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Abstract

Nonlinear time series analysis is an active field of research that studies the structure of complex

signals in order to derive information of the process that generated those series, for understanding,

modeling and forecasting purposes. In the last years, some methods mapping time series to network

representations have been proposed. The purpose is to investigate on the properties of the series

through graph theoretical tools recently developed in the core of the celebrated complex network

theory. Among some other methods, the so called visibility algorithm has received much attention,

since it has been shown that series correlations are captured by the algorithm and translated in

the associated graph, opening the possibility of building fruitful connections between time series

analysis, nonlinear dynamics, and graph theory. Here we use the horizontal visibility algorithm

to characterize and distinguish between correlated stochastic, uncorrelated and chaotic processes.

We show that in every case the series maps into a graph with exponential degree distribution

P (k) ∼ exp(−λk), where the value of λ characterizes the specific process. The frontier between

chaotic and correlated stochastic processes, λ = ln(3/2), can be calculated exactly, and some

other analytical developments confirm the results provided by extensive numerical simulations and

(small) experimental time series.
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I. INTRODUCTION

Concrete hot topics in nonlinear time series analysis [1] include the characterization of

correlated stochastic processes and chaotic phenomena in a plethora of different situations

including long-range correlations in earthquake statistics [2], climate records [3], stock mar-

ket [5], noncoding DNA sequences [4], urban growth dynamics [6], or physiological series

[7, 8] to cite but a few, and chaotic processes [1, 9–14].

Both stochastic and chaotic processes share many features, and the discrimination be-

tween them is indeed very subtle. The relevance of this problem is to determine whether the

source of unpredictability (production of entropy) has its origin in a chaotic deterministic

or stochastic dynamical system, a fundamental issue for modeling and forecasting purposes.

Essentially, all methods [1, 14] that have been introduced so far rely on two major differences

between chaotic and stochastic dynamics. The first difference is that chaotic systems have a

finite dimensional attractor, whereas stochastic processes arise from an infinite-dimensional

one. Being able to reconstruct the attractor is thus a clear evidence showing that the time

series has been generated by a deterministic system. The development of sophisticated em-

bedding techniques [1] for attractor reconstruction is the most representative step forward

in this direction. The second difference is that deterministic systems evidence, as opposed

to random ones, short-time prediction: the time evolution of two nearby states will diverge

exponentially fast for chaotic ones (finite and positive Lyapunov exponents) while in the

case of a stochastic process such separation is randomly distributed. Whereas some algo-

rithms relying on the preceding concepts are nowadays available, the great majority of them

are purely phenomenological and often complicated to perform, computationally speaking.

These drawbacks provide the motivation for a search for new methods that can directly

distinguish, in a reliable way, stochastic from chaotic time series. This is, for instance, the

philosophy behind a recent work by Rosso and co-workers [27], where the authors present a

2D diagram (the so-called entropy-complexity plane) that relates two information-theoretical

functionals of the time series (entropy and complexity), and compute numerically the coor-

dinates of several chaotic and stochastic series in this plane. The purpose of this paper is

to offer a different, conceptually simple and computationally efficient method to distinguish

between deterministic and stochastic dynamics.

The proposed method uses a new approach to time series analysis that has been devel-
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oped in the last years [15, 18–21]. In a nutshell, time series are mapped into a network

representation (where the connections between nodes capture the series structure according

to the mapping criteria) and graph theoretical tools are subsequently employed to character-

ize the properties of the series. Amongst these mappings, the so called visibility algorithm

[15] has received much attention, since it has been shown that series correlations (including

periodicity, fractality or chaoticity) are captured by the algorithm and translated in the

associated visibility graph [15–17], opening the possibility of building bridges between time

series analysis, nonlinear dynamics, and graph theory. Accordingly, several works apply-

ing such algorithm in several contexts ranging from geophysics [23] or turbulence [24] to

physiology [25] or finance [26] have started to appear [22].

Here we address the characterization of chaotic, uncorrelated and correlated stochastic

processes, as well as the discrimination between them, via the horizontal visibility algorithm.

We will show that a given series maps into a graph with an exponential degree distribution

P (k) ∼ exp(−λk), where λ < ln(3/2) characterizes a chaotic process whereas λ > ln(3/2)

characterizes a correlated stochastic one. The frontier λun = ln(3/2) corresponds to the

uncorrelated situation and can be calculated exactly [16], thus the method is well grounded.

Some other features are calculated analytically, confirming our numerical results obtained

through extensive simulations for Gaussian fields with long-range (power-law) and short-

range (exponential) correlations and a plethora of chaotic maps (Logistic, Hénon, time-

delayed Hénon, Lozi, Kaplan-Yorke, α-map, Arnold cat). Experimental (small) series of

sinus rythm cardiac interbeats –which have been shown to evidence long-range correlations–

are also analyzed. Moreover, we will also show that the method not only distinguishes but

also quantifies (by means of the parameter λ) the degree of chaoticity or stochasticity of the

series. The rest of the paper is organized as follows: in section II we recall some properties

of the method, and in particular we state the theorem that addresses uncorrelated series. In

section III we study how the results deviate from this theory in the presence of correlations,

through a systematic analysis of long-range and short-range stochastic processes. Results

are validated in the case of experimental time series. Similarly, in section IV we address

time series generated through chaotic maps. In section V and VI analytical developments

and heuristic arguments supporting our previous findings are outlined. In section VII we

comment on the limitations of the algorithm, and in section VIII we conclude.
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II. HORIZONTAL VISIBILITY ALGORITHM

FIG. 1. Graphical illustration of the horizontal visibility algorithm. In the top we represent a time

series and in the bottom its associated horizontal visibility graph, according to the geometrical

criterion encoded in Eq. (1) (see the text).

The horizontal visibility algorithm has been recently introduced [16] as a map between a

time series and a graph and it is defined as follows. Let {xi}i=1,...,N be a time series of N real

data. The algorithm assigns each datum of the series to a node in the horizontal visibility

graph (HVG). Two nodes i and j in the graph are connected if one can draw a horizontal

line in the time series joining xi and xj that does not intersect any intermediate data height

(see figure 1 for a graphical illustration). Hence, i and j are two connected nodes if the

following geometrical criterion is fulfilled within the time series:

xi, xj > xn, ∀ n | i < n < j . (1)

Some properties of the HVG can be found in [16]. Here we recall the main theorem for

random uncorrelated series, whose proof can also be found in [16]:

Theorem (uncorrelated series) Let xi be a bi-infinite sequence of independent and

identically distributed random variables extracted from a continous probability density f(x).

The degree distribution of its associated horizontal visibility graph is

P (k) =
1

3

(
2

3

)k−2

. (2)

Note that P (k) can be trivially rewritten as P (k) ∼ exp(−λunk) with λun = ln(3/2). In-

terestingly enough, this result is independent of the generating probability density f(x), (as
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long as it is a continuous one, independently on whether the support is compact or not).

This result shows that there is an universal equivalency between uncorrelated processes and

λ = λun. In what follows we will investigate how results deviate from this theoretical result

when correlations are present.

III. CORRELATED STOCHASTIC SERIES
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FIG. 2. Left : Semilog plot of the degree distribution P (k) of a Gaussian correlated series of

N = 218 data with power-law decaying correlations C(t) ∼ t−γ , for γ = 1.0 and γ = 2.0. showing

an exponential function. P (k) ∼ exp(−λk) in both cases, with slope λ = 0.59 and λ = 0.50

respectively. For comparison, the shape of P (k) associated to a random uncorrelated series is shown,

having λun = ln(3/2) < λ, ∀γ. Right : Similar results associated to short-range correlated series

generated through an Ornstein-Uhlenbeck process with correlation function C(t) ∼ exp(−t/τ).

In order to analyze the effect of correlations between the data of the series, we focus on

two generic and paradigmatic correlated stochastic processes, namely long-range (power-law

decaying correlations) and Ornstein-Uhlenbeck (short-range exponentially decaying corre-

lations) processes. We have computed the degree distribution of the HVG associated to

different long-range and short-range correlated stochastic series (the method for generating

the associated series is outlined in the next section). In the left panel of Fig.(2) we plot

in a semi-log scale the degree distribution for correlated series with correlation function

C(t) = t−γ for different values of the correlation strength γ ∈ [10−2 − 101], while in the

right panel of the same figure, we plot the results for an exponentially decaying correlation

function C(t) = exp(−t/τ). Note that in both cases the degree distribution of the associ-

ated HVG can be fitted by an exponential function exp(−λk). The parameter λ depends
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on γ or τ and is, in each case, a monotonic function that reaches the asymptotic value

λ = λun = ln(3/2) in the uncorrelated limit γ → ∞ or τ → 0, respectively. Detailed results

of this phenomenology can be found in figure 3, and in the the right panel of figure 6 where

we plot the functional relation λ(γ) and λ(τ). In all cases, the limit is reached from above,

i.e. λ > λun. Interestingly enough, for the power-law correlations the convergence is slow,

and there is still a noticeable deviation from the uncorrelated case even for weak correlations

(γ > 4.0), whereas the convergence with τ is faster in the case of exponential correlations.

Minimal substraction procedure

In what follows we explain the method we have used to generate series of correlated Gaussian

random numbers xi of zero mean and correlation function 〈xixj〉 = C(|i− j|). The classical

method for generating such correlated series is the so-called Fourier filtering method (FFM).

This method proceeds by filtering the Fourier components of an uncorrelated sequence of

random numbers with a given filter (usually, a power-law function) in order to introduce

correlations among the variables. However, the method presents the drawback of evidencing

a finite cut-off in the range where the variables are actually correlated, rendering it useless in

practical situations. An interesting improvement was introduced some years ago by Makse

et. al [34] in order to remove such cut-off. This improvement was based on the removal of

the singularity of the power-law correlation function C(t) ∼ r−γ at r = 0 and the associated

aliasing effects by introducing a well defined one C(t) = (1+t2)−γ/2 and its Fourier transform

in continuous-time space. Accordingly, cut-off effects were removed and variables present

the desired correlations in their whole range.

We use here an alternative modification of the FFM that also removes undesired cut-off

effects for generic correlation functions and takes in consideration the discrete nature of the

series. Our modification is based on the fact that not every function C(t) can be considered

to be the correlation function of a Gaussian field, since some mathematical requirements

need to be fulfilled, namely that the quadratic form
∑

ij xiC(|i− j|)xj be positive definite.

For instance, let us suppose that we want to represent data with a correlation function

that behaves asymptotically as C(t) ∼ t−γ. As this function diverges for t → 0 a regu-

larization is needed. If we take C(t) = (1 + t2)−γ/2, then the discrete-Fourier transform

S(k) = N1/2
∑N

j=1 exp(i
jk
N
)C(j) turns out to be negative for some values of k, which is not

acceptable. To overcome this problem, we introduce the minimal substraction procedure,
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defining a new spectral density as S0(k) = S(k) − Smin(k), being Smin(k) the minimum

value of S(k) and using this expression instead of the former one in the filtering step. The

only effect that the minimal substraction procedure has on the field correlations is that C(0)

is no longer equal to 1 but adopts the minimal value required to make the previous quadratic

form positive definite. The modified algorithm is thus the following:

• Generate a set {uj}, j = 1, ..., N , of independent Gaussian variables of zero mean and

variance one, and compute the discrete Fourier transform of the sequence, {ûk}.

• Correlations are incorporated in the sequence by multiplying the new set by the desired

spectral density S(k), having in mind that this density is related with the correlation

function C(r) through S(k) =
∑

r N
1/2 exp(irk)C(r). Make use of S0(k) = S(k) −

Smin(k) (minimal substraction procedure) rather than S(k) in this process. Concretely,

the correlated sequence in Fourier space x̂k is given by x̂k = N1/2S0(k)
1/2ûk.

• Calculate the inverse Fourier transform of x̂k to obtain the Gaussian field with the

desired correlations xj

A. Application to real cardiac interbeat dynamics

As a further example, we use the dynamics of healthy sinus rhythm cardiac interbeats, a

physiological stochastic process that has been shown to evidence long-range correlations [7].

In figure 4 we have plotted the degree distribution of the HVG generated by a time series

of the beat-to-beat fluctuations of five young subjects (21-34 yr) with healthy sinus rhythm

heartbeat [29]. Even if these time series are short (about 6000 data), the results match

those obtained in the previous examples, namely, that the associated graph is characterized

by an exponential degree distribution with slope λ > λun, as it corresponds to a correlated

stochastic process.

All these examples provide evidence showing that a time series of stochastic correlated

data can be characterized by its associated HVG. This graph has an exponential node-degree

distribution with a characteristic parameter λ that always exceeds the uncorrelated value

λun = ln(2/3). This is true even in the case of weakly correlated processes (large values of

the correlation exponent γ in the case of power-law, long-range, decay of correlations, or

small values of τ in the case of an exponential, short-range, decay).
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FIG. 3. From left to right, up to bottom: Semilog plot of the degree distributions of horizontal

visibility graphs associated to long-range correlated series with correlation function C(t) ∼ t−γ , for

different values of γ (data are averaged over 100 realizations). In every case we find that the degree

distribution is exponential P (k) ∼ exp(−λk), where the slope λ monotonically decreases with γ. In

figure 9 and 10 we plot the slope of such degree distribution for increasing values of the correlation

strength γ: the convergence towards the uncorrelated situation (λ = λun = ln(3/2)) is slow, what

allows us to distinguish correlated series from uncorrelated ones even when the correlations are

very weak.

8



 1

 0  1000  2000  3000  4000  5000  6000  7000

t

Hearbeat series sample

 0.001

 0.01

 0.1

 1

 2  4  6  8  10  12  14

P
(k

)

k

Heartbeat series
λ= 0.5

uncorrelated

FIG. 4. Semi-log plot of the degree distribution of the HVG associated to series of healthy subjects

interbeat electrocardiogram of 6000 data [29]. These are a prototypical example of a long-range

correlated stochastic process [7]. The straight line characterizes the theoretical result for an un-

correlated process. The degree distribution is exponential with λ = 0.5 > λun, corresponding to

a correlated stochastic process, as predicted by our theory. Results correspond to an average over

five time series, one of them being depicted in the left panel.

IV. CHAOTIC MAPS

We now focus on processes generated by chaotic maps. In a preceding work [16], we

conjectured that the Poincaré recurrence theorem suggests that the degree distribution of

HVGs associated to chaotic series should be asymptotically exponential. Here we address

several deterministic time series generated by chaotic maps, and analyze the possible devi-

ations from the uncorrelated results. Concretely, we tackle the following maps:

(1) the α-map f(x) = 1−|2x− 1|α, that reduces to the Logistic and tent maps in their fully

chaotic region for α = 2 and α = 1 respectively, for different values of α,

(2) the 2D Hénon map (xt+1 = yt +1− ax2
t , yt+1 = bxt) in the fully chaotic region (a = 1.4,

b = 0.3);

(3) a time-delayed variant of the Hénon map: xt+1 = bxt−d +1− ax2
t in the region (a = 1.6,

b = 0.1), where it shows chaotic behavior with an attractor dimension that increases linearly

with the delay d [31]. This model has also been used for chaos control purposes [32], although

here we set the parameters a and b to values for which we find high-dimensional chaos for

almost every initial condition [31];

(4) the Lozi map, a piecewise-linear variant of the Hénon map given by xt+1 = 1 + yn −
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FIG. 5. From left to right, up to bottom: Semilog plot of the degree distributions of Horizontal

visibility graphs associated to series generated through chaotic maps with different correlation di-

mension (data are averaged over 100 realizations). In every case we find that the degree distribution

is exponential P (k) ∼ exp(−λk), where the slope λ monotonically increases with the correlation

dimension D. In the bottom right we plot the functional relation between λ and D, showing that

the values of λ converge towards the uncorrelated situation (λ = λun = ln(3/2)) for increasing

values of the chaos dimensionality.
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a|xt|, yt+1 = bxt in the chaotic regime a = 1.7 and b = 0.5;

(5) the Kaplan-Yorke map xt+1 = 2xt mod (1), yt+1 = λyt + cos(4πxt) mod (1); and

(6) the Arnold cat map xt+1 = xt + yt mod (1), yt+1 = xt + 2yt mod (1), a conservative

system with integer Kaplan-Yorke dimension. References for these maps can be found in

[33].

In figure 5 we plot in semi-log the degree distribution of chaotic series of 218 data generated

through several chaotic maps (Logistic, tent, α-map with α = 3 and 4, Hénon, delayed Hénon

with a delay d = 10, Lozi, Kaplan-Yorke and Arnold cat). We find that the tails of the

degree distribution can be well approximated by an exponential function P (k) ∼ exp(−λk).

Remarkably, we find that λ < λun in every case, where λ seems to increase monotonically

as a function of the chaos dimensionality [35], with an asymptotic value λ → ln(3/2) for

large values of the attractor dimension (see the right-hand side bottom of the figure where

we plot the specific values of λ as a function of the correlation dimension of the map [33]).

Again, we deduce that the degree distribution for uncorrelated series is a limiting case of

the degree distribution for chaotic series but, as opposed to what we found for stochastic

processes, the convergence flow towards λun is from below, and therefore λ = ln(3/2) plays

the role of an effective frontier between correlated stochastic and chaotic processes (see left

part of Fig. 6 for an illustration).

A summary of all data series analyzed can be seen in the right panel of Fig. 6, where

we plot the fitted slope λ of particular series generated through power-law correlated (as

a function of correlation γ) and exponentially correlated (as a function of correlation time

τ) stochastic processes, and through the aforementioned chaotic maps (as a function of

the correlation dimension D). In the following sections we will provide some analytical

developments and heuristic arguments supporting our findings.

V. HEURISTICS

We argue first that correlated series show lower data variability than uncorrelated ones, so

decreasing the possibility of a node to reach far visibility and hence decreasing (statistically

speaking) the probability of appearance of a large degree. Hence, the correlation tends to

decrease the number of nodes with large degree as compared to the uncorrelated counterpart.

Indeed, in the limit of infinitely large correlations (γ → 0 or τ → ∞), the variability reduces
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FIG. 6. (Left) λ diagram: for λ < ln(3/2), we have a chaotic process, whereas λ > ln(3/2)

corresponds to a correlated stochastic process. The frontier value λ = ln(3/2) corresponds to the

uncorrelated case. Note that this latter value is an exact result of the theory [16]. (Right) Plot

of the values of λ for several processes, namely: (i) for power-law correlated stochastic series with

correlation function C(t) = t−γ , as a function of the correlation γ, (ii) for Ornstein-Uhlenbeck

series with correlation function C(t) = exp(−t/τ), as a function of the correlation time τ , and (iii)

for different chaotic maps, as a function of their correlation dimension D. Notice that stochastic

processes cluster in the region λ > λun whereas chaotic series belong to the opposite region λ <

λun, evidencing a convergence towards the uncorrelated value λun = ln(3/2) [16] for decreasing

correlations or increasing chaos dimensionality respectively.

to zero and the series become constant. The degree distribution in this limit case is, trivially,

P (k) = δ(k − 2) = lim
λ→∞

λ

2
exp(−λ|k − 2|),

that is to say, infinitely large correlations would be associated to a diverging value of λ. This

tendency is on agreement with the numerical simulations (right panel of figure 6) where we

show that λ monotonically increases with decreasing values of γ or increasing values of τ

respectively. Having in mind that in the limit of small correlations the theorem previously

stated implies that λ → λun = ln(3/2), we can therefore conclude that for a correlated

stochastic process λstoch > λun.

Concerning chaotic series, remember that they are generated through a deterministic pro-

cess whose orbit is continuous along the attractor. This continuity introduces a smoothing

effect in the series that, statistically speaking, increases the probability of a given node to

have a larger degree (uncorrelated series are rougher and hence it is more likely to have
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τ POU (2) POU (3) Plog(2) Plog(3)

1.0 0.3012 0.232 - -

0.5 0.3211 0.227 - -

0.1 0.3333 0.222 - -

- - - 0.3333 0.3332

TABLE I. Numerical results of P (2) and P (3) associated to (i) an Ornstein-Uhlenbeck series of

N = 218 data with correlation function C(t) = exp(−t/τ), for different values of the correlation

time τ , and (ii) to a series of N = 218 data extracted from a Logistic map in its fully chaotic region,

α-map with α = 2. To be compared with exact results derived in section VI.

more nodes with smaller degree). Now, since in every case we have exponential degree dis-

tributions (this fact being related with the Poincaré recurrence theorem for chaotic series

and with the return distribution in Poisson processes for stochastic series [16]), we con-

clude that the deviations must be encoded in the slope λ of the exponentials, such that

λchaos < λun < λstoch, in good agreement with our numerical results.

VI. ANALYTICAL DEVELOPMENTS

In [16] we proved that P (k) = (1/3)(2/3)k−2 for uncorrelated random series. To find out

a similar closed expression in the case of generic chaotic or stochastic correlated processes

is a very difficult task, concretely since variables can be long-range correlated and hence

the probabilities cannot be separated (lack of independence). This leads to a very involved

calculation which is typically impossible to solve in the general case. However, some an-

alytical developments can be made in order to compare them with our numerical results.

Concretely, for Markovian systems global dependence is reduced to a one-step dependence.

We will make use of such property to derive exact expressions for P (2) and P (3) in some

Markovian systems (both deterministic and stochastic). In order to compare the theoretical

calculations of P (2) and P (3) in the case of an Ornstein-Uhlenbeck process (detailed in

section III) with the numerical results, in table I we have depicted the associated numerical

results for different correlation times.
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A. Ornstein-Uhlenbeck process

Suppose a short-range correlated series (exponentially decaying correlations) of infinite

size generated through an Ornstein-Uhlenbeck process, and generate its associated HVG.

Let us consider the probability that a node chosen at random has degree k = 2. This node

is associated to a datum labelled x0 without lack of generality. Now, this node will have

degree k = 2 if the datum first neighbors, x1 and x−1 have values larger than x0:

P (k = 2) = P (x−1 > x0 ∪ x1 < x0)

If series data were random and uncorrelated, we would have

Pun(2) =

∫ ∞

−∞
dx0 f(x0)

∫ ∞

x0

dx−1 f(x−1)

∫ ∞

x0

dx1 f(x1) = 1/3, (3)

where we have used the properties of the cumulative probability distribution (note that this

result holds for any continuous probability density f(x), as shown in [16]). Now, in our case

the variables are correlated, so in general we should have

POU(2) =

∫ ∞

−∞
dx0

∫ ∞

x0

dx−1

∫ ∞

x0

dx1 f(x−1, x0, x1). (4)

Now, we can use the Markov property [36] that reads f(x−1, x0, x1) = f(x−1)f(x0|x−1)f(x1|x0),

that holds for exponentially correlated stochastic processes, such that for Gaussian distri-

bution with zero mean and variance one we have

f(x) =
exp(−x2/2)√

2π
, f(x2|x1) =

exp(−(x2 −Kx1)
2/2(1−K2))√

2π(1−K2)
, (5)

where K = exp(−1/τ) and the correlation function is C(t) ∼ exp(−t/τ).

Numerical integration allows us to calculate POU(2) for every given value of the correlation

time τ . For instance, we find POU(2)|τ=1.0 = 0.3012, POU(2)|τ=0.5 = 0.3211, POU(2)|τ=0.1 =

0.3331, in perfect agreement with our previous numerical results (see table I).

An arbitrary datum x0 of a series extracted from an Ornstein-Uhlenbeck will have an

associated node with degree k = 3 with a certain probability POU(3) which is the sum of

the probabilities associated to two possible scenarios, namely (i) the probability that x0 has

two visible data in its right-hand side and a single one in its left-hand side, labeled P+
OU(3)

, and (ii) the probability that x0 has two visible data in its left-hand side and a single one
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FIG. 7. Schematic representation of a situation where datum x0 has right-visibility of two data

(P+(2)), x1 and x2. An arbitrary number of hidden data can be placed between x1 and x2, and

this has to be taken into account in the calculation of P (3).

in its right-hand side, labeled P−
OU(3). In the very particular case of stationary Markovian

processes (such as the Ornstein-Uhlenbeck), time invariance yields POU(3) = 2P+
OU(3). Let

us tackle now the calculation of P+
OU(3). Let us quote x1, x2 the right-hand side visible data

of x0 and x−1 the left-hand side visible one. Formally, we have

P+
OU(3) =

∫ ∞

−∞
dx0

∫ ∞

x0

dx−1 f(x−1)f(x0|x−1)P+(2|x0), (6)

where P+(2|x0) is the probability that x0 sees two data on its right-hand side (see figure 7 for

a graphical illustration). Of course in P+(2|x0) we have to take into account the possibility

of having an arbitrary number of hidden (non visible) data between the first and the second

visible datum, so

P+(2|x0) =

∫ x0

−∞
dx1

∫ ∞

x0

dx2f(x1|x0)f(x2|x1) + (7)∫ x0

−∞
dx1

∫ x1

−∞
dz1

∫ ∞

x0

dx2f(x1|x0)f(z1|x1)f(x2|z1) +∫ x0

−∞
dx1

∫ x1

−∞
dz1

∫ x1

−∞
dz2

∫ ∞

x0

dx2f(x1|x0)f(z1|x1)f(z2|z1)f(x2|z2) + ...

≡
∞∑
p=0

I(p|x0)

where f(x|y) is the Ornstein-Uhlenbeck transition probability defined in equation 5, and zp

is the p-th hidden data located between x1 and x2 (note that there can be an eventually

infinite amount of hidden data between x1 and x2 and these configurations have to be taken

into account in the calculation). Here I(p|x0) characterizes the probability that x0 sees two

data on its right-hand side with p hidden data between them.

A little algebra allows us to write

I(p|x0) =

∫ x0

−∞
dx1f(x1|x0)Gp(x1, x1, x0), (8)
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where the function Gp satisfies a recursive relation:

G0(x, y, z) ≡
∫ ∞

z

f(h|y)dh, (9)

Gp(x, y, z) =

∫ x

−∞
dhf(h|y)Gp−1(x, h, z), p ≥ 1. (10)

This is a convolution-like equation that can be formally rewritten as Gp = TGp−1, or Gp =

T pG0, with an integral operator T =
∫ x

−∞ dhf(h|y). Accordingly, we have

P+(2|x0) =

∫ x0

−∞
dx1f(x1|x0)

∞∑
p=0

Gp(x1, x1, x0) ≡
∫ x0

−∞
dx1f(x1|x0)S(x1, x1, x0), (11)

where we have defined the summation S(x, y, z) as

S(x, y, z) =
∞∑
p=0

Gp(x, y, z) =
∞∑
p=0

T pG0 =
1

1− T
G0, (12)

where in the last equality we have used the summation and convergence properties of ge-

ometric series (Picard sequence). This is valid whenever the spectral radius of the linear

operator r(T ) < 1, that is, if

lim
n→∞

[
||T n||

]1/n
< 1, (13)

where ||T || = maxy∈(−∞,x)

∫ x

−∞ dh|f(h|y)| is the norm of T . Now, this condition is trivially

fulfilled given the fact that f(x|y) is a Markov transition probability. Then equation 12 can

be written as (1− T )S = G0, or more concretely

S(x, y, z) = G0(x, y, z) +

∫ x

−∞
dhf(h|y)S(x, h, z), (14)

which is a Volterra equation of the second kind [37] for S(x, y, z). Note that it can also

be seen as a multidimensional convolution-like equation since the argument in the Markov

transition probability f(h|y) has the shape h− y′, where y′ = exp(−1/τ)y. Hence f can be

understood as the kernel of the convolution.

Typical one-dimensional Volterra integral equations can be numerically solved applying

quadrature formulae for approximate the integral operator [37]. The technique can be easily

extended whenever the integral equation involves more than one variable, as it is our case.

Specifically, a Simpson-type integration scheme leads to a recursion relation with a step δ

to compute the function S(x, y, z). One technical point is that one needs to replace the −∞

16



limit in the integral by a sufficienly small number a. We have found that a = −10 is enough

for a good convergence of the algorithm. Given a value of z the recursion relation

S(a, a+ nδ, z) = G0(a, a+ nδ, z)

S(a+ kδ, a+ nδ, z) = G0(a, a+ nδ, z) + δ
k−1∑
i=0

f(a+ iδ|a+ nδ)S(a+ (k − 1)δ, a+ iδ, z) +O(δ2),(15)

for k = 0, 1, 2, . . . and n = 0, 1, . . . , k, allows us to compute S(x, y, z) for y ≤ x.

Summing up, the procedure to compute POU(3) is the following: calculate S(x1, x1, x0)

using the previous recursion relation and use this value to obtain P+(2|x0) from a numerical

integration of the right-hand-side of equation 11) (again, the lower limit will be replaced by

x1 = a ). Finally, integrate numerically equation 6 to obtain P+
OU(3) from which it readily

follows POU(3). Applying this methodology for an integration step δ = 4 × 10−3 we find

POU(3)|τ=1.0 = 0.230, POU(3)|τ=0.5 = 0.226, or POU(3)|τ=0.1 = 0.221, in good agreement with

numerical results (table I).

B. Logistic map

A chaotic map of the form xn+1 = F (xn) does also have the Markov property, and

therefore a similar analysis can therefore apply (even if chaotic maps are deterministic).

For chaotic dynamical systems whose trajectories belong to the attractor, there exists a

probability measure that characterizes the long-run proportion of time spent by the system

in the various regions of the attractor. In the case of the Logistic map F (xn) = µxn(1− xn)

with parameter µ = 4, the attractor is the whole interval [0, 1] and the probability measure

f(x) corresponds to the beta distribution with parameters a = 0.5 and b = 0.5:

f(x) =
x−0.5(1− x)−0.5

B(0.5, 0.5)
. (16)

Now, for a deterministic system, the transition probability is

f(xn+1|xn) = δ(xn+1 − F (xn)), (17)

where δ(x) is the Dirac delta distribution. Departing from equation 4, for the Logistic map

F (xn) = 4xn(1− xn) and xn ∈ [0, 1], we have

Plog(2) =

∫ 1

0

dx0

∫ 1

x0

f(x−1)f(x0|x−1)dx−1

∫ 1

x0

f(x1|x0)dx1 =∫ 1

0

dx0

∫ 1

x0

f(x−1)δ(x0 − F (x−1))dx−1

∫ 1

x0

δ(x1 − F (x0))dx1. (18)
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Now, notice that, using the properties of the Dirac delta distribution,
∫ 1

x0
δ(x1 − F (x0))dx1

is equal to one iff F (x0) ∈ [x0, 1], what will happen iff 0 < x0 < 3/4, and zero otherwise.

Therefore the only effect of this integral is to restrict the integration range of x0 to be [0, 3/4].

On the other hand,∫ 1

x0

f(x−1)δ(x0 − F (x−1))dx−1 =
∑

x∗
k|F (x∗

k)=x0

f(x∗
k)/|F ′(x∗

k)|,

that is, the sum over the roots of the equation F (x) = x0, iff F (x−1) > x0. But since

x−1 ∈ [x0, 1] in the latter integral, it is easy to see that again, this is verified iff 0 < x0 < 3/4

(as a matter of fact, if 0 < x0 < 3/4 there is always a single value of x−1 ∈ [x0, 1] such that

F (x−1) = x0, so the sum restricts to the adequate root). It is easy to see that the particular

value is x∗ = (1 +
√
1− x0)/2. Making use of these piecewise solutions and equation 16, we

finally have

Plog(2) =

∫ 3/4

0

f(x∗)

4
√
1− x0

dx0 = 1/3, (19)

which is in perfect agreement with the numerical results (see table I). Note that a similar

development can be fruitfully applied to other chaotic maps, provided that they have a well

defined natural measure.

The approach for analytically calculating P+
log(3) in the case of a chaotic map with a

well defined natural measure –such as the Logistic map in its fully chaotic region µ =

4.0– is very similar to the one adopted for an Ornstein-Uhlenbeck process, again replacing

the probability density and Markovian transition probability with equations 16 and 17.

Remarkably, applying the properties of the Dirac delta and the Logistic map it can be easily

proved that I(0) = 1 and I(p) = 0 ∀p > 0 provided that x0 is restricted to the range

3/4 < x0 < 1. The whole calculation therefore reduces to

P+
log(3) =

∫ 1

3/4

f(x∗)

4
√
1− x0

dx0 = 1/6, (20)

that yields Plog(3) = 2P+
log(3) = 1/3, in perfect agreement with numerical results (see table

I). Again, similar developments can be straightforwardly applied to other chaotic maps with

well defined natural measure.
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FIG. 8. Left : Periodic series of 220 data generated through the Logistic map xn+1 = µxn(1− xn)

for µ = 3.2 (where the map shows periodic behavior with period 2) polluted with extrinsic white

gaussian noise extracted from a Gaussian distribution N(0, 0.05). Right : Dots represent the degree

distribution of the associated HVG, whereas the straight line is equation 21 (the plot is in semi-

log). Note that P (2) = 1/2, also as theory predicts, and that P (3) is not exactly zero due to

boundary effects in the time series. The algorithm efficiently detects both signals and therefore

easily distinguishes extrinsic noise.

VII. COMMENT ON NOISY PERIODIC MAPS

Periodic series have an associated HVG with a degree distribution formed by a finite

number of peaks, these peaks being related to the series period, what is reminiscent of

the Discrete Fourier spectrum of a periodic series [15, 16]. The reason is straightforward: a

periodic series maps into an HVG which, by construction, is a repetition of a root motif. Now,

if we superpose a small amount of noise to a periodic series (a so called extrinsic noise), while

the degree of the nodes with associated small values will remain rather similar, the nodes

associated to higher values will eventually increase their visibility and hence reach larger

degrees. Accordingly, the delta-like structure of the degree distribution will be perturbed,

and an exponential tail will arise due to the presence of such noise. Can the algorithm

characterize such kind of series? The answer is positive, since the degree distribution can be

analytically calculated as it follows: Consider for simplicity a period-2 time series polluted

with white noise (see the left part of figure 8 for a graphical illustration). The HVG is formed

by two kind of nodes: those associated to high data with values ((i1, i3, i5, ...) in the figure)

and those associated to data with small values ((i2, i4, i6, ...)). These latter nodes will have,

by construction, degree k = 2. On the other hand, the subgraph formed by the odd nodes
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(i1, i3, i5, ...) will essentially reduce to the one associated to an uncorrelated series, i.e. its

degree distribution will follow equation 2. Now, considering the whole graph, the resulting

degree distribution will be such that

P (2) = 1/2,

P (3) = 0,

P (k + 2) =
1

3

(
2

3

)k−2

, k ≥ 2,

⇔ P (k) =
1

4

(
2

3

)k−3

, k ≥ 4, (21)

that is to say, introducing a small amount of extrinsic uncorrelated noise in a periodic

signal introduces an exponential tail in the HVG’s degree distribution with slope ln(3/2).

In the left part of figure 8 we plot in semi-log the degree distribution of a periodic-2 series

of 220 data polluted with an extrinsic white Gaussian noise extracted from a Gaussian

distribution N(0, 0.05). Numerical results confirm the validity of equation 21. Note that

this methodology can be extended to every integrable deterministic system, and therefore

we conclude that extrinsic noise in a mixed time series is well captured by the algorithm.

Conversely, introducing a small amount of intrinsic noise in a periodic series is more tricky.

For instance, consider the noisy Logistic map defined as

xt+1 = µxt(1− xt) + σξt,

where ξ is a random Gaussian variable extracted from N(0, σ). For some values of µ < µ∞

(that is, in the periodic regime of the associated noise-free Logistic map), small amounts of

intrinsic noise can produce orbits very similar to those generated by the noise-free version

of the map in the chaotic regime [14], in the sense that, superposed to the delta-like shape

of P (k), an asymptotic exponential tail with λ < λun may eventually develop. Besides the

delta-like structure of P (k) appearing for short values of k (reminiscent of the periodicity of

the noise-free map), the algorithm fails in determining the source of entropy of the system

(which is stochastic here, and therefore λ ≥ λun). This is a typical pathological case [14]

where chaos and noise are difficult to distinguish, and should be investigated in detail in

further work.
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VIII. CONCLUSION

To conclude, we have shown that correlated stochastic series map into an horizontal vis-

ibility graph with an exponential degree distribution with slope λ > ln(3/2), that slowly

tends to its asymptotic value for very weak correlations. Results are confirmed for a real

physiological time series that has been previously shown to evidence long-range correlations

[7]. Similar results have been obtained for the case of chaotic series, with the peculiar-

ity that the slope of the degree distribution converges to ln(3/2) in the opposite direction

(λ < ln(3/2)). In a preceding work we analytically proved that for an uncorrelated random

series, the slope is exactly ln(3/2), independently of the probability density. We therefore

conclude that chaotic maps and correlated stochastic processes seem to belong to different

regions of the λ diagram, where λ = ln(3/2) plays the role of an effective frontier between

both processes. It is worth commenting that the horizontal visibility algorithm is very

fast (as a guide, the generation of the associated graph for a series of N = 218 data- in

a standard personal computer takes a computation time of the order of a few seconds).

Applications include direct characterization of complex signals such as physiological series

or series extracted from natural phenomena, as a first step where to discriminate amongst

several modeling framework approaches. Questions for future work include a deeper char-

acterization of this method, concretely the incorporation of Lyapunov exponents and the

associated short-term memory effects within the visibility framework, and the study of noisy

maps, which hitherto constitute a limitation of the algorithm. The characterization of flows

that produce continuous time series is also an open problem for future research.
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