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Non-universal results induced by diversity distribution in coupled excitable systems

Luis F. Lafuerza, Pere Colet, Raul Toral
IFISC, Instituto de F́ısica Interdisciplinar y Sistemas Complejos,

CSIC-UIB, Campus UIB, E-07122 Palma de Mallorca, Spain

(Dated: May 7, 2010)

We consider a system of globally coupled active rotators near the excitable regime. The system
displays a transition to a state of collective firing induced by disorder. We show that this transition
is found generically for any diversity distribution with well defined moments. Singularly, for the
Lorentzian distribution (widely used in Kuramoto-like systems) the transition is not present. This
warns about the use of Lorentzian distributions to understand the generic properties of coupled
oscillators.
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Synchronization phenomena play a prominent role in
many branches of science [1]. They have been analyzed
in terms of phase models which successfully describe sys-
tems of weakly coupled limit cycle oscillators. In partic-
ular, the Kuramoto model [2] has become a paradigm for
the study of synchronization (for reviews see [1, 3, 4]). It
shows how synchronized behavior can appear when the
competitive effects of coupling and diversity among the
individual units are present.
Amongst other possible sources, diversity in the oscil-

lators is usually introduced by taking their natural fre-
quencies from a probability distribution. Although, on
general grounds (central limit theorem), this distribution
should be well approximated by a Gaussian form, theo-
retical studies usually consider a Lorentzian form since
it allows for an easier analytical treatment. It is gener-
ally believed that the main results concerning the global
synchronization properties are qualitatively independent
of the precise form of the distribution as long as it is
symmetric and unimodal. In this Letter, however, we
show that a variant of the Kuramoto model displays or
not a reentrant diversity-induced transition into a state
of collective firing, depending on the type of distribution
used. This transition is present in all the (symmetric
and unimodal) distributions studied, but not in the case
of the Lorentzian. The non-generic behavior of the sys-
tem with a Lorentzian distribution of natural frequencies
warns about the indiscriminate use of some recently pro-
posed methods [5] in order to understand generic prop-
erties of coupled oscillators.
We consider the following variant of the Kuramoto

model which describes the dynamics of an ensemble of
globally coupled active rotators φj(t), j = 1, ..., N [6]:

φ̇j = ωj − sinφj +
K

N

N
∑

l=1

sin(φl − φj). (1)

A natural frequency ωj < 1 (respectively, ωj > 1) cor-
responds to an excitable (respectively, oscillatory) be-
havior of the rotator j when it is uncoupled. K is the
coupling intensity. Diversity is introduced by considering
that the ωj ’s are distributed according to a probability

density function g(ω), with mean value ω and variance
σ2. The model is equivalent to the Kuramoto model with
zero average frequency and an external periodic driving
of frequency −ω, as it can be easily seen with the change
of variables φj → φj − ωt. Throughout the paper, be-
sides the well-known Gaussian and uniform distributions,
we will be considering a general family of distributions
Lm
n (ω), for n > 0,mn > 1, defined as:

Lm
n (ω) =

nΓ(m)

2Γ(m− 1/n)Γ(1/n)
·

∆nm−1

(|ω − ω|n +∆n)m
. (2)

The variance is finite only for mn > 3 and it is given

by σ2 = ∆2 Γ(m−3/n)Γ(3/n)
Γ(m−1/n)Γ(1/n) . The Lorentzian distribution

corresponds to L1
2(ω) and has, hence, an infinite variance,

although we still will use ∆ as a measure of diversity.
To characterize the collective behavior we use the time-

dependent complex variable r(t) [2, 6]:

r(t) =
1

N

N
∑

j=1

eiφj(t). (3)

The Kuramoto order parameter ρ ≡ 〈|r(t)|〉, where 〈· · · 〉
denotes time average, is known to be a good measure
of collective synchronization in coupled oscillators sys-
tems, i.e. ρ ≃ 1 when the oscillators synchronize (φj ≃
φl, ∀j, l), and ρ ≃ 0 for desynchronized behavior.
For ω . 1 the system displays three different regimes:

(i) for small diversity, almost all units are at rest at simi-
lar fixed points (r(t) does not depend on time and ρ ≈ 1);
(ii) increasing diversity one enters a dynamical state in
which a macroscopic fraction of units fire at (roughly)
the same time (r(t) is time dependent while ρ is still close
to 1); (iii) for even larger diversity, the system reenters
a desynchronized state (ρ small and r(t) time indepen-
dent). To discriminate between static entrainment and
collective firing, regimes (i) and (ii), we use the order
parameter introduced by Shinomoto and Kuramoto [7]:

ζ = 〈|r(t) − 〈r(t)〉|〉, (4)

which differs from zero only for collective firing.
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An approximate theory to describe these three regimes
was developed in [8]. The theory was independent of the
form of the natural frequencies distribution and was also
applicable to identical units subject to noise. A recent
method developed by Ott and Antonsen [5, 9] allows to
solve exactly this model (and a large family of related
ones) in the infinite number of oscillators limit and in a
number of cases that include the Lorentzian g(ω). Childs
and Strogatz [10] used this method to obtain the full bi-
furcation diagram of the complex variable r(t) for the
Lorentzian distribution. Contrarily to the results of [8],
their exact solution implies that there is no transition to
collective firing increasing the diversity for ω < 1. The
non-existence of the transition can be derived from the
bifurcation diagram in the ω − ∆ space obtained using
the ideas of [10], see Fig.1. Regime (ii) takes place for the
parameter region located to the right of the SNIC (saddle
node on the invariant circle) bifurcation line and below
the Hopf line. For ω < 1 increasing ∆ one never enters
in this region, so there is no diversity-induced transition
to collective firing. This situation is generic for all values
of K, since it can be shown that the SNIC bifurcation
always starts at ω = 1,∆ = 0 with positive slope. The
model was also studied for the Lorentzian case with a dif-
ferent approach in [11] and the same results were found.
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FIG. 1: Bifurcation diagram of the model defined by Eqs. (1)
for a Lorentzian distribution of frequencies and K = 5. There
is also a saddle-loop bifurcation line, not shown, that goes
from the Takens-Bogdanov point (circle) to the saddle-node
separatrix loop point (square) where SNIC line starts [10].
Collective firing takes place in the region below the Hopf and
right of the SNIC.

We will give now the main sketches of the Ott-
Antonsen method. Quite generally, we will show that,
in fact, the method can be successfully applied to any
non-singular distribution g(ω). Let f(ω, φ, t) be the den-
sity of oscillators with frequency ω and phase φ at time
t. This function obeys the continuity equation (conser-
vation of the number of oscillators):

∂f(ω, φ, t)

∂t
+

∂

∂φ

[

φ̇(ω, φ, r)f
]

= 0, (5)

with φ̇(ω, φ, r) = ω − sinφ+ℜ(re−iφ). If the coefficients

of the Fourier expansion:

f(ω, φ, t) =
g(ω)

2π

[

1 +

∞
∑

m=1

[

fm(ω, t)eimφ + c.c.
]

]

(6)

(c.c. denotes complex conjugate), satisfy the ansatz

fn(ω, t) = α(ω, t)n, (7)

then α(ω, t) and r(t) =
∫

dω
∫

dφ eiφf(ω, φ, t) obey the
integro-differential equations:

∂α

∂t
+ iωα+

1

2
{[Kr + 1]α2 −Kr∗ − 1} = 0, (8)

r(t) =

∫

dω α(ω, t)∗g(ω). (9)

The manifold defined by (7) is invariant under the system
evolution, so if that condition is fulfilled by the initial
condition, it is fulfilled afterwards. Moreover, in [9] it is
shown that for a Lorentzian g(ω) the long time evolution
of r(t) is always described by this reduced manifold.
If g(ω) has a finite set of poles ω̂1, ω̂2, . . . outside the

real axis (as is the case for Lm
n (ω) for even n and integer

m, including the Lorentzian L1
2(ω), and α(ω, t) satisfies

certain analyticity conditions, one can obtain (9) by con-
tour integration. Then r(t) can be written is terms of
αk(t) ≡ α(ω̂k, t) and one can obtain a closed set of ordi-
nary differential equations for αk(t). In the case of poles
with multiplicity larger than one, r(t) depends also on the
partial derivatives with respect to ω, αs

k(t) ≡ α(s)(ω̂k, t).
Equations for these new functions αs

k(t) can be obtained
by differentiating Eq.(8) with respect to ω. For an ar-
bitrary distribution g(ω), we can obtain an approximate
evolution of the system by evaluating integral (9) using
a finite, though large, set of values of ω and integrating
numerically (8) for each one of these frequencies.
In Figs. 2 and 3 we show the order parameters as

a function of the diversity for several frequency distri-
butions, obtained by direct simulation of Eqs. (1) and
by applying Ott-Antonsen’s method as described above.
For the Gaussian and uniform distributions, but not for
the Lorentzian, the regimen of collective firing (signaled
by a nonzero value of the parameter ζ) is present for
intermediate values of the diversity. Beyond the cases
shown in the figures, the transition is also present for
other symmetric distributions such as the exponential

g(ω) = 1
σ
√
2
e−

√

2

σ
|ω−ω|, or the family Lm

n (ω) for mn ≥ 3.

Even L1
3(ω) which has infinite variance (but well-defined

first moment) presents the reentrant diversity-induced
transition (for values of ω close enough to one). Also,
if we truncate the Lorentzian distribution at some finite
value of ω, i.e. set g(ω) = 0, if |ω − ω| > C, the system
shows this reentrant transition (we checked for C=50∆).
Furthermore, Fig. 3 shows that for finite-size systems
with a Lorentzian distribution a maximum in ζ is in-
deed present, being quite visible up to a few thousand of
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FIG. 2: Order parameters ρ and ζ as a function of the di-
versity σ coming from numerical simulations of the full sys-
tem of Eqs.(1) for N = 104 units in the cases of a Gaussian
(dots) and uniform (crosses) distribution of frequencies. In
each case, the solid lines are the result of the application of
the Ott-Antonsen method using 104 values of ω for the nu-
merical integration of Eq.(9). K = 5 and ω = 0.97

units. In fact, Lorentzian distributions in systems with a
finite number of units are effectively truncated, trunca-
tion that disappears in the limit N → ∞. We conclude
that the existence of the transition to common firing is a
truly generic phenomenon and the results obtained using
a Lorentzian distribution in the infinite system size limit
are rather pathological and misleading.
We introduce now an alternative approach to deter-

mine the parameters for which the system shows col-
lective firing. Notice that r(t) is time independent in
regimes (i) (units at rest) and (iii) (desynchronized state)
but not in (ii). Following previous analysis in the limit
of infinite units [12], we write r(t) = ρeiΨ and, assum-
ing that r(t) is time independent, derive the following
equations for the global amplitude ρ and phase Ψ:

ρ sinΨ = ω −

∫

|ω|>b

ω

√

1−
b2

ω2
g(ω)dω ≡ f1(b), (10)

Kρ2 + ρ cosΨ =

∫ b

−b

√

b2 − ω2g(ω)dω ≡ f2(b), (11)

with b =
√

1 +K2ρ2 + 2Kρ cosΨ. It is possible to ob-
tain a closed self-consistent relation for b:

b =
K(f2

1 + f2
2 )

bf2 ±
√

f2
2 + (1− b2)f2

1

≡ h±(b). (12)

For parameters corresponding to regime (ii) Eq. (12)
has only one solution corresponding to an unstable fix
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FIG. 3: Same as Fig.2 for Lorentzian L1

2(ω) (upper and middle
panels) and L1

4(ω) (upper and lower ones) distributions. Note
that for the Lorentzian distribution L1

2(ω) the Ott-Antonsen
method predicts that ζ is zero for all values of the diversity ∆
while the numerical simulations for finite system size N show
a rounded-off transition.

point. When the branches h+(b) and h−(b) meet two new
solutions arise. This signals a SNIC bifurcation where
a stable fix point and a saddle are created. Imposing
h−(b) = h+(b) = b, one can determine the line σ(ω)
at which the transition takes place. Noticeably, on the
SNIC one obtains Ψ = π/2 independent of the form of
the distribution g(ω) or the values of the parameters. As
shown in Fig. 4 the results of this approach coincide with
those of the Ott-Antonsen method.

For the Gaussian distribution, the SNIC line that lim-
its the collective firing regime starts at ω = 1, σ = 0, with
a negative slope. Therefore for ω < 1, as σ increases one
finds first a stable steady state for r (regime (i)), then
crosses the SNIC lower boundary entering in regime (ii)
and finally crosses the reentrant upper boundary enter-
ing in regime (iii) where a stable steady state is present
again. Region (ii) moves upwards and broadens increas-
ing the coupling K. The overall phase diagram still has a
Takens-Bogdanov point as in Fig. 1. Decreasing K this
point moves down and to the left. For low values of K,
for example K = 1, the upper boundary of the collective
firing region is limited by the Hopf rather than by the
reentrant SNIC, nevertheless the diversity-induced tran-
sition is still present. This reentrance behavior is generic
for all distributions with well defined moments.

The Lorentzian distribution behaves differently. The
SNIC starts at ω = 1,∆ = 0 with positive slope. Al-
though apparently this is a small quantitative difference
and the phase diagrams may be topologically equivalent,
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there are important qualitative consequences and, in par-
ticular, no diversity-induced transition to collective firing
exists[14]
For distributions which decay fast enough we can ob-

tain an analytical approximation for the line σ(ω̄) at
which the transition to collective firing appears. We as-
sume that g(ω) ≃ 0 for |ω| > b. As b ≥ |Kρ − 1|, this
approximation turns out to be appropriate for large val-
ues of K. Using Ψ = π/2 one gets ρ = ω from Eq.
(10). Inserting this in (11) and expanding the integrand
to second order in ω/b we obtain

σ(ω̄) =

√

ω2(2K2 − 2K
√

1 +K2ω2 − 1) + 2. (13)

From Eq. (13) one can obtain dσ/dω̄. At the origin
of the SNIC line (ω̄ = 1), the derivative takes a nega-
tive value for any K > 0 and tends to −∞ as −K3 for
K → ∞. Notice that this is independent of the form of
g(ω) provided the tails decay fast enough. Higher order
corrections do depend on the specific form g(ω). For the
Gaussian the next order gives:

σ(ω̄)2 =
−ω2(3 + 2K2)− 2

3
+ (14)

√

ω2[6ω2 − 24K(1 +K2ω2)
3

2 ] + 28(1 +K2ω2)2

3
.

This approximation, plotted as dashed lines in Fig. 4,
describes well the location of the transition to firing be-
tween regimes (i) and (ii) for the case of a Gaussian dis-
tribution.
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FIG. 4: (Partial) Bifurcation diagram for Gaussian (left) and
Lorentzian (right) distributions. For the Gaussian, circles cor-
respond to the Ott-Antonsen method solved numerically as in
Fig. (2), solid lines to the numerical solution of Eqs.(10-12)
and dashed lines to Eq.(14). For the Lorentzian distribution
the lines correspond to the Ott-Antonsen method.

In summary, globally coupled active rotators display
a diversity induced transition to a state of collective
firing. We have shown that this is a genuine transi-
tion that is found for any disorder distribution with

well defined moments. Curiously enough, the transition
is not present for a Lorentzian distribution, for which
the first moment integral is only defined as a principal
value. We have also found that these non-generic results
given by the Lorentzian distribution also occur in an-
other well-known excitable system, an ensemble of cou-
pled FitzHugh-Nagumo [13] units, for which the reen-
trant diversity-induced transition is present as well for
distributions such as Gaussian or uniform, but not for
the Lorentzian one.

While the Lorentzian distribution seems to be suit-
able to study generic properties of the original Kuramoto
model, it is not appropriate for excitable systems and be-
yond those may not be adequate for other systems. This
is a clear warning about its use in analytical approxima-
tions intended to draw conclusions on the generic prop-
erties of coupled oscillators.
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