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Abstract

This thesis is about the effects of disorder in the response properties

of nonlinear systems subjected to weak forcing. This is a very broad

topic that began in the early 80s with the discovery of stochastic res-

onance, a phenomenon by which noise cooperates with a weak forcing

to raise it above the threshold for detection. This effect has been ob-

served and described in a plethora of physical and biological systems,

that are too many to review here [21; 34]. The typical mechanism

involves a bistable system and a matching of time scales that occurs

at intermediate levels of noise: the half-period of the forcing, and the

residence time inside a potential well, that depends on noise according

to Kramer’s rate [31].

A parallel line of research was initiated more than 20 years later, in

2006, when it was found [12; 48] that quenched disorder in the form of

diversity could play the same role as stochastic disorder as a signal am-

plifier in extended systems. Most interestingly, it was shown [12; 48]

that any source of disorder that fulfils very generic requirements such

as leading to symmetric deviations around the average position of the

system, should lead to the same resonance effect. When acting upon

a bistable system, an intermediate level of disorder doesn’t destroy

bistability but leads to a lowering of the potential barrier, thereby

making a weak forcing suprathreshold. Thus, disorder induced res-

onance provides a theoretical framework that can encompass a wide

range of different sources of disorder, including noise in extended sys-

tems.

However, there are some types of disorder that do destroy bistability,

leading to the appearance of many multistable states separated by



small barriers. This will be the focus of my thesis. In this case, we can

also speak of disorder induced resonance, since we observe an optimal

response for an intermediate level of disorder, and the mechanism

is also related to the fact that weak signals become suprathreshold

for the small barriers created by disorder. Yet, the situation can

only be partially described with the same theoretical tools based on

mean field approximations that seem to work in the diversity induced

resonance situation [12; 56; 57]. Multistability leads to new behaviors

like the possibility to amplify even very weak or very fast signals,

with an amplification proportional to the strength of the signal, thus

presenting a richer more diverse behaviour in a changing environment.

The outline of this thesis is as follows. Since our aim is to explore the

different mechanisms by which different sources of disorder amplify

external forcing, we began by comparing in the first Part - Introduc-

tion the effects of noise and diversity on a generic bistable continuous

system. The second part will be devoted to present the results con-

cerning the effect of competitive interactions in two models: the same

bistable continuous model the one addressed in the first Part, and in

a discrete opinion formation model.
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Chapter 1

Stochastic resonance

The phenomenon of stochastic resonance was proposed in 1981 to explain the

periodicity of ice ages, [45; 47]. It is a somehow counterintuitive effect arising from

the cooperation between deterministic dynamics and dynamical disorder or noise.

By this effect, a system’s coherent response to a weak signal can be optimally

amplified by an intermediate level of noise. The prototypical example is that of a

continuous variable whose deterministic dynamics is relaxational in a double-well

potential. Noise induces jumps between the wells with a rate given by Kramers’

expression [31]. The system becomes optimally synchronised with the signal

when the signal half-period matches Kramers’ rate, as reflected by a maximum

value in a suitably defined response. Applications of stochastic resonance were

addressed in many areas, and the theory evolved in several directions (see [21; 34]

for thorough reviews). In what follows, I will present the main idea of stochastic

resonance by illustrating the phenomenon in the climate context where it was

originally proposed.

1.1 The φ4 model

The question that led to the discovery of stochastic resonance was: how to explain

the periodic recurrence of ice ages? The simplest models of the climate system

were energy balance models, that could be described by a bistable dynamics,

where the stable states x were either hot or cold.
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1.1 The φ4 model

dx

dt
= x − x3 (1.1)

Since in reality we observed an alternation of hot and cold periods, the chal-

lenge was to find a way to push the climate out of their stable states, and that

required an additional ingredient, that should affect the climate with the same

periodicity as the occurrence of ice ages. The only known time scale that coin-

cides with that recurrence are the periodic changes in eccentricity of the Earth’s

orbit around the Sun. Since that perturbation modifies the amount of solar en-

ergy received by the Earth, it looked like the ideal candidate to be introduced

as a second ingredient in our Eq. 1.1, by means of the addition of a sinusoidal

driving.

dx

dt
= x − x3 + Asin(ωt) (1.2)

However, the puzzling question is that the so called Milankovitch forcing is

not strong enough to induce jumps between the two states of the sytems. In Fig

1.1 we provide a schematic illustration of its modulation effect on the potential.

Once the system is perturbed by a small periodic force, it will oscillate within one

of the two wells. There would be small climate variations but never something

so extreme as a switch from glacial to warm periods.

Should we disregard the coincidence between eccentricity and ice ages recur-

rence periods altogether, or could there an unknown third factor at play that

somehow cooperated with the orbital forcing to induce climate variations? Noise

is traditionally introduced to represent the unknown, since noise are fast random

variations, whatever their origin. Therefore, we introduce noise in our equation

1.2 and see what happens:

dx

dt
= x − x3 + Asin(ωt) +

√
Dη(t) (1.3)

where η(t) is a gaussian random variable with unit variance (〈η(t)η(t′)〉 =

δ(t − t′)) and D is the noise strength.

If the level of noise is too low, there will be just a few hopping between the

two wells, that essentially don’t correspond to the regularity observed in the

alternation of warm and glacial periods (Fig. 1.2, a). When the noise is too high,

4



1.1 The φ4 model

Figure 1.1: A schematic illustration to explain the mechanism of stochastic res-

onance. The potential wells represent stable attractors, and the ball, the state

of the system. The shape of the potential is perturbed by the weak signal but

its bistable characteristics are not destroyed. The periodic signal introduces a

bias in the shape of the potential, deepening one of the potential barriers in

turn. Source: R. Benzi, Stochastic Resonance: from climate to biology, eprint

arXiv:nlin/0702008, 2007.

the system behaviour will be completely aleatory, with random hopping between

the two states.

The simple yet surprising idea that underlies stochastic resonance is that be-

tween these two extremes, there exists a level of noise for which the cooperation

between noise and forcing is optimal. This was observed in the numerical ex-

periments of the original works [45; 47], and was finally understood in 1989 [43]

as corresponding to a matching between the two time scales involved: the half-

period of the forcing, and the mean residence time, that depends on the level of

noise according to Kramer’s rate [31]. When that happens, the period of oscilla-

tions between the climate states matches the period of the signal, as seen in Fig.

1.2, b) and c).

This synchronisation justifies the term resonance, and more specifically stochas-

tic resonance since it is induced by tuning the noise intensity. The optimal re-

sponse appears as a peak in some measure of response at an intermediate amount

5
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1.1 The φ4 model

Figure 1.2: Results from the simulation of equation (1.3). In upper panel, solution

when A = 0. In the middle panel the external forcing Acos(2πωt) while in the

lower panel we see the full solution with A 6= 0 and noise also different from zero.

The small periodic forcing synchronises the random switching from one climate

state to the other. Source: R. Benzi, Stochastic Resonance: from climate to

biology, eprint arXiv:nlin/0702008, 2007.

of noise intensity.

A number of measures have been proposed to indicate the optimal response

as a function of the noise level, such as the signal-to-noise ratio [6], the residence

time distribution [33], information theoretic measures [46; 55], or the spectral

power amplification [30].

In our example, a well-suited measure captures the matching between the two

time scales that underlies the phenomenon, and can involve the calculation of the

Fourier amplitudes at the signal frequency, as it is illustrated in Fig. 1.3.

As it turned out, the climate system could not be described by such a simple

model and the stochastic resonance explanation for the appearance of ice ages

has to be modified or abandoned altogether [9; 17].

But on the other hand, the concept of stochastic resonance has triggered a

6
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1.1 The φ4 model

Figure 1.3: The figure shows the Fourier amplitude |FX(ν = ω)|2 for the solution

of equation (1.3) for different values of the noise amplitude σ. In the inset we

show |FX(ν)|2 for σ = σR, i.e.the optimal noise for which the Fourier amplitude

at ν = ω is maximum. Source: R. Benzi, Stochastic Resonance: from climate to

biology, eprint arXiv:nlin/0702008, 2007.

wide extension of studies and applications well beyond climate studies, in such

diverse areas as lasers [6], SQUIDS [1], or neurons [28], just to mention a few [34],

and it has been found to play a role even in systems well beyond the traditional

setting of a bistable system subjected to a periodic signal, to include excitable

[36] or monostable [29] systems, nonperiodic forcings [26], etc.

Another, more recent, related line of research considers the role that other

types of disorder, such as quenched noise (identified with heterogeneity or dis-

order), can play in producing a resonance effect in systems with many units.

Tessone et al. [12; 48] have shown that in generic bistable or excitable systems,

an intermediate level of diversity in the individual units can enhance the global

response to a weak signal. This will be the subject of the next chapter.

7
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Chapter 2

Diversity induced resonance

It was shown in reference [12] that diversity or heterogeneity, in the form of

quenched disorder, can play the same constructive role of noise as a signal ampli-

fier. The optimal diversity doesn’t preclude the existence of two stable states in

the unperturbed system, but changes its position and the height of the potential

barrier that separates them. The region of optimal response coincides with a

degradation of order, and the optimal response corresponds to an increase in the

amplitude of oscillations, and not to a matching between two time scales.

The authors [12] considered two prototypical examples of a bistable and an

excitable system, and in what follows we will look into more detail at the bistable

example.

2.1 A bistable model

As in the last chapter, we will review the effects of diversity in the response of a

forced bistable model.

Instead of a single unit as in Eq. 1.3, let’s consider an ensemble of N globally

coupled bistable systems, whose dynamics is given by

ẋi = xi − x3
i + ai +

C

N

N
∑

j=1

(xj − xi) (2.1)

where xi(t), i = 1, . . . , N is the position of the i-th unit at time t and C is

the coupling strength. Diversity is related to the dispersion in the distribution

8



2.1 A bistable model

of the parameter ai that controls the relative stability of each individual bistable

state. We assume that the ai’s follows a probability distribution function g(a)

that satisfies 〈a〉 = 0, 〈ai aj〉 = δijσ
2, where the standard deviation σ measures

the diversity.

We will be interested in the macroscopic variable X(t) = 1
N

∑N
i=1 xi(t), the

average position of the units. In the globally coupled case considered here, the

coupling amongst units appears only through this macroscopic quantity:

ẋi = CX + (1 − C)xi − x3
i + ai (2.2)

Averaging eq.(2.2) over all units, we obtain

Ẋ = X − 1

N

∑

i

x3
i (2.3)

As we see, diversity is no longer present in an explicit form in this equation.

We recover its influence when we express [14] the position of each unit in terms

of a deviation δi from the average position as xi = X + δi. Introducing the

variance of the deviations M = 1
N

∑

i δ
2
i , we relate disorder and diversity when

we compute the value of M by averaging over the probability distribution of ai,

as M(t) =
∫

da g(a) [x(t; a) − X(t)]2.

If we assume that δi are distributed according to an even distribution, or,

alternatively, that δi is small and we can neglect the third moment, we get, using

eq. (2.3), the equation for the macroscopic variable X that describes a bistable

system.

Ẋ = X (1 − 3M) − X3. (2.4)

The effective potential is given by

V (X) = −X2

2
(1 − 3M) +

X4

4
. (2.5)

and the equilibrium points are at X± = ±
√

1 − 3M .

As M increases, the system goes from bistable to monostable, passing through

a region of bistability that is characterised by a lower barrier height and an

approximation of the two potential wells, as shown in Fig. 2.1. The influence of

9



2.1 A bistable model

diversity on the response of the system to a weak external signal can already be

guessed. If M = 0, the units are completely ordered and a weak signal can only

induce small oscillations inside a well, as explained in the previous chapter. When

disorder is too high, namely for M > 1/3, the potential becomes monostable

and the response consists of small oscillations within that potential well. By

contrast, at an intermediate level of the disorder M the potential is still bistable,

but the potential barrier starts to decrease (Fig 2.1, thereby turning the signal

supra-threshold. Therefore, an optimal response appears for an intermediate

level of diversity, when there is a good trade-off between the two consequences

of diversity: the desirable consequence of lowering the barrier, and the not so

desirable consequence of approximating the potential wells. For a given signal,

the balance is achieved when the barrier is low enough for the signal to become

supra-threshold and the potential wells are still sufficiently distant to elicit a

big amplitude of oscillations. Fig. 2.2 illustrates the coincidence between the

transition order-disorder and an increase in the response of the system that is at

the heart of the phenomenon.

The effect translates itself in an increase in the amplitude of oscillations of

the macroscopic variable (depicted in bold line in the Fig. 2.3). When there

isn’t any disorder (upper panel Fig. 2.3) all the units execute small oscillations

within a well. When diversity is too high (lower panel in the same figure) the

units manifest all types of disorganised behaviour: some remain within one of

the wells, while others jump between the two: the end result is that the average

position oscillates around zero. It is in the middle panel of Fig. 2.3 that the

optimal diversity enables an almost synchronised hoping between the two wells.

Whereas in the case of stochastic resonance in a single unit system the optimal

noise is the one for which the rhythm of the system matches the frequency of

the signal, here the optimal diversity is the one that amplifies the amplitude

of oscillations, because once the stable states are reached, the only source of

movement in the system is the external forcing, and any oscillation happens at

its rhythm.

Therefore, a convenient measure of resonance evaluates the amplitude of os-

cillations at the frequency of the signal. As a way of quantifying the coherence

of the global response to a periodic forcing A sin(2πt/T ), we chose the spectral

10



2.1 A bistable model
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Figure 2.1: The variation of the potential shape as disorder increases. For an

intermediate level of disorder, the potential is still bistable, but the wells are

closer and the barrier is lower. The optimal level of disorder corresponds to a

balance between a desirable low barrier and a not so desirable approximation of

the wells.

amplification factor R, defined as the ratio of the output to input power at the

corresponding driving frequency Ω [30]:

R = 4A−2
∣

∣〈e−i2πt/T X(t)〉
∣

∣

2
(2.6)

where 〈· · · 〉 is a time average, and X(t) is the global response (system’s magneti-

sation): X(t) = 1
N

∑N
i=1 xi(t).

Large values for R indicate that the global variable X(t) follows the external

forcing, while small values of R indicate a small influence of the forcing on the

global variable. R is roughly proportional to the amplitude of the oscillations of

X(t): if R < 1, then the amplitude of the response is less than that of the signal,

and vice versa for R > 1.
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Figure 2.2: The resonance peak (lower panel) appears close to an order-disorder

transition (upper panel). Source: [48].

2.2 Is diversity required at all?

This chapter is called diversity induced resonance, and the microscopic explana-

tion of the resonance relies on diversity itself, namely, on the assumption that

diversity assures that there will always be some units that can respond to the

forcing. When the units are identical (and both states are equally stable for all

units) the signal is sub-threshold and, because of the coupling, all units remain in

the same state. As diversity increases, the signal becomes, for half of its period,

supra-threshold for some of the units and forces those units to jump from their

less stable state to the other. In the other half of the period, the signal becomes

supra-threshold for a different set of units. The units which follow the signal pull

12
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Figure 2.3: The resonance corresponds to an increase in the amplitude of oscilla-

tions (middle panel). Source: [48].

the other units, to whom they are attractively coupled, and the collective effect is

that a significant fraction of the units is able to respond to the external forcing.

And yet we saw that macroscopically the relevant parameter that optimises

the response is the parameter M , that simply measures disorder in the position

of the units, whatever its origin. In fact, in the derivation of Eq 2.4 the only

assumption was that either the deviations from the mean field are so small that

the third moment can be neglected, or, alternatively, that they follow an even

distribution. Not only does this make sense in the particular case of an evenly

distributed diversity parameter ai, but it is also applicable to a wide range of

situations that don’t imply any diversity. In general this loss of entrainment

can also be induced by noise (in the case of extended stochastic resonance [25;

13
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61]), competitive interactions, irregular network of connectivity or by some other

source.

To better compare the effects of stochastic and diversity induced resonance,

we focused here on a φ4 system like we did in the last chapter, but we stress that

the same diversity induced resonance effect has been found in different types of

systems, such as excitable systems [12], or linear oscillators [49].

Along these lines, the role of the heterogeneous complex network topology

in the amplification of external signals has been addressed in [27], and Chen

et al. [20] have shown how structural diversity enhances the cellular ability to

detect extracellular weak signals. The interplay between noise and diversity in an

ensemble of coupled bistable FitzHugh-Nagumo elements subject to weak signal

has been considered in [38]. Focusing on the double-well model, Perc et al. [39]

studied the combined effect of dynamic and static disorder, where static disorder

was either diversity, the presence of competitive interactions, or a random field.

Namely, they showed that the random presence of repulsive bonds decreases the

level of noise warranting the optimal response.

But generic as it is, the assumption of an even distribution or small deviations

from the mean field is not universally applicable. It cannot apply, for instance,

when we assist to the formation of many metastable states in discrete systems,

which can happen when there is frustration due to the presence of repulsive inter-

actions. Does this mean that the disorder induced by competitive interactions is

not suitable to get optimal responses, or does it lead to responses with different

characteristics? The remainder of the thesis will be devoted to the resolution of

this question.
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Part II

Resonance induced by

competitive interactions

15



The presence of both repulsive and attractive interactions is not unusual in

systems with many units. The existence of inhibitory and excitatory connections

in the brain neurons, or a society with friends and enemies are examples of such

systems. The emergence of a coherent behaviour in the absence of forcing and

in the presence of repulsive links was treated in [23]. There it was shown that

one can obtain a more coherent behaviour, in the form of synchronised pulsing,

by adding an optimal amount of long-range repulsive couplings in a mixture of

excitable and oscillatory units described by the Hodgkin-Huxley model. In the

same reference, a similar improvement of the internal coherence in an Ising model

with a simple majority-like dynamics in the presence of long-range repulsive links

was also shown. Also in [13], an intermediate amount of repulsive links was found

to trigger collective firing in an ensemble of active-rotators [52] in the excitable

regime.

In this part of the thesis we study periodically forced systems where the only

source of disorder is competitive interactions and show that competition in the

sign of interactions may also lead to a resonance effect. This resonance can be

interpreted as an optimal transmission of the information carried by the external

signal, in a kind of “divide and conquer” effect.
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Chapter 3

The φ4 model

We will see that competitive interactions can replace noise or diversity in their

constructive effect. We focus on the generic globally coupled bistable system,

and show that the addition of an intermediate fraction of repulsive links can

increase the sensitivity to an external forcing. In particular, we numerically

demonstrate that the response of the macroscopic variable to an external signal, is

optimal for a particular proportion of repulsive links. Furthermore, we show that

a resonance also occurs for other system parameters, like the coupling strength

and the number of elements. Resorting to a spectral analysis of the Laplacian

[42] matrix, we locate the amplification region, and unveil the mechanism of

resonance.

The outline of this chapter is as follows: in section 3.1 we will introduce the

model; we show that there is an amplification and discuss how the amplification

mechanism is related to a break of stability in section 3.2; and how we can predict

the resonance peaks in section 3.3; Conclusions are drawn in section 3.4.

3.1 The bistable model

We consider the same system of N globally-coupled bistable units described by

real variables si(t), i = 1, . . . , N under the influence of a periodic forcing.

dsi

dt
= si − s3

i +
C

N

N
∑

j=1

Jij(sj − si) + A sin(2πt/T ), (3.1)

17



3.2 Signal amplification

where t is the dimensionless time, C measures the coupling strength amongst the

different units and A sin(2πt/T ) is a periodic external signal with amplitude A

and period T .

The interaction matrix Jij reflects the presence of attractive and repulsive

interactions between the units. More specifically, we adopt the following values

at random:

Jij = Jji =

{

−1, with probability p,

1, with probability 1 − p.
(3.2)

The single-element case, N = 1, with added noise is the prototypical double-well

potential system for which stochastic resonance was first considered. The case

without repulsive interactions, p = 0, can still be described globally by a bistable

potential (see next section) and, in the presence of noise, has been widely studied

as a model case for stochastic resonance in extended systems [? ]; it has also

been considered, in the presence of a random field, as a prototypical example

for the diversity-induced resonance effect [12]. For p > 0, the coexistence of

attractive and repulsive interactions is characteristic of a wide class of spin-glass-

type systems [15].

We will focus on the macroscopic variable S(t) = 1
N

∑

i si(t), and use as a

measure of response the spectral power amplification factor [30], defined as the

ratio of the output to input power at the corresponding driving frequency:

R = 4A−2
∣

∣〈e−i2πt/T S(t)〉
∣

∣

2
(3.3)

where 〈· · · 〉 is a time average.

3.2 Signal amplification

It is convenient to analyze first the structure of the steady-state solutions for

the system of equations (3.1) in the non-forced case, A = 0. The dynamics is

relaxational
dsi

dt
= −∂V

∂si

[44], being

V (s1, . . . , sN) =
N
∑

i=1

[

−s2
i

2
+

s4
i

4
+

C

4N

N
∑

j=1

Jij(si − sj)
2

]

(3.4)
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3.2 Signal amplification

the Lyapunov potential. Therefore, the stable steady states are the configurations

(s1, . . . , sN) which are absolute minima of V . If there are no repulsive links,

p = 0, the Lyapunov potential has just two equivalent minima at si = +1 or

si = −1, ∀i = 1, . . . , N and, hence, the macroscopic variable will reach the

stable asymptotic values S = +1 or S = −1, depending solely on the initial

conditions. Thus we have a typical situation of bistability. As p increases, the

absolute minima depart from S = ±1 and, furthermore, new metastable minima

of V appear. The dynamical equations (3.1) may or may not get stuck in one

of these minima, depending on initial conditions and the particular realisation of

the coupling constants Jij. We have used throughout the paper random initial

conditions drawn from a uniform distribution in the (−1, 1) interval, although we

have observed the same type of phenomenology when using other random, but

still symmetric, distributions such as truncated Gaussian or the Johnson family

of distributions.

From our simulations we compute numerically the probability distribution

P (S) of the final values of S reached during the dynamical evolution for different

realisations of the coupling constants Jij and initial conditions. This is plotted

in Fig. 3.1. We can observe a second-order phase transition as the average value

〈|S(t)|〉 vanishes for p > pc ≈ 0.44. One can interpret these results in terms of an

effective potential Veff(S) ≡ − ln P (S) which has two equivalent absolute minima

at S = ±S0(p), where 1 > S0(p) > 0 for 0 < p < pc, and one absolute minimum

at S = 0 for p ≥ pc. The effective potential Veff presents many relative minima

for all values of p > 0, especially in the critical region p ≈ pc, a typical situation

for the spin-glass models [15].

We now turn on the forcing A > 0 and study the system response, as measured

by the spectral power amplification factor R defined above, Eq. (3.3). Consider

first the case p = 0. For a small, sub-threshold, amplitude A the macroscopic

variable S(t) will just execute small oscillations of amplitude proportional to A

around the stable values S = +1 or S = −1. As A increases beyond the threshold

value Ao ≈ 0.4 the amplitude of the forcing is large enough to induce large jumps

of the macroscopic variable from S ≈ −1 to S ≈ +1 and vice versa. This change

of behaviour at Ao appears as a sudden increase in the value of R, as shown in

the inset of Fig. 3.2. As the same inset shows, similar behaviour is observed for
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3.2 Signal amplification

Figure 3.1: We plot in a gray scale the stationary probability distribution P (S),

in the absence of external signal A = 0, coming from numerical simulations of

Eqs. (3.1). For better viewing, the distribution has been rescaled by its maximum

value at each p. The data show that at p < pc ≈ 0.44 the system presents two

equivalent absolute maxima for P (s), while there is only one absolute maximum

for p > pc. We note, however, that there are many relative maxima for all values

of p, specially around the region p ≈ pc. Other parameter values are: N = 200,

C = 8. The probability has been computed after averaging over 1000 realisations

of the couplings Jij and initial conditions drawn from an uniform distribution

in the interval (−1, 1). For the numerical integration we used a fourth-order

Runge-Kutta method with a time step ∆t = 0.1.
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Figure 3.2: Spectral amplification factor R versus probability of repulsive links

p. Inset: the influence of the amplitude A of the external forcing on the response

R. For suprathreshold amplitudes, A & 0.4, R decreases with A due to the

denominator A2 in the definition of the spectral amplification factor R. T = 300,

N and C as in Fig. 3.1.

0 < p . pc: the response shows a sudden increase for a particular value of the

amplitude A and then decreases monotonically. For p > pc, the response is very

small and almost independent on the value of A.

More interesting, and the main result, is the dependence of R on the proba-

bility p of repulsive links, main plot in Fig. 3.2. We note that there is an optimal

probability of repulsive links that is able to amplify signals whose amplitude

would be sub-threshold in the case p = 0, i.e. A < Ao. For suprathreshold

signals, A > Ao, the presence of repulsive links does no longer lead to enhanced

amplification. As shown in the figure, the optimal value for amplification is close

to the critical value pc signaling the transition from bistability to monostability

in the non-forced case. The optimal amplification as a function of p can clearly

be observed in Fig.(3.3) which shows representative trajectories for p = 0 (small

oscillations around the value S = +1), p = pc (large oscillations between S ≈ +1

and S ≈ −1) and p = 1 (small oscillations around S = 0).

The existence of an optimal value of the fraction of repulsive p for which signal

amplification is maximum is somehow reminiscent of the stochastic resonance
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Figure 3.3: Representative trajectories of the macroscopic variable S(t). Note

the large amplitude of the oscillations in the intermediate case p = 0.44. The

“signal” is the periodic function A sin(2πt/T ). Values of N , C and T as in Fig. 3.2,

A = 0.2.

phenomenon. There are some important differences, however. While in stochastic

resonance, the response R shows a maximum as a function of period, resulting

from the matching between Kramers’ rate and the forcing half-period, in our

case the same optimal disorder p amplifies responses to signals of every period,

as shown in Fig. 3.4. When the signal is slow enough, the system has time to

respond to the fuller extent, going to the absolute extrema of the potential, and

the amplification factor reaches a constant value, see inset of Fig. 3.4.

It is possible to reinterpret these results in terms of the effective potential

Veff(S) introduced above. The periodic forcing can be seen, approximately, as a

periodic modulation to the potential Veff − S ·A sin(2πt/T ). As discussed above,

the effect of the repulsive links is such that Veff(S) changes from bistable at p = 0

to having many metastable minima at p ≈ pc and a single absolute minimum

for p > pc. Hence, the deep potential barrier separating the S = ±1 solutions

for p = 0 lowers under the effect of the repulsive links. As a consequence, the

modulation induced by the periodic forcing is now large enough, and the global

variable is then able to oscillate from the minimum +S0(p) to −S0(p) and vice

versa. As p approaches pc a more complicated scenario appears. In this region the
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Figure 3.4: The influence of the signal period T on the response R. In the inset,

we see the response R reaches a constant value for slow enough signals. Values

of N , C and A as in Fig. 3.3.

effective potential presents already a rich structure with many metastable minima

in the non-forced case. Those minima can be modified or even disappear by the

effect of the periodic modulation. It is particularly illustrative to compare the

responses to a suprathreshold signal of amplitude A = 0.4 in the case p = 0, and

to a signal of amplitude A = 0.2 (which would be subthreshold in the case p = 0)

at the optimal fraction of repulsive links p = pc. In both cases, the amplitude of

the oscillations is approximately the same, as the system makes large excursions

from S ≈ −1 to S ≈ +1 and vice versa. However, the shape of the oscillations

is rather different, as shown in the upper panel of Fig 3.5. In the p = 0 case,

the transition from one minimum to the other is rather fast (vertical portion of

the dashed line), while in the case p = pc, the transition is slower as the system

seems to be spending more time in intermediate states.

To determine what those differences reveal about the underlying effective po-

tential, we have used a method [58] that allows us to detect the number of states

a system visits from an analysis of its time series. A typical example is shown

in the lower panel of Fig. 3.5. We only detect two states in the global variable

S when p = 0, corresponding, as expected, to the modulated bistable potential.

By contrast, the slight irregularities in the trajectory for p = 0.44, hardly visible
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Figure 3.5: We amplify some representative trajectories (upper panel), and count

the number of states through which the system moves in each trajectory (lower

panel). Values of T , N and C as in Fig. 3.2.

by eye, correspond to several very shallow potential wells. The system evolves

through many states at the optimal probability of repulsive links, as shown in the

lower panel of Fig 3.5. This image explains why signals of every amplitude and

period can be amplified for p ≈ pc. In this case, the system can access the many

intermediate states, covering a distance proportional to T and A, in case of very

fast or very weak signals.

The previous results show that the disorder induced by an intermediate level of

repulsive links is an essential ingredient to get an optimal response to the external

forcing. This can be explained as, in the absence of forcing, the metastable states

correspond to a wide distribution for the values of si’s. When the forcing is

turned on, some units will be responsive to the signal, and then they will pull

others which are positively coupled to them. This basic mechanism is further

highlighted by the observation of a resonance behaviour with both the coupling

constant C and the number of units N .

The resonance with C and some representative trajectories are displayed in

Figs. 3.6 and 3.7, respectively. In the weak coupling limit, the units behave

basically as independent from each other and, as the signal amplitude A is sub-

threshold for a single variable, the overall response is small. In the large coupling
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Figure 3.6: Coupling-induced resonance. Main plot: the response R shows a

maximum as a function of coupling constant C. As shown in the insert, the same

maximum appears as a function of the localization measure M , see section 3.3.

Values of N , T and A as in figure 3.3 and K = 0.2 in the insert.
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Figure 3.7: Coupling-induced resonance, as revealed by the resonant trajectory

at optimal C = 11. Values of N , A and T as in Fig. 3.3.
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Figure 3.8: System-size induced resonance. Main plot: the response R shows a

maximum as a function of the number of units, that follows the same pattern as

the maximum M (K = 0.2) (inset). Since N decreases the influence of a single

neighbor, and C increases it, when the coupling intensity is larger, the optimal

system size increases. Values of T and A as in Fig. 3.3.

limit, the interaction term is too big to allow an unit that could first follow the

signal to depart from the influence of its neighbors.

The resonance with the number of units N and some representative trajecto-

ries is presented in Figs. 3.8 and 3.9. Since fluctuations in the number of repulsive

links decrease with N , a larger system requires a greater fraction of repulsive links

to achieve the same level of disorder than a smaller system. As a consequence, the

response of a larger system is best amplified at a higher probability of repulsive

links. As the fraction of repulsive links must not exceed the fraction of positive

ones, there can be a limit on how large can a system be, to be able to amplify a

signal. The same behaviour, focusing on the number of neighbors was found in a

previous study of an Ising-like network model [56].

3.3 Spectral analysis

We have already commented that the optimal probability of repulsive links drives

the system to a glassy phase. Anderson [3; 4] has proposed a connection between
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Figure 3.9: System size induced resonance, as revealed by the resonant trajectory

at optimal N = 250. Values of T , A and C as in Fig. 3.3.

a glass and a delocalization-localization transition, relating the existence of many

metastable states with a localization of modes. From this proposal, we retain

the idea to work in the eigenspace of the interaction matrix, and to look for

the fraction of repulsive links where mode localization becomes significant. This

approach has the virtue of not only identifying the steady states, but also to shed

light onto how the reaction to perturbations is sustained and spreads along the

system, depending on the fraction of repulsive links. In this manner, we hope

to locate the region where multistability is expected, and also to understand the

mechanism of response to external perturbations.

Following [39], let us define the eigenvalues Qα and (normalized) eigenvectors

eα = (eα
1 , . . . , eα

N) of the Laplacian matrix [42] J ′
ij :

J ′
ij = Jij − δij

N
∑

k=1

Jkj, (3.5)

N
∑

j=1

J ′
ije

α
j = Qαeα

i . (3.6)

The effect of the competitive interactions can be described by the so-called par-

ticipation ratio of eigenvector eα, defined as PRα = 1/
∑N

i=1[e
α
i ]4. It quantifies

the number of components that participate significantly in each eigenvector. A
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Figure 3.10: The participation ratio PRα is a measure of localization; it estimates

the number of eigenvectors components contributing to the Qα eigenvalue. The

eigenvalues at both ends of the spectrum are localized for intermediate levels of

disorder. N = 200, results after 1000 independent runs.

state α with equal components has PRα = N , and one with only one component

has PRα = 1. When PRα = 1 on a fraction f of elements, and 0 elsewhere,

then PRα = f , which justifies its name. More precisely, we will define “localized”

modes as the ones whose participation ratio is less than 0.1N . Our first obser-

vation (Fig. 3.10) is that at the optimal region p there is a significant fraction

of positive eigenvalues, and, of those, a significant fraction of the corresponding

eigenstates are localized. In this region, we will neglect the coupling between

different modes. This approximation allows us to look in more detail at what

happens at the optimal region, and in particular at the effect of the coupling

strength C and the number N of elements.

Let us focus first on the unforced system (A = 0), to see how the presence

of the disorder induced by the repulsive links affects a state configuration. We

assume each unit i is initially at a given state so
i , chosen from a random symmetric

distribution and split the variables in the steady state as si = so
i + xi, being xi

the deviation from the initial condition. We express xi in the eigenbasis of the

J ′
ij matrix:

xi =
N
∑

α=1

Bαeα
i , (3.7)

Expanding Eq. (3.1) for A = 0, multiplying the resulting equation by eα
i ,
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summing over all elements i, and approximating averages of the product of ini-

tial conditions and eigenvectors by the product of their individual averages (e.g.
∑N

i=1 so
i e

α
i ≈∑N

i=1 so
i

∑N
i=1 eα

i = 0), we obtain:

∑

β,γ,η

F βγηαBβBγBη +

(

K − C
Qα

N

)

Bα = 0, (3.8)

where

F βγηα =
N
∑

i=1

eβ
i eγ

i e
η
i e

α
i , (3.9)

K =
3

N

N
∑

i=1

(so
i )

2 − 1. (3.10)

Neglecting coupling between modes leads to F βγηα = 1/PRα if α = β = γ = η and

F βγηα = 0 otherwise. We then obtain the following equation for the amplitude of

the α-th mode:

B3
α + PRα

(

K − C
Qα

N

)

Bα = 0. (3.11)

According to this approximation, unless Qα > KN
C

, the amplitude Bα of the

mode α is zero, and any small perturbation vanishes. Otherwise, the mode is

said “open” and Bα takes one of the values:

Bα = ±
√

PRα

(

C
Qα

N
− K

)

. (3.12)

For intermediate amounts of disorder, some open modes begin to appear. The

final state of an unit is si = so
i +
∑N

α=1 Bαeα
i , and when the initial conditions are

random and the open modes α are localized, the system reaches many metastable

states, given all the possible combinations of individual states. For this reason,

we want to locate a transition to a region with a significant number of localized

modes.

To concretize, we define a measure M of localization:

M =
N2

L

NON
, (3.13)
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where NO is the number of modes α whose associated eigenvalue Qα is greater

than KN
C

, and NL is the number of those modes which, in addition, are localized,

i.e. PRα < 0.1N .

Recalling the definition of K (Eq. (3.10)), we see its value is related to a

choice of initial conditions, by the variance of so
i . Since we expect multistability

to emerge when the initial distribution is more or less uniform, we present results

in Fig. 4.17 for values of K ≈ 0.

At moderate levels of disorder, the localized nodes appear on the tails of the

spectra, Fig. 3.10. We confirm that the optimal probability of repulsive links

coincides with a maximal localization of open modes in that region, as identified

by the peak in M (Fig. 4.17).

In a particular metastable state, the units are randomly distributed, more

concentrated near one of the potential wells. Observing the results in Fig. 4.17 for

K & 0, we see that we recover the dependance on C, and that the peak in M still

coincides with the optimal probability region. The enhanced responsiveness to

an external signal can thus be understood as a consequence of mode localization.

Since units can be in different positions, some will be able to answer the signal,

and then - since the overall coupling is attractive - pull the others. This is done in

an incremental fashion, as confirmed by the localized reaction to perturbations.

The same analysis is valid when we plot M as a function of C or N . We notice

a peak in M and accordingly the dependance of the response on C (Fig. 3.6)

and N (Fig. 3.8) shows a maximum for intermediate values (insets Fig. 3.6 and

Fig. 3.8). When C is small, even if the modes are open, their amplitude Bα is

weak, Eq. (3.12). A high fraction of repulsive links, increasing the number of open

modes, can overcome this situation to a certain degree, allowing for resonances

at a smaller coupling strength.

3.4 Conclusions

In this work, we have analyzed the response to a weak period signal, of a model

composed by bistable units coupled through both attractive and repulsive links.
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Figure 3.11: Measure of localization M: close to the optimal region there is an

increase in the fraction of localized open eigenstates. The small dependance of M

with K and C is as expected. Parameters: N = 200. Inset: A = 0.2, T = 300.

Our main result is that the system collective response is enhanced by the

presence of an intermediate fraction of repulsive links. Hence, competitive inter-

actions are taken as a source of disorder, as an alternative to previous studies

where disorder was induced by noise [34] or diversity [12], and a similar amplifi-

cation was verified.

We have chosen a very generic double-well model, and have shown that the

optimal disorder is the one that destroys the ordered system bistability. The

resulting multistable effective potential allows for the amplification of very weak

or fast signals. There is not a need to match specific levels of disorder with specific

frequencies. Having the optimal disorder, the system becomes more sensitive to

external signals of every kind. Furthermore, we have shown that varying the

number of elements or the coupling strength in an ensemble of coupled bistable

elements can improve the sensitivity to an external forcing. These various ways

to increase sensitivity make the phenomenon less dependent on a fine tuning of

the proportion of repulsive links, which can be a positive feature in practical

applications. Apparently, when the system size becomes very large, it is difficult

to get a resonance effect, unless we increase the coupling strength by many times.

Arguably, this difficulty can be overcome by other types of network settings [13].
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3.4 Conclusions

Finally, we have shown that the location of the resonance peaks can be pre-

dicted by a spectral analysis of the Laplacian matrix. In heuristic terms [42],

the positive eigenvalues of the Laplacian can be seen to express the contribution

of the coupling term to the vulnerability of the system to perturbations. We

conclude that the location of the amplification region, for a given system size and

coupling constant, is reasonably independent of the particular dynamical system.

In broad terms, it corresponds to the point where the positive eigenvalues of the

Laplacian matrix become localized, signaling a transition to a region where per-

turbations can accumulate in an incremental manner. The more precise location

would depend on the particular dynamical system by means of a condition on

open modes.

Competitive interactions are widespread in nature, notably in biological sys-

tems. In those systems and others, there has been some studies highlighting

their role in achieving a coherent behaviour in the absence of forcing: increasing

synchronization [23] or enabling a collective firing [13]. In the present study, we

saw they can also help to enhance perception, something that can be potentially

relevant in sensory systems.
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Chapter 4

Divide and Conquer

We study an Ising model in a network with disorder induced by the presence

of both attractive and repulsive links and subjected to a periodic subthreshold

signal. By means of numerical simulations and analytical calculations we give

evidence that the global response of the system reaches a maximum value for a

given fraction of the number of repulsive interactions. The model can represent

a network of spin-like neurons with excitatory and inhibitory couplings, or a

simple opinion spreading model [23; 32], which is the language we will adopt

throughout most of the time in this chapter. In this context, attractive/repulsive

links represent friends and enemies. “Divide and Conquer” refers to the fact that

in order to force a society to adopt a new point of view, it helps to break its

homogeneity by fostering enmities amongst its members.

4.1 Model of opinion formation

In recent years a lot of effort has been devoted to the study of opinion formation

models using techniques borrowed from nonlinear and statistical physics [11].

Models can be grouped in two big families, according to whether they consider

that the opinion can take a finite set of values , or that it is a continuous real

variable [16; 22; 37]. As examples of the models that treat opinions as continuous

we can cite the Deffuant [16] and the Hegselmann-Krause [22] models, and as

examples of discrete models there is the Sznajd model [54] and several Ising-type

variations.
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4.1 Model of opinion formation

Since we are talking about are opinion formation models, an evolution rule

for the opinions has to be provided, which usually implies a definition of whom

to interact with, and an interaction rule that at its simplest can take the form of

a majority rule that models social pressure.

But in a real society opinion evolution is also affected by external factors, like

a political propaganda, advertising, or even a changing biological or economical

environment. In many cases a society can only survive as long as it adapts and

changes. The influence of mass media has been the focus of several studies [24],

some of which addressed specifically the influence of disorder on the efficient

spreading of propaganda [7; 32; 57].

A minimalist model of opinion formation, that incorporates the essential in-

gredients of opinion formation under the presence of an external forcing can

represent the possible values of opinions in terms of two options (yes/no), and an

interaction rule among neighbours that is a majority rule. Consider a population

of N individuals, which, at a given time t, can adopt one of two possible values,

µi = ±1, and evolve according to the following dynamical rule: at time t one of

the variables, say µi, is chosen at random. The value of this variable is updated

according to:

µi(t + τ) =











sign
[

∑

j µj(t)
]

w.p. 1 − |a sin(Ωt)|,

sign [sin(Ωt))] w.p. |a sin(Ωt)|,
(4.1)

(w.p. stands for “with probability”). In both cases, if the expression within

square brackets is equal to zero, the variable does not change: µi(t + τ) = µi(t).

The first case represents a weighted “majority-rule” in which the opinion of the

individual is determined by the sign of average opinion of the other agents j

he interacts with. The second case represents the effect of an external forcing

of frequency Ω – the intensity a < 1 determines the rate at which the signal

influences the dynamics of the variable µi. The choice of the time step τ = 1/N

defines the unit of time as N updates.

In the global coupling case, the only possible outcome of these rules is an

absolute consensus, whose value ±1 depends on initial conditions. Again we

encounter a bistable effective potential, where the depth of the potential well

34



4.2 Stochastic and Diversity induced resonance

is related to the number of units that share the corresponding opinion. Unless

the probability of interacting with the external signal is very high, there isn’t

any chance of being able to adjust to environmental changes. Thus the idea to

introduce some kind of disorder.

4.2 Stochastic and Diversity induced resonance

Since the depth of the potential well where the population is entrapped is es-

timated by (half) the number of people that shares our opinion, it seems like a

good idea to break consensus a little, by the introduction of some form of disorder.

Tessone et al [57] changed the interaction rule with the neighbors 4.1 to dilute

the social pressure of the neighbors by taking into account individual preferences

or biases towards one of the opinions. Their rule becomes [57]:

(i) Select randomly one individual i. Its opinion at time t is modified as :

µi(t + dt) = sign





1

k i

∑

j∈n(i)

µj(t) + θi



 . (4.2)

The parameter θi represents the individual preference and is drawn from a

probability distribution g(θ), which satisfies 〈θi〉 = 0, 〈θi θj〉 = δij σ2. According

to this, the agent i only adopts the average opinion in its neighbourhood n(i) if

this average opinion overcomes its preference θi.

By resorting to numerical simulations and a mean-field approximation, the

authors [57] found that there exists an optimal value of the diversity σ for which

the response to a weak forcing takes a maximum value, and that the mechanism

is in everything identical to the one described in Chapter 2.

Yet another earlier attempt [32] to aid the propagation of the signal involved

the introduction of noise. Kuperman and Zanette [32] used the model 4.1 and

included noise as a certain probability to change randomly from one opinion to

another. In the context of opinion formation models, noise might represent flicker

emotions, free will, or some other external factor [40]. The main point is that

now agents can change in a random fashion, not taking into consideration any

known factor in the model.
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4.3 Repulsive Interactions

Their aim [32] was to uncover the influence of the newtork topology on the

stochastic resonance effect, thus building a bridge between stochastic and disorder

induced resonance. Namely, they observed that when the interaction network

is regular, the unperturbed system reaches a paramagnetic phase, and that the

introduction of some random long range interactions is necessary for the existence

of a ferromagnetic state, and as a consequence a bistable situation.

Being interested in stochastic resonance, they turned their attention to this

bistable situation enabled by small world networks, finding that as the probability

of small world increases, so does the potential depth and as a consequence the

strength of the signal needed to invoke a response.

Although they didn’t elaborate on it in detail, they hint at the possibility

of another type of disorder induced resonance, when mentioning the possibility

that very weak forcings could get a response when the population is restricted

to local interactions, by the diffusive propagation that could be enabled by the

paramagnetic phase. As we will see in the rest of this chapter, this can in fact

be achieved by any kind of network as long as we include a mixture of attractive

and repulsive links.

4.3 Repulsive Interactions

The homophily hypothesis - the idea that individuals become more alike when

they interact - is a basic assumption of the model proposed by Axelrod [5], a

mathematician (B.A) that upon turning into a political scientist (PhD) inspired

many of present day sociophysics endeavours. Some of the most well-known

classical sociological theories [10; 19], on the other hand, have conflict, negotiation

or reflexivity at their core and for them order is not equated with a state of

absolute consensus, but rather with some form of structure.

The reasons for rejection being the outcome of interaction are many. It can

result from a rational discussion, when people realise that even though they share

the same opinion, they do it for contradictory reasons, or from the desire to

distinguish oneself from some individuals, to define a social status. There has

been interest in going beyond the homophily hypothesis to take into account the
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4.4 Model

possibility of growing apart as a result of interaction, by including repulsive links

according to some rule [2; 50; 51; 59].

4.4 Model

We consider a set of N spin-like (Ising) dynamical variables µi(t) which, at a

given time t, can adopt one of two possible values, µi = ±1. We will sometimes

use the language of a magnetic system, but our aim is quite general and these

states can represent, for instance, two different opinions (in favour/against) about

a topic, the state of a neuron (firing/not firing), or several other interpretations

[23; 32]. The variables are located on the nodes of a given network whose links

represent interactions. We assign a weight ωij to the link connecting nodes i and

j and consider only the symmetric case ωij = ωji (or an undirected network).

According to the discussion above, we let the weights take positive or negative

values: ωij = 1 or ωij = −κ with κ > 0. The neighbourhood of node i is the set

V (i) of nodes j for which a connecting link between nodes i and j exists.

The spin variables evolve according to the following dynamical rule: At time

t one of the variables, say µi, is chosen at random. The value of this variable is

updated according to:

µi(t + τ) =











sign
[

∑

j∈V (i) ωijµj(t)
]

w.p. 1 − |a sin(Ωt)|,

sign [sin(Ωt))] w.p. |a sin(Ωt)|,
(4.3)

(w.p. stands for “with probability”). In both cases, if the expression within square

brackets is equal to zero, the variable does not change: µi(t + τ) = µi(t). The

first case represents a weighted “majority-rule” in which the state of the spin is

determined by the sign of its local field hi(t) =
∑

j∈V (i) ωijµj(t). The second case

represents the effect of an external forcing of frequency Ω – the intensity a < 1

determines the rate at which the signal influences the dynamics of the variable µi.

The choice of the time step τ = 1/N defines the unit of time as N updates. We

consider both regular lattices (with k neighbours) and random networks of the

small-world type. The latter are constructed according to the algorithm proposed

by Watts and Strogatz [60]. Denoting by q the rewiring probability (percentage of
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4.4 Model

short-cuts), the limit q = 1 corresponds to a random Erdös/Rényi-type network,

q = 0 is a regular ring-network and intermediate values of q define a small-world

network. We have also considered a square lattice in which a node is linked to

the k = 8 nodes of its Moore neighbourhood. In each case, links are assigned

a strength −κ with probability p or a strength 1 with probability 1 − p. In the

case of a random network, the number of links (degree) ki of node i is a random

variable with probability Pki
and average 〈ki〉 = k. Denoting by k+

i and k−
i

respectively the number of positive and negative links of node i, its degree is

ki = k+
i + k−

i and 〈k+
i 〉 = (1 − p)k, 〈k−

i 〉 = pk.

It is worth noticing that, from the formal point of view, the majority-rule is

equivalent to a heat-bath stochastic dynamics in the limit of zero temperature[35].

The Hamiltonian is H = −
∑

〈i,j〉 ωijµiµj (the sum runs over all pairs of neigh-

bours) and the majority-rule always leads to a configuration with less or equal

energy. If all the weights ωij are positive, the ground states are µi = +1 or

µi = −1, ∀i, and these ground states are reached independently of the initial

condition. If there is a fraction of negative links, the system is of the spin-glass

family. The (in general unknown) ground state can have many metastable con-

figurations nearby and the use of the majority-rule may trap the system in one

of them.

As a way of quantifying the coherence of the global response to the forcing,

we chose the spectral amplification factor R, defined as the ratio of the output

to input power at the corresponding driving frequency[30]:

R =

〈

4

a2

∣

∣

〈〈

m(t)e−iΩt
〉〉∣

∣

2
〉

, (4.4)

where 〈〈...〉〉 is a time average, m(t) is the global response (system’s magnetization):

m(t) =
1

N

N
∑

i=1

µi(t), (4.5)

and 〈...〉 is an ensemble average over network realisations, initial conditions and

realisations of the dynamics. Large values for R indicate that the global variable

m(t) follows the external forcing, while small values of R indicate a small influence

of the forcing on the global variable.
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4.5 Simulation results

4.5 Simulation results

The main result is that there is a resonance effect, a maximum of the amplifica-

tion factor R, at an intermediate value of the probability of repulsive links p, as

shown in figure 4.1, and that the resonance region coincides with a order-disorder

transition. In our case, the degradation of order has its origin in the increasing

importance of the inhibitory connections. This is clearly seen in figure 4.1, upper

panel, where we plot the standard order parameter m0 as a function of the prob-

ability p of inhibitory links. The optimal probability for resonance pc (location of

the peak of figure 4.1) is found near the phase transition between the ferro and

paramagnetic regions.

The existence of this maximum is also visible when looking at the amplitude of

the oscillations of the global variable m(t) – figure 4.2. For small p, m(t) oscillates

with a small amplitude (of order a) around a value close to either +1 or −1. As p

increases, one clearly notices that the amplitude increases dramatically and m(t)

oscillates around 0. As p increases even further, the amplitude of the oscillations

decreases but the global variable still oscillates around 0. This resonance effect

appears for all lattices considered, regular or random, for all values of the rewiring

probability q.

The existence of this order-disorder transition and its relation to the resonance

effects are reproduced by a simple mean-field theory that we develop in some

detail in the next section.

4.6 Mean-field approach

At each time step the magnetization m(t) may change due to the modification of

a single variable µi. The following relation holds exactly for the ensemble average

m(t) = 〈m(t)〉:

Nm(t + τ) = Nm(t) + 〈µi(t + τ) − µi(t)|{µ(t)}〉 (4.6)

where {µ(t)} = (µ1(t), . . . , µN(t)) denotes the particular realization of the µi

variables and 〈. . . | . . . 〉 denotes a conditional ensemble average. By identifying
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4.6 Mean-field approach

τ = 1/N and rearranging we get:

m(t + τ) − m(t)

τ
= 〈µi(t + τ) − µi(t)|{µ(t)}〉 =

−m(t) + 〈µi(t + τ)|{µ(t)}〉 (4.7)

We now identify the left hand side as the time derivative and use the dynamical

rules given by Eq.(4.1) to write:

dm(t)

dt
= −m(t) + |f(t)| 〈sign[f(t)]|{µ(t)}〉 +

(1 − |f(t)|)
〈

sign





∑

j∈V (i)

ωijµj(t)





∣

∣

∣

∣

∣

{µ(t)}
〉

(4.8)

where we have used the notation f(t) = a sin(Ωt). Since the forcing f(t) is

independent of the state {µ}, then 〈sign[f(t)]|{µ(t)}〉 = sign[f(t)]. Moreover

|f(t)|sign[f(t)] = f(t). For the last term of the right hand side of this equation

we use the mean-field approximation:

∑

j∈V (i)

ωijµj(t) ≈





∑

j∈V (i)

ωij



 · m(t) (4.9)

where we replace the value µj(t) by the average value m(t).

Now
∑

j∈V (i) ωij = k+
i − κk−

i = k+
i (1 + κ) − kiκ, and the mean-field approxi-

mation can be rewritten as:

〈

sign





∑

j∈V (i)

ωijµj(t)





∣

∣

∣

∣

∣

{µ(t)}
〉

=

(−1) · Prob
([

k+
i (1 + κ) − kiκ

]

m(t) < 0
)

+

(+1) · Prob
([

k+
i (1 + κ) − kiκ

]

m(t) > 0
)

= 1 − 2Prob
([

k+
i (1 + κ) − kiκ

]

m(t) < 0
)

≡ G(m(t)) (4.10)

from where we obtain the desired mean-field equation:

dm(t)

dt
= −m(t) + f(t) + (1 − |f(t)|)G(m(t)) (4.11)
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4.6 Mean-field approach

The function G(m) can be easily computed in terms of the cumulative probability

function Fki
of the binomial distribution of the number of positive links, given

that the total number of links is ki. This is precisely defined as:

Fk(x) =
∑

k+<x

(

k

k+

)

pk−k+

(1 − p)k+

. (4.12)

In the case m > 0,

Prob
([

k+
i (1 + κ) − kiκ

]

m(t) < 0
)

=

Prob

(

k+
i <

kiκ

1 + κ

)

= Fki

(

kiκ

1 + κ

)

, (4.13)

while, for m < 0,

Prob
([

k+
i (1 + κ) − kiκ

]

m(t) < 0
)

=

Prob

(

k+
i >

kiκ

1 + κ

)

= 1 − Fki

(

kiκ

1 + κ

)

. (4.14)

By averaging over the distribution of the number of neighbours, we get:

G(m) = sign(m)
∑

ki

Pki

[

1 − 2Fki

(

kiκ

1 + κ

)]

(4.15)

Pki
being the probability that a node has ki links. Within the spirit of the mean-

field approximation we assume that all nodes have the same number of links

ki = k and replace the above formula by:

G(m) = sign(m)

[

1 − 2Fk

(

kκ

1 + κ

)]

. (4.16)

In case of no forcing, f(t) = 0, the equilibrium value m0 of the magnetization

satisfies m0 = G(m0). A standard analysis of this equation predicts a phase tran-

sition separating a regime of non-zero stable solutions ±m0 6= 0 from a regime in

which the only solution is m0 = 0. The coexistence line is m0 = 1 − 2Fk

(

kκ
1+κ

)

and the critical point occurs at Fk

(

kκ
1+κ

)

= 1/2. In figure 4.3 we plot the equilib-

rium magnetization m0 as a function of the probability p for fixed k. It is clear

from this figure that the mean-field approximation reproduces the loss of order

that arises as the proportion p of negative links increases, although the precise

location of the transition point is not well reproduced.

41



4.7 Mechanism

In figure 4.3, lower panel, we plot the amplification factor computed after a

numerical integration of Eq.(4.11). Qualitatively, the results agree with those of

simulations presented in the previous section: there is a resonance effect, i.e. the

response shows a maximum as a function of p. The maximum value is reached

for a value pc, close to that signaling the order-disorder transition. Furthermore,

it can be noticed that the size of the amplification region, defined as the set of

values of p for which R > 1, is similar to the size of the transition region, defined

roughly as the set of values of p for which the magnetization satisfies m(p) < 0.5

and the maximum is achieved at a value of p such that m(p) ≈ 0.2− 0.3. As the

average number of neighbours k increases, the size ∆p of this region decreases

as k−1/2 and it disappears in the limit k → ∞. Since the relative dispersion in

the number of positive links also scales as σ[k+]/〈k+〉 ∼ k−1/2, one is tempted to

attribute the existence of the resonance to the existence of such a dispersion, a fact

already stressed in the study of synchronized oscillations induced by diversity[13].

This is supported by a modified version of the mean-field approach in which the

dispersion is strictly equal to 0. This can be achieved by using in (4.16) the

probability distribution that would arise if all nodes had the same number k+
i of

positive links, namely Fk(x) = 0 if x < pk and Fk(x) = 1 if x > pk. As shown in

figure 4.3, in this case the amplification region has disappeared altogether.

However, it should be noted that the response in the transition to the ampli-

fication region is not continuous in this mean field case. There is a jump at a

value p∗, such that R(p → p−∗ ) = 1 but R(p → p+
∗ ) > 1. As discussed later, this

discontinuity arises because, in the mean field scenario, the dynamics is governed

by a bistable potential. The onset of amplification corresponds to the system

being able to jump the potential barrier.

4.7 Mechanism

4.7.1 Microscopic point of view

We now give an explanation of some features of the observed resonance from a

microscopic point of view, i.e. analyzing the evolution of individual values of µi.
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4.7 Mechanism

According to the rules (4.3), a chosen node takes the sign of the external signal

with a probability |a sin(Ωt)|, independently of the current system configuration.

To enhance resonance, there are two necessary requirements after a node has

changed its state: to maintain the perturbation in the next time steps, and to

spread it to its neighbours. The crucial issue is then how the local configuration

of nodes and links helps (or hinders) this ordering process.

To spread a perturbation, it would be an advantage to have all-attractive

couplings; however, to maintain its state, the node cannot be too constrained by

its neighbours. With a high homogeneity of the neighbours states and a positive

connection with all of them, a perturbed spin would likely be forced to go back

to its original state next time it is selected. At the other extreme, when all its

connections are negative, a perturbed node is also very much constrained by the

state of its neighbours, the local field being maximal for a local anti-ferromagnetic

ordering. At an intermediate level of positive and repulsive connections, we have

the optimal state. It has a capacity to spread a perturbation to the whole network,

but constrains minimally a node that has been perturbed. Due to the combination

of attractive and repulsive links, the local field around a node is close to zero.

Therefore, if a node changes its state, it possibly won’t be forced to return to its

previous position after consulting with its neighbours. On the other hand, it is

easy to spread a perturbation: if a node had previously a zero local field, after

one neighbour has changed, the balance is broken, and it has to align with that

neighbour, if the connection is positive.

To illustrate this point we monitored the system’s response when the signal

is switched on and off, at regular intervals. The goal is to see to what extent

perturbations spread after the signal is switched off. These perturbations take the

following form: during one unit of time (N updates), taken at regular intervals,

the dynamics is such that the randomly chosen nodes adopt the µ=1 state, with

probability A = 0.15. As shown in Fig. 4.4, those perturbations die out almost

immediately for p ≈ 0 or p ≈ 1 and only for p ≈ pc are the perturbations able to

spread during a finite amount of time.

This microscopic picture will help us to understand some of the observed

features. For example, in Fig. 4.5 we show that the amplification region ∆p

decreases when the number of neigbhors k increases, whereas pc tends to 0.5.
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Both facts agree qualitatively with the predictions of the mean-field theory. It is

clear that for large k the condition of a local field close to zero can only be satisfied

for a probability of repulsive links near 0.5. This is easily illustrated when one

considers the case of p far from 0.5 and a uniform magnetization (at the peak of

a signal’s cycle). Getting a local field close to zero when the connectivity is high

requires many neighbours flips. Since the unit to be updated is chosen randomly

at each time step, it is likely that a unit is chosen twice before enough of its

neighbours have been perturbed. On the other hand, p = 0.5 is the upper limit

for the amplification region, because a majority of positive links is necessary to

have perturbation spreading. As the proportion of repulsive links approaches 0.5,

more neighbours have a negative connection and they will exert, when perturbed,

an influence opposite to the signal.

Note that for the resonance to disappear we need formally the limit k → ∞.

In a finite network, the maximum value is k = N − 1 and, as shown in figure 4.5

for N = 201 and N = 1001, the resonance does not disappear completely even

for the maximum connectivity.

As we did in the mean-field treatment, and in order to isolate the influence

of competitive interactions from the disorder induced by the dispersion in the

number of links, we also present in figure 4.6 results from random networks when

all nodes have exactly the same number of neighbours k and the same proportion

p of repulsive links [41]. At variance with the previous results, an almost total

reduction of the amplification region can be achieved even for finite values of N ,

for large enough k. This shows that diversity in the number of positive links is

an important ingredient for the robustness of the resonance effect, although that

effect doesn’t require in general that diversity.

Why does dispersion matter? The precise mechanism is hard to grasp, but it

is certainly related to a degradation of order at local level. To decrease the chance

of having perturbed neighbours driving several units in the direction opposite to

the signal, there have to be many nodes with a clear majority of positive links.

But as we saw above – assuming every node had the same number of negative

links – those units require many neighbours flips, to maintain their local field

close to zero. However, if the nodes are heterogeneous, an unit with a lower than

average number of repulsive links can profit from those neighbours that have
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many negative connections to other nodes. Since those are more susceptible to

changes, their presence decreases the local field, thereby diminishing the need

for many neighbours updates. This result confirms the importance of diversity

in making the phenomenon more robust, but also shows that we can have an

amplification even without diversity.

4.7.2 Macroscopic point of view

In this subsection, we consider the explanation of the resonance from the macro-

scopic point of view, i.e. we look at the behaviour of the collective variable

(magnetization) m(t). We assume that the dynamics of this macroscopic variable

in the no-forcing case, f = 0, can be described in terms of relaxation in a po-

tential function V (m). The absolute minima ±m0 of the potential give the rest

states which are separated by a potential barrier ∆V . This picture has proved

to be valid in other problems with diversity in the parameters [12] and it cer-

tainly holds in the mean-field limit where, according to the previous section, the

dynamical equation is dm
dt

= − dV
dm

with a potential given by:

V (m) =
m2

2
− M(p)|m| (4.17)

with M(p) = 1 − 2Fk

(

kκ
1+κ

)

running from M(0) = 1 to M(1) = −1. Fig. 4.7,

upper panel, illustrates the effect of repulsive links on the shape of the potential,

according to the mean field predictions. There are two minima of the potential,

m0 = ±M(p) for M(p) > 0, and a single minimum m0 = 0 for M(p) < 0, or

p > pc, the critical point. For small p the barrier separating the two minima is

high and it can not be overcome by the effect of the weak forcing f(t). The only

effect of the forcing is a small oscillation around one of the minima (chosen by

the initial conditions). As p increases, the two minima of the potential get closer

to each other and the barrier separating them decreases such that, at a particular

value of p the forcing is able to overcome the barrier and m(t) oscillates between

the two minima ±m0. As p crosses the critical value pc, the two minima merge

at m0 = 0, the barrier disappears and the effect of the forcing is reduced again

to small oscillations around a single minimum.
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4.7 Mechanism

To apply this potential image beyond the mean-field approximation we need

to include an important modification. As discussed before, the energy landscape

is that of a spin-glass with many metastable states and two absolute minima

±m0. As a consequence, in the no-forcing case, the final state reached depends

strongly on initial conditions. This is illustrated in figure 4.7, lower panel, where

we plot the probability distribution of the final magnetization. If the initial

state is the ordered state µi = +1 (resp. −1) ∀i, the final magnetization is

peaked near m = 1 (resp. −1). If the initial state adopts µi = ±1 randomly,

then the final magnetization is peaked around m = 0. This reflects the existence

of many barriers separating the metastable states from the absolute minima of

the potential. When the forcing is introduced, it has to be able to overcome all

these intermediate barriers. The final image is that of a particle moving in a

“rugged” potential. As p increases, the height of those barriers decreases and

the forcing is able to explore a larger fraction of the configuration space, but not

necessarily leading to trajectories ending in the absolute minima of the potential.

This can be seen in figure 4.8 where we show the effect of a forcing weaker than

that used in figure 4.2. The magnetization oscillates around a mean value that

drifts with time. If we enlarge the period of the forcing – Fig. 4.8, lower panel –

the oscillations become wider and the system has now enough time to reach the

equilibrium minima close to m0 = ±1.

The origin of the discrepancy in the results of simulations and mean field lies

in the approximation 4.9. When we consider a annealed version, where disorder

is not correlated in time, we can recover a bistable potential as it is predicted

by the mean field. In the annealed version, the neighbourhood is fixed but the

relationship matrix wijis redefined randomly at each time step. In fact, this ver-

sion could be more accurate to represent, for instance, plasticity in the brain, or

a society without personal prejudices: here people are not always opposed to the

position of the same neighbors. Another option is to allow for a transient time,

when the connectivity changes randomly, and then freeze the connections. This

transient time with annealed disorder is a way of averaging over the distributions

of repulsive links, thereby making the system less dependent on initial conditions.

This scenario might model a society where a diffusive animosity finally crystallises

into entrenched positions of friends and enemies, or in another context, the known
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fact that brain plasticity is higher in initial stages. Even though the microscopic

mechanism of resonance is the same in all the three scenarios, the macroscopic

picture is somewhat different. In the temporarily annealed scenario, the bimodal

distribution of stable states in Fig. 4.9 suggests a bistable nonlinear dynamics.

We don’t show here the annealed disorder case, because it looks similar to Fig.

4.9 . However, there is a difference: in the annealed disorder scenario the system

oscillates randomly between the potentials wells, whereas in the temporarily an-

nealed case, usually (not always...) a stable state is reached when the population

is not being forced by an external signal. Comparing the lower panel of Fig. 4.9

with the upper panel of Fig. 4.8 we observe that the response to very weak fast

signals is much more pronouced when the relationship matrix changes with time.

Just like the introduction of diversity in the number of repulsive links made

the response more robust against changes in the number of elements, so does the

introduction of some kind of stochastic disorder makes the system more sensitive

to weaker signals.

4.8 Conclusions

We have used Monte Carlo simulations and analytical (mean field) calculations to

investigate the response of a system of two-state units, with both attractive and

repulsive interactions and majority-rule dynamics, to a weak periodic signal. For

both regular and random networks, we have found that competing interactions

can enhance the system response – a kind of “divide and conquer” strategy. In

each case, a resonance was found for an optimal percentage of negative links

which depends on the model parameters. Applications include opinion dynamics

and neuron networks but the model is generic enough to predict that the same

type of effect can be found in other systems. We have carried out a detailed

analysis for an opinion model first introduced by Zanette and Kuperman[32] but

we want to stress that the “microscopic” details of the model are not essential

for the resonance phenomenon. In fact, we have considered other models with

modified versions of the updating rules and still the same main results hold. For

instance, instead of a sinusoidal time dependent probability of following either
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the external signal or the weighted majority, we have tried a constant probability

a. The dynamical rules are then modified to:

µi(t + τ) =











sign
[

∑

j∈V (i) ωijµj(t)
]

w.p. 1 − a,

sign [sin(Ωt))] w.p. a,

(4.18)

Another modification considers that the effect of the external influence is a factor

to be considered simultaneously with the majority rule. In this case, the updating

rule becomes:

µi(t + τ) = sign





1

ki

∑

j∈V (i)

ωijµj + asin(Ωt)



 (4.19)

In both modified versions we have confirmed our main result, namely that there

exists a value of the probability of repulsive links p for which the response adopts

a maximum value.

We have discussed in some detail the microscopic mechanism for the amplifi-

cation. We argued that the flexibility of the system to follow the external signal

requires that the local field seen by each unit is kept close to zero and analysed

how this condition might be achieved in some parameter limits.

A macroscopic analysis, in terms of a relaxation dynamics in a bistable poten-

tial, is able to explain the mean-field results. It is difficult to use this description

beyond the mean field treatment, due to the presence of many metastable configu-

rations. Because of their presence, a large response, corresponding to oscillations

around (symmetrical) absolute minima can be obtained for a sufficiently slow

forcing.

There are studies that point to the role network topology plays in synchroni-

sation or response to stimuli [8]. Analysing the effect of coupling strength, degree

distribution and other network characteristics on the coherent response may shed

some light on how the mechanism can be optimised.
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Figure 4.1: The coincidence between resonance and order-disorder transtion re-

gion. Upper panel: Modulus of the average magnetization as a function of

the probability of repulsive links. In the regular networks, the existence of

metaestable states reveals itself in a smaller magnetization at p = 0. Lower

panel: Spectral amplification factor R versus probability of repulsive links p. Pa-

rameters are: a = 0.15, Ω = 2π
100

, κ = 1. In the main graph, N = 100 and symbols

correspond to topologies: ring with k = 10 neighbours (◦), square lattice with

k = 8 neighbours in the Moore neighbourhood (�), and random networks with

average number of neighbours k = 10 and rewiring probability q = 0.2 (∗) and

q = 1 (△). In the inset, we chose the random network with q = 1, k = 10, and

different curves correspond to sizes N = 100 (△), 500 (⊳), and 1000 (▽).
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Figure 4.2: Evolution of magnetization in time (random network, q = 1, k = 10).

Other parameters are: N = 100, a = 0.15, Ω = 2π
100

, κ = 1.
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Figure 4.3: Upper panel: Modulus of the average magnetization as a function

of the probability of repulsive links according to the mean-field theory for κ = 1.

Lower panel: Spectral amplification factor versus probability of repulsive links

according to the mean-field theory for a = 0.15, Ω = 2π
100

, κ = 1.
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Figure 4.4: This image suggests that the step-by-step response we propose is

a reasonable mechanism. Their outreach of the perturbations depends on the

probability of repulsive links. At the optimal probability p = 0.26, the net effect of

perturbations accumulates, but after the signal is switched off they don’t continue

spreading to the whole network.
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Figure 4.5: Spectral amplification factor versus probability of repulsive links for

a random network with q = 1, a = 0.15, Ω = 2π
100

, κ = 1. Main graph uses

N = 1001 while the inset shows the case N = 201.
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Figure 4.6: Spectral amplification factor versus probability of repulsive links for a

“no-dispersion” network in which all sites have the same number of positive and

negative links. Due to the particular way the network is constructed[41], only

values of p = k/N where the total number of neighbours per site, k, is an even

integer number are allowed. Parameters are N = 1001, a = 0.15, Ω = 2π
100

, κ = 1

(main graph) and N = 201 (inset). Note that the amplification region shrinks as

k increases. For comparison, we also include as dotted lines the results of figure

4.5.
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Figure 4.7: Comparison between the stable states predicted by mean field and

simulations. Upper panel: the effective potential defining the relaxational dy-

namics according to Eq. 4.17, for different values of the probability of repulsive

links p. We considered the case of k = 100. Lower panel: Distribution of stable

states at the optimal probability pc = 0.25 in the case of an unforced random

network with q = 1, N = 100, k = 10, κ = 1 starting from three different

initial conditions: all spins equal to +1 (data set indicated as m(t = 0) = 1),

all spins equal to −1 (m(t = 0) = −1) and spins take randomly the value ±1

(〈m(t = 0)〉 = 0).

54

Chapter3/Chapter3Figs/EPS/pm.eps
Chapter3/Chapter3Figs/EPS/f8qdistri.eps


4.8 Conclusions

0 100 200 300 400 500 600 700 800 900 1000 1100
t

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

m

=0.0

=0.30

=1.0

p

p

p

Sinusoidal Driving

0 100 200 300 400 500 600 700 800 900 1000 1100
t

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

m

=0.0

=1.0

=0.29p

p

p

Sinusoidal driving

Figure 4.8: Upper panel: Evolution of the magnetization following a weak signal

a = 0.08, Ω = 2π
100

, in the case of a random network, q = 1, k = 10, κ = 1. The

extreme values of the magnetization coincide with the points where the driving

value changes sign, they don’t take always the same value. This nonstationarity is

explained by the influence of the random factors in our model. According to the

proposed mechanism, the system walks in multi-steps (Fig. 4.4. The amplitude

of the response depends on random factors, such as the sequence of perturbed

nodes and their different local fields and connectivities. When the signal is weak

and fast, these random factors influence the amplitude of the response, which

explains the nonstationarity. Lower panel: Same as figure 4.8 for a slower forcing

Ω = 2π
333.3

. If is sufficiently slow, many nodes are perturbed, and at the end the

system is able to display the maximum possible response and reach the points

m = ±1.
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Figure 4.9: The influence of annealed disorder. Upper panel: Distribution of

stable states at the optimal probability pc = 0.26 in the case of an unforced

random network with q = 1, N = 100, k = 10, κ = 1 starting from random initial

conditions (< m(t = 0) >= 0). Lower panel: Evolution of the magnetization

following a weak signal a = 0.08, Ω = 2π
100

, in the case of a random network with

annealed disorder in the interaction matrix, q = 1, k = 10, κ = 1.
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Chapter 5

Conclusions, or what else could
be done

We have shown that the presence of competitive interactions can optimize the

response to weak signals, and gave as specific examples two models where the

effect was verified. Furthermore, we unveiled the specific characteristics of this

phenomenon, contrasting it to the case of disorder induced by noise or by diversity.

In our models, these three sources of disorder take advantage of different

mechanisms to amplify the response: in the case of stochastic resonance, a time

matching between switches induced by noise and the period of the signal, in the

case of diversity induced resonance a lowering of the potential barrier between

two stable states, and in the case of resonance induced by repulsive links the

replacement of the bistable potential by a multistable one. Even though these

later two are both instances of disorder induced resonance, so that both of them

involve a lowering of barrier that renders weak signals supra-threshold, it is not

clear how much they should be classified together. The kind of disorder we

encountered was not predicted by the theory developed in [12], and far from

being a minor detail, it has consequences in the type of response to very fast or

very weak signals.

Future research should proceed along 3 directions. In the first place, more

important than listing different sources of disorder, is to understand different

mechanisms of resonance, that eventually can be exploited by any source of dis-

order, under appropriate circumstances.
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Throughout the thesis, we reviewed a list of sources of disorder and compared

its effects on two very generic models. Since both of those models are bistable

systems, a second avenue of research would explore the boundaries of application

of the phenomenon in other types of systems, such as excitable systems or oscil-

lators. This is already underway: a system of nonlinear Van der Pol oscillators

exhibits a similar phenomenon.

The third challenge is to find out whether the concepts developed in this thesis

in an idealised manner would work in more realistic and complex circumstances.

For instance, we adopted the language of sociophysics when we described the

Ising-like model. It is a long standing debate whether such generic simple models

actually have any interest in modeling social life. The Divide and Conquer maxim

is well-known and widely applied for millennia, since the Romans, at least. It

would be good to extract from the model what is specifically new, and to device

a way to test it. We attempted a preliminary research of this topic, with the

help of sociologists, but so far we have not been able to implement a completed

project based on it.
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Appendix A

Spectral Analysis

In this appendix I will give some details about the spectral analysis calculations

used in Chapter 3.

A.0.1 What can the Laplacian represent?

Let’s us consider a generic linearly coupled model, where F (xi) is any function

of xi:

dxi

dt
= F (xi) +

C

N

N
∑

j=1

Jij(xj − xi) (A.1)

Defining the ”Laplacian” [42] as J ′
ij = Jij − δij

∑N
k=1 Jkj, we rewrite Eq. A.1

as:

dxi

dt
= F (xi) +

C

N

N
∑

j=1

J ′
ijxj (A.2)

If Eq. A.1 models a potential system,
dxi

dt
= −∂V

∂xi

, and the global potential

is:

V (xi, xj, ...) == −
∫

F (xi)dxidxj +
1

4

∑

j

∑

i

J ′
ijxjxi (A.3)
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We see
∑

i,j J ′
ijxixj = −

∑

i,j Jij(xi − xj)
2 [42], because:

∑

j

∑

i

J
′
ijxixj =

∑

j

∑

i

[

Jij − δij

N
∑

k=1

Jkj

]

xixj =

∑

j

[

∑

i

Jijxjxi

]

−
∑

j

[

∑

i

(

δij

N
∑

k=1

Jkjxixj

)]

=

∑

j

[J1jx1xj + J2jx2xj + ...] −
∑

j

[

∑

i

(

J1ix
2
i + J2ix

2
i + ...

)

]

=

[

J11x
2
1 + J22x

2
2 + ... + J12x1x2 + J21x2x1 + ...

]

−
∑

j

(

J11x
2
1 + J12x

2
1 + ... + J21x

2
1 + J22x

2
2 + ...

)

=

[

J11x
2
1 + J22x

2
2 + ... + J12x1x2 + J21x2x1 + ...

]

− (J11x
2
1 + J12x

2
1 + ... + J21x

2
1 + J22x

2
2 + ...) =

∑

j

∑

i

Jijxjxi − J11x
2
1 − J22x

2
2 − ... − J12x

2
1 − ... − J21x

2
1 − ... =

−





∑

j

∑

i

Jijx
2
i −

∑

j

∑

i

Jijxixj



 = −1

2

∑

j

∑

i

Jij(xj − xi)
2

(A.4)

And so the global potential is:

V (xi, xj, ...) = −
∫

F (xi, xj, ...)dxidxj... −
1

4

∑

j

∑

i

Jij(xj − xi)
2 (A.5)

If the variables xi represent some perturbation, we conclude [42] that in heuris-

tic terms the positive eigenvalues of the Laplacian express the contribution of the

coupling term to the vulnerability of the system to perturbations.

A.0.2 Spectral analysis

Let’s us assume the state of a unit i is so
i at a given time. Our goal is to see how

the interaction with the other units modifies this state.

We define the eigenvalues Qα and (normalized) eigenvectors eα = (eα
1 , . . . , eα

N)

of the Laplacian coupling matrix J ′
ij
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J ′
ij = Jij − δij

N
∑

k=1

Jkj, (A.6)

N
∑

j=1

J ′
ije

α
j = Qαeα

i . (A.7)

with the normalization condition:

∑

i

eα
i eβ

i = δαβ (A.8)

The translation invariance of the system requires that:

N
∑

j=1

J ′
ij = 0 (A.9)

xi =
N
∑

α=1

Bαeα
i , (A.10)

Now let’s replace some terms in the equation 3.1 as:

N
∑

j=1

Jij(sj − si) =
N
∑

j=1

J ′
ijsj (A.11)

=
N
∑

j=1

J ′
ij(s

o
j + xj) (A.12)

=
N
∑

j=1

J ′
ijs

o
j +

N
∑

j=1

J ′
ij

N
∑

α=1

Bαeα
j (A.13)

=
N
∑

j=1

J ′
ijs

o
j +

N
∑

α=1

BαQαeα
i (A.14)

si = so
i + xi (A.15)

= so
i +

N
∑

α=1

Bαeα
i (A.16)

(A.17)
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s3
i = (so

i + xi)
3 (A.18)

= ((so
i )

2 + x2
i + 2so

i xi)(s
o
i + xi) (A.19)

= (so
i )

3 + (so
i )

2xi + so
i x

2
i + x3

i + 2(so
i )

2xi + 2so
i x

2
i (A.20)

= (so
i )

3 + 3(so
i )

2xi + 3so
i x

2
i + x3

i (A.21)

si − s3
i = so

i + xi − (so
i )

3 − 3(so
i )

2xi − 3so
i x

2
i − x3

i (A.22)

Expanding the right side of Eq.(3.1) for A = 0, multiplying the resulting

equation by eα
i , and considering the normalization condition A.8, we get:

(so
i )e

α
i + xie

α
i − (so

i )
3
e
α
i 3(so

i )
2
xie

α
i − 3s

o
i x

2
i e

α
i − x

3
i e

α
i =

= (so
i )e

α
i +

N
∑

β=1

Bβe
β
i e

α
i − (so

i )
3
e
α
i − 3(so

i )
2

N
∑

β=1

Bβe
β
i e

α
i − 3s

o
i





N
∑

β=1

Bβe
β
i





2

e
α
i −





N
∑

β=1

Bβe
β
i





3

e
α
i =

= (so
i )e

α
i +

N
∑

β=1

Bβe
β
i e

α
i − (so

i )
3
e
α
i − 3(so

i )
2

N
∑

β=1

Bβe
β
i e

α
i − 3s

o
i

N
∑

β,γ=1

BβBγe
β
i e

γ
i e

α
i −

−
N
∑

β,γ,η=1

BβBγBηe
β
i e

γ
i e

η
i e

α
i

We will assume that:

1

N

N
∑

i=1

so
i e

α
i ≈ 1

N2

N
∑

i=1

so
i

N
∑

i=1

eα
i (A.23)

Which is true in the limit of N → ∞
Also:

N
∑

i=1

eα
i = 0 (A.24)

unless Qα = 0

62



Now let’s average over all elements, to find the evolution of a given mode.

dBα

dt
= −

∑

β,γ,η

F βγηαBβBγBη +

(

C
Qα

N
− K

)

Bα, (A.25)

where

F βγηα =
N
∑

i=1

eβ
i eγ

i e
η
i e

α
i , (A.26)

K =
3

N

N
∑

i=1

(so
i )

2 − 1. (A.27)

If we neglect the coupling between modes, this approximation leads to F βγηα =

1/PRα if α = β = γ = η and 0 otherwise. We then obtain the following equation

for the amplitude of the α-th mode:

dBα

dt
= −B3

α + PRα

(

C
Qα

N
− K

)

Bα. (A.28)

According to this approximation, unless Qα > KN
C

, the amplitude of the mode

Bα tends to zero, and any small perturbation vanishes. Otherwise, the amplitude

of the mode α tends to a steady state value:

Bα = ±
[
√

PRα

(

C
Qα

N
− K

)

]

. (A.29)

In this case, mode α is said to be an open mode.
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Appendix B

A method to detect potential

wells

In this appendix, I explain how we detected the number of states, by adapting the

method poposed in V. N. Livina, F. Kwasniok, and T. M. Lenton, Clim. Past, 6,

77-82, (2010)

The method was developed to detect the number of states in geophysical time

series, which are have observational noise and often nonstationarities. Therefore,

the method [58] starts considering a stochastic Langevin equation:

ż = −U ′(z) + ση, (B.1)

where U(z) is a potential function, σ is the noise level and η is a Gaussian white

noise with zero mean and unit variance. In the context of the original work, the

state variable z represents some large-scale climate variable like temperature.

We assume a general polynomial potential:

U(z) =
L
∑

i=1

aiz
i, (B.2)

where the order L is even and the leading coefficient aL is positive for eq. (B.1)

to possess a stationary solution. The order of the polynomial controls the com-

plexity of the potential (the number of potential wells), with increasing values
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of L allowing more states to be accommodated: a fourth-order polynomial can

capture a system with two states (double-well potential).

The number of system states is estimated by means of a polynomial fit of

the probability density function of the data. Suppose the system is governed by

eq. (B.1). The corresponding Fokker-Planck equation for the probability density

function p(z, t)

∂tp(z, t) = ∂z[U
′(z)p(z, t)] +

1

2
σ2∂2

zp(z, t) (B.3)

has a stationary solution given by (see [18])

p(z) ∼ exp[−2U(z)/σ2]. (B.4)

Given this one-to-one correspondence between the potential and the stationary

probability density of the system, the potential can be reconstructed from time

series data of the system as

U = −σ2

2
log pd, (B.5)

where pd is the empirical probability density of the data. This is estimated us-

ing a standard Gaussian kernel estimator [53]. Then least-square fits of − log pd

(weighted with the probability density of the data with polynomials of increasing

even order L are calculated, starting with L = 2, until a negative leading coeffi-

cient aL is encountered. The polynomial of highest degree before first obtaining

a negative leading coefficient is considered the most appropriate representation

of the probability density of the time series, both locally and globally, avoiding

overfitting of sampling fluctuations in the probability density.

The number of states S in the system is then determined as

S = 1 +
I

2
, (B.6)

where I is the number of inflection points of the fitted polynomial potential of

appropriate degree L as described above. This definition takes into account not

only the degree of the polynomial but its actual shape. We only look at even-

order potentials with positive leading coefficient. These have positive curvature

both at minus and plus infinity. Thus, inflection points can only occur in pairs

(if any). Any potential has at least one state (with no inflection points). Then
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we count one further state for each pair of inflection points. This can be either

a real minimum (well) or just a flattening in the potential (corresponding to

degeneracies in the potential; definition (B.6) accommodates both possibilities.

The number of inflection points is numerically given as the number of sign changes

in the second derivative on a fine enough mesh.

If necessary, the coefficients that determine the shape of the potential are then

estimated using the unscented Kalman filter (UKF). The method was developed

for the stochastic model with noise component and performs polynomial fit of

the histogram which is expected to be smooth (i.e. no discrete peak). To detect

the number of states in the φ4 model with competitive interactions, we had to

add a noise component to the model trajectories to make the method applicable.

Yet, to minimise the effect of noise, we considered white Gaussian noise of small

amplitude (0.01 of the trajectory amplitude), which allowed us to ”fill” the his-

togram and make it suitable for smooth polynomial fit. Note that adding noise

can only hide a certain shallow well in the potential, but never lead to a false

detection of non-existent states, and therefore adding noise cannot lead to false

detection of additional states.
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Appendix C

The rewiring algorithm

mentioned in the Divide and

Conquer chapter

To settle the issue of whether the resonance phenomenon was induced by vari-

ability in the number of repulsive links or not, we decided to construct a network

in which every agent had exactly the same number of positive and of repulsive

links. We did so, adapting the “local rewiring algorithm” (S. Maslov, K. Sneppen,

Science 296, 910 (2002)) to construct a random network where every node has

exactly the same number of links k and the same proportion p of repulsive links

– the “no dispersion” network.

In a network with N nodes each with 2k neighbours, there will be 2pk repulsive

links.

The network is constructed as follows: we start with a ring where each of the

N nodes has 2k nearest neighbours. Then we randomize the network by repeating

the elementary rewiring step: we select two links at random, and rewire them

by switching partners, excluding the appearance of multiple edges. If we want a

global coupled network, the randomised links will be all repulsive, and we later
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Figure C.1: An illustration of the rewiring algorithm. A pair of directed edges A

– ¿ B and C – ¿ D is randomly selected. These edges are then rewired in such a way

that A becomes connected to D, while C to B, provided that none of these edges

already exist in the network, in which case the rewiring step is aborted and a new

pair of edges is selected. The rewiring algorithm conserves both the in- and out-

connectivity of each individual node. Source: http://www.cmth.bnl.gov/ maslov/

add attractive links until everyone is coupled. Otherwise, the first 2pk links in

the ring to be randomised are repulsive, and the rest (1-p)2k are attractive.

————————-
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Appendix D

Publications

The publications concerning the results in this thesis are:

D.0.2.1 φ4 model

T. Vaz Martins, V. N. Livina, A. P. Majtey, R. Toral, Resonance induced by

repulsive interactions in a model of globally-coupled bistable systems, Physical

Review E 81, 041103 (2010)

D.0.2.2 Opinion formation model

• T. Vaz Martins and Raúl Toral, Resonance induced by repulsive links, in

Applications of Nonlinear Dynamics: Model and Design of Complex Sys-

tems, edited by V. In, P. Longhini, A. Palacios, (Springer Verlag, 2009), p.

439

• T. Vaz Martins, R. Toral, M.A. Santos, Divide and Conquer: Resonance

Induced by Competitive Interactions, European Physical Journal B 67,

329-336 (2009)

————————-
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