanced, and for
simplicity only links between defectors are assumed to be rewired, with a cer-
tain probability p at each time step. Defectors are thus effectively competitive,
since they rewire links at random until they find a cooperative neighbor. A rich
phenomenology follows from these dynamical rules, yielding a stationary state
with a larger number of cooperators as soon as p > 0 (see figure 1.5), exploited by
a smaller number of defectors, who have on average a larger payoff. Other inter-
esting result is that a hierarchical interaction network is reached as a stationary
network starting from a random network of interactions (see Figure 1.6). The
network appears structured from a few highly connected elements easily iden-
tified through an imitation network. Such a network has the characteristics of a
small world when a mechanism of local neighbor selection is introduced in the
adaptive dynamics of the network. The hierarchical structure supports a station-
ary, highly cooperative state for general situations in which, for a fixed network,
the system would not settle in a stationary state and in which the cooperation
level would be much smaller. The stability of the network is very sensitive to
changes in the state of the few highly connected nodes: external perturbations
acting on these nodes trigger global avalanches, leading to transient dynamics
in which the network completely reorganizes itself searching for a new, highly
cooperative stationary state.

Others co-evolutionary dynamics in the context of game theory have been con-
sidered in references [126, 127]. These works introduce a model where the
network growth co-evolves together with the dynamics, giving rise to coopera-
tive scale-free networks. The authors find that the organization of cooperation
is radically different from the case where the underlying network is static. They
show that the general belief that hubs can only be occupied by cooperators does

17



CHAPTER 1. INTRODUCTION

Figure 1.5: Average fraction of cooperatorsρc in the steady state as function
of the temptation to defect b, for various rewiring probabilities p : p = 0
(triangles), p = 0.01 (circles), p = 0.1 (squares) and p = 1 (diamonds)

From [62].

not hold. Moreover, these scale-free networks support high levels of cooperation
despite the presence of defector hubs.

In a variety of dynamical models where this type of co-evolution dynamics
has been implemented recentily a transition is often observed from a phase
where all nodes are in the same state forming a single connected network to
a phase where the network is fragmented into disconnected components, each
composed by nodes in a common state. This network fragmentation transition
observed in different co-evolutionary dynamics models is a generic result, and it
is independent of link number conservation, rewiring rule and local interaction
rule among elements of the system [124]. This behavior is related to the difference
in time scales that govern the two dynamics: the state of the nodes and the
network of interactions, which in many cases are controlled by some external
parameter. In this direction, several works have been published. This is the point
of view adopted in references [18, 121, 128]. In this approach, each node carries
an internal variable that is updated through interactions with its neighbors. Each
link between agents decays spontaneously at a certain rate λ, and new links are
created at rate η only between agents whose internal variables are close enough.
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Figure 1.6: Partial view of a sample imitation network in steady state.
From [62].

The topology thus has an impact on the evolution of the agents’ states, which in
turn determines how the topology can be modified. When the state update (rate
ν) is fast with respect to the link’s update process, the competition between link
decay and creation rates leads to a phase transition from a very sparse phase in
which the population is divided into many small clusters, to a denser globally
connected network with large average degree. In this model the links are formed
only if the state of nodes are within a threshold d. This transition, studied trough
a mean-field approach in the limit ν � 1, turns out to be sharp and displays
hysteresis phenomena [121, 128].

References [33, 122, 123] consider the co-evolutionary voter model as the sim-
plest model to study the network fragmentation transition. In this model, the
interaction between two agents that do not share the same state can lead either
to a local consensus via random imitation mechanism (one adopt the state of
the other) with a probability p, or to breaking of the link if the agents fail to
reach an agreement, with probability 1 − p. This external parameter p controls
the internal time scale of both dynamics in the system. In reference [123], this
model is studied starting from a fully connected network and, depending on
the model’s parameters, the final state can be formed of one o more separated
communities of agents sharing the same state. In order to mimic the introduc-
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tion of new social relations, another hypothesis consists of considering that links
do not disappear but are simply rewired by the agent who decides to change
an interaction partner. Holme and Newman [33] uncover an interesting out-of-
equilibrium phase transition in the co-evolution of the network of contacts of
agents interacting through a Voter-like model with q opinions. In this model,
starting from a random network of agents with randomly chosen opinions; an
agents i is selected at each time step; then with probability p, i adopts the opinion
of one randomly selected neighbor, and with propability 1 − p one of the links
connecting i to a neighbor with different state is rewired towards another agent
that shares the state of i. Here, the total number of links is conserved during
the evolution. In this model, when p is smaller than a certain critical value pc,
the system evolves towards a set of small communities of agents sharing the
same opinion. On the other hand, for larger values of p the states of the nodes
in the system change faster than the topology, and consensus is obtained as a
giant connected clusters of agents. In order to understand the nature of these
transitions, a mean field approach of this model for two opinions (q = 2) has been
discussed by Vazquez et al. [122]. In this approach the authors predict the a
transition from active phase, where the links are continuously rewired (evolving
network) and nodes flipp their states, to a frozen phase that correspond to a
fixed network where connected nodes have the same state and no more evolu-
tion is possible. They show that the critical value pc only depends on the average
degree of the network, and the time scale to approach the final state diverges
as |p − pc|

−1 near pc. In this paper, the authors found that for any value of p,
due to fluctuations, a finite-size network eventually reaches an absorbing state
composed by inert links (links between nodes in the same states) only. They
studied the structure of the network in the final state by performing numerical
simulations of the dynamics starting with a degree-regular random graph with
connectivity 〈k〉 = 4 and letting the system evolve until it was frozen. They
observe that the largest component S in the final configuration is very close to
the system size for values of p below a transition point pc, indicating that the
network forms a single component. Above pc the network gets disconnected
into two large components and a set of components of size much smaller than
the system size. This result suggests that the active and frozen phases observed
in infinite large systems correspond to the connected and disconnected phases,
respectively, in finite systems.

While the co-evolution dynamics as a feedback process between node state and
network topology is clearly a key issue for the understanding of many real
systems, its study in the context of complex networks is still at an early stage. This
problem highlights one of the fundamental questions in the network dynamics,
namely whether dynamics controls the structure of a network , or the structure
controls the node’s dynamics.
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1.5

Outline

In this thesis we address different aspects of the general problem of the emer-
gence of consensus versus polarization in social dynamics. We have considered
different mechanisms for the interaction, including two new ingredients that
constitute the core of this thesis, namely the competition between local versus
global interaction and co-evolutionary dynamics. The effects of the competition
between local versus global interactions are studied in the framework of social
learning (i.e., all the interacting elements in a social system should adopt the
state of a signal) using a modification of the threshold model of interaction of
Granovetter [9]. We also study the competition between local and global in-
teraction in the context of the bounded confidence model of opinion formation
introduced by Deffaunt et al. [10], and Axelrod’s model [11]. These models are
characterized by the existence of non-interacting states in their dynamics. The
paradigm of co-evolution is analyzed in detail in the context of Axelrod’s cul-
tural model and also in the case of a model inspired in Granovetter’s threshold
model for local interaction that we introduce in the present work.

The presentation of this thesis is organized as follows: In Chapter 2 we discuss
the concept of social learning. We introduce a threshold model for social learning
subject to the influence of an external field that changes randomly over time. We
perform a mean field analysis and numerical simulations for the model, and
address the effect of the topology of the underlying network of interactions on
the collective dynamics of the system.

In Chapter 3 we first review the bounded confidence model proposed by Deffuant
et al. [10] for opinion formation. We study the collective behavior of this model
subject to an external field and investigate the role of the network topology,
specially the implications of the existence of long range interactions. When these
interaction are present the system is known to be able to order spontaneously in
a state different to the one selected by the field.

In Chapter 4 we consider Axelrod’s model for the dissemination of culture [11].
We present general properties and the most important previous results on the
model. In section 4.2, we study the effects of mass media, modeled as applied
fields, on a social system based on Axelrod’s model. We define different types of
fields: a constant external field, a global field, and a local field. These fields represent
influences of different types of mass media. The effects of these fields are ana-
lyzed in both the order and disorder phases of the system. We also study another
mechanism of interaction with mass media fields, introduced by Shibanai et al.
[129]: indirect mass media influence. It is defined as a global field acting as
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a filter for the influence of the existing network of interactions on each agent.
We also show that the system exhibit the same phenomenon of spontaneous
ordering against the external field found in Deffuant’s model in networks with
long range interactions. Finally, we discuss the connection of our study with the
site percolation problem in the limit in which the elements only interact with an
external field. In section 4.3 we consider the issue of co-evolution dynamics in
the context of Axelrod’s model. We develop a model of cultural differentiation,
where the network structure co-evolves with the cultural interactions between
the agents and study the process of cultural group formation. The of the ef-
fect of cultural drift in Axelrod’s model is re-examine from this co-evolution
perspective.

In Chapter 5 we introduce a second co-evolutionary dynamic model, where
the local interactions follow a majority rule in order to reach consensus. A
fragmentation transition is obtained, similar to the one discussed in connection
with group cultural differentiation in Axelrod’s model

In Chapter 6 we present our conclusions and point to various directions for
future research.
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Chapter 2

Social learning

2.1

Introduction

The emergence of consensus is a paradigm of broad interest, recently addressed
by Statistical Physics. The main question is to establish when the dynamics
of a set of interacting agents that can choose among several opinions converge
to a consensus on one of these opinions or, alternatively, when a state with
several coexisting opinions (polarization) prevails. In the study of the consensus
versus polarization problem, several models have been proposed to account
for different mechanisms of local interaction [9–11, 44–53, 57, 58] (see Section
1.1). Recently, different models have incorporated some form of interaction with
external influences in order to study how the emergence of consensus is affected
by external signals [12–15, 130, 131]. In this Chapter we consider the problem
of social learning from this point of view. Although social learning is a broad
concept [132, 133] we refer to it in this thesis as the problem in which all agents in
a system should adopt (”learning“) the state of external signal as a consequence
of their local interactions and their interaction with that signal. This situation
gives a first example of one of the general question addressed in this thesis,
namely the competition between local-local agent interaction with the global
interactions of the agents with a field.

This problem of social learning has been a focus of much attention in Economics
during the last decades. In a recent work, Golub and Jakson [134] study social
learning in a setting where agents in a network receive independent noise signals
at an initial time (as initial condition), and then they interact with each other.
During the evolution of the system, complete learning occurs due solely to
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interactions between the agents. The agents update their states by repeatedly
taking weighted averages of their neighbors’ opinions. The authors show that
the states of all agents converge to the state of the external signal if and only if
the interactions with the most influential agent vanish as the size of the society
grows.

Partly motivated by the work in reference [134] and along similar lines, our aim
in this Chapter is to revisit the issue of the evolution of social learning but using
simple learning rules for the agents in a system that combine the external signal
recived by each agent at each time step, with the observed behavior of their
neighbors. Succinctly, we postulate any agent recurrently receives a noise signal
that can take two values, and then he chooses to adjust (or not) its behavior after
looking for confirmation of its state in the observed behavior of its neighbors.
The key question is whether or not agents will eventually converge to the state of
the external signal, that is considered as the best action. To address this question,
we introduce a modification of the threshold model proposed by Granovetter
[9].

2.2

The model

The system is composed of a set of N agents located at the nodes of a network. An
agent i possesses ki neighbors. At each time t, a randomly chosen agent chooses
one of two alternative actions, action 1 or action −1. In terms of economic theory,
these actions are not equivalent. One of them, say action 1, always induces
a higher payoff (at least in expected terms), but the agents do not know this.
Instead, we assume that, at each t, they receive a signal about the relative payoff of
the two actions. This signal, which is independent of the agents, is only partially
informative. Specifically, it provides the correct information (i.e., “action 1 is
best") with probability p > 1/2, while it delivers the opposite information with
probability 1 − p. Each agent is assigned a fixed threshold parameter 0 < τ < 1
that determines the fraction of neighbors required to change the agent’s action.

Let us assume that, for all times, the value of the external signal is +1 with
probability p, while this value is −1 with probability 1 − p. As initial conditions,
agents with action 1 are uniformly distributed at random with probability p in
the system, while agents with the action −1 are also uniformly distributed at
random with probability (1 − p) over the system. In other words, we posit that
the probability distribution of state si of each i at the start of the process is the
same probability distribution of the external signal.
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p

τ

Figure 2.1: Phase diagram of the threshold model on a fully connected
network. The colors represents the fraction of agents choosing action 1
(from red, x = 1 to blue, x = 0.5). System size composed by N = 104 agents;

averaged over 100 realizations.

Thus, at each t, an agent i is randomly chosen and receives the external signal.
If the action of the signal is equal to that of the selected agent, nothing happens.
Otherwise, if the action of the signal is different from that of the selected agent,
the agent evaluates the actions of its ki neighbors. Let τi be the fraction of
neighbors disagreeing with i. If τi > τ, node i adopts the action of the signal.

The central question addressed in this chapter can now be precisely formulated:

What is the relationship between p (the quality of the signal) and τ
(the threshold parameter for action change) that underlies the spread
and consolidation of action 1?.

We investigate this question in what follows, for a range of different setups and
relying on a variety of methodologies.
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Figure 2.2: Time evolution of the fraction of agents choosing action 1 (x) in
a typical realization with p = 0.60, and (a) τ = 0.20; (b) τ = 0.50; (c) τ = 0.80.

2.3

Mean-field analysis

Let x(t) ∈ [0, 1] stand for the fraction of agents choosing action 1 at time t. Then
its (continuous-time) dynamics are given by:

ẋ = −(1 − p)x θ(1 − x − τ) + p(1 − x) θ(x − τ) (2.1)

where θ(z) = 1 if z ≥ 0 while θ(z) = 0 if z < 0. In this equation, the first term
accounts for the number of agents initially with the right signal (x) who receive
the wrong signal (with probability 1 − p) and adopt it, as the fraction of agents
also adopting it is larger than the threshold (1 − x > τ). The second accounts
for the opposite process, whereby agents who receive the correct signal (with
probability p) switch to the correct action when the population supports it (x > τ).

We assume that, at time t = 0, each agent receives a signal αi(0) and adopts the
corresponding action ai(0) = αi(0). Hence the initial condition for the dynamics
above is x(0) = p.

It is useful to divide the analysis into two cases:

Case I: τ > 1/2

In this case, it is straightforward to check that

x < 1 − τ =⇒ ẋ = −(1 − p)x < 0
1 − τ < x < τ =⇒ ẋ = 0

x > τ =⇒ ẋ = p(1 − x) > 0

So, it follows that correct social learning occurs iff p > τ.
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Case II: τ < 1/2

In this case, we find:

x < τ =⇒ ẋ = −(1 − p)x < 0
τ < x < 1 − τ =⇒ ẋ = p − x

x > 1 − τ =⇒ ẋ = p(1 − x) > 0

And, therefore, correct social learning occurs iff p > 1 − τ

Combining both cases simply stating that mean-field analysis predicts that cor-
rect social learning, x∞ = x(t→∞) = 1 occurs if, and only if,

τ ∈ (1 − p, p) , (2.2)

that is, the threshold τ is within an intermediate region whose size grows with
the probability p, which determines the informativeness of the signal. However,
there are other two phases: if τ ∈ (0, 1 − p), the system reaches the stationary
solution x∞ = p; while if τ ∈ (p, 1), the system stays (ẋ = 0) in the initial condition
x∞ = x = x(t = 0) = p.

2.4

Numerical simulations

Next, we explore whether the insights obtained from the mean-field model carry
over to setups where agents are genuinely connected through a social network.
First, we consider the benchmark case of global interaction (i.e., a completely
connected network). Then, we turn to the case of local interaction and focus
on three paradigmatic network setups: lattice networks, Erdös-Renyi (Poisson)
networks, and Barabási-Albert (scale-free) networks.

2.4.1 Global interaction

The results obtained on the completely connected network (i.e., the network
where every pair of nodes is linked) are in line with the mean-field theory pre-
sented in the previous section. The essential conclusions can be summarized
through the phase diagram in the (p, τ)-space of parameters depicted in Fig-
ure 2.1. Here we represent the fraction of agents choosing action 1 in the steady
state for each parameter configuration, with the red color standing for a homo-
geneous situation with x = 1 (i.e., all agents choosing action 1) while the blue
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Figure 2.3: The average time of surviving runs τsv for different system
sizes N for p = 0.60 and τ = 0.20. The continuous line corresponds to an

exponential fit of the form τsv ∼ exp(αN).

color codes for situation where x = 0.5 and therefore the two actions are equally
present in the population. Intermediate situations appear as a continuous color
grading between these two polar configurations.

We observe, therefore, that depending on the quality of the external signal p
and the threshold τ, the system reaches configurations where either complete
learning occurs (x = 1) or not (x = p). Indeed, the observed asymptotic behavior
is exactly as predicted by the mean-field analysis and displays the following
three phases:

• Phase I: τ < 1− p. The system reaches a stationary aggregate configuration
where the state of the nodes is continuously changing but the average frac-
tion of those choosing action 1 gravitates around the frequency x = p,with
some fluctuations (see Figure 2.2a). The magnitude of these fluctuations
decreases with system size N.

• Phase II: 1− p < τ < p. The system reaches the absorbing state x = 1 where
everyone adopts action 1. This is a situation where the whole population
eventually learns that the correct choice is action 1 (see Figure 2.2b)..
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• Phase III: τ > p. The system freezes in the initial state, so the fraction
x = p of agents choosing the correct action coincides with the fraction of
those that received the corresponding signal at the start of the process (see
Figure 2.2c).

It is worth noting that, while in Phase I the mean-field theory predicts x = p, any
finite-size system must eventually reach an absorbing homogenous state due to
fluctuations. Thus, to understand the nature of the dynamics, we determine the
average time τsv that the system requires to reach such an absorbing state. As
shown in Figure 2.3, τsv grows exponentially with N. This means that τsv grows
very fast with system size, and thus the coexistence predicted by the mean-field
theory in Phase I can be regarded as a good account of the situation even when
N is just moderately large.

2.4.2 Lattice networks

Assume that all nodes are placed on a two dimensional square-lattice with periodic
boundary conditions and von Newmann neighborhood (k = 8).

The behavior of the system is qualitatively similar to the case of a fully connected
network. Again we find three phases: two of them in which both actions coexist
and their respective frequencies p and 1 − p are given by the signal probabilities
(one phase is frozen, while the other continuously fluctuates), and another one
where the whole population converges to action 1. A global picture of the
situation for the entire range of parameter values is shown in Figure 2.4, with
the black diagonal lines in it defining the boundaries of the full-convergence
region derived from the mean-field theory. Comparing it with Figure 2.1, we
observe that the region in the (p, τ)-space where behavioral convergence obtains
in the lattice network is broader in the lattice network than in the completely
connected network. This indicates that restricted (or local) interaction facilitate
social learning, in the sense of enlarging the range of conditions under which
the behavior of the population converges to action 1.

As a useful complement to the previous discussion, Figure 2.5 illustrates the
evolution of the spatial configuration for a typical simulation of the model in a
lattice network, with different values of τ and p = 0.6. Panels a, b and c show
the configurations of the system for a low value of τ = 1/8 at three different time
steps: t = 0, 1000 and 2000 respectively. The evolution of the system displays
a configuration analogous to the initial condition, both actions coexisting and
evenly spreading throughout the network. This is a situation that leads to
dynamics of the sort encountered in Phase I above. In contrast, Panels g, h and i
correspond to a context with a high τ = 7/8, which induces the same performance
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Figure 2.4: Phase diagram of the threshold model on a two-dimensional
square-lattice with k = 8. The colors represents the fraction of agents
choosing action 1 (from red, x = 1, to blue, x = 0.5). System size N = 104;

average over 100 realizations).

as in Phase III. It is worth emphasizing that although Panels a, b and c display
a similar spatial pattern, they reflect very different dynamics, i.e., in continuous
turnover in the first case, while static (frozen initial conditions) in the second
case. Finally, Panels d, e and f illustrate the dynamics for an intermediate value
of τ = 1/2, which leads to a dynamic behavior of the kind displayed in Phase
II. Specifically, these panels present the spatial configurations observed at three
different time steps: t = 0, 16 and 21. They show that the system evolves, very
quickly, toward a state where all agents converge to action 1.

2.4.3 Erdös-Renyi and scale-free networks

A lattice network is the simplest possible context where local interaction can be
studied. It is, in particular, a regular network where every agent faces exactly
symmetric conditions. It is therefore interesting to explore whether any deviation
from this rigid framework can affect our former conclusions. This we do here by
focusing on two of the canonical models proposed in the network literature: the
classical model of Erdös and Rényi (ER) [73] and the more recent scale-free model
introduced by Barabási and Albert (BA) [74]. Both of them deviate from the
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Figure 2.5: Time evolution of the threshold model on a two-dimensional
lattice with k = 8 for different values of τ and p = 0.60. Panels a, b, c: τ = 1

8
and time steps (a) t = 0, (b) 1000 and (c) 2000. Panels d, e, f : τ = 1

2 and time
steps (d) t = 0, (e) 16 and (f) t3 = 21. Panels g, h, i: τ = 7

8 and time steps
(g) t = 0, (h) 1000 and (i) 2000. Black color represents an agent using action
−1, while white color represents action +1. The system size is N = 104 and

each time step corresponds to N iterations of the dynamics.

regularity displayed by the lattice network, by contemplating a non-degenerate
distribution of node degrees.

The ER random graph is characterized by a parameter µ, which is the connection
probability of agents. It is assumed, specifically, that each possible link is estab-
lished in a stochastically independent manner with probability µ. Consequently,
for any given node, its degree distribution P ≡ {P(k)} determining the probability
that its degree is k is Binomial, i.e., P(k) =

(N−1
k

)
µk(1 − µ)N−1−k, with an expected

degree given by 〈k〉 = µ(N − 1). In the simulations reported below, we have
focused on networks with 〈k〉 = 8 and N = 104.

On the other hand, to build a BA network, we follow the procedure described
in Ref. [74]. At each time step, a new node is added to the network, establishing
m links to existing nodes. The newcomer selects its neighbors randomly, the
probability of attaching to each of the existing modes being proportional to
the latters’ degree k. It is well known that this procedure generates networks
whose degree distribution follows a power law of the for P(k) ' 2m2k−γ, with
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Figure 2.6: Phase diagram of the threshold model in a (Top) ER network
and in a (Bottom) scale-free network with average degree 〈k〉 = 8. The
colors represents the fraction of agents choosing action 1 (from red, x = 1,

to blue x = 0.5). System size N = 104, average over 100 realizations.

γ ≈ 3. An interesting contrast between the Binomial distribution obtained in ER
networks and the present one is that while the former associates an exponentially
decaying probability to high-degree nodes, the latter displays “fat tails", i.e.,
associates significant probability to high-degree nodes. For our simulations, we
have constructed BA networks using the aforementioned procedure with value
of m = 4, leading to an average degree 〈k〉 = 2m = 8.

The results are illustrated in Figure 2.6. For these two alternative network
topologies, the system displays qualitatively the same behavior observed for
lattice network. That is, there are three phases corresponding to three distinct
kinds of dynamic performance: convergence to action 1, frozen behavior, per-
sistent turnover. In contrast with the predictions of the mean-field model, the
convergence region (which we labeled as Phase II) is larger than predicted by
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the mean field theory. As mentioned above, this suggests that local (i.e. limited)
connectivity facilitates social learning.

Why does limited connectivity extend the learning region? To see why this
happens, let us first try to understand its effect on the likelihood that, at some
random initial conditions, any given node faces a set of neighbors who favors
a change of actions. This, of course, is just equal to the probability that the
fraction of neighbors who display opposite behavior is higher than τ, the required
threshold for change. Thus, more generally, let us focus on the conditional
distributions φ+(ν) and φ−(ν) that specify, for an agent displaying actions 1
and −1 respectively, the probability of finding a fraction ν of neighbors who
adopt actions −1 and 1, respectively. Of course, these distributions must depend
on the degree distribution of the network and, in particular, on its average
degree. Intuitively, when the average degree of the network is large relative to
population size those distributions must be highly concentrated around p and
1 − p respectively, while in the opposite case they will tend to be quite disperse.

Now, let us see what are the implications of each case. In the first one, when
the distributions φ+ and φ− are highly concentrated, the situation is essentially
as captured by the mean-field approach, and thus the induced dynamics must
be well described by this approach (in particular, as it concerns the size of
the convergence region). In contrast, when those distributions are disperse, a
significant deviation from the mean-field theory is introduced. In fact, the nature
of this deviation is different depending on the level of the threshold τ. If it is
low, and thus action turnover high, it mitigates such turnover by increasing
the probability that the fraction of neighbors with opposite behavior lie below τ.
Instead, if τ is high and action change is difficult, it renders it easier by increasing
the probability that the fraction of neighbors with opposite behavior lies above
τ. Thus, in both cases it works against the forces that hamper social learning and
thus improves the chances that it occurs.

The above considerations are illustrated in Figure 2.7 for a lattice network. There
we plot the distributionsφ+(ν) for different levels of connectivity k and parameter
values p = 0.60 and τ = 0.30 (recall that these values correspond to Phase I in
a fully connected network). Consider first the situation that arises for values of
k = 8, 24, 56 – i.e. low connectivity relative to the size of the system. Then we
find that, among the nodes that are adopting action 1, φ+ attributes a significant
probability mass to those agents whose fraction of neighbors ν choosing action
−1 is below the threshold required to change (as marked by the vertical dashed
line). Such nodes, therefore, will not change their action. And, as explained, this
has the beneficial effect of limiting the extent of action turnover as compared
with the mean-field (or complete-network) setup. On the other hand, the inset
of Figure 2.7 shows that, among the nodes that are adopting action -1, the
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Figure 2.7: (Top row) The initial probability density φ+ that a node using
action 1 has a fraction of neighbor nodes with action −1, computed on a
two-dimensional lattice for k = 8, 24, 56, 828 and a completely connected
network. System size is N = 104, p = 0.60, and τ = 0.30. Inset: φ+ (black,
continuous) and φ− (red, dotted)k = 8. (Bottom row) Time evolution of the
probability densities φ+ (black) and φ− (red) in a two-dimensional lattice
with k = 56 for (a) t = 0, (b) 5 and (c) 10. The dashed line indicates the

threshold τ = 0.3.

distributionφ− associates a large probability mass to those agents whose fraction
of neighbors ν choosing the opposite action is above τ. This ensures that there is
a large enough flow from action −1 to action 1. In conjunction, the former two
considerations lead to a situation that allows, first, for some limited nucleation
around action 1 to take place, followed by the ensuing spread of this action across
the whole system.

Let us now contrast the previous considerations with those arising when k is
large – in particular, focus on the case k = 828 depicted in Figure 2.7. In this
case, the corresponding distribution φ+ is highly concentrated around ν = p,
essentially all its probability mass associated to values that lie above τ = 0.30.
This means that the induced dynamics must be similar to that resulting from the
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mean-field or complete-network setups, with too-fast turnover in action choice
preventing the attainment of social learning. Clearly, social learning would also
fail to occur for such high value of k if the threshold τ were large. In this case,
however, the problem would be that the highly concentrated distributions φ+

and φ− would have most of their probability mass lying below the threshold.
This, in turn, would lead to the freezing of the initial conditions, again just as
found for the mean-field or complete-network setups.

2.5

Summary

In this chapter we have studied a simple threshold dynamics for social learning,
in order to understand the relationship that exist between the quality of the signal
and the threshold for action change. Agents recurrently receive an external signal
on the relative merits of two actions. But they switch to the action supported
to the signal only if they find support for it among their peers - specifically, the
fraction of these choosing that action must lie above a certain threshold.

Depending on the quality of the signal and the level of the threshold, social
learning of the correct action occurs. This requires that the threshold be neither
too low nor too high. For, in the first case, the social dynamics enters into
a process of continuous action turnover, while in the second, it freezes at the
configuration shaped at the beginning of the process.

Finally, we have also analyzed the model via numerical simulations on different
complex networks. We found that limited connectivity due the structure of the
network interaction enhances social learning. This occurs because genuinely
local interaction favors a process of spatial nucleation and consolidation around
the correct action, which can then spread to the whole population.
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Chapter 3

Bounded confidence model:
Deffuant’s model

3.1

Introduction

The study of opinion formation includes a wide class of different models differing
in heuristics, formalization as well as in the phenomena of interest. One generally
considers a set of agents where each holds an opinion from a certain opinion
space. An agent may change her opinion depending on certain dynamical rules.
In the physics literature discrete opinion spaces (classically binary opinions)[46,
52, 68, 135] have dominated research due to their analogy with spin systems. In
this framework, several models about opinion formation, are based on binary
opinions. Social actors update their opinion as a result of social influence, often
according to some version of a majority rule. Sometimes these models have
been extended to more than two options, which are ordered and thus get closer
to continuous opinion dynamics. [136, 137]. One issue of interest concerns the
importance of the binary assumption:

what would happen if opinion were a continuous variable such as the worthiness of a
choice (a utility in economics), or some belief about the adjustment of a control parameter?

The rationale for binary versus continuous opinions might be related to the
kind of information used by agents to validate their own choice. The bounded
confidence model of continuous opinion dynamics proposed by Deffuant et al.
[10], provides a scenario to answer this question. In this model, the agents can
influence each other’s opinion when they are already close enough. A tolerance
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threshold d is defined, such that agents with difference in opinion larger than the
threshold can not interact. Several variants of the model have been proposed
in [10, 48, 138]. In these models, the only restriction on the interaction is the
threshold condition and interactions among any pair of agents may occur. A
related model of bounded confidence is the Hegselmann-Kraus model [48]. In
this model, the interaction is not between pair of agents as in Deffuant’s model.
On the contrary, an agent i, with opinion xi ∈ [0, 1] interacts with all agents
whose opinion lie in the range [xi − d, xi + d]. All the agents in this interaction
range adopt a common opinion. Qualitative results are the same in both models
[139].

The model propose by Deffuant et al. considers a population of N agents in an
interaction network where the state of agents or node i is given at time t by a real
number Ct

i ∈ [0, 1] that respresents the opinion of an individual. The opinion is
the individual’s position on a given subject. This picture could apply to many
different fields such as politics, marketing, religion, etc.

The dynamics is given by the following rules:

We start from a uniform, random initial distribution of the states of the particles.
At each time step, a particle i is randomly chosen, then a nearest neighbor j in
the network is selected at random:

If their difference in opinion is smaller than the threshold d, their opinion tends
to converge. Otherwise, their opinion remains unaltered. Specifically:

1. If |Ct
i − Ct

j|≤ d then

Ct+1
i = Ct

i + µ
[
Ct

j − Ct
i

]
;

Ct+1
j = Ct

j + µ
[
Ct

i − Ct
j

]
;

2. otherwise, if |Ct
i − Ct

j| > d then

Ct+1
i = Ct

i ;

Ct+1
j = Ct

j;

where µ is the convergence parameter whose value may range from 0 to 1.
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Figure 3.1: Time chart of opinions. Left: d = 0.07, µ = 0.5 and N = 2000.
Right: d = 0.5, µ = 0.5 and N = 2000. One time unit corresponds to

sampling a pair of agents. (From [10])

3.2

Summary of previous results

First we consider a basic model in which the threshold d is taken as constant
in time and across the whole population and each individual interacts with
the rest of the agents (all to all interactions). For this case, the main result is
that, depending on the value d, the process may lead to a consensus among the
individuals or to a fragmentation in Nc clusters of opinions. In other words,
numerical simulations and different theoretical analysis show that there is a
critical threshold dc, where a nonequilibrium transition occurs between a state
of consensus, and a disordered state, where many opinions coexist [10, 140],
as shown in figure 3.1. In this Figure the time evolution of the opinions is
plotted, starting from uniform distribution opinions for two values of d. The
first one is for d < dc and the second one is for d > dc. For low threshold values,
several clusters can be observed (see Fig 3.1-left). Consensus is not achieved
when threshold is below a critical values (d < dc). For large threshold values
(d = 0.3 > dc) only one cluster is observed for long times at the average initial
opinion (see Fig 3.1-right).

In ref [141], D. Nau reports that the evolution of opinions may be mathematically
predicted in the limiting case of small values of d. Within this framework, a
master equation for the distribution P(x, t), where x are the opinios, i.e. the
fraction of agents that have opinions in the range [x, x + dx] can be derived. This
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Figure 3.2: The relaxation time tc as a function N
2d ln(2dN). Symbols refer to

numerical simulations carried out for different values of d, see the legend.
As predicted by the proposed theory, a very good linear correlation is
observed. The numerical relaxation time is measured by performing the
histogram of the opinion distribution at every time step. The convergence
is assumed to be reached when all the bins are zero but one. The slope of

the continuous curve depends on the chosen binning size.(From [142])

allows to implement a very efficient numerical integration scheme [138]. It has
been found that the number of clusters is given by Nc ≈ Integer( 1

2d )[10, 138]. This
result agrees with the number of clusters observed in Figure 3.1.

Moreover, it has been shown that the parameter µ only influences the relaxation
time, i.e., time required for the system to reach the equilibrium, and that the
critical value of d is independent of µ [10, 139]. In ref. [142] Carletti et al.
provide an analytical estimate of the characteristic relaxation time, hereafter
termed tc, for µ = 1/2 and different values of d:

tc ≈
N
2d

ln(2dN)
ln(2)

. (3.1)
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d

Figure 3.3: Bifurcation diagram for the bounded confidence model (Def-
fuant’s model [10])(From [139])

The functional dependence on N and d is in agreement with the results of nu-
merical simulations, as clearly displayed in figure 3.2.

In ref. [139], Lorenz studied the basic bifurcation diagram (BD) ∗ that charac-
terizes the dynamic of the system. This BD, shows the location of clusters in
the opinion space versus the values of the bound of confidence d. Here, it is
easy to determine the attractive cluster patterns for each value of d and observe
the transition where a single cluster appears at a critical value of d. Figure 3.3
shows the BD with uniform initial density in the opinion space [0, 1] In this
figure we observe that for d > 0.5 only one big central cluster evolves. As d
decreases bifurcations and nucleations of clusters occur: First, the nucleation of
two minor extremal clusters, then the bifurcation of the central cluster into two
major clusters, and third the rebirth of the central cluster. For details see refs.
[143] and [138]. This bifurcation pattern is then repeated in shorter d − intervals.
The length of these intervals seems to scale with 1/d. This can be better seen
in the bifurcation diagram of ref. [138], where numerical analisys indicates that
the bifurcation pattern seems to repeat itself on intervals that converge towards
a length of about 2.155. This result resembles the rough 1/2d-rule reported in

∗For computational details see ref. [143]
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S

d

Figure 3.4: S vs. d (From [139])

refs. [10] and [140] from agent-based simulation, which says that the number of
major clusters after cluster formation is roughly determined as the integer part
of 1/2d.

In references [10, 138–140, 142, 144] the average size of the largest domain S
is introduced as order parameter to characterize the ordering properties of the
system. Figure 3.4 shows that for d > dc, S = 1 indicating that the system will
only get a cluster, while for d < dc several groups coexist (S decreases). Note
that when d decreases, S decreases linearly. This behavior is associated with the
multiple bifurcation of the big cluster when d decreases [143].

When heterogeneity of thresholds is introduced (population where each indi-
vidual has a different thresholds di), some new features appear, as reported in
ref. [10]. To simplify the analisys, Deffuant et al. consider a population with two
values of threshold confidence d1 and d2. They studied a set of 192 agents with
d1 = 0.2 (closed-minded agents) and eight agents with d2 = 0.4 (open-minded
agents). They found that in the short run, the cluster pattern of the closed-minded
(two big clusters) dominated while in the long run, one of the open-minded (con-
sensus) takes over. This behavior is generic for heterogeneous thresholds. In
this case, the number of clusters also obeys a generalized Nc ≈ 1/2d rule: 1) on
the long run clustering depends on the higher threshold. 2) on the short run
clustering depends on the lower threshold. 3) the transition time between the
two dynamics is proportional to the total number of agents and to the ratio of
narrow minded to open minded agents. Considering situations of two groups
of agents with different confidence level (see ref. [143]) it has been shown that
consensus can be achieved by mixing closed- and open-minded agents even if
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both bounds of confidence are far below the critical value of the consensus tran-
sition (e.g., d1 = 0.11 and d2 = 0.22). But on the other hand drifting of clusters
of open-minded towards clusters of closed-minded agents becomes a generic
feature of dynamics which can amplify some asymmetric disturbances in the
initial profile. So in the end a final consensual cluster may lie very far from the
initial average opinion.

The influence of noise has been considered in ref. [145] . Here the free will
is introduced in the form of noisy perturbations: individuals are given the
opportunity to change their opinion, with a given probability, to a randomly
selected opinion inside the whole opinion space. In this paper, the main result
is that the noise is able to induce an order-disorder transition. In the disordered
state the opinion distribution tends to be uniform, while for the ordered state
a set of well defined opinion clusters are formed, although with some opinion
spread inside them. The master equation and approximate conditions for the
transition between opinion clusters and the disordered state are derived in this
work.

Deffuant’s model has been studied on different static networks. Ref. [146]
considers networks with scale-free distribution a la Barabasi-Albert, random
graphs a la Erdos-Reenyi, and square lattices. Evidence is given in [146], that
for large enough networks, consensus is always reached for d > 0.5, which was
later proven in ref. [13, 145, 147] where it is concluded that restricting influence
by a netwok topology does not drastically change the behavior of these model
as compared to the case of all to all interaction.

In ref. [148] the model was again considered on a Barabasi-Albert graph, finding
that the number of final clusters scales with the number of agents and not only
with 1/d. The extremism version of the model proposed in ref. [149] has been
considered on small world graphs a la Watts-Strogatz. In this paper, they found
that a drift to one extreme only appears beyond a critical level of random rewiring
of the regular network.

3.3

Bounded confidence model with external field

In this chapter we study the effects of external influences on social dynamics
for opinion formation in the context of Deffuant’s model. The main question
addressed here is the competition between collective social self-organization
versus external mass-media or a propaganda message. In this case, we model
mass media as an interaction field applied to the system that originates externally.
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M
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Figure 3.5: Diagram representing the external mass-media influence.

We consider that both, agent-agent interactions and agent-field interactions,
depend on the distance between the respective states based on the dynamics of
bounded confidence [10]. Collective social self-organization arises from the local
interaction among agents, while mass media or the external message constitutes
a global interaction.

From the point of view of common wisdom on physical interactions, our results
in this model challenge the expected effect of an external: We find collective
ordering in a state different from the one imposed by an external forcing field.
The external field might break the symmetry in a given direction, but the system
orders, breaking the symmetry in a different direction.

A subsidiary question addressed in this section is the dependence of this phe-
nomenon of self-organization in a state different of the one selected by the ex-
ternal field on the topology of the network of interactions. We show that the
phenomenon is not found for particles interacting with its nearest neighbors
in a regular lattice, but occurs in a globally coupled system, in a small-world
network, and in random and scale-free networks: it emerges as long range links
in the network are introduced [63].

To study this problem we consider a population of N particles in an interaction
network where the state of particle i is given at time t by a real number Ct

i ∈ [0, 1].
We introduce an external field M ∈ [0, 1] that can interact with any of the particles
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in the system. The strength of the field is described by a parameter B ∈ [0, 1] that
measures the probability for the particle-field interactions.

We start from a uniform, random initial distribution of the states of the particles.
We adopt the dynamical model discussed in 3.1 as follows:

At each time step, a particle i is randomly chosen;

1. with probability B, particle i interacts with the field M: if |Ct
i −M| < d, then

Ct+1
i =

1
2

(M + Ct
i) ; (3.2)

if |Ct
i −M| ≥ d the state of particle i does not change.

2. otherwise, a nearest neighbor j in the network is selected at random: if
|Ct

i − Ct
j| < d then:

Ct+1
i = Ct+1

j =
1
2

(Ct
j + Ct

i) ; (3.3)

if |Ct
i − Ct

j| ≥ d the state of particle i does not change.

The parameter d defines a threshold distance for interaction, while the strength of
the field, represented by the parameter B ∈ [0, 1] measures the relative intensity of
the mass media message with respect to the local interactions, or the probability
that this message has to attract the attention of the agents in the system. This
parameter B represents enhancing factors of the transmitted message that can
be varied externally, such as its amplitude, frequency, attractiveness, etc. It is
assumed that B is uniform, i.e., the mass media message reaches all the agents
with the same intensity as a uniform field as illustrated in Fig. 3.5. At any given
time, we assume that any agent can either interact with the mass media message
or with other agents in the system. Thus each agent in the network possesses
a probability B of interacting with the message and a probability (1 − B) of
interacting with its neighbors. In our simulations we fix M = 1. The parameter
µ defined in 3.1 is fixed as µ = 1

2 .

3.3.1 Long range interaction networks

First we consider a fully connected network, and then we will extend the analysis
for other kinds of interaction networks. As indicated in previous section, in
the absence of an external field, B = 0, the system spontaneously reaches a
homogeneous state Ci = 0.5, ∀i, for values d < dc ≈ 0.23; while for d > dc several
domains are formed [10].
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Figure 3.6: (a) S versus 1− d in the continuous model on a fully connected
network for B = 0 (stars); B = 0.5 (diamonds); B = 0.8 (squares); B = 1
(circles). (b) σ versus d for B = 0.8 (circles) and B = 0.1 (squares). The
values of 1 − dc ' 0.77 and 1 − d∗ ' 0.5 (for B = 0.8). System size N = 2500.

Each data point is an average over 100 independent realizations.

To characterize the ordering properties of the system, we consider as order
parameters the normalize average size of the largest domain S, and the largest
domain displaying the state of the field SM in the system. A domain is deffined
as a set of connected agents with the same state.

For B = 1 agents only interact with the field. In this case the value of M is imposed
on the largest domain whose normalized size increases with the threshold, i.e.
S = SM = d. For intermediate values of B, the spontaneous order emerging in the
system for values of 1 − d < 1 − dc

∗ due to the interactions between the particles
competes with the order being induced by the field. The quantity S exhibits a
sharp local minimum at a value 1 − d = 1 − d∗ < 1 − dc, as shown in Fig. 3.6(a).
To understand the nature of this minimum, we plot in Fig. 3.6(b) the quantity
σ = S − SM, as a function of 1 − d, for different values of B. When the largest
domain corresponds to the state of external field, S = SM, then σ = 0, while when
the largest domain no longer corresponds to the state of the external field M,
S > SM, and σ > 0. For 1 − d < 1 − d∗ the largest domain is dominated by M,
that is S = SM, and thus σ = 0 (see Fig. 3.6b). At 1 − d = 1 − d∗, the state of
the field no longer corresponds to the largest domain, i.e., S > SM, and σ starts
to increase as 1 − d increases. For a small value of B, the quantity σ reaches a
maximum close to one, indicating that the spontaneously formed largest domain
almost occupies the entire system, i.e., the field is too weak to compete with the
attracting homogeneous state Ci = 0.5, ∀i. However, when B is increased, the

∗We use 1 − d as the control parameter to compare the results of this model with the Axelrod’s
model that we will introduce in the next chapter.
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Figure 3.7: Phase space on the plane (1−d,B) on a fully connected network
subject to an external field. Regions where the phases I, II, and III occur are
indicated. The dashed line in phase II separates two regions: one where
the maximum of σ→ 1 (below this line), and another where σ ≤ 0.5 (above

this line).

maximum of σ is about 0.5, i.e., the attraction of the field M = 1 increases and
the size of the domain with a state equal to M is not negligible in relation to the
size of the largest domain.

The value of d∗ depends on B and it can be estimated for B → 1. In this case,
SM ≈ d and S ≈ 1 − d; thus the condition S = SM yields d∗ ≈ 0.5 when B → 1.
The quantity σ reaches a maximum at the value 1 − d ≈ 1 − dc, above which
disorder increases in the system, and both S and SM decrease. As a consequence,
σ decreases for 1 − d > 1 − dc.

The collective behavior of the model on a fully connected network subject to an
external field can be characterize by three phases

• Phase I: an ordered phase with a state of opinion fixed by the external field
for 1 − d < 1 − d∗, for which σ = 0 and S = SM ' 1;

47



CHAPTER 3. BOUNDED CONFIDENCE MODEL

0 0.2 0.4 0.6 0.8 1
1-d

0

0.2

0.4

0.6

0.8

1

S

0 0.2 0.4 0.6 0.8 1
1-d

0

0.2

0.4

0.6

0.8

1

B I II III

0 0.2 0.4 0.6 0.8 1
1-d

0

0.2

0.4

0.6

0.8

1

B

0 0.2 0.4 0.6 0.8 1
1-d

0

0.2

0.4

0.6

0.8

1

S

0 0.2 0.4 0.6 0.8 1
1-d

0

0.2

0.4

0.6

0.8

1

B

0 0.2 0.4 0.6 0.8 1
1-d

0

0.2

0.4

0.6

0.8

1

B I II III

1−d*

1−d*

1−d

1−dc

c

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Top panels: Random networks with 〈k〉 = 8, N = 2500. (a) S
versus 1 − d for different values of the parameter B: B = 0 (stars); B = 0.5
(diamonds); B = 0.8 (squares); B = 1 (circles). (b) σ versus 1 − d for
B = 0.8 (circles) and B = 0.1 (squares). (c) Parameter space on the plane
(1 − d,B). Bottom panels: Scale-free networks with 〈k〉 = 8, N = 2500. (d)
S versus 1 − d for different values of the parameter B: B = 0 (stars); B = 0.5
(diamonds); B = 0.8 (squares); B = 1 (circles). (e) σ versus 1 − d for B = 0.8
(circles) and B = 0.1 (squares). (f) Parameter space on the plane (1 − d,B).
For all simulations, each data point is an average over 100 independent

realizations of the underlying network and the dynamics.

• Phase II: an ordered phase for 1 − q∗ < 1 − d < 1 − dc, for which σ increases
and S > SM. In this phase local interactions dominate and the system
reaches a consensus in an opinion different of the one gives the external
field.

• Phase III: a disordered phase for 1 − d > 1 − dc, for which σ decreases and
both S and SM decrease.

Figure 3.7 shows the phase diagram on the plane (1− d,B) subject to an external
field. The continuous curve separating phases I and II gives the dependence
d∗(B).

The emergence of an ordered phase with a state orthogonal to that of an applied
field (Phase II) also occurs in complex networks with long range interactions. We
have found these three phases on random and scale-free networks [73, 74, 89].
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Figure 3.9: S versus 1 − d on a small world network with 〈k〉 = 4, N = 104,
and B = 0.5, for different values of the probability p: p = 0 (empty circles),
p = 0.005 (squares), p = 0.05 (diamonds), p = 0.1 (triangles), p = 1 (solid
circles). Each data point is an average over 100 independent realizations

of the underlying network and the dynamics.

Figure 3.8 shows the order parameter S as a function of 1 − d for several values
of B. Again, we observe that the quantity S exhibits a local minimum at a value
1 − d = 1 − d∗ < 1 − dc. The ordered phase with a state orthogonal to that of the
field occurs for 1 − d∗ < 1 − d < 1 − dc, for which S > SM.

3.3.2 Short and long range interactions

To analyze the role of the connectivity on the emergence of an ordered phase
different to the one forced by the external field, we consider a small-world
network [86], where the rewiring probability can be varied in order to introduce
long-range interactions between the particles. We start from a two-dimensional
lattice with nearest-neighbor interactions (degree k = 4). Each link is rewired at
random with probability p. The value p = 0 corresponds to a two-dimensional
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regular network with nearest neighbors interaction, while p = 1 corresponds to
a random network with average degree 〈k〉 = 4.

Figure 3.9 shows the order parameter S as a function of 1−d with an external field
defined on this network for different values of the rewiring probability p and for
a fixed value of the intensity of the field B. When the long-range interactions
between particles are not present, i.e. p = 0, the external field is able to impose
its state to the entire system for d < 1 − dc. Spontaneous ordering different from
the state of the external field appears as the probability of having long-range
interactions increases. The size of this alternative largest domain increases with
p, but it does not grow enough to cover the entire system (see inset in Fig. 3.9).

3.4

Conclusions

In this chapter, we have addressed the question of the competition between
collective self organization and external forcing in the Deffuant’s model with
external field. In this systems whose dynamics is based on a bounded interaction,
the presence of long-range connections allows the emergence of spontaneous
ordering in a state different of the one selected by an external field. Studying
this model on fully connected, random and scale-free networks, we have found
three phases depending on parameter values: two ordered phases, one having
the opinion imposed by the external field, and the other one consisting of a large
domain on a opinion different to the one selected by the field; and a disordered
phase. We have traced back the existence of a self-organized ordered phase in a
state different to the external forcing to the presence of long range connections in
the underlying networks considered. This claim is substantiated by considering
the model in a small world network: We find that such phase does not exist in a
regular network and emerges as long range interactions are included in a small
world network.

We will show in section 4.2.3 that the same phenomena occurs in the Axelrod
model of dissemination of culture with an external field. These two models share
of the existence of non-interacting state in their dynamics Our results suggest
that the emergence of an ordered phase with a state different from that of an
external field should arise in other nonequilibrium systems provided they allow
for non-interacting states. Potential candidates to show this phenomena are
biological systems able to display clustering, aggregation and migration, whose
dynamics usually possess a bound condition for interaction. This is the case for
models including the presence of motile elements (such as swarms, fish schools,
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bird flocks, and bacteria colony growth) and non-local interactions in population
dynamics.
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Chapter 4

Axelrod’s model for the dissem-
ination of culture

4.1

Introduction

In seminal paper, Robert Axelrod [150] addressed the question:

“ if people tend to become more alike in their beliefs, attitudes, and behavior when they
interact, why do not all differences eventually disappear ? ”

To investigate this problem, Axelrod introduced an agent-based model to explore
mechanisms of competition between the tendency towards globalization and the
persistence of cultural diversity. These mechanisms seek to sketch how cultures
are disseminated in the society. Culture in this model is defined as a set of
individual attributes subject to social influence. Thus, the model assumes that
an individual’s culture can be described in terms of his or her attributes such as
language, religion, technology, style of dress and so on. This definition describes
a culture as a list of features or culture dimension. For each feature there is a
set of traits, which are the alternative values the feature may have. For example,
one feature of culture could be the religious belief, and the traits represent
different choices for this feature, such as Buddhism, Atheism or Christianism. It
is important to indicate that the emphasis of this work is not on the content of a
specific culture, but rather on the way in which a culture is likely to emerge and
spread.
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Within this framework, the local interaction between neighboring agents follows
two basic social principles that are believed to be fundamental in the understand-
ing of the dynamics of cultural assimilation (and diversity): social influence and
homophily. The first is the tendency of individuals to be more similar when
they interact. The second is the tendency of likes to attract each other, so that
they interact more frequently. In other words, these principles mean that the
probability that two individuals interact is proportional to the cultural overlap
between the agents, that is, to the amount of cultural similarities (number of
features) that they share, and the similarity is enhanced when interaction occurs.
With these two ingredients Axelrod show that the system can freeze in a multi-
cultural state with coexisting spatial domains with different cultures, illustrating
how a simple mechanism of local convergence can lead to global polarization.

The Axelrod model features a set of N agents located at the nodes of an interaction
network. The state of an agent i is given by an F-component vector C f

i ( f =

1, 2, . . . ,F). In this model, the F components of vector C f
i correspond to the

culture features (language, religion, etc.) describing the F-dimensional culture
of agent i. Each component of the cultural vector of i can take any of the q
values in the set {0, 1, . . . , q− 1} (called cultural traits in Axelrod’s model). As an
initial condition, each agent i is randomly and independently assigned on of the
qF possible state vectors with uniform probability. In the model, all qF possible
states are equivalent.

Starting from a random initial condintion, the discrete-time dynamics of the
system is defined by iterating the following steps:

1. Select at random a pair of sites of the network connected by a bond (i, j).

2. Calculate the overlap (number of shared features) d(i, j) =
∑F

f=1 δC f
i ,C

f
j
.

3. If 0 < d(i, j) < F, the bond is said to be active and sites i and j interact with
probability d(i, j)/F. In case of interaction, choose g randomly such that
Cg

i , Cg
j and set Cg

i = Cg
j .

After N such update events, time is increased by 1.

From the view point of statistical physics, Axelrod’s model is a simple and
natural vector generalization of models of opinion dynamics that gives rise to a
very rich and nontrivial phenomenology. In the next section, we will summarize
the most important results of this model.
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Figure 4.1: Color code for F = 3 and q = 2.

Summary of previous results

In the last years, systematic studies of Axelrod’s model have identified a global-
ization -polarization transition depending on the value of q for a fixed F [41, 151–
153]. These works have shown that the system reaches a stationary configura-
tion in any finite network, where for any pair of neighbors i and j, d(i, j) = 0
or d(i, j) = F. Homogeneous or ordered states (globalization) correspond to
d(i, j) = F, ∀i, j. This means that all the sites have the same value of cultural
trait for each feature. Obviously there are qF possible configurations of this
state. Inhomogeneous or disordered states (global polarization) consists on the
coexistence of several domains, where a domain is defined as a set of connected
nodes with the same cultural vector state. The number of domains is taken as a
measure of cultural diversity.

For the visualization of the state of the system, each cultural state is assigned a
color (see figure 4.1). Thus we can identify a cultural domain with a given color.
Figure 4.2, shows an example of a typical simulation of Axelrod’s model in a
two-dimensional network (see reference [154]). For a small value of q (q = 5)
the system reaches a globalization state (see top right of figure 4.2) where all
nodes form a single domain (blue color), indicating that all individuals have
the same cultural state, while for q = 60, the system freezes in an absorbing
multicultural state where different cultural domains coexist, illustrating how the
local convergence can induce a global polarization.

In order to characterize the ordering properties of this system, the normalized
average size of the largest domain 〈Smax〉/N formed in the system is defined as
order parameter. For any finite network the dynamics displays a critical point qc
that separates two phases: an ordered phase or monocultural state (〈Smax〉/N ' 1)
for q < qc, and an disordered phase or multicultural state (〈Smax〉/N � 1) for q > qc
[12, 14, 151–153, 155–157].
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Figure 4.2: State of the system in t = 0 (left) and t = ∞ (right), F = 10, q = 5
(top), F = 10, q = 60 (bottom). System size N = 1024 [154].

In a regular two-dimensional lattice, the kind of the transition depends on the
value of F [14, 151, 153, 156]. When F > 2 the transition is first order, with the
size of the largest domain having a finite discontinuity as shown in figure 4.3.
Here we identify a threshold q = qc ≈ 55 for order-disorder transition. When
q < qc the order parameter 〈Smax〉/N ' 1 (see top right of figure 4.2), while for
q > qc, 〈Smax〉/N '� 1 (see bottom right of figure 4.2). This figure also shows
that the transition at the critical point (q = qc) becomes sharper as the system size
increases, so that in the thermodynamic limit the transition is well defined (see
figure 4.3). However, the situation for F = 2 is different. In this case the order
parameter 〈Smax〉/N vanishes continuously as q −→ qc ( see reference [151]). In
one-dimension, the nature of the transition changes, becoming a second order
transition for all values of F [153].

Analytical approaches have also been considered for this model. A mean field
approach of this model has been discussed by Castellano et al. [151] and F.
Vazquez & Redner [155]. This approach consists in writing down rate equations
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Figure 4.3: Average size of the largest cultural domain 〈Smax〉/N vs q for
F = 10 features and system sizes N = 900 (circles), N = 1600 (squares) and
N = 2500 (diamonds). The transition at the critical point qc ' 55 becomes

sharper as the system size increases.

for the densities Pm of bonds of type m. These are bonds between interaction
partners that have m common features. The natural order parameter in this case
is the density of active links na =

∑F−1
m=1 Pm, where a link is active if 0 6 m 6 F− 1.

This order parameter is zero in the disordered phase, while it is finite in the
ordered phase. This approach gives a discontinuous transition for any F. In
the particular case of F = 2 the mean field equations was studied analytically in
detail by Vazquez and Redner [155], providing insight into the non-monotonic
dynamic behavior for q . qc and showing that the approach to the steady state
is governed by a time scale diverging as | q − qc |

−1/2.

A number of works have addressed the issue of the topology of the networks of
interaction. The Axelrod model has been studied on small-world (SW)(Klemm
et al., [156]) and scale-free networks Barabasi-Albert (AB)(Klemm et al., [156]) In
the first case, the transition between consensus and a disordered multicultural
phase is still observed, for values of the control parameter qc that grow as a
function of the rewiring parameter p. Therefore, this work shows that the non-
local connectivity favors cultural globalization as described by the ordered state.
This is shown in figure 4.4, where the order parameter 〈Smax〉/N is plotted as
function of q for different values of p. Since the SW network for p = 1 is a
random network, this is consistent with the observation of the transition also in
the mean field approach by Castellano et al. 2000 [151] and Vazquez and Redner
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Figure 4.4: Average size of the fraction of the largest cultural domain
〈Smax〉/N vs q for three different values of the small-world parameter p.
System sizes N = 5002 (squares) and N = 10002 (diamonds); number of

features F = 10. From ([156])

2007 [155]. For a scale-free network, the behavior of the system dramatically
changes the picture. For a given network size N, the system also displays a
transition order-disorder for an effective value of q = qc. However the critical
point grows with N as qc ∼ N0.39 (see figure 4.5), so that in the thermodynamic
limit the transition disappears and only ordered states are possible.

Apart from of the study of the topology of interactions, other extensions of this
model have been investigated. Some of them already suggested in Axelrod’s
paper, such as a the study of cultural drift. In references [152, 158], cultural
drift is modeled as spontaneous change in a trait of one of the features of a
node. These changes can be interpreted as a type of noise acting on the system.
The perturbation consist in randomly choosing i ∈ {1, ...,N}, f ∈ {1, ...,F} and
s ∈ {1, ..., q} and setting C f

i = s. This rule is implemented by including a fourth
step in the iterated loop of Axelrod’s model.

4. With probability r, perform a single perturbation.

In these works, it is demostrated that noise (cultural drift) induces an order-
disorder transition independently of the value of q, as shown in figure 4.6.
In this figure, the effective noise rate r′ = r(1 − 1/q), is considered as control
parameter. We observe that all curves collapse into a single curve, showing that
independently of the values of the parameter q, the system displays the same
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Figure 4.5: Top: The average order parameter 〈Smax〉/N in scale free net-
works for F = 10. Different curves are for different system size: 1000
(circles), 2000 (squares), 5000 (diamonds) and 10,000 (triangles). Bottom:
Rescales plot of the data shown in top of this figure for different system

size. From ([156])

behavior. This curve identifies, for a fixed size of the system, a continuous order-
disorder transition controlled by the noise rate r. For small noise rate the state
of the system is monocultural. This occurs because disordered configurations
are unstable with respect to the perturbation introduced by the noise. However,
when the noise rate is large, the disappearance of domains is compensated by the
rapid formation of new ones, so that the steady state is disordered. For a finite
system, the ordered state of the system under the action of small perturbations,
is not a fixed homogeneous configuration. During long time scales, the system
visits a series of monocultural configuration. The threshold between the two
behaviors is set by the inverse of the average relaxation time for a perturbation
T(N), so that the transition occurs for rcT(N) = O(1). An approximate evaluation
of the relaxation time in d = 2 gives T = Nln(N), in good agreement with
simulations, while T ∼ N2 in d = 1 [152, 158], Therefore, no matter how small the
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Figure 4.6: 〈Smax〉/N as function of the effective noise rate r′ = r(1− 1/q) for
different values of q. System size N = 502 with F = 10. From [158]

rate of cultural drift is, in the thermodynamic limit the system remains always
disordered for any q.

Other extensions of the Axelrod’s model include the consideration of quanti-
tative instead of qualitative values for the cultural traits [159], the extension to
continuous values of the cultural traits and the inclusion of heterophobic interac-
tions [160], the simulation of technology assimilation [161], and the consideration
of specific historical contexts [162].

Within this general context of different forms of social interactions, the influence
of mass media on the system has also been considered [12, 14, 15, 129–131]. In
these works, mass media are modeled as different types of fields. A mass media
cultural message is described as a vector M that can interact with each node in the
system. The vector field M may be of different nature. For example, Shibanai et
al. [129], study the effect of a global mass media influence, interpreted as a kind
of global information feedback acting on the system. In this case, mass media is
represented by a global field vector which contains the most predominant trait
in each cultural feature present in a society. In this work [129] two mechanisms
for the interaction with the global field have been considered. In the first one,
the field has the same influential power as a real neighbor. In the second one,
the neighbors are influential only when their traits are concordant with the trait
of the global vector field to that. In this case the global information feedback
acts as filter of local neighbor’s influence. The intensity of the fields or the mass
media influence is controlled by an additional parameter. The conclusion of this
work, somehow counterintuitive, is that global information feedback facilitates
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the maintenance of cultural diversity. However, Shibanai et al., restrict the study
of global mass media interaction to a single value of q in the ordered phase.

Other recent related works deal with a version Axerlrod’s model with both an
external field and noise in a two-dimensional network and in social networks
with community [130, 131]. Finally, in ref. [163], the authors incorporate into the
model the possibility that agents living in a culturally dissimilar neighborhood
can move to other place. The rule used here for the mobility of individuals, is
based on the Schelling model for residential segregation. In this model, two new
parameter are considered, the density of empty site and threshold T, that they
called cultural intolerance. In the dynamics of the model, they incorporate the
following rule: if the cultural overlap between the pair of agents selected to in-
teract is zero or imitation has not ocurred, the mean overlap 〈d〉 (cultural overlap
between the active agents and its neighborhood) is calculated. If 〈d〉 < T, then
the active agent moves to an empty site that is randomly chosen. They found
that mobility favors the cultural globalization for small values of empty sites and
the order parameter Smax/N scales with the system size. That is, the transition to
multiculturalism only occurs for finite populations. For large values of empty
sites and small values of T, a multicultural fragmented phase appears at low
values of q, however, when the values of T are high enough, this regime is fol-
lowed by a new transition to globalization for increasing values of q. Moreover,
in the transition from global consensus to polarization, the size and the number
of cultural domains are dynamically fluctuating by the competitive balance of
consensus and fragmentation processes associated to the agent’s mobility.

Outline

In the following sections of this chapter, we consider within the context of
Axlerod’s model the two general conceptual questions of the Ph.D thesis, namely
the competition between global and local interactions (section 4.2) and co-
evolution dynamics (section 4.3). In section 4.2 we study Axelrod’s model under
the influence of different kind of fields. We consider interaction fields that orig-
inate either externally (an external forcing) or from the contribution of a set of
elements in the system (an autonomous dynamics) such as global or partial cou-
pling functions. Our study allows us to compare the effects that driving fields
or autonomous fields of interaction have on the collective properties of systems
with this type of nonequilibrium dynamics. In the context of social phenomena,
our scheme can be considered as a model for a social system interacting with
global or local mass media that represent endogenous cultural influences or in-
formation feedback, as well as a model for a social system subject to an external
cultural influence. A usual equilibrium idea is that the application of a field
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should enhance order in a system. Our results indicate that this is not always
the case. On the contrary, disorder builds up by increasing the probability of in-
teraction of the elements with the field. This occurs independently of the nature
(either external or autonomous) of the field of interaction added to the system.
Here also we show that an ordered state different from the one imposed by the
external field is possible, when long-range interaction are considered. Moreover,
we find that a spatially nonuniform field of interaction may actually produce
less disorder in the system than a uniform field.

In section 4.3, we study the paradigm of co-evolution in Axelrod’s model. We
develop a model of cultural differentiation that combines the mechanisms of
homophily and influence with a third mechanism of network homophily, in
which network structure co-evolves with cultural interactions. We show that
in certain regions of the parameter space of the system, these co-evolutionary
dynamics can lead to patterns of cultural diversity that are stable in the presence
of cultural drift is modeled as noise.

4.2

Global vs. local interaction in the Axelrod’s model

4.2.1 Axelrod’s model with global, local and external field inter-
actions

In this Section we address the general question of the effects of different types of
mass media influences on cultural dynamics in the context of Axelrod’s model.
Here the mass media is modeled as a field interaction applied on the system.
This extension was referred to as "public education and broadcasting" [150]. Our
aim is to identify the mechanisms, and their efficiency, by which mass media
modifies processes of cultural dynamics based on local agent interactions. To
answer these questions, we consider mass media influences that originate either
externally or endogenously, and that the agent-agent interaction and interaction
of the agents with the mass media is based on the same homophily and social
influence principles of Axelrod model. For the case of an endogenous mass
media interaction, our scheme is a model for social systems interacting with
global or local mass media that represents plurality information feedback at
different levels.
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Figure 4.7: Order parameters g (circles) and S (squares) as a function of q,
in the absence of a field B = 0 and F = 5.

The model

The system consists of N elements at the nodes of a square lattice. As discussed
in 4.1 the state of an agent i is given by an F-component vector C f

i ( f = 1, 2, . . . ,F).

In this model, the F components of vector C f
i correspond to the culture features

(language, religion, etc.) describing the F-dimensional culture of agent i. Each
component of the cultural vector of i can take any of the q values in the set
{0, 1, . . . , q−1} (called cultural traits in Axerlrod’s model). As an initial condition,
each agent i is randomly and independently assigned one of the qF possible state
vectors with uniform probability. We introduce a vector field M with components
(µi1, µi2, . . . , µiF). Formally, we treat the field at each element i as an additional
neighbor of i with whom an interaction is possible. The field is represented as an
additional element φ(i) such that C f

φ(i) = µi f in the definition given below of the
dynamics. The strength of the field is given by a constant parameter B ∈ [0, 1]
that measures the probability of interaction with the field. The system evolves
by iterating the following steps:

(1) Select at random an element i on the lattice (called active element).
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Figure 4.8: Diagrams representing the different types of mass media influ-
ences acting on the system. a) Global mass media. b) Local mass media. c)

External mass media

(2) Select the source of interaction j. With probability B set j = φ(i) as an
interaction with the field. Otherwise, choose element j at random among the
four nearest neighbors (the von Neumann neighborhood) of i on the lattice.

(3) Calculate the overlap (number of shared components) d(i, j) =
∑F

f=1 δC f
i ,C

f
j
. If

0 < d(i, j) < F, sites i and j interact with probability l(i, j)/F. In case of interaction,
choose g randomly such that Cg

i , Cg
j and set Cg

i = Cg
j .

(4) Update the field M if required (see definitions of fields below). Resume at (1).

Step (3) specifies the basic rule of a nonequilibrium dynamics which is at the basis
of most of our results. It has two ingredients: i) A similarity rule for the prob-
ability of interaction, and ii) a mechanism of convergence to an homogeneous
state.

The number of cultural groups has usually been employed by researchers in the
Social Sciences as a measure of multiculturality in a social system [14, 129, 150].
Thus, in order to characterize the ordering properties of this system we will
use this concept and we consider as an order parameter the average fraction of
cultural domains g =< Ng > /N. Here Ng is the number of domains formed
in the final state of the system for a given realization of initial conditions. The
behavior of the quantity g as an order parameter in the presence of an external
field for very large system size is discussed in the Appendix. Figure 4.7 shows
the quantity g as a function of the number of options per component q, for F = 5,
when no field acts on the system (B = 0). For values of q < qc ≈ 25, the system
always reaches a homogeneous state characterized by values g→ 0. On the other
hand, for values of q > qc, the system settles into a disordered state, for which
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Figure 4.9: Asymptotic configurations of the Axelrod’s model with mass
media influence, for F = 5, q = 10, and N = 32 × 32. Top panel corresponds
the numerical simulation for B = 0.0045 < Bc. Bottom panel corresponds to
the numerical simulation for B = 0.5 > Bc. a) Absence of field interaction,
b) External field, c) Local field, d) Global field. The vector field in the case

of external interaction is identified with the black color [154].

〈Ng〉 � 1. Another previously used order parameter, as described in Chapter 2
[151, 156], the average size of the largest domain size, S, is also shown in Fig. 4.7
for comparison. In this case, the ordered phase corresponds to S = 1, while
complete disorder is given by S → 0. Unless otherwise stated, our numerical
results throughout this section are based on averages over 50 realizations for
systems of size N = 40 × 40, and F = 5.

Let us now consider the case where the elements on the lattice have a non-zero
probability to interact with the field (B > 0). We distinguish three types of fields.
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Figure 4.10: Order parameter g as a function of the coupling strength B
of an external (squares), global (circles) and local (triangles) field. Parameter

values q = 10 < qc ≈ 25 and F = 5.

1. The external field is spatially uniform and constant in time. Initially for each
component f , a value ε f ∈ {1, . . . , q} is drawn at random and µi f = ε f is
set for all elements i and all components f . It corresponds to a constant,
external driving field acting uniformly on the system. A constant external
field can be interpreted as a specific cultural state (such as advertising or
propaganda) being imposed by controlled mass media on all the elements
of a social system [14].

2. The global field is spatially uniform and may vary in time. Here µi f is
assigned the most abundant value exhibited by the f -th component of all
the state vectors in the system. If the maximally abundant value is not
unique, one of the possibilities is chosen at random with equal probability.
This type of field is a global coupling function of all the elements in the
system. It provides the same global information feedback to each element
at any given time but its components may change as the system evolves. In
the context of cultural models [129], this field may represent a global mass
media influence shared identically by all the agents and which contains
the most predominant trait in each cultural feature present in a society (a
“global cultural trend").

3. The local field, is spatially non-uniform and non-constant. Each component
µi f is assigned the most frequent value present in component f of the
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Figure 4.11: Threshold values Bc for q < qc ≈ 25 corresponding to the
different fields. Each line separates the region of order (above the line)
from the region of disorder (below the line) for an external (squares), global

(circles), and local (triangles) field. Parameter value F = 5

state vectors of the elements belonging to the von Neumann neighborhood
of element i. If there are two or more maximally abundant values of
component f , one of these is chosen at random with equal probability. The
local field can be interpreted as a local mass media conveying the “local
cultural trend" of its neighborhood to each element in a social system.

Case (1) corresponds to a driven spatiotemporal dynamical system. On the other
hand, cases (2) and (3) can be regarded as autonomous spatiotemporal dynamical
systems. In particular, a system subject to a global field corresponds to a network
of dynamical elements possessing both local and global interactions. Both the
constant external field and the global field are uniform. The local field is spatially
non-uniform; it depends on the site i. In the context of cultural models, systems
subject to either local or global fields describe social systems with endogenous
cultural influences, while the case of the external field represents and external
cultural influence.

Cultural influences generated endogenously represent a plurality information
feedback, which is one of the functions of mass media [129], but this can occur
at a global (”broadcast") or at a local (”narrowcast") level.

67



CHAPTER 4. AXRELROD’S MODEL

0 0.3 0.6 0.9
B

0

0.2

0.4

0.6

0.8

g

Figure 4.12: Order parameter g as a function of the coupling strength B of an
external (squares), global (circles) and local (triangles) field. The horizontal
dashed line indicates the value of g at B = 0. Parameter values, F = 5,

q = 30 > qc ≈ 25 .

The strength of the coupling to the interaction field is controlled by the parameter
B. We assume that B is uniform, i.e., the field reaches all the elements with the
same probability. The parameter B can be interpreted as the probability that the
mass media vector has to attract the attention of the agents in the social system.
The parameter B represents enhancing factors of the mass media influence that
can be varied, such as its amplitude, frequency, attractiveness, etc. The different
types of field or mass media influences are schematically shown in Fig. 4.8.

Simulations of the model described here for different values of parameters, can be
accessed on-line (http://ifisc.uib-csic.es/research/APPLET_Axelrod/Culture.html)
trough a Java Applet [154].

Effects of an interacting field for q < qc

In the absence of any interaction field, the system settles into one of the possible qF

homogeneous states for q < qc (see Fig. 4.7). However, when the interaction with
a field is added, the behavior is affected as shown in the numerical simulation
of figure 4.9. This figure shows the asymptotic configurations of the system
for the different fields and two values of B in the ordered phase (q < qc). For
the case B = 0.0045 the system reaches a homogeneous state, while for B = 0.5,
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Figure 4.13: Asymptotic configurations of the Axelrod’s model with mass
media influence, for F = 5, q = 30 (qc ≈ 25), N = 32 × 32 and B = 0.0045. a)
Absence of field interaction, b) External field, c) Local field, d) Global field.
The vector field in the case of external interaction is identify with the black

color [154].

independently of the nature of the field, the system displays a disordered state.
This results suggest that there is a threshold value of B for which the mass media
induces disorder.

In a systematic study of this behavior, figure 4.10 shows the order parameter
g as a function of the coupling strength B for the three types of fields. When
the probability B is small enough, the system still reaches in its evolution a
homogeneous state (g → 0) under the action of any of these fields. In the case
of an external field, the homogeneous state reached by the system is equal to the
field vector [14]. Thus, for small values of B, a constant external field imposes its
state over all the elements in the system, as one may expect. With a global or
with a local field, however, for small B the system can reach any of the possible
qF homogeneous states, depending on the initial conditions. Regardless of the
type of field, there is a transition at a threshold value of the probability Bc from a
homogeneous state to a disordered state characterized by an increasing number
of domains as B is increased. Thus, we find the counterintuitive result that, above
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Figure 4.14: Scaling of the order parameter g with the coupling strength
to the global field B. The slope of the fitting straight line is β = 0.13 ± 0.01.

Parameter values q = 28 > qc and F = 5.

some threshold value of the probability of interaction, a field induces disorder
in a situation in which the system would order (homogeneous state) under the
effect alone of local interactions among the elements. The same behavior is
reported by Shebanai et al. for the case of a global field [129].

The threshold values of the probability Bc for each type of field, obtained by
a regression fitting [14], are plotted as a function of q in the phase diagram of
Fig. 4.11. The threshold value Bc for each field decreases with increasing q for q <
qc. The value Bc = 0 for the three fields is reached at q = qc ≈ 25, corresponding
to the critical value in absence of interaction fields observed in Fig. 4.7. For each
case, the threshold curve Bc versus q in Fig. 4.11 separates the region of disorder
from the region where homogeneous states occur in the space of parameters (B, q).
For B > Bc, the interaction with the field dominates over the local interactions
among the individual elements in the system. Consequently, elements whose
states exhibit a greater overlap with the state of the field have more probability
to converge to that state. This process contributes to the differentiation of states
between neighboring elements and to the formation of multiple domains in the
system for large enough values of the probability B.

Note that the region of homogeneous ordered states in the (B, q) space in Fig. 4.11
is larger for the local field than for the external and the global fields. A nonuniform
field provides different influences on the agents, while the interaction with uni-
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Figure 4.15: Finite size effects at small values of the strength B of a global
field. Order parameter g as a function of B is shown for system sizes N = 202,
302, 402, 502, 702 (from top to bottom). Parameter values q = 30 and F = 5.

form fields is shared by all the elements in the system. The local field (spatially
nonuniform) is less efficient than uniform fields in promoting the formation of
multiple domains, and therefore order is maintained for a larger range of values
of B when interacting with a local field.

Effects of an interacting field for q > qc

When there are no additional interacting fields (B = 0), the system always freezes
into disordered states for q > qc (see Fig. 4.7). Figure 4.12 shows the order
parameter g as a function of the probability B for the three types of fields. The
effect of a field for q > qc depends on the magnitude of B. In the three cases
we see that for B→ 0, g drops to values below the reference line corresponding
to its value when B = 0. Thus, the limit B → 0 does not recover the behavior
of the model with only local nearest-neighbor interactions. The fact that for
B → 0 the interaction with a field increases the degree of order in the system
is related to the non-stable nature of the inhomogeneous states in Axelrod’s
model. When the probability of interaction B is very small, the action of a field
can be seen as a sufficient perturbation that allows the system to escape from
the inhomogeneous states with frozen dynamics. A example of this behavior is
observed in figure 4.13, that shows the spatial configurations of the final states
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Figure 4.16: Mean value of the order parameter g as a function of the
system size N without field (B = 0, solid circles), and with an external
(squares), global (circles) and local field (triangles). Parameter value q = 30.

of the systems under the influence of a field in the disordered state (q > qc). In
the numerical simulation, we observe that a weak interaction with the field can
induce order in the system. This effect is similar independently of the source of
the field. However, the local field is more efficient to order the system, while the
external field interaction is less efficient to induce order in the system. The role
of a field in this situation is similar to that of noise applied to the system, in the
limit of vanishingly small noise rate [158].

The drop in the value of g as B → 0 from the reference value (B = 0) that takes
place for the local field in Fig. 4.12 is more pronounced than the corresponding
drops for uniform fields. This can be understood in terms of a greater efficiency
of a nonuniform field as a perturbation that allows the system to escape from
a frozen inhomogeneous configuration. Increasing the value of B results, in all
three types of fields, in an enhancement of the degree of disorder in the system,
but the local field always keeps the amount of disorder, as measured by g, below
the value obtained for B = 0. Thus a local field has a greater ordering effect than
both the global and the external fields for q > qc.

The behavior of the order parameter g for larger values of B can be described
by the scaling relation g ∼ Bβ, where the exponent β depends on the value of q.
Figure 4.14 shows a log-log plot of g as a function of B, for the case of a global field,
verifying this relation. This result suggests that g should drop to zero as B→ 0.
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The partial drops observed in Fig. 4.12 seem to be due to finite size effects for
B→ 0. A detailed investigation of such finite size effects is reported in Fig. 4.15
for the case of the global field. It is seen that, for very small values of B, the values
of g decrease as the system size N increases. However, for values of B & 10−2,
the variation of the size of the system does not affect g significantly.

Figure 4.16 displays the dependence of g on the size of the system N when B→ 0
for the three interaction fields being considered. For each size N, a value of g
associated with each field was calculated by averaging over the plateau values
shown in Fig. 4.15 in the interval B ∈ [10−5, 10−3]. The mean values of g obtained
when B = 0 are also shown for reference. The order parameter g decreases for the
three fields as the size of the system increases; in the limit N→∞ the values of g
tend to zero and the system becomes homogeneous in the three cases. For small
values of B, the system subject to the local field exhibits the greatest sensitivity to
an increase of the system size, while the effect of the constant external field is less
dependent on system size. The ordering effect of the interaction with a field as
B→ 0 becomes more evident for a local (nonuniform) field. But, in any case, the
system is driven to full order for B→ 0 in the limit of infinite size by any of the
interacting fields considered here.

4.2.2 Global field and the filtering of local interactions

In this section we analyze a model of global information feedback where the
global mass media acts as a moderator or filter of the local influence of neighbors,
as proposed by Shibanai et al. [129]. In the original Axelrod’s model one feature
with different traits for two neighboring agents is chosen, and the trait of the
active agent adopts the trait of the neighbor. This is modified in the model
of indirect global mass media influence analyzed here, taking into account the
agreement of the chosen trait of the neighbor and that of the global mass media
or the plurality of the population. If the trait of the neighbor is concordant with
the dominant one, that is, the same as that of the global mass media message M,
the feature of the active agent will be changed to that of the neighbor. But if the
feature of the neighbor is different from that of the global mass media message
M, then, with probability R the active agent will not change. Thus, this model
assumes that agents are more likely to adopt a trait from those neighbors that are
concordant with the plurality. The conclusion in reference [129] is that the mass
media, contrary to lay beliefs of their strong uniforming power, would rather
contribute to creating differences in the long run. This conclusion is based on
the analysis for a single value of parameter q and few values of the intensity of
the influence of mass media. In this section we consider the full range of values
of q when addressing the general question of the effects of different forms of
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Figure 4.17: Diagram representing the filter model.

mass media effect on cultural dynamics in the Axelrod’s model, finding different
behaviours for q < qc and q > qc.

We use the definition of a uniform global mass media as in Section 4.2.1.1,
M = (µi1, µi2, . . . , µiF). The dynamical evolution of the filter model can be de-
scribed in terms of the following iterative steps:

1. Select at random an agent i on the lattice (active agent).

2. Select at random one agent j among the four neighbors of i.

3. Calculate the overlap d(i, j). If 0 < d(i, j) < F, sites i and j interact with
probability pi j = d(i, j)/F. In case of interaction, choose g randomly such
that Ci]g , Cg

j . If Cg
j = µg, then set Cg

i = Cg
j ; otherwise with probability R

the state of agent i does not change and with probability 1 − R set Cg
i = Cg

j

4. (3) Calculate the overlap d(i, j). If 0 < d(i, j) < F, sites i and j interact with
probability pi j = d(i, j)/F. In case of interaction, choose g randomly such
that Cg

i , Cg
j . If Cg

j = µg, then set Cg
i = Cg

j ; otherwise with probability R the

state of agent i does not change and with probability 1 − R set Cg
i = Cg

j

5. Update the global mass media vector M if required. Resume at (1).

Figure 4.17 shows a diagram of the filter model. The parameter R describes the
intensity of the filtering effect of the global mass media on the local interactions.
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Figure 4.18: Time evolution of the average fraction of cultural domains g
in the filter model for different values of the probability R, with fixed F = 5.
Time is measured in number of events per site. System size N = 50 × 50.
Left: q = 10; R = 0 (crosses); R = 0.0005 (squares); R = 0.15 (diamonds);
R = 0.6 (circles). Right: q = 30; R = 0 (crosses); R = 0.0005 (squares);

R = 0.005 (circles); R = 0.1 (diamonds).

The case R = 0 corresponds to the original Axelrod’s model, while R = 1 implies
that cultural interaction only causes a change if the chosen trait of the neighbor
was equal to that of the global mass media. The overall probability of interaction
between an active agent i and a chosen neighbor j is pi j(1 − R) if the chosen trait
of j is different from that corresponding to M, and pi j if the chosen trait is equal
to that corresponding to M.

Figure 4.18 shows the average fraction of cultural domains g (order parameter
defined in section 4.2.1.1) as a function of time in the global mass media filter
model, for two values of q with F = 5, and for different values of the filtering
probability R. In Fig. 4.18 (left), when q < qc the system reaches a homogeneous
state for R = 0 and also for small values of R. However, when the probability
R increases, the filtering influence of the global mass media can induce cultural
diversity. Our results for q < qc support the results obtained by Shibanai et al.
[129] about the ability of the filtering process to induce cultural diversity in the
same fashion as the model with direct global mass media influence. Comparison
with Fig. 4.19, where we plot the average fraction of cultural domains g as a
function of time under the direct action of global mass media, for q < qc with
F = 5, and for different values of the probability B, shows that direct interaction
with global mass media is more efficient in promoting cultural diversity than the
filtering mechanism of agreement with the global plurality.
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The analysis of reference [129] was restricted to a single value of q < qc. We have
also explored values of q > qc, where the system would be in a heterogeneous
cultural state in absence of any filtering (R = 0). For these values of q we find
(Fig. 4.18, right) that the filtering mechanism has no appreciable effects for small
R, in contrast with the case of direct global mass media influence where for small
values of the probability B of interaction with the media message, the number of
cultural groups is reduced as a consequence of this interaction.

A systematic analysis of the filtering effect for different values of q is summarized
in Figure 4.20 which shows the asymptotic value for long times of the average
fraction of cultural domains g as a function of q, with F = 5, for different values
of the filtering probability R. When no filtering acts on the system (R = 0) the
behavior is that of the original Axelrod’s model and also coincides with the direct
mass media models for B = 0.

The effects of the filtering process in the culturally homogeneous region, i.e., for
parameter values q < qc, is similar to that of a direct influence of endogenous mass
media. When the probability R is increased, the threshold value of q decreases.
There is a value qc(R) below which the system still reaches a homogeneous
cultural state under the influence of the filter. An increase in R for parameters q <
qc(R) leads to cultural diversity. Thus, both mechanisms of feedback information,
either direct or indirect, promote multiculturality in the region of parameters
where globalization prevails in the absence of any feedback. The similar behavior
found for all types of mass media influences considered here suggests that the
phenomenon of mass media-induced diversity should be robust in this region
of parameters, regardless of the type of feedback mechanism at work.

However, in the region of parameters q > qc where multiculturality occurs for
R = 0 or B = 0, the behavior of the filter model differs from those of the direct
mass media influence. The filtering mechanism has little effect for values of the
probability R < 1. As R → 1 there is a small decrease in the number of cultural
groups formed in the system. But at R = 1 a discontinuity appears: the fraction
of cultural groups g jumps from a value close to the one for R = 0 to a value
close to g = 1 corresponding to maximum multiculturality (number of cultural
groups equal to the number of agents in the system). The case R = 1 corresponds
to an extreme restriction on the dynamics, when no adoption of cultural features
from neighbors is allowed unless the state of the neighbor coincides with the one
of the global mass media. Since we are considering random initial conditions,
when q is large enough, the probability that the features of any agent coincide
with those of the global mass media message M is quite small, making the
convergence to globalization, i.e., a common state with the media, very unlikely.
As a consequence, the random multicultural state subsists in the system and
manifests itself as a maximum value of g. The small probability of interaction
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Figure 4.19: Evolution of g in a system subject to a global mass media
message for different values of the probability B, with fixed F = 5. Time is
measured in number of events per site. System size N = 50 × 50, q = 10;
B = 0 (crosses); B = 0.0005 (squares); B = 0.15 (diamonds); B = 0.6 (circles).

with the global mass media for large values of q when R = 1 is also reflected in
the very long convergence time needed to reach the final multicultural state as
compared with the convergence time for R < 1.

4.2.3 Spontaneous ordering against an external field

In this Section, we address the same general question considered in section
3.3 but now within the context of Axelrod’s model. Namely, we consider the
possibility that the system orders in an state different from the one selected by an
external forcing field . Similarly, as we found in the Deffuant model with external
field interaction, the system also displays three phases: two ordered phases, one
in the state imposed by the external field and other in a state different to the
one selected by the field, and one disordered phase. We show that also here this
ordered phase in a state different from the one imposed by the external field is
possible when long-range interactions exist.

The model that we use in this section, is the same studied in Section 4.2.1.1, for
the case of external field interaction, but here, we have considered the system on
a fully connected network and complex networks.
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Figure 4.20: Average fraction of cultural domains g as a function of q, for
different values of the probability R for the filter model. R = 0 (circles);
R = 0.01 (squares); R = 0.1 (triangles down); R = 0.5 (diamonds); R = 0.9
(triangles up); R = 0.99 (stars); R = 1.0 (plus signs). Parameter value F = 5.

Long range interaction networks

To characterize the ordering properties of this system, we consider as order
parameter the normalized average of the largest domain S disscussed in section
4.1.

First, we analyze the model in a fully connected network. In the absence of an
external field, i.e. B = 0, the system spontaneously reaches an ordered phase for
values q < qc (Fig. 4.21(a)). For B → 0 and q < qc, the external field M f imposes
its state in the system, as in Section 4.2 [14]. For B = 1, the particles only interact
with the external field; in this case only those particles that initially share at least
one component of their vector state with the components of M f will converge
to the field state M f . The probability that a particle has feature f different from
the external field is (q− 1)/q; thus, the probability that all F features are different
from the field is

(
1 − 1/q

)F. The fraction of particles that converge to M f is the
fraction of particles that initially share at least one feature with the external field

SM(B = 1) = 1 − (1 − 1/q)F . (4.1)

Figure 4.21(a) shows both the numerically calculated values of S as well as the
analytical curve given by Eq. (4.1)for different values of q. Both quantities agree
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Figure 4.21: (a) S vs q on a fully connected network for B = 0 (solid circles);
B = 0.005 (diamonds); B = 0.05 (empty circles); B = 0.5 (squares); B = 1
(stars). The continuous line is the analytical curve 1 − (1 − 1/q)F, while the
dashed line corresponds to the curve (1 − 1/q)F. (b) σ = S − SM versus q for
B = 0.8 (circles) and B = 0.1 (squares). The values of qc ' 104 and q∗ ' 14
(for B = 0.8). Parameter values are N = 2500, F = 10. Each data point is an

average over 100 independent realizations.

very well, indicating that the largest domain in the system has a vector state
equal to that of the external field when B = 1.

For intermediate values of B, the spontaneous order emerging in the system
for parameter values q < qc due to the particle-particle interactions competes
with the order being imposed by the field. This competition is manifested in
the behavior of the order parameter S which displays a sharp local minimum
at a value q∗(B) < qc that depends on B, while the value of qc is found to be
independent of the intensity B, as shown in Fig. 4.21(a). To understand the
nature of this minimum, we plot in Fig. 4.21(b) the quantity σ = S − SM, as a
function of q. For q < q∗(B) the largest domain corresponds to the state of the
external field, S = SM, and thus σ = 0. For q > q∗(B), the largest domain no longer
corresponds to the state of the external field M f but to other state non-interacting
with the external field, i.e., S > SM, and σ > 0. The value of q∗(B) can be estimated
for the limiting case B→ 1, for which SM ≈ 1− (1− 1/q)F and the largest domain
different from the field is S ≈ 1 − SM. Therefore the condition S = SM yields

q∗(B→ 1) =
[
1 − (1/2)1/F

]−1
. (4.2)

For F = 10 it gives q∗(B→ 1) = 15 in good agreement with the numerical results.
The order parameter σ reaches a maximum at some value of q between q∗ and qc.
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Figure 4.22: Phase space on the plane (q,B) on a fully connected network
subject to an external field, with fixed F = 10. Regions where the phases I,

II, and III occur are indicated.

For larger values of q the order decreases in the system and both S→ 0, SM → 0.
As a consequence, σ starts to decrease.

The collective behavior on a fully connected network subject to an external field
can be characterized by three phases on the space of parameters (q,B), as shown
in Fig. 4.22:

• Phase I: an ordered phase induced by the field for q < q∗, for which σ = 0
and S = SM ∼ 1.

• Phase II: an ordered phase in a state orthogonal to the field (that is, the
overlap between the ordered state and the external field is zero) for q∗ <
q < qc, for which σ increases and S > SM, with S ∼ 1;

• Phase III: a disordered phase for q > qc, for which σ decreases and S → 0,
SM → 0.

For parameter values q < qc for which the system orders due to the interactions
among the particles, a sufficiently weak external field is always able to impose its
state to the entire system (phase I). However, for intermediate values of q < qc if
the probability B of interaction with the field exceeds a critical value, the system
spontaneously orders in a state orthogonal to the field (phase II).
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Figure 4.23: Top Panels: Vector model on random networks with 〈k〉 = 8,
N = 5000, F = 10. For these values, qc = 285. (a) S versus q for different
values of the parameter B: B = 0 (solid circles), B = 0.05 (empty circles),
B = 0.5 (squares), B = 1 (stars). (b) σ versus q for B = 0.8 (circles) and
B = 0.1 (squares). (c) Parameter space on the plane (q,B). Bottom Panels:
Vector model on scale-free networks with 〈k〉 = 8, N = 5000, F = 10. For
these values, qc = 350. (d) S versus q for different values of the parameter B:
B = 0 (solid circles), B = 0.05 (empty circles), B = 0.5 (squares), B = 1 (stars).
(e) σ versus q for B = 0.8 (circles) and B = 0.1 (squares). (f) Parameter space
on the plane (q,B). For all simulations, each data point is an average over
100 independent realizations of the underlying network and the dynamics.

Like in the Deffuat’s model under the influence of an external field studied in the
previous chapter, this model also shows the emergence of an ordered phase with
a state orthogonal to the external field in complex networks. Figure 4.23 shows
the order parameter S as a function of q for different values of the intensity of
the field B for the Axelrod’s model defined on random and a scale-free networks
with average degree 〈k〉 [74]. Again, we observe a local minimum in S at a
value q∗(B) < qc. For q < q∗(B) the largest domain corresponds to the state of the
external field, S = SM. For q > q∗(B), the largest domain no longer corresponds
to the state of the external field but to other state orthogonal to that of the field,
i.e., SM < S. However, in contrast to the fully connected network, the size of
this alternative largest domain is not big enough to cover the entire system, i.e.,
S < 1.
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Figure 4.24: S versus q on a small world network with 〈k〉 = 4, N = 2500,
B = 0.5, F = 3, for different values of the probability p: p = 0 (empty circles),
p = 0.005 (squares), p = 0.05 (diamonds), p = 0.1 (triangles), p = 1 (solid
circles). Inset: S vs. p for fixed values q = 40 > q∗ and B = 0.5. Each data
point is an average over 100 independent realizations of the underlying

network and the dynamics.

Short-range interactions

As we already found with Deffuant’s model (section 3.3) the presence of long-
range connections allows the emergence of spontaneous ordering not associated
with the state of an applied external field. To show this. we analyze the role
of the network connectivity on the emergence of an ordered phase different
to the one forced by the external field. We consider a small-world network
[63], where the rewiring probability is varied in order to introduce long-range
interactions between the particles. We start from a two-dimensional lattice with
nearest-neighbor interactions (degree k = 4). Each link is rewired at random
with probability p. The value p = 0 corresponds to a two-dimensional regular
network with nearest neighbors interaction, while p = 1 corresponds to a random
network with average degree 〈k〉 = 4.

Figure 4.24 shows the order parameter S as a function of q on this network for
different values of the rewiring probability p and for a fixed value of the intensity
of the field B. The critical value qc where the order-disorder transition takes place
increases with p, which is compatible with the large value of qc observed in a
fully connected network. When the long-range interactions between particles
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are not present, i.e. p = 0, the external field is able to impose its state to the entire
system for q < qc. Spontaneous ordering different from the state of the external
field appears as the probability of having long-range interactions increases. The
size of this alternative largest domain increases with p, but it does not grow
enough to cover the entire system (see inset in Fig. 4.24).

4.2.4 External field and site percolation in consensus models

In this section we show that the the limiting case B = 1 in the models defined in
section 3.3 (bounded confidence model with external field) and section 4.2.3 can
be mapping exactly to site percolation. Site percolation refers to the dependence
of the connected components of a network on the fraction of the occupied nodes
[164, 165]: given a network, each node can be either occupied with probability p
or empty with probability 1−p. Following the traditional notation in percolation,
a cluster is defined as a set of neighboring occupied nodes. In our notation
this is what we have defined as a domain. Similarly, the order parameter is
the (normalized) size of the largest domain (cluster). Percolation in a complex
network typically displays a phase transition for a critical value of the occupancy
parameter p [166, 167].

For both the Axelrod and bounded confidence models, the limiting case B = 1
corresponds to the situation in which the particles only interact with the external
field. The particles that change their state are those with overlap different from
zero in the Axelrod’s model (that is, they share at least one feature with the
external field) or with state in the range [1 − d, 1] in the bounded confidence
model. In these cases, the state of the particles becomes the same as the one of
the external field. For zero overlap or states outside the range [1 − d, 1] particles
keep their original state. As a consequence, the ordered state in this limiting case
B = 1 is the one determined by the field. The largest domain for random initial
conditions has the state of the external field.

In the analogy with site percolation, an occupied node corresponds to a particle
that has the state of the external field. In the Axelrod’s model only those particles
that initially share at least one component of their vector states with the external
field will converge to the field state. The fraction of particles that converge to
M f is given by Eq. (4.1)

p = 1 − (1 − 1/q)F . (4.3)
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Figure 4.25: S vs. p for site percolation model (line) and the Axelrod’s
model with external field B = 1 (circles) on (a) a random and (b) a scale-free
network with 〈k〉 = 8. For the Axelrod model p = 1 − (1 − 1/q)F, F = 10 and
B = 1. System size N = 104. Insets: S vs. q in the site percolation model
(line) and Axelrod’s model (symbols) for different system size, N = 104

(circles), 103 (diamonds) and 500 (squares). The relation between q for
the Axelrod’s model and the occupancy probability p in site percolation is
q = [1 − (1 − p)(1/F)]−1. Each data point is an average over 100 independent

realizations.

Thus, the quantity p can be interpreted as a probability of interaction between
the external field and any particle in the system. Similarly, the parameter p = d
in the bouded confidence model can be seen as the probability for particle-field
interaction when B = 1. Therefore, the quantity p in either model measures the
probability that any particle in the system reaches the state of the field, while the
complementary probability (1 − p) indicates the fraction of particles that do not
converge to the state of field. The largest cluster in the site percolation problem
can be viewed as the size of the largest domain S in both the Axelrod and the
bounded confidence models when B = 1.

In order to illustrate the mapping of the bounded confidence and Axelrod mod els
in an external field with B = 1 and site percolation, we have performed simula-
tions of these models in several complex networks. Figure (8.2) [Figure (4.26)]
shows the normalized size of the largest domain S as a function of the probability
p of occupied sites for site percolation model, and as a function of the quantity
p = 1 − (1 − 1/q)F [p = d] (Eq. (4.3)) for the Axelrod [bounded confidence] model
subject to an external field with B = 1, on a random and in a scale-free net-
work. The critical values for the onset of a spanning cluster (the ordered state)
is pc = 1/〈k〉 = 0.125 and pc = 0, respectively, for the random and scale-free
network [166, 167].
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Figure 4.26: S vs. p for site percolation model (line) and the Bounded
confidence model with external field B = 1 (circles) on a (a) random and
a (b) scale-free network with 〈k〉 = 8. System size N = 104. Insets: S vs.
p for site percolation (line) and the scalar model (symbols) for system size
N = 104 (circles), 103 (diamonds) and 500 (squares). The relation between d
for the bounded confidence model and the occupancy probability p in site
percolation is d = p. Each data point is an average over 100 independent

realizations.

4.3

Co-evolution dynamics in Axelrod’s model

In this section we address in the context of Axelrod’s model, the question of
co-evolution dynamics discussed generally in section 1.4. The network of inter-
actions was kept fixed in section 4.2 while in this section it co-evolves in the same
time scale that the dynamics of the state of nodes. This co-evolution dynamics it
implemented allowing interaction links to be rewired depending on the state of
the agents at their ends.

4.3.1 The model

The adaptation of the previously discussed Axelrod’s model to a co-evolution
dynamics is as follows:

A population of N agents are located at the nodes of a network. The state
of an agent i is represented by an F-component vector C f

i ( f = 1, 2, . . . ,F) and
i = 1, 2, . . . ,N, where each component represents an agent’s attribute. There are
q different choices or traits per feature, labelled with an integer C f

i ∈ {0, . . . , q−1},
giving rise to qF possible different states.
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Initially agents take one of the qF states at random. In a time step an agent i and
one of its neighbors j are randomly chosen:

1. If the agents share m > 0 features, they interact with probability equal to
the fraction of shared features, i.e., the overlap (m/F). In case of interaction,
an unshared feature is selected at random and i copies j’s value for this
feature.

2. If the agents do not share any feature, then i disconnects its link to j and
connects it to a randomly chosen agent that i is not already connected to.

Step 1 defines the basic homophily and influence model discussed before, in
which actors who are similar are more likely to interact. Interaction makes
actors who are similar become even more similar, increasing the weight of their
tie and the likelihood of future interaction. As some actors become more similar,
others become less similar as the dynamics of cultural evolution create widening
gaps between the emerging cultural communities. Some neighbors in the social
network may become so different from one another that they no longer share
any cultural traits in common. When this happens, the weight of the tie between
them drops to zero and no longer functions as a means for cultural influence. Step
2, schematically explained in Figure 4.27 defines the co-evolution dynamics. It
incorporates network dynamics into the specification of homophily by allowing
actors to drop these zero-weight ties. Just like members of a social clique who
have grown distant from one another by virtue of interacting with different social
groups [160], or voluntary group members who share less and less in common
as they derive more of their social and cultural influence from outside sources
[168], as social differentiation reduces shared traits, the remaining ties become
a vestigial feature of the actors’ social histories and are ultimately broken [169].
This network homophily dynamics allow the structure of the social network to
co-evolve with the dynamics of social influence. If an active individual tries to
interact with a neighbor with whom there is zero overlap in cultural features, it
drops the tie to this neighbor and randomly forms a new tie to another individual,
preserving the overall density of the social network. In other words, the step
1 describes the original Axelrod dynamics: Alike agents become even more
similar as they interact, increasing the probability of future interaction. Step 2
implements the network co-evolution: incompatible agents, i.e., agents with no
features in common, tend to get disconnected.

We have performed extensive numerical simulations to study the behavior of
the system as the control parameter q is varied, for different population sizes N,
number of features F = 3, and starting from a random network with average
degree 〈k〉 = 4. The results do not depend on the initial network topology,
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Figure 4.27: Network dynamics for a system with F =3 and q=7: The
network on the left (at time t) shows each node with its corresponding
vector of cultural features at time t. The network on the right shows the
same population at time t + 1. The links between nodes are weighted
according to their overlap: dashed line for zero overlap, continuous lines
for overlap=1, and double line for overlap= 2. At time t, the overlap
between nodes 1 and 2, O(1,2), is zero, as is O(1,3). At time t, node 1 has
been selected as active and node 3 as its partner (step 1). Step 1 imply no
changes of state given that O(1,3)=0. Following step 2, the link between 1
and 3 is removed, and node 1 is randomly linked to a different node. The
new link between nodes 1 and 6 (shown in the network on the right) has

overlap O(1,6)=1.

because the repeated rewiring dynamics leads to a random network with a
Poisson degree distribution (see figure 4.28).

4.3.2 Phases and transitions

The co-evolution Axelrod’s model displays two transitions, both very different
in nature. The first one is an order-disorder transition at q = qc between two
frozen phases, associated with the fragmentation of the network∗. The dynamics
leads to the formation of network components, where a component is a set of
connected nodes. In a frozen configuration, agents that belong to the same
component have the same state. For q < qc (ordered phase I), the system reaches

∗Note that this critical value qc is different from the one discussed in section 4.1 and 4.2 for the
polarization-globalization transition in fixed networks.
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Figure 4.28: Node degree distribution P(k) of the co-evolving network in
the final frozen state for a system with F = 3, system size N = 104 and
various values of q. The system starts from random network with average
degree 〈k〉 = 4. P(k) is very similar to a Poissonian (sketched in empty

squares for comparison) for all values of q.

a configuration composed by a giant component of the order of the system size,
and a set of small components as illustrated in Figure 4.29a and Figure 4.29b;
for q > qc (disordered phase II) the large component breaks into many small
disconnected components (see Figure 4.29c). The second transition, related with
network recombination, occurs at q = q∗ between the phase II and an active
phase III, where the system reaches a dynamic configuration with links that are
permanently rewired as is shown in Figure 4.29d.

For small values of q in phase I, the average size of the largest network component
S in the final configuration is of the order of the system size N (Fig. 4.30), due to
the high initial overlap between the states of neighboring agents. As q increases
inside phase I, the initial overlap decreases and S also slowly decreases. For
larger values of q (phase II), many distinct domains are formed initially inside
the components which break into many small disconnected components and, as a
result, S reaches a value much smaller than N (network fragmentation). During
the evolution of the system, a network component can have more than one
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(a) (b)

(c) (d)

Figure 4.29: Network structure for F = 3 in the final frozen configuration
in phase I: q = 3 (a), q = 20 (b) and in phase II: q = 100 (c) for N = 400. (d)
Snapshot of the network in the stationary active configuration (phase III)

for q = 500.

domain. However, in the final configuration of phases I and II, one component
corresponds to one domain.

The transition point from phase I to phase II is defined by the value q = qc for
which the fluctuations in S reach a maximum value. This value corresponds to
the point where the order parameter S suffers a sudden drop. For N = 2500 we
find qc = 85 ± 2 (see Fig. 4.30). To further investigate this transition point we
calculated the size distribution of network components P(s) (see Fig. 4.31). For
small q, P(s) shows a peak that corresponds to the average size of the largest
component S, and has an exponential decay corresponding to the distribution of
small disconnected components. The peak at S decreases as q increases, giving
raise to a power law decay of P(s) at qc ' 85, a signature of a transition point
[153, 165].

The behavior of the order parameter S/N depends on system size (Fig. 4.32).
When both axis are rescaled by N−α with α = 0.82 ± 0.01 the data collapses for q
smaller than qc. This implies that qc increases with the system size N as qc ∼ Nα,
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Figure 4.30: Average relative size of the largest network component (circles)
and largest domain (solid line) in the stationary configuration vs q, for
N = 2500, averaged over 400 realizations. The vertical lines at qc = 85 and
q∗ = 1875 indicate the transition points between the different phases. Inset:

fluctuations are maximum at the critical point qc.

and suggests a scaling relation for S in the ordered phase S = Nα f (N−αq), where
f ( · ) is a scaling function. The scaling relation implies that the discontinuity
disappears in the large N limit. Thus, not only the transition point diverges as
qc ∼ N 0.82 but also the amplitude of the order parameter S/N ∼ N−0.18 vanishes
as N goes to infinity.

These results, maximum of the fluctuations, data collapse and distribution of
component sizes, identify qc as the critical point of the transition. The fact that
the exponent of the size distribution is smaller than 2 and that the discontinuity
of the order parameter tends to 0 as system size increases, suggest that in the
large N limit the transition becomes continuous with qc →∞.

We analyze the active phase (III) by looking at the rewiring dynamics. A link
that connects a pair of incompatible agents is randomly rewired until it connects
two compatible agents, i.e., agents with at least one feature in common. If
the number of pairs of compatible agents Lc is larger than the total number of
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Figure 4.31: Size distribution of network components for N = 2500 and
values of q (a,b) below, (c) at, and (d) above the transition point qc ' 85.

The dashed line represents a power law with exponent −1.3 ± 0.02.

links in the system 〈k〉N/2, this rewiring process continues until all links connect
compatible agents. Later, the system evolves until each component constitutes
a single domain, the frozen configurations reached in phases I and II. If, on
the contrary, Lc gets smaller than 〈k〉N/2, the system evolves connecting first
all Lc pairs by links. The state dynamics stops when no further change of state
is possible, but the rewiring dynamics continues for ever with approximately
〈k〉N/2 − Lc links that repeatedly fail to attach compatible agents. This is the
active configuration observed in phase III. Thus, in contrast to phases I and II,
in the stationary configurations of phase III there are typically more than one
domain per component. The size of the largest component abruptly increases at
q∗ indicating that a giant component reappears (network recombination), while
the size of the largest domain continues decreasing (see Fig. 4.30).

To estimate q∗, we will assume Lc constant during the evolution as for q large the
state of the agents does not evolve much. Thus, with the ansatz Lc ' Lc(t = 0) '
N(N−1)

2

[
1 − (1 − 1/q)F

]
' N2F/2q, for q� F and
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Figure 4.32: Average relative size of the largest network component S/N vs
q for system sizes N = 2500, 6400, 10000 and 14400 (left to right), averaged
over 400 realizations. Inset: Finite size scaling. The data collapses below

the scaled transition point Qc = qcN−α, with α = 0.82.

N � 1, the condition at the transition point is N2F/2q∗ ' 〈k〉N/2, so that

q∗ '
NF
〈k〉

(4.4)

is the value of the recombination transition point. For the values considered here
we obtain q∗ = 1875 in good agreement with the numerical results (Fig. 4.30).

Changing the rewiring rate

In the previous section we assumed that when a pair of nodes with zero overlap
is chosen, the link between them is always rewired. We now consider the case
in which the rewiring happens with probability p. Varying p is equivalent to
change the relative time scales at which the copy and the rewiring dynamics
occur. In the limit of p going to zero we expect the system to behave as in the
original Axelrod model, where the network is fixed. On the other limit, when
p is one we recover the co-evolving model studied before. Thus, we should see
that the transition point qc shifts to higher values of q as p is increased from zero.
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Figure 4.33: S vs q for values of the rewiring probability p = 0, 10−6, 5 ×
10−5, 0.1 and 1 from left to right, N = 1000 and F = 3. S was measured for

every value of p at the same observation time τ = 108.

Fig. 4.33 shows that the critical point for values of p above 0.1 is very close to
the critical value pc ' 85 for the p = 1 case, when S is measured at a fixed time
τ = 108.

To investigate this dependence, we calculated S for fixed q = 20 in the connected
phase I, and for three different observation times. As we observe in fig. 4.34, for
a fixed time, S/N is close to zero for very small values of p and it increases up
to S/N ' 0.9 for larger values of p when the observation times are τ = 108 and
τ = 1011. However this transition in S seems to disappear when S is measured
at longer times (τ = 1013). We expect that if we wait long enough the size of
the largest component would reach the value S/N ' 0.9 for any value of p above
zero. The last result means that there is a discontinuity in the critical value qc at
p = 0. For p > 0, the behavior of S as a function of q is essencially the same in the
long time limit.

Beyond the statistical physics analysis of the transitions at q = qc and q = q∗, these
transitions have an interesting in the interpretation and relevance in the context
of social sciences: The transition between the phase I and phase II, responds to
a process of group differentiation through which a large heterogeneous group
fractures and then consolidates into multiple cliques or subgroups.
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probability p for N = 1024, F = 3, q = 20 and observation times τ = 108

(squares), τ = 1011 (diamonds) and τ = 1013 (circles). For a long enough
observation time, S/N approaches to the value S/N ' 0.9 independent on

the value of p.

In phase I, the co-evolutionary model produces a global monoculture across a
large range of q values. This is because actors in the dynamics networks are able
to find paths around local borders by forming new ties. As actors create new links
across the population, their ties form a large connected component (technically
a giant network component) that allows cultural boundaries to break down and
gives rise to a global monoculture. As q increases, we approach phase II, in
which the dynamics network breaks into multiple component. In this case, there
is sufficient heterogeneity to allow cultural diversity to emerge in the system.

This process has been documented in the formation of adolescent and adult
friendship groups [170, 171], voluntary organizations [168, 172], social move-
ments [173], class identity [174], and cultural norms more generally [175]. As
the number of cultural options in a population increases, the average similarity
among the members of large heterogeneous groups decreases. Furthermore, as
individuals find others like them and grow more similar, emerging cleavages in
the large group eventually result in a splintering process, whereby large groups
disaggregate into smaller, more culturally specialized ones [168, 175]. The key
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to these homophily dynamics is the changing nature of the social network. Cul-
tural influence and social adaptation processes allow individuals to evolve in the
space of cultural ideas and behaviors, changing the social landscape. As people
grow apart, the reinforcing effects of reduced similarity and reduced interaction
cause old ties to be dropped; reciprocally, new friendships are made with peo-
ple who share one’s current tastes and preferences. Eventually, this process of
individual differentiation also creates group consolidation, as detachment from
dissimilar people also gives rise to stronger bonds with more similar individu-
als [176]. This tendency for network relations to form between those who have
similar social characteristics is known as the homophily principle. Since individ-
uals close to one another on a dimension of social space are similar, homophily
implies that ties are local in social space [172]. In phase II, the physical space
of the social network is rearranged until all ties are local in social space. This
process produces an emergent social landscape in which discrete social clusters
(i.e., components) correspond to distinct trait groups. The more heterogeneity
in the more exclusive these trait groups become [176].

In phase III, the abundance of cultural options overwhelms the population, creat-
ing anomic [177] actors, who develop unlikely combinations of cultural features
that prevent them from interacting with anyone. While some actors are able to
form into homophilous clusters, the anomic actors perpetually add and drop
ties. When q > q∗ , the largest component in the network consists of this disen-
franchised group of actors who are unable to establish memberships in any of
the homophilous social clusters. With increasing heterogeneity, the number of
anomic actors increases, as does the size of this component, until the entire pop-
ulation forms a single network that is simply a buzz of adding and dropping ties
with no mutual influence or lasting relationships. The overabundance of cultural
options actually prevents the formation of cultural groups and thus eliminates
the forms of social diversity that heterogeneity was thought to help create. This
suggests that-in addition to previous findings that increased heterogeneity fa-
cilitates the maintenance of cultural diversity-under certain conditions, limiting
cultural

4.3.3 Dynamic time scales

In order to understand the final structure of the network in phases I and II we
analyzed the time evolution of the nodes’ states and interaction links. In Fig. 4.35
we plot the time evolution of the density of network components, nc = number
of components/N, and domains, nd =number of domains/N, averaged over 1000
realizations, and for three values of q. An interesting quantity is the average time
to reach the final frozen configuration τ. If τd [τc] is the average time at which nd
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Figure 4.35: Time evolution of the density of domains nd (solid line) and
network components nc (dashed line), for N = 2500 and values of q (a)
below, (b) at, and (c) above the transition point qτ = 194 ± 10. Each inset is

a zoom of the region that shows the approach to the final configuration.

[nc] reaches its stationary value, then τ is largest between τd and τc (see Figs. 4.35
and 4.36). The curves for τd and τc as a function of q cross at a value qτ (Fig. 4.36).
As we shall see, qτ identifies a transition between two different dynamic regimes
for the formation of domains and network components, that lead to the frozen
configurations observed in phases I and II (Figs. 4.35 and 4.36).

For q < qτ, the dynamics causes the network to break into a giant component and
small components. Due to the initial overlap between the states of the agents
inside each component, the network stops evolving at a time τc where nc reaches
its stationary maximum value (see Fig. 4.35a). After this stage, domains compete
inside each component, until only one domain occupies each component. The
approach to the frozen configuration is controlled by the coarsening process
inside the largest component, whose structure is similar to a random network
due to the random rewiring dynamics. Then, given that the dynamics of the last
and longest stage before reaching consensus inside this component is governed
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by interfacial noise as in the voter model [158], τ is expected to scale as the size
of the largest component τ ∼ S [69].

For q > qτ, there is a transient during which nd decreases, indicating that, in
average, domains grow in size (see Fig. 4.35c). At time τd, nd reaches a sta-
tionary value when the overlap between distinct domains is zero. At this stage
domains are still interconnected by links between incompatible agents. As do-
mains progressively disconnect from each other nc increases. When finally the
links connecting incompatible agents disappear all domains get fragmented, nc
equals nd and the system reaches its final configuration in a time τ = τc.

At qτ, the time scale governing the state dynamics is the same as the time scale
governing the network dynamics τd = τc (Figs. 4.35b,4.36). Thus, it indicates that
the ordered phase I is dominated by a slower state dynamics on a network that
freezes on a fast time scale, while in the disordered phase II the state dynamics
freezes before the network reaches a final frozen configuration. Even though qτ
is found to be larger than the critical point qc, the relative difference between qτ
and qc decreases with N (inset of Fig. 4.36), suggesting that both transition points
become equivalent in the large N limit. Thus, the competition between the time
scales τd and τc governs the fragmentation transition at qc.

We have derived an approximate expression for τ in phase II by studying the
decay of the number of links between incompatible agents N0. We shall see that
this approach unveils the transition from the frozen to the active phase, leading
to the transition point q∗.

In the continuum time limit, and neglecting the creation of incompatible links,
N0 decays according to the equation:

dN0

dt
' −

1
1
N

2N0

〈k〉N
Nc

N
= −

2N0Nc

〈k〉N
. (4.5)

In a time step ∆t = 1
N , an incompatible link (i, j) is chosen with probability

2N0
〈k〉N . One of its ends j is moved to a random node k. The probability that k is
compatible to i is Nc

N , where Nc is the number of compatible agents to i but still
not connected to i. In a mean-field spirit, every node has 〈k〉 edges that need to be
connected to 〈k〉 different compatible agents. We approximate Nc as the average
number of compatible agents per agent. When i attaches an edge to a compatible
agent, N0 is reduced by one while Nc is reduced by 2/N given that both i and
k loose a compatible partner. Assuming that the set of compatible agents to i
remains the same we write Nc '

2N0
N + A, where A = Nc(0) − 2N0(0)

N '
NF
q − 〈k〉
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for N � 1 and q � F. Substituting this last expression for Nc into Eq. (4.5) and
rewriting it in terms of the transition point q∗ = NF/〈k〉we obtain

dN0

dt
' −

2N0

〈k〉N

(
2N0

N
+
〈k〉
q

(
q∗ − q

))
. (4.6)

Equation (4.6) has two stationary solutions. For q < q∗, the steady configuration is
NS

0 = 0, corresponding to the frozen phases I and II, while for q > q∗ the stationary
solution NS

0 = 〈k〉N
2q (q − q∗) corresponds to the active phase III. We recover our

previous result that for q > q∗ the system reaches a stationary configuration with
a constant fraction of links N0 larger than zero, that are permanently rewired.
Therefore, the system never freezes. Note that in the limit of very large q,
all agents are initially incompatible, consequently N0 approaches to the total
number of links 1

2 〈k〉N.

Integrating Eq. (4.6) by a partial fraction expansion gives
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t =
qN

2(q∗ − q)
ln

q + 〈k〉N
2N0(t) (q

∗
− q)

q∗

 . (4.7)

For q < q∗, the system freezes at a time τ at which N0 ' 1, thus

τ '
qN

2(q∗ − q)
ln

q + 1
2 〈k〉N(q∗ − q)

q∗

 , for qτ < q < q∗. (4.8)

This result is in agreement with the numerical solution (Fig. 4.36).

For q > q∗, the system reaches a stationary configuration. Thus we define τ as
the time at which N0 '

〈k〉N
2q (q − q∗) + 1, then

τ '
qN

2(q∗ − q)
ln

[
2q2

q∗(〈k〉N(q − q∗) + 2q)

]
, (4.9)

for q∗ < q < N2F
2 . τ decreases with q and it vanishes for q > N2F/2 where initially

all pairs of nodes are incompatible, thus the system starts from a stationary
configuration, giving τ = 0 for q > N2F

2 .

From Eqs. (4.8) and (4.9) we obtain that τ reaches a maximum value equal to
1
4 〈k〉N

2 at q = q∗; an indication of the transition.

4.3.4 Cultural Drift and Coevolution

In the review of previous results on the Axelrod’s model in section 4.1 we dis-
cussed that cultural drift of small rate eventually orders the polarized configura-
tions, therefore the globalization-polarization transition in a fixed networks is not
robust against the introduction of cultural drift. Contrary of this feat, the analysis
of the co-evolutionary dynamics suggests that in region II, where nontrivial mul-
ticultural states survive in a co-evolving network, the co-evolutionary cultural
processes of homophily and influence may in fact stabilize the co-existence of
distinct cultural regions even in the presence of continuous stochasticity. Follow-
ing Klemm et al. [152, 158], we add cultural drift to the evolutionary dynamics
by adding noise in the form of continuous random shocks, as defined by the
following rule: With probability r, perform a single feature perturbation. A
single feature perturbation is defined as randomly choosing an agent i from the
population, i ∈ {1, ...,N}; randomly choosing one of i’ s features, f ∈ {1, ...,F}; then
randomly choosing a trait s from the list of possible traits, s ∈

{
1, ..., q

}
, and setting
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Figure 4.37: Panel (a) shows the numerical simulation of the model on
2D fixed network with no noise (r = 0, solid line) and cultural drift (r =
10−5, dashed line) for F = 3,N = 1024 and q = 20. The solid line (at the
bottom) shows very high cultural diversity, while the dotted line shows
the emergence of a global monoculture. Panel (b) shows the dynamics for
no noise (r = 0, solid line) and drift (r = 10−5, dashed line) in a co-evolving

network for the Phase I.

σi f = s. Depending on whether the rate of perturbation r is less than or greater
than the time scale on which the homophily and influence dynamics operate, the
system will either be slightly perturbed on a regular basis (small noise rate), or
the system will be constantly flooded with noise (large noise rate) and unable to
reach any kind of equilibrium. In fixed networks, there is a critical value of the
noise rate rc above which noise dominates the behavior of the system [158]. We
are here interested in the small noise rate limit (r < rc),which tests the stability
of cultural diversity in the presence of cultural drift.

As a benchmark for comparison, Figure 4.37 shows the effects of cultural drift
for a fixed network with value of q in Phase I for which the system reaches a
multicultural configuration and for a co-evolutionary model. For a fixed network
(Figure 4.37a), we observe that without cultural drift (r = 0, solid line) the
system stabilizes in a multicultural state Smax � N for the whole duration of the
simulation. The value of q chosen is larger that the critical value (q = 12) for the

100



4.3. CO-EVOLUTION DYNAMICS IN AXELROD’S MODEL

globalization-polarization transition in a fixed network (section 4.1) However,
cultural drift (r = 10−5, dashed line) drives the system toward a monocultural
state, where Smax ∼ N [152, 158]. It is worth noting that this monocultural state
is not fixed, as perturbations take the system in random excursions away from
and then back to any of the qF equivalent monocultural states. As a new trait
percolates through the network, the size of the largest cultural group drops as
more people adopt the new trait. However, as even more people adopt the
trait, the size of the largest group increases again until cultural uniformity is
restored. For a co-evolving network (Figure 4.37b), we observe that after an
initial transient, the system orders itself in a monocultural state. This happens
in the same time scale with noise (dashed line) and without noise (solid line).
As in the fixed network, cultural drift causes random excursions from the final
monocultural state, only to return to another one.

A more interesting effect is shown in Figures 4.38a and 4.38b, which correspond
to Phase II. For the fixed network (Figure 4.38a), the results are the same as
the phase I: Without noise (solid line), the system stabilizes with high levels of
heterogeneity, but with noise (dashed line), the system reaches a homogeneous
state. As before, noise-induced excursions away from monoculture give rise to
changes in the cultural makeup of the group, but the system always returns to
a monocultural state. For the co-evolving network (Figure 4.38b), we observe
that in the absence of cultural drift (solid line), the co-evolution model quickly
finds a stable state and then remains in that state for the rest of the simulation.
When cultural drift is added to the co-evolution model (dashed line), not much
happens. The model with noise reaches a stable state in about the same time,
and with Smax/N of about the same size, as it does without noise. Small perturba-
tions occasionally propagate through the groups, causing shifts in their cultural
identities. However, the network structure, the number of physical groups, and
the composition of the groups remain unchanged.

Figure 4.39 shows the number of cultural groups corresponding to Figure 4.38.
As expected, the fixed network without noise (solid line) stabilizes with a large
number of cultural groups, but when noise is added (dashed line), the num-
ber of cultural groups drops to one. Conversely, for the co-evolving network
both without noise (solid circles) and with noise (open circles), diverse cultural
groups stabilize in about the same time and remain intact throughout the sim-
ulation. While cultural drift may cause slight changes in the internal culture of
the groups-either through perturbations occurring, then dying out, or through
perturbations successfully propagating through the cultural groups-the mem-
bership of the cultural groups remains distinct. Without cross-cutting [178] ties
between these groups, there are no opportunities for new cultural exchanges to
incite crossborder interaction between cultural groups. Their isolationism guar-
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Figure 4.38: Panel (a) shows a fixed network in region II, with no noise
(r = 0, solid line) and cultural drift (r = 10−5, dashed line) for F = 3,
N = 1024 and q = 100. Once again, the solid line (at the bottom) shows
very high cultural diversity, while the dotted line shows the emergence of a
global monoculture. Panel (b) shows the dynamics for no noise (r = 0, solid
line) and drift (r = 10−5, dashed line) in a co-evolving network in Phase II.
The co-evolving model produces the same level of cultural diversity (and
same number of groups), both without noise and in the presence of cultural

drift.

antees that they can maintain their cultural distinctiveness-dynamic though it
may be-even in the face of persistent cultural drift.

To understand why cultural drift does not cause cultural groups to break down,
it is necessary to recall that groups will only break down if they form links to
other groups. However, new links are only made when existing ties are dropped.
Thus, the stability of groups in the dynamic model hinges on the low likelihood
that an actor will drop a social tie, which is equivalent to the likelihood of having
zero overlap with a fellow group member. Once groups have formed, the local
processes of homophily and influence create cultural consensus within the group.
Thus, for an actor to have zero overlap with one of its neighbors, a sequence of
perturbations must occur such that an actor goes from complete overlap to zero
overlap. A lone perturbation on one feature will leave the altered actor with
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Figure 4.39: (F = 3, N = 1024, q = 100). The number of cultural groups
in the fixed (no symbols) and co-evolving (circular symbols) networks
are shown in the time series in Figure 4.38. For fixed networks without
noise (solid line), the number of cultural groups remains high, while in the
presence of cultural drift (dashed line), the number of cultural groups drops
to 1. For co-evolving networks with cultural drift (empty circular symbols)
and without it (solid circular symbols), the same number of cultural groups

form and are maintained.

a very high level of similarity with its neighbors. Thus, a single perturbation
will result in either the new cultural feature reverting to its original state (if the
altered actor is influenced by its neighbor) or the new cultural feature being
adopted by a neighbor (if the altered actor influences its neighbor). In both
cases, the dynamics of homophily and influence guarantee that the local group
will achieve cultural consensus on the newly introduced feature, either through
its elimination or its adoption. For similarity between neighbors to decline, an
actor with a new cultural feature must keep the cultural feature without it either
being adopted or eliminated, while a second perturbation occurs, either to the
originally altered actor or to one of its neighbors. This second perturbation must
occur on a separate cultural feature and must lessen the overlap between the two
neighbors. Once again, no influence can take place; otherwise, their similarity
will increase, leading toward the absorption or elimination of the new traits. This
sequence of perturbations must occur, without interruption by the processes of
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local influence, F times for two culturally identical neighbors to develop zero
overlap. The probability of this occurring is roughly 1/NF, or the chance that a
single agent will be perturbed F times in a row on a different feature each time.
The probability is even lower if we consider that none of these perturbations
can match any of the neighbors’ current traits. For the systems we have been
studying (N = 104) with F = 10, the chances of such an event are less than one
in 1040. Furthermore, for the noise levels used here and elsewhere [152, 158]
to represent cultural drift, the model dynamics operate at a much faster time
scale than do the perturbations (on average, all actors are activated ten times
between each global perturbation), making the probability that such a sequence
of perturbations could occur before homophily and influence dynamics would
recover cultural consensus infinitesimally small. Thus, at least during time scales
that are quite large as compared with the time scale of cultural convergence
(approximately 103), multicultural states in co-evolutionary systems are robust
against cultural drift.

4.3.5 Discussion on co-evolution dynamics in Axelrod’s model

We have studied the Axelrod model with co-evolution of the interaction network
and state dynamics of the agents. The interplay between structure and dynamics
gives rise to two different transitions. First, a recombination transition at q = q∗

between a frozen and an active phase. The characteristic time to reach a station-
ary configuration shows a maximum at the transition point between these two
phases. Second, an order-disorder transition associated with network fragmen-
tation that appears at a critical value qc where the component size distribution
follows a power-law. Finite size scaling analysis suggests that in the large N limit
this transition becomes continuous with qc going to infinity. The fragmentation
is shown to be a consequence of the competition between two coupled mecha-
nisms, network formation and state formation. These mechanisms are governed
by two internal time scales, τc and τd respectively, which are not controlled by
external parameters, but they emerge from the dynamics. For q < qc the network
components, that are formed first, control the formation of states. For q > qc the
fast formation of domains shape the final structure of the network.

From the perspective of social sciences, this co-evolutionary model formalizes the
idea that patterns of social interaction change with processes of social influence.
The co-evolution of network structure and cultural traits reveals a complex re-
lationship between heterogeneity and the emergence of diverse cultural groups,
indicating different qualitatively distinct regions or phases. In phase I, a large
component of the network remains connected and co-evolutionary dynamics
lead to a dominant monocultural state in the presence of noise. In phase II,
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cultural groups can form in the dynamic network, and these groups are stable
even in the presence of continuous stochastic shocks. Consistent with the results
of Popielarz and McPherson [172], in region II, the interaction of homophily and
influence produces a niche structure whereby peripheral members are either
absorbed into the core beliefs of the social group (by influence) or are forced out
of the social group (by zero overlap). It is significant, however, that these social
niches are not produced through competition or selection pressure but through
the mechanisms of homophily and influence in a co-evolutionary process. Thus,
even in the absence of selection pressures, a population can self-organize into
stable social niches that define its diverse cultural possibilities. We also found
that as heterogeneity increases, q approaches the threshold at which it enters
phase III. These very high levels of heterogeneity are empirically unrealistic in
most cases; however, they warn of a danger that comes with increasing options
for social and cultural differentiation, particularly when the population is small
or there is modest cultural complexity. Unlike cultural drift, which causes cul-
tural groups to disappear through growing cultural consensus, a sudden flood
of cultural options can also cause cultural groups to disappear; but instead of
being due to too few options limiting diversity, it is due to excessive cultural
options creating the emergence of highly idiosyncratic individuals who cannot
form group identifications or long-term social ties.

Moreover, recent studies of the behavior of participants in online communities
suggest that group formation processes and the emergence of friendship cliques
in online environments may exhibit the same co-evolutionary dynamics as those
found in our model. Backstrom et al. [179] found that interactions in the dy-
namic social networks of online communities produced distinct social groups
with densely knit strong ties [109] within social clusters. These emergent groups
serve both to reinforce the existence of social ties within clusters and to maintain
group identity and shared practices. These findings are particularly salient to
our results, because the Backstrom et al. [179] study is one of the few studies
of social interaction in which the dynamics of adding and dropping ties has
been closely observed in the formation of communities. Their results show not
only that distinct cultural clusters emerge through endogenous interaction but
also that these groups are highly stable. This trend in online populations sug-
gests that even in the virtual world, network homophily governs the dynamics
of cultural co-evolution. People have a preference for interacting with others
who share similar traits and practices [169, 180], which naturally diversifies the
population into emergent social clusters. Our results thus reveal an optimistic
implication of these preliminary findings from online communities: Despite the
growing technological trends toward increased connectivity and globalization,
social diversity can be maintained even in highly connected environments. For
thousands of years of human history, the emergence and maintenance of group
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boundaries has sustained the diversity of cultural practices across different pop-
ulations [181–183]. In modern online communities, similar patterns of diver-
sification emerge, and for a similar reason: The homophily principle actively
constrains the communities to which we belong and the people with whom we
choose to interact, share ideas, and adopt our patterns of life [169, 172]. The re-
sults from our model show that through the dynamics of network co-evolution,
these patterns of preferential interaction of like with like produce cultural pockets
whose identity and ideas, though flexible, are nonetheless stable from dissolution
into a homogeneous global culture. While trends toward globalization provide
more means of contact between more people, these same venues for interaction
also demonstrate the strong tendency of people to self-organize into culturally
defined groups, which can ultimately help to preserve overall diversity.
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Chapter 5

Coeovolutionary Threshold Dy-
namics

5.1

Introduction

The relation between a cause and its effect is usually abrupt in complex systems,
in the sense that a small change in the neighborhood of a subsystem may (or
not) trigger its reaction. This mechanism is at the heart of many models of
self-organized criticality [184] where a cascade starts when the system has been
frustrated beyond some threshold, e.g. the angle of a sand pile, but also in models
for the diffusion of ideas in social networks [9, 19, 185] where the adoption of
a new idea requires simultaneous exposure to multiple active acquaintances,
and in integrate-and-fire neuron dynamics [186] where the voltage on a single
neuron increases until a specified threshold is reached and it suddenly fires by
emitting an action potential, thereby quickly returning to its reference. These
types of model consist in cascading propagations on a fixed topology, i.e., a
network of some sort, until a frozen configuration is reached, but they do not
incorporate the feed-back existing between network topology and dynamics
[16, 33, 62, 122, 128, 187–190], namely that the topology itself may reorganize
when it is not compatible with the state of the nodes. This coevolution dynamics
was discussed in the introduction of this thesis (Chapter 1) and may originate
from homophily and social balance in social networks or synaptic plasticity in
neuron dynamics.
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Figure 5.1: Update process of CTD for two different configurations of
neighbors. When one out of four neighbors is in a different state, the central
node breaks its links and creates a new link to a randomly chosen node.
When three out of four neighbors are in a different state, the threshold φ is

exceeded and the central node thus adopts the majority state.

In this chapter, we considered a model for coevolutionary threshold dynamics
(CTD). Let us describe its ingredients in terms of diffusion of opinions in social
networks [20, 191] while keeping in mind that the model is applicable to more
general systems. The system is made of a social network of interaction, whose N
nodes are endowed with a binary opinion s, + or −. The dynamics is driven by
the threshold φ, such that 0 ≤ φ ≤ 1 and, in most cases of interest, φ > 1/2. At
each step, a randomly selected node i evaluates the opinion of its ki neighbours.
Let φi be the fraction of neighbours disagreeing with i. If φi ≤ φ, node i breaks
the links toward those disagreeing neighbours and rewires them to randomly
selected nodes. If φi > φ, i adopts the state of the majority. In contrast with the
model studied in Chapter 2, in this model the dynamic threshold is introduced as
a dynamical rule for the evolution of the network, while in the case of the model
for social learning the threshold is used as interaction rule for the consensus on
a fixed network. By construction, the dynamics perdures until consensus, i.e.,
all agents having the same opinion, has been attainted in the whole system or
in disconnected components. This absorbing state obviously depends on the
threshold φ but also, as we will discuss below, on its initial condition.
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A complete analysis of CTD requires extensive computer simulations, which is
not the objective of our work. We will instead focus on a simplified version of
the model that can be studied analytically and pinpoint the key mechanisms
responsible for its behavior. In this simplified version, the network is directed
and all the nodes have two incoming links, i.e. each is influenced by exactly two
nodes, while their out-degree is initially Poisson distributed. Moreover, we will
take φ = 1/2, such that CTD now simplifies as follows. At each time step, a node
i is selected at random. If i is surrounded by two nodes with different opinions,
it switches its opinion, i.e., si → −si. If the opinion of only one of its neighbors,
say j is different, i cuts its link from j and reconnects to a randomly chosen
node, i.e., its in-degree remains constant. It is interesting to stress that the choice
φ = 1/2 for a directed network with a constant in-degree of two corresponds
to the unanimity rule [192] when no rewiring is implemented. This model is
well-known to exhibit a non-trivial relation between initial and final densities of
+ nodes, denoted by n+;0 and n+;∞ respectively. We will show that the addition
of the rewiring mechanism leads to a transition from a connected phase with
consensus where all the nodes asymptotically belong to the same cluster, to a
fragmented phase where two disconnected clusters of different opinions survive.
The critical parameter of this transition is shown to be the initial density n+;0 of
+ nodes, i.e.,

n+;0〈nc or n+;0〉1 − nc one single component,
nc < n+;0 < 1 − nc two disconnected components, (5.1)

where nc is the critical density.

5.2

Fragmentation transition

In order to analyze the system dynamics, we follow the approach proposed in
[192] and focus on the number Ns0;s1s2 of configurations where a node in state s0
receives its incoming links from a node in state s1 and another node in state s2.
Let us denote by {s0; s1s2} such a triplet of nodes. By construction, si may be +1
or 1 and

∑
s0s1s2

Ns0;s1s2 = N. Moreover, the order of the links is not important and
therefore Ns0;s1s2 = Ns0;s2s1 . By neglecting higher order correlations than those
included in Ns0;s1s2 , it is possible to derive the set of equations
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N+;++(t + 1) = N+;++ +
1
N

(
N−;++ + n+N+;+− + π−→+N+;+− − 2π+→−N+;++

)
N+;−−(t + 1) = N+;−− +

1
N

(−N+;−− + π+→−N+;+− − 2π−→+N+;−−)

N+;+−(t + 1) = N+;+− +
1
N

(−n+N+;+− + 2π−→+N+;−− + 2π+→−N+;++

−(π+→− + π−→+)N+;+−)

N−;−−(t + 1) = N−;−− +
1
N

(N+;−− + n−N−;+− + π+→−N−;+− − 2π−→+N−;−−)

N−;++(t + 1) = N−;++ +
1
N

(−N−;++ + π−→+N−;+− − 2π+→−N−;++)

N−;+−(t + 1) = N−;+− +
1
N

(−n−N−;+− + 2π+→−N−;++ + 2π−→+N−;−−

−(π+→− + π−→+)N−;+−) (5.2)

where n+ and n are the density of + and − links respectively. π+→(π→+
) is the

probability for a randomly selected +(−) node to switch its opinion to −(+).
By construction, this quantity is the probability that a random +(−) node is
connected to two −(+) nodes

π+→− =
N+;−−

N+
,

(5.3)

π−→+ =
N−;++

N−

where N+ =
∑

s1,s2
N+;s1s2 and N− = N−N+ are the total number of + and − nodes

respectively. Let us describe in detail the first equation for N+;++, the other ones
being obtained in a similar way. Its evolution is made of several contributions.
The first term is the probability that a {−; ++} triplet is selected and transforms
into {+; ++} by unanimity rule. The second term is the probability that a {+; +}
triplet is selected and the rewired link (originally from + to −) arrives on a +
node (with probability n+). The last two terms account for possible change of
the state of one of the two neighbours in the triplet, as they may also switch
their opinion because of a unanimity rule in another triplet, and are evaluated
by using the aforementioned π+→− and π−→+.

As discussed in [192], several initial conditions may in principle be chosen for
the system of equations (5.2), each of them leading to its own trajectory in
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the 6-dimensional dynamical space. Such initial conditions are subject to the
normalization

∑
s0,s1,s2

Ns0;s1s2 = N, and to the conservation laws

T+ = 2N+, T− = 2N− (5.4)

where the quantities

T+ = 2N+;++ + 2N−;++ + N+;+− + N−;+−

(5.5)
T− = 2N+;−− + 2N−;−− + N+;+− + N−;+−

are the total number of +(−) incoming neighbors in the triplets. Relations (4)
simply mean that each node i that is a neighbor in a triplet

{
sx; sisy

}
is also at

the summit of another triplet
{
si; sx‘ sy‘

}
(as it also receives two incoming links by

construction). In order to select one of the several configurations Ns0;s1s2 that still
satisfy the above constraints, we will further assume that the initial configuration
is uncorrelated and therefore that each node has the same probability n+;0 to be
+. Among all the possible configurations for which N+ = Nn+;0, we therefore
select the initial condition

N+;++ = Nn3
+;0

N+;−− = Nn+;0(1 − n+;0)2

N+;+− = 2Nn2
+;0(1 − n+;0)

N−;−− = N(1 − n+;0)3

N−;++ = N(1 − n+;0)n2
+;0

N−;+− = 2N(1 − n+;0)2n+;0 (5.6)

Before going further, it is instructive to look at the total number N+ =
∑

s1,s2
N+;s1s2

of + nodes whose time evolution is obtained by summing over the first three
equations of (5.2)

N+(t + 1) = N+ +
1
N

(N−;++ −N+;−−) (5.7)
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Initial density of  + nodes
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Figure 5.2: In the upper figure, we plot the relation (5.8) between the initial
density and the final density of + nodes, evaluated by integrating the set of
Eqs.(5.2) and by performing numerical simulations of a network made of
1000 nodes. We also plot the order parameter r = 〈1/2− |1/2− n+,∞|〉which
confirms that the system actually breaks into disconnected components
when nc < n+,0 < 1 − nc, i.e., we only plot (5.8) in the interval [0, 0.5] as the
curves are symmetric around the point (0.5, 0.5). In the lower figure, we
plot the probability density ρ(n+;1) that the absorbing state has a density

n+;∞ of + nodes for N = 100 and N = 1000 when n+;0 = 0.4.

This relation shows that N−;++ = N+;−− at stationarity. A careful look at the
second equation of (5.2) shows, however, that N+;−− has to decay until it reaches
zero. The third equation of (5.2) also shows that the only stationary solution of
N+;+− is also zero when N−;++ = N+;−− = 0, thereby confirming that the dynam-
ics asymptotically reaches a frozen configuration where consensus is reached
among connected nodes. The dynamics is therefore driven by two types of
triplets: the triplets {+;−−} and {−; ++} drive the system toward consensus,
while the configurations {+; +−} and {−; +−} allow for a topological rearrange-
ment of the network. This rearrangement implies that the only frozen states
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Figure 5.3: Visualisation of the initial and final states of one realization of
the dynamics for a network made of N = 100 nodes. The initial density of
+ nodes n+,0 = 0.4. The asymptotic network is made of two clusters. The +

cluster is now made of 35% of the nodes.

are those corresponding to consensus (in one or several clusters)∗ and drives
the division of the system into disconnected clusters. The competition between
these two types of mechanisms is crucial for the transition (5.1). One should
also note that models for opinion dynamics are known to exhibit coexistence of
different opinions when applied to a static underlying network with modular
structure [194]. In the case of CTD, in contrast, it is the rewiring of the links
that reorganizes the system into modules and thereby allows for coexistence. By
integrating recursively the system of Eqs.(5.2) starting from the initial conditions
(5.6), we obtain a non-trivial relation

n+,∞(n+,0) (5.8)

∗This mechanism reminds of the social temperature defined in [193] where random rearrange-
ments of the links drive the system toward consensus.
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between the initial density and the final density of + nodes. This numerical
integration confirms the above discussions, and clearly shows that a transition
occurs at nc ≈ 0.22 (see Fig. 5.1). One should insist on the fact that this relation
differs from the standard exit probability measured when the dynamics takes
place on a static network [38, 195, 196]. In the latter models, n+,∞(n+,0) would
measure the probability to end in a + consensus (in the whole system) starting
from some initial density of + nodes. Relation 5.8 is more reminiscent of the
standard unanimity rule [193] without rewiring, where the system asymptot-
ically reaches a frozen state different from consensus at each realization, and
where n+,∞ is the average number of + nodes in this frozen state. Because of the
rewiring process, however, a non-vanishing value of n+,1 also implies that the
system has split into two disconnected clusters and that a different consensus
has been reached in each cluster.

We have verified the accuracy of our calculations by performing numerical sim-
ulations of the model (see Fig. 5.2). To do so, we have considered systems
made of 1000 nodes and have averaged the asymptotic density of + nodes (eval-
uated when the dynamics is frozen) over 1000 realizations for each value of
n+,0. In order to check that the system actually breaks into two clusters when
nc < n+,0 < 1 − nc (see Fig. 5.3), we have also measured r = 〈1/2 − |1/2 − n+,∞|〉.
This order parameter would vanish if, for each realization, n+,∞ is either zero
or one, while r = 〈n+,∞〉 if the system breaks into two clusters. The simulation
results show an excellent agreement with the theoretical predictions and confirm
the fragmentation of the network at the critical value nc. Finally, we have also

looked at the probability density ρ(n+,∞), i.e.,
∫ 1

0 ρ(x)dx = 1, that the absorbing
state is made of n+,∞N nodes. This quantity is measured by performing 5 × 104

simulations starting from the same initial condition n+; 0 = 0.4. The distribution
is shown to be peaked around its average, in contrast with the two delta peaks
at 0 and 1 that would be expected if full consensus had been the only absorbing
state.

5.3

Conclusion and outlook

To conclude, we have focused on a model for coevolutionary threshold dynamics
where the binary state of a node and its links coevolve. We have shown that
the system may undergo fragmentation. Thus seen to be a general feature of
coevolution network dynamics and we have also described this transition in
section 4.3 for the Axelrod model. It has also been found in the voter model
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[122], and also in the case of coupled maps with variable coupling strength [197].
In the case of CTD, the critical parameter is the initial condition, as a sufficient
fraction of + nodes is necessary for such nodes to survive and to separate from
the main cluster. In this chapter, we have focused on a simplified version of CTD
where the underlying network is directed and regular, and where the in-degree
has the smallest non-trivial value, i.e., two. Additional computer simulations are
therefore required in order to explore the role of the thresholdφon the asymptotic
state in more complex directed or undirected networks. Finally, let us point to
an interesting generalization of CTD that would include two different threshold
φr and φa for either rewiring links from disagreeing neighbours or adopting the
state of the majority. Such a model would unify two seminal threshold models,
namely the Granovetter model for the diffusion of cultural traits [9] and the
Schelling model for social segregation [30, 198].
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Chapter 6

Conclusions and summary

In this work, we have introduced and analyzed two important ingredients of
the general problem of social consensus, including the specific cases of social
learning, opinion formation and cultural globalization. These new ingredients
are on the one hand, the competition between local and global interaction and
on the other hand, the co-evolution dynamics. In this regard, we have explored
different social models: threshold model of Granovetter [9] applied, in particular,
to a situation of social learning, bounded confidence model of opinion formation
introduce by Deffuant et al. [10] and the Axelrod’s model for the dissemination of
culture [11]. In summary, in Chapters 2, 3 and 4, we have studied the competition
between local and global interactions, analyzing also the effect of the topology of
the underlying network of interactions. The problem of co-evolution dynamics
has been addressed in Chapters 4 (section 4.3) and 5.

General qualitative findings that can we identify in this work are the following:
In systems with competition between local and global interactions, we have
found that a strong interaction with a field can induce disorder in the system,
while a weak interaction produces an alignment with the field, in contrast to
the typical behavior observed in equilibrium systems. Our analysis shows that
this behavior is generic independently of the local, global or external nature of
the field. We have also found that systems interacting with an external field
are able to order spontaneously in a state different to the one selected by the
external field. This is possible when there are long range links in the network
of interactions. For systems with co-evolutionary dynamics, we find a generic a
fragmentation transition. We show that this fragmentation occurs when the time
scales that govern the evolution of the interaction network and the evolution of
the state of the nodes are of the same order.
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In chapter 2, we have studied the problem of local versus global interactions in
the context of social learning by mean-field analysis and numerical simulations.
We have considered local interactions among the agents based on threshold
dynamics [9]. These interactions compete with an external signal to be learnt by
the agents. We show that depending on the intensity of the signal and the level
of the threshold, complete social learning occurs (all nodes of the system adopt
the same state of the signal) The system can reach three different stationary
configurations: Two disordered phases, and one ordered phase in which the
state of the nodes have the same state of the external signal. In the cases of the
disordered phases, one phase corresponds to a disordered active phase, while the
other one corresponds to a frozen disordered state. We have also analyzed the
effect of the topology of the network of interactions, finding that local interactions
are able to promote social learning.

Within the problem of global versus local interactions, we have studied in Chap-
ters 3 and 4 (section 4.2.3) the competition between collective self-organization
and external forcing in the Deffuant[10] and the Axelrod [11] models with an
external field. We show that, for both models, the system displays three phases:
two ordered phases, one equal to the state of the field and another different to
the state imposed by the field, and one disordered phase. We show that the
ordered phase in a state different from the one imposed by the external field
is possible because of the long-range interactions that exist in fully connected,
random and scale free networks. Our results challenge the expected effect of
an external field: the field might break the symmetry in a given direction, but
the system orders, breaking the symmetry in a different direction. There are two
common ingredients in the two models in which we find this phenomenon: i)the
agent-agent interaction rule is such that no interaction exists for some relative
values characterizing the states of the agents in the system. ii)the presence of
long-range links. Both features are typical of social systems: there is often some
bound or restriction for the occurrence of interaction between agents, such as a
similarity condition for the state variables, and also many real social networks
posses long-range interactions.

In the context of Axlerod’s model we have also considered in a regular 2d network
interaction with global and local endogenous fields, besides the interaction with
an external field. The fields represent different forms of mass media influences.
We find two main effects that contradict intuition based on the effect of interacting
fields in traditional equilibrium systems. First, we find that an interacting field
might disorder the system: For parameter values for which the system orders
due to the local interaction among the elements, there is a threshold value Bc
of the probability of interaction with a field B. For B > Bc the system becomes
disordered. This happens because of the competition between a similarity rule
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applied to the local interactions among elements, and applied to the interaction
with the field. This leads to the formation of domains and to a disordered system.
A second effect is that, for parameter values for which the dynamics based on the
local interaction among the elements leads to a frozen disordered configuration,
very weak interacting fields are able to order the system. However, increasing the
strength of interaction with the field produces growing disorder in the system.
The limit B → 0 is discontinuous and the ordering effect for B << 1 occurs
because the interaction with the field acts as a perturbation on the non stable
disordered configurations with frozen dynamics appearing for B = 0. In this
regard, the field behaves similarly to a random fluctuation acting on the system,
which always induces order for small values of the noise rate [158].

Our results for Axelrod’s model in a regular network are summarized in Fig. 6.1
which shows, for different values of B, the behavior of the order parameter S. In
an effective way the nonequilibrium order-disorder transition is shifted to larger
values of q when B is non-zero but very small. For larger values of B the transition
shifts to smaller values of q and the system is always disordered in the limiting
case B → 1. This limiting behavior is useful to understand the differences with
ordinary dynamics leading to thermal equilibrium in which a strong field would
order the system. In our nonequilibrium case, the similarity rule of the dynamics
excludes the interaction of the field with elements with zero overlap with the
field. Since the local interaction among the elements is negligible in this limit,
there is no mechanism left to change situations of zero overlap and the system
remains disordered. We have calculated, for the three types of field considered,
the corresponding boundary in the space of parameters (B, q) that separates the
ordered phase from the disordered phase (see Fig. 4.11). In the case of a constant
external field, the ordered state in this phase diagram always converges to the
state prescribed by the constant field vector. The nonuniform local field has a
greater ordering effect than the uniform (global and constant external) fields in
the regime q > qc (see Figure 6.1). The range of values of B for which the system
is ordered for q < qc is also larger for the nonuniform local field. In spite of the
differences mentioned between uniform and nonuniform fields, it is remarkable
that the collective behavior of the system displays analogous phenomenology
for the three types of fields considered: external, endogenous global and local.
At the local level, they act in the same manner, as a “fifth" effective neighbor
whose specific source becomes irrelevant. In particular, both uniform fields, the
global coupling and the external field, produce very similar behavior of the system.

In section 4.2.2 we have considered indirect mass media influence [129] in Axel-
rod’s model. We implement a filtering process for the agent-field interaction. In
the culturally homogeneous region, i.e., for q < qc, the effect of this indirect influ-
ence is similar to that caused by direct influence of mass media. For small values
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Figure 6.1: Influence of the interacting field on the nonequilibrium order-
disorder transition as described by the order parameter S. Results are
shown for B = 0 (solid squares), a global (B = 10−5 (empty squares), B = 0.3

(circles)) and a local (B = 10−5 (triangles)) field. Parameter value F = 3.

of the filtering probability R the system reaches a culturally homogeneous state.
For values of R greater than a threshold value the system converges to a state of
cultural diversity. Thus, both mechanisms of feedback information, either direct
or indirect, promote multiculturality in a region of parameters where it would
not be present in the absence of any feedback. In the region of parameters q > qc
where multiculturality occurs for either B = 0 or R = 0, the filtering mechanism
has, for values of the probability R < 1, a very weak effect in comparison to the
one caused by a direct mass media influences: there is only a small decrease in
the number of cultural groups formed.

Our results for direct and indirect mass media influences, substantiate previous
findings by Shibanai et al.[129] showing that cultural diversity is favored by
increasing the strength of the mass media influence. This effect occurs inde-
pendently of the mechanisms of action of the mass media message. However,
through an analysis of the full range of parameters measuring cultural diversity,
we establish that the enhancement of cultural diversity produced by interaction
with mass media only occurs for strong enough mass media messages. Strong
media messages do not lead to cultural homogenization because agent-agent
interaction becomes inefficient.

The interacting fields that we have considered can be interpreted as different
kinds of mass media influences acting on a social system. Our results for Ax-
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elrod model in a regular 2d network suggest that both, an externally controlled
mass media or mass media that reflect the predominant cultural trends of the
environment, have similar collective effects on a social system. We found the
surprising result that, when the probability of interacting with the mass media is
sufficiently large, mass media actually contribute to cultural diversity in a social
system, independently of the nature of the media. Mass media is only efficient in
producing cultural homogeneity in conditions of weak broadcast of a message,
so that local interactions among individuals can be still effective in constructing
some cultural overlap with the mass media message. These results identify the
power of being subtle in mass media messages. In addition, local mass media
appear to be more effective in promoting uniformity in comparison to global,
uniform broadcasts, which identifies the importance of local media (feedback at
regional levels) in the cultural globalization path.

In the last part of this thesis, we have analyzed in two different models, the
problem of co-evolution dynamics. In Chapter 4 (Section 4.3) we have studied
this problem in the context o the Axelrod’s model, while in chapter 5 we have
presented a threshold model for the co-evolution of the structure of the network
and the state of its nodes. We have shown that both systems may undergo a
fragmentation transition in spite of the different rules of local interaction and
network evolution. Our results give a hint on the role of co-evolution dynamics
in social group and community formation.

In the case of the Axelrod’s model (Chapter 4) we show that the system displays
two transitions, network recombination and fragmentation, governed by the
time scale that emerges from the dynamics. The recombination formation sep-
arates a frozen configuration composed by disconnected network components
whose nodes share the same state, from an active configuration with a fraction
of links that are continuously being rewired. It is found that this fragmentation
transition in the system is an anomalous order-disorder transition governed by
crossover between the time scales that control the structure of the network and
the state dynamics. Another interesting result that we have found in this system
is that patterns of diversity are stable in presence of cultural drift (noise). In other
words, we show that the system is robust in the presence of noise in contrast
with the case of a fixed network, in which the system always reaches consensus.

From the point of view of Social Sciences, our co-evolution study of cultural
differentiation introduces network homophily into the dynamics of cultural in-
teraction. This co-evolutionary model formalizes the idea that networks of social
interaction change with the processes of social influence. The co-evolution of
network structure and cultural traits reveals a complex relationship between
heterogeneity and the emergence of diverse cultural groups, indicating different
qualitatively distinct regions of the parameter space. These qualitative results are
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consistent with results of Popielarz and McPherson [199], in which the interac-
tion of homophily and influence produces a niche structure whereby peripheral
members are either absorbed into the core beliefs of the social group (by influ-
ence) or are forced out of the social group (by zero overlap). It is significant,
however, that these social niches are not produced through competition or se-
lection pressure but through the mechanisms of homophily and influence in a
co-evolutionary process. Thus, even in the absence of selection pressures, a pop-
ulation can self-organize into stable social niches that define its diverse cultural
possibilities.

In Chapter 5, we present a generic threshold model for the co-evolution of the
structure of a network and the state of its nodes. In this model, we use a threshold
dynamics for the evolution of the network. We have derived equations for the
evolution of the system toward its absorbing state. We have shown that the
system displays a transition from a connected phase to a fragmented phase as
in the case of the Arelrod’s model. This fragmetation transition depends on the
initial configuration.
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Chapter 8

Appendix

In this Appendix we compare the two parameters, the average fraction of cul-
tural domain g and the normalize average size of the largest domain S that we
have used to characterize the ordering properties in Axelrod’s model of cul-
tural dynamics in Chapter 4. We will consider 2d lattice with an external field
interaction.

Researchers in the Social Sciences have usually employed the number of cultural
groups as a measure of multiculturality in a social system [11, 129, 150]. Follow-
ing these studies, and in order to characterize the transition from the ordered
(monocultural) state imposed by a field M to a disordered (multicultural) state
when the intensity of the external field B is varied, we have considered in Sec. 4.2
the average fraction of cultural domains respect to the system size, g, as an order
parameter. Figure (8.1) shows the parameter g as a function of q for different
sizes of the system N and with a fixed intensity of the external field B = 0.035.
A change of behavior from an ordered phase to a disordered one takes place
at given transition value qc that can be determined by a regression fitting [14]
(N = 40000, it yields qc = 5). The slope of the curve g(q) changes at the value qc.
Figure (8.1)(b), in log-log scale, allows us to appreciate the effect of the system
size on the transition value qc in the presence of an external field. For the given
values of N, the transition value qc decreases as N increases. This points to the
existence of finite size effects in the order-disorder transition as described by g.
The behavior of the parameter g in the presence of an external field for very large
values of the system size N has been recently investigated numerically in refer-
ence [200]. These authors show that, for square lattices of sizes N > 500 × 500,
the behavior of g in a system subject to an external field with intensity B can be
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Figure 8.1: The average fraction of cultural domain g vs. q for B = 0.035,
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(squares) and N = 40000 (diamonds). a: lineal scale, b: log-log scale.

fitted by the relation

g(B) = a(B) +
b
N

(8.1)

where a(B) is a function such that a(B) → 0 as B → 0. In the thermodynamical
limit N → ∞ with a finite value of B, the parameter g does not vanish [200]. As
a consequence, no transition order-disorder can be observed in the limit N→∞
when the quantity g is used as an order parameter.

In the Physics community the tradition is to use S a order parameter. However,
the order-disorder transition induced by an external field when its intensity is
varied can also be characterized by the parameter S that measures the mean value
of the relative size of the larger domain in the system. Figure (8.2)(a) shows S as
a function of q for different system sizes N, and with a fixed intensity B = 0.035
of an external field. An order-disorder transition is observed at a critical value
qc, which becomes better defined as N increases.

The lower inset in Fig. (8.2)(a) plots the standard deviation σ of S showing
an maximum at qc characteristic of an order-disorder transition, occurs at the
critical value qc = 21. In addition, the upper inset in Fig. (8.2)(a) shows that
the distribution of domain sizes P(s) for the value qc = 21 follows a power law
P(s) ∼ S−γ with γ = 2.31± 0.02, a typical behavior at an order-disorder transition
point. Figure (8.2)(b) shows the parameter S as a function of qc − q for different
system sizes. The disordered phase here corresponds to values qc − q < 0, while
the ordered phase occurs for qc − q > 0. The transition at qc − q = 0 becomes
better defined as N increases. The curve S ∼ (qc − q)α, with α ≈ 0.45 ± 0.02
fits the behavior of S in the ordered phase for different system sizes. Thus,
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B = 0.035, F = 5. The red line corresponds to the curve S ∼ (qc − q)α, with
α ≈ 0.45 ± 0.02. In both (a) and (b), sizes are N = 2500 (circles), N = 10000

(squares), and N = 40000 (diamonds).

the parameter S exhibits the expected properties of an order parameter that
characterizes a phase transition.

The parameters g and S express different statistical order-disorder properties
of the system. The critical value of q for the order-disorder transition in the
presence of a field characterized through S does not coincide with that for this
transition as described by g. The maximum fluctuation of this order parameter,
the power law distribution of S and the scaling around to the critical point,
together with mapping of percolation reported in Section 4.2.4 suggest that S is
a order parameter in the usual sense, while g does not these properties.
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