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We study the fect that the heterogeneity present among the elements ofsamble of
coupled excitable neurons have on the collective respohffsecsystem to an external
signal. We have considered twof@rent interaction scenarios, one in which the neurons
are difusively coupled and another in which the neurons interacpulse-like signals. We
found that the type of interaction between the neurons hascgat role in determining the
response of the system to the external modulation. We deeeloean-field theory based
on an order parameter expansion that quantitatively repeglthe numerical results in the
case of difusive coupling.
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1. Introduction

Synchronized behavior arising among the constituents ehaeamble is common in nature.
Examples include the synchronized flashing of fireflies, tbedmming of flowers, cardiac
cells giving rise to the pacemaker role of the sinoatrialenofithe heart and the electrical
pulses of neurons. This global behavior can originate framramon response to an exter-
nal stimulus or might appear in autonomous, non-forcedesys. The theoretical basis for
the understanding of synchronization in non-forced systesms put forward by Winfree
(Winfree (1967)) who showed that the interaction —i.e. dimgp- between the constituents
is an essential ingredient for the existence of a syncheahaitput. The seminal work on
coupled oscillators by Kuramoto (Kuramoto (1975eoed a model case whose solution
confirms the basic hypothesis of Winfree: while interactiefps towards the achievement
of a common behavior, a perfect order can be achieved onlgerabsence of diversity
—heterogeneity— among the components of an ensemble. IKuttzenoto model, diver-
sity manifests when the oscillators havéfelient natural frequencies, those they display
when uncoupled from each other. While this result holds fetesyis that can be described
by coupled oscillators, recent results indicate that irepttases diversity among the con-
stituents might actually have a positive role in the settifig resonant behavior with an
external signal. This was first demonstrated in (Tessoné €@06)) and has been since
extended to many other systems (Gosak (2009); Uliner e2@09); Zanette (2009); Tes-
sone and Toral (2009); Postnova et al. (2009); Chen et d9A2Wu et al. (2009); Zanette
(2009); Ullner et al. (2009); Perc et al. (2008); Acebronlef2007)). In the case of non-
forced excitable systems, a unifying treatment of the réleaise and diversity has been
developed in Tessone et al. (2007).

Many biological systems, including neurons, display ettty as a response to an ex-
ternal perturbation. Excitability is characterized by théstence of a threshold, a largely
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independent response to a suprathreshold input and atoefraéiene. It is well established
that the dynamical features of neurons can be describedditable models: when a neu-
ron is perturbed by a single impulse, the neuron can genarategle spike, and when
perturbed by a continuum signal, a train of spikes with a&ttaristic firing frequency can
appear instead. Although the creation and propagationestridal signals has been thor-
oughly studied by physiologists for at least a century, tlstimportant landmark in this
field is due to Hodgkin and Huxley (Hodgkin and Huxley (1952)ho developed the first
guantitative model to describe the evolution of the membnaotential in the squid giant
axon. Because of the central importance of cellular elegitectivity in biological systems
and because this model forms the basis for the study of &keitystems, it remains to
this date an important model for analysis. Subsequentlgnplgied version of this model,
known as the FitzHugh-Nagumo (FHN) model (FitzHugh (196that captures many of
the qualitative features of the Hodgkin-Huxley model wasailgped. The FHN model has
two variables, one fast and one slow. The fast variable semts the evolution of the mem-
brane potential and it is known as the excitation variablee $low variable accounts for
theK™* ionic current and is known as the recovery variable. Oneweidf this model is that
it can be studied using phase-plane methods, because itvis ariable system. For in-
stance, the fast variable has a cubic nulicline while they slariable has a linear nullcline
and the study of both nuliclines and their intersectionsvalto determine the €lierent
dynamical regimes of the model. The FHN model can then bendrt by coupling the
individual elements, and provides an interesting modelef@ample, of coupled neuron
populations.

In the initial studies of the dynamics of the FHN and similavdals, the individual
units (e.g. neurons) were treated as identical. Howevereitident that real populations of
neurons display a large degree of variability, both in moiphy and dynamical activity;
that is, there is a diversity in the population of these li@lal units. Then, it is natural to
ask what role diversity plays in the global dynamical bebawif these systems and a lot
of activity has been developed along these lines in the tg@ars. In general, it has been
found, as noted above, that diversity can in fact be an inapbparameter in controlling
the dynamics. In particular, it has been shown that botht&ble and bistable systems can
improve their response to an external stimulus if there iadequate degree of diversity in
the constituent units (Tessone et al. (2006)).

In this paper we continue our study of thffeet of diversity, investigating in some
depth its role in the FHN model of excitable systems. We am@rsin detail a system of
many neurons coupled either chemically or electrically.dWew that in both cases a right
amount of diversity can indeed enhance the response toapeeixternal stimulus and we
discuss in detail the fierence between the two types of coupling. The outline of #pep
is as follows: In section 2 we present the FHN model and thelomy schemes considered.
Next, in section 3 we present the main results we have olatdhoen numerical simula-
tions. Afterwards, in section 4 we develop an approximagetétical treatment based on
an order parameter expansion which allows us to obtain atiai@re description of the
behavior of the model and compare its predictions with theerical results. Finally, in
section 5 we summarize the conclusions.
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2. FitzHugh-Nagumo model
(&) Dynamical equations

Let us consider a system of excitable neurons describedeébiftN model. The dy-
namical equations describing the activity of a single newne:

e% = X(1-X(x-b)-y+d, (2.1)
dy
i X—Cy+a, (2.2)

wherex(t) andy(t) represent, respectively, the fast membrane potentiaftenslow potas-
sium gating variable of a neuron. We assume that the timesoéthese variables are well
separated by the small parametet 0.01. Other parameters are fixedldde= 0.5,¢c = 4.6
andd = 0.1 (Glatt et al. (2008)), while the value afwill fluctuate from one neuron to the
other, so reflecting the intrinsic diversity in the neurosasemble.

Let us concentrate first on the dynamics of a single neuroressritbed by Egs. (2.1)-
(2.2). This dynamics has a strong dependence on the parané&teee diferent operating
regimes are identifiable: fa < —0.09 the system has a stable focus in the right branch
of the cubic nulicline leading the system to an excitablémeg for -0.09 < a < 0.01 a
limit cycle around an unstable focus appears (oscillategyme) and for M1 < a a stable
focus appears again, now at the left side of the cubic noéidlexcitable regime). Figure 1
(a) shows the nulicline$(x) = x(1 — X)(x — b) + d andg(x,a) = (x + a)/c of the system
in the three operating regimes described aboveafer-0.1, 0.0 and 006, respectively. In
the excitable regime, spikes (also known as pulses), caeaags a result of an external
perturbation of large enough amplitude. A convenient didiniis that a spike appears
when the membrane potential of the neuron exceeds a cdrtashbld value, e.g« > 0.5.

In the oscillatory regime, spikes appear spontaneously aitintrinsic firing frequency
which, as shown in Figure 1 (b), does not depend much on the wdb.
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Figure 1. (a) Nullclines of the FHN system for threéfelient values of the parameterf(x) (solid
line) andg(x, a) for a = —0.1 (dotted line)a = 0.0 (dash-dotted line) anal= 0.06 (dashed line). (b)
Dependence of the firing frequenegyn a.

To illustrate the dynamical behavior gft) andy(t), we show in Figure 2 the phase-portrait
for three diferent values o& = —0.1, 0.0 and 006 corresponding to the three nuliclines
represented in Figure 1 (a).
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Figure 2. Phase-space portrait of the FHN system ffeint values oé. Gray line represents the
evolution of{x,y}. f(x) (black line) andg(x, a) for (a) a = —0.1 dotted line (excitable regime); (b)
a = 0.0 dash-dotted line (oscillatory regime) and & 0.06 dash line (excitable regime).

(b) Coupling scenarios: electrical versus chemical interanti
We consider now that we have an ensembléNofoupled neurons. Each one is de-
scribed by dynamical variables(t), yi(t), i = 1,..., N, obeying the FitzHugh-Nagumo
equations. The neurons are not isolated from each otheinteuact mutually. The full set
of equations is now:

dx

eq = XI-x)-b)-y+d+ 1), (2.3)
d
d—)f = X -CY+a, (2.4)

Wherelisy”(t) is the coupling term accounting for all the interactionsiefironi with other
neurons. To take into account the natural diversity of thigsumwe assume that the pa-
rameterg;, which controls the degree of excitability of the neurorrjesfrom neuron to
neuron. In particular we assign & random values drawn from a Gaussian distribution
with mean(a) = aand correlationé(ai —-a)(aj - a)> = §jjo2. We useo as a measure of
the heterogeneity of the system and, in the following, wethsevalue ofr as an indicator

of the degree of diversity. I5- = 0, all neurons have exactly the same set of parameters,
while large values of- indicate a large dispersion in the dynamical propertieadifidual
neurons.

The most common way of communication between neurons ishgenical synapses,
where the transmission is carried by an agent called neunrsrnitter. In these synapses,
neurons are separated by a synaptic cleft and the neunotitsershas to diuse to reach
the post-synaptic receptors. In the chemical coupling taseynaptic current is modeled
as:

Ne
127(t) = NE D g (EF-x). (2.5)
C ]=1

In this configuration, we consider that neuiésconnected tdl; neurons randomly chosen
from the set ofN — 1 available neurons. Once a connection is established batn@&uron

i andj, we assume that the reciprocal connection is also createeh, the connection

fraction of each neuron is defined iss N;/(N—-1). In Eq. (2.5) K determines the coupling
strength andy; represents the maximum conductance in the synapse betheegdrons

i andj. For simplicity, we limit our study to the homogeneous cdngplconfiguration,
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whereg;j = 1 if neuronsi and j are connected anglj = 0 otherwise. The character of
the synapse is determined by the synaptic reversal poterftthe receptor neurorg?.
An excitatory (resp. inhibitory) synapse is characteribgda value ofE® greater (resp.
smaller) than the membrane resting potential. We condiger 0.7 for the excitatory
synapses anl’ = -2.0 for the inhibitory ones. We also define the fraction of extcity
neurons (those that project excitatory synapses) in themsyasf. = Ng/N beingNe the
number of excitatory neurons.

Finally, rj(t) is a time dependent function representing the fractionooinol receptors
and it is given by:

(1—en)gB-t)  fort > to, (2.6)
wherea = 25 andB = 3.5 are the rise and decay time constants, respectively. Here
ton = 0.1 represents the time the synaptic connection remainseaanisk is the time from
the spike generation in the presynaptic neuron.

There is another type of synapse where the membranes of thenseare in close
contact and thus the transmission of the signal is achiewvedtly (electrical synapses). In
this case of electrically-mediated interactions, alsovkmas dffusive coupling, the total
synaptic current is proportional to the sum of the membrastergial diference between
a neuron and its neighbors, and it is given by:

1-eg fort < ton,
r,—(t):{ on

N
K 'C
YNy - oy
70 = . j};(xj X).- 27
The last ingredient of our model is the presence of an extésrang that acts upon all
neurons simultaneously. Although our results are very geier the sake of concreteness
we use a periodic forcing of amplitud& and periodT. More precisely, the dynamical
equations under the presence of this forcing are modified as:

dx

egr = X(L=x)—b) -y +d+ 1), (2.8)
% = X-—-CYy+aq+ Asin(?t), (2.9)

which is the basis of our subsequent analysis.

3. Reaults

We are interested in analysing the response of the glob&ray® the external forcing.
We will show that its &ect can be enhanced under the presence of the right amount of
diversity in the set of parametess, i.e. a conveniently defined response will reach its
maximum amplitude at an intermediate value of the root meaare valuer.

In order to quantify the global response of the system wisipeet to the diversity, we
use the spectral amplification factor defined as

4\, iz
I e
whereX(t) = ﬁzi’il xi(t) is the global, average collective variable of the systenh@n
denotes a time average. We will analyze separately the cdisdsctrical and chemical

coupling.

2

(3.1)
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(i) Electrical coupling

In this subsection we concentrate on the situation in whietnieurons are electrically
(diffusively) coupled in a random network, where a neuranconnected randomly with
Ne = f(N - 1) other neurons. The mean value of the Gaussian distribofithe param-
etersg; is fixed toa = 0.06 and the coupling strength # = 0.6. Figure 3 shows the
spectral amplification factoy as a function of the diversity for fixed values of the am-
plitude A = 0.05 and two diferent values of the periodl of the external forcing, for an
increasing connection fractioh It can be seen from Figure 3 that intermediate values of
o give a maximum response in the spectral amplification fadoreover, the maximum
value shifts slightly to smaller values afas the fraction of connected neurdnmcreases.
We have also observed that a peribaf the external forcing close to the inverse of the
intrinsic firing frequency of the neurons & 0.9, according to Figure 1b) yields the largest
response.
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Figure 3. Spectral amplification factgras a function ob- for an increasing fraction of connected
neuronsf for two different periods of the external modulation. Tayx 1.6 and (b)T = 1.11. Other
parametersa = 0.06,K = 0.6 andA = 0.05.

In order to further illustrate the response of the systenm¢oeixternal sinusoidal modula-
tion, Figure 4 shows the raster plot of the ensemble (loweefsa and the time traces of
ten randomly chosen neurons (upper panels) fideint values of the diversity parameter.
It can be seen in both the top and bottom panels of this figateath intermediate level of
diversity gives a more regular behavior than either smaltéarger values of-. This fact

is more evident in the time traces where the amplitude of Hudllation varies randomly
for largeo values.

(i) Chemical coupling

We consider in this subsection the situation in which thésuarie chemically coupled.
Figure 5 shows the spectral amplification facjas a function of the diversity for fixed
values of the amplitudé = 0.05 and two diferent periods of the external modulation
when the fraction of randomly connected neurdnimcreases. The coupling strength is
fixed to K = 1.5. The fraction of excitatory neurons in the system is sef.te- 0.8. It
can be seen from Figure 5 that the spectral amplificatiorfacincreases a$ increases,
reaching the maximum responsefat: 0.05. Interestingly, beyond this valugedoes not
change significantly, indicating that the response of tretesy does not improve when
the percentage of connected neurons is larger than 5%. ©n ponother way, with a 5%
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Figure 4. Time traces of ten randomly chosen neurons and rastereptt/(time a neuron spikes
a dot is drawn) of the fully connected,= 1, ensemble in the case of electrical coupling for three
different values of the diversity parameter:¢a} 0.1, (b)o = 0.4 and (c)o- = 0.9. Other parameters:
a=0.06,K =0.6,A=0.05andT = 1.6.
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Figure 5. Spectral amplification factgras a function obr for an increasing fraction of connected
neuronsf. The fraction of excitatory neurons was fixed o= 0.8. Two diferent periods of the
external modulation have been considered: ([Efg 1.6 and (right)T = 1.11.

connectivity, the system already behaves as being fullypeoted as far as the response
to the external forcing is concerned. It is also worth notimgt the maximum response is
always at the same value of independent of . The dfect of changing the ratio of exci-
tatoryinhibitory synapses in our system is shown in Figure 6 in fobaly coupled case

f = 1. The spectral amplification factor increases as the fradf excitatory connections
fe increases, while the position of the maximum shifts slighdllarger values of- ~ 0.05.

Comparing the results from both electrical and chemicapting schemes, it can be
seen that the electrical coupling gives a larger valug biit requires, at the same time,
a larger diversity. The electrical coupling also exhibitg@ayer range of diversity values
for which the system has an optimal response compared watlcliemical coupling. In
contrast, the optimal response in the chemical couplingreehoccurs for small values of
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Figure 6. Spectral amplification factgras a function ob- for an increasing fraction of excitatory
synapses. in the case that neurons are globally couplied, 1. Other parametera:= 0.06,K = 1.5,
A=0.05andT = 1.6.

the diversity and does not significantly change in amplitade width when the percentage
of connected neuroriis increased above 5%.

4. Order Parameter Expansion

It is possible to perform an approximate analysis of tiieat of the diversity in the case
of diffusive (electrical) coupling. The analysis allows to gaisigit into the amplification
mechanism by showing how th&ective nullclines of the global variab)(t) are modified
when varyingo. The theoretical analysis is based upon a modification o$thealled or-
der parameter expansion developed by Monte and D’Ovidint®land D’Ovidio (2002);
Monte et al. (2005)) along the lines of Komin and Toral (20I)e approximation be-
gins by expanding the dynamical variables around theirampgevalues(t) = % >i % and
Y(t) = %Zi yi asxj(t) = X(t) + 6J.X(t), yit) = Y() + 6JY(t) and the diversity parameter
around its mean valug = a+ ¢2. The validity of this expansion relies on the existence of
a coherent behavior by which the individual unitsdeviate in a small amouat from the
global behavior characterized by the global average Viarié(i). It also assumes that the
deviations&éj1 are small. We expand equations (2.8) f-’grand (2.9) for% up to second

order ing¥, 6/ ands?; the resulting equations are:

6% = FXY)+ K(XY) 5|X + fy X, Y) 6Iy + %fxx (X,Y) (6ix)2, (4.1)
% = g(X.Y.8) + Gy (X Y,8) 6"+ ga (X, Y,0) 62, (4.2)
where
fxy) = x1-x)(x-b)-y+d-Kx

(4.3)

g(X’y9a) X—-Cy+a+ AS|n(2T”t),

and we used the notatiofy to indicate the derivative of with respect tax and so forth.
Note that Eq. (4.2) is exact since itis linear in all the valés. If we average Eq. (4.1)-(4.2)
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using(-) = & ¥; - we obtain:

AX (X,Y) + }fxx(x, Y) Q¥ (4.4)
dt 2
dy

where we have use(d}‘) = (5’;) = (5?) = 0 and defined the second momeXit = ((6}‘)2).
We also define@ = ((67)?), 0@ = ((63)), and the shape factors¥ = (67, £*2 = (6%
andxye = (6?’6?}. The evolution equations for the second moments are fouwmad fine first-
order expansioﬁ]‘ = Xj — X, so thatQ* = 2(5}‘5}‘> andx = (5}‘6}’ + 6]‘5?), were the dot
stands for time derivative.

6 = o+ fy) + %fxx (6997 - . (4.6)
8 = g +00) + g (4.7)
ax = 2 [+ £,29], (4.8)
€
O = 2 [gXZXV + 0y + gazya] , (4.9)
o= 1 [fXZXy + nyy] + 0 + gy XY + g 24, (4.10)
€
s Xa 1 xa a
2@ = Z[fE@+ 2, (4.11)
€
WA = gT@ 4 g YV guol. (4.12)

The system of Eq. (4.4)-(4.5) together with Eq. (4.8)-(4fti2ms a closed set of dif-
ferential equations for the average collective variablé@¥ andY(t):

eX = X+ +bX2-(b+3Q9)X+(1+bQ*+d-Y, (4.13)

Y = X-cY+a+ Asin(zT—”t), (4.14)

€ = 2(-3X%+2(1+b)X - b - K)Q* - 259, (4.15)

QO = 2[zY-c+2], (4.16)
v - 1 [(=3X2 + 2(1+ B)X — b= K)= - ]

€

+ QX — TV + %8 (4.17)

@ = (-3X2+2(1+b)X-b-K)2@ -3 (4.18)

WA = 3R_cpRy o2 (4.19)

Numerical integration of this system allows us to obté(t), from which we can compute
the spectral amplification factor. The value ofy obtained from the expansion is later
compared with that obtained from the numerical integratibthe Egs. (2.8)-(2.4) (see
Figure 9 below).

We can obtain another set of closed equationsigy andY(t) if we perform an adi-
abatic elimination of the fluctuations, i.€* = Y = ¥ = ¥*@ = 3¥2 = (, yielding

Article submitted to Royal Society



10 Toni Pérez, Claudio R. Mirasso, Raul Toral and James D.tGnin

to:
sxa_ _ O° sva_ HOo2  gxy _ H(o?
CH(X) -1’ cHR)-1° (CHX)-1P° 4.20
X 0-2 QY = H2(x)o2 ( ' )

Q= (CH(X) — 1)’ = cH®-12°

with H(x) = —=3x? + 2(1 + b)x — b — K. SubstitutingQ* in Egs. (4.13)-(4.14), we find a
closed form for the equations describing the evolution efrttean-field variableX(t) and
Y(t):

X3+ (1 +bx2-

eX b+

+d-Y, (4.21)

302 (1+ b)o?
(CH(X) - 1)2] (CH(X) - 1y

Y

X-cY+a+ Asin(%l_—ﬂt) (4.22)

These equations provide a closed form for the nullclineshefglobal variableX andY

for the non-forcing cas@ = 0. They also reflect how diversity influences these variables
Figure 7 shows these nullclin&s(X, o) andY»(X, a) of Egs. (4.21)-(4.22) respectively for
a = 0.06 and dfferent values of the diversity. It can be seen in the figure that the diversity
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Figure 7. Nullclines of Eq. (4.21)-(4.22) for increasing values of dhersity o~. Y1(X, o) for o
(from bottom to top): M, 0.5, 0.8, 10, 12 and 14. The nuliclineY,(X, a) of Eq. (4.22) fora = 0.06
is represented with a black line.

changes the shape of the cubic nullclvi€X, o) leading to a loss of stability of the fixed
point of the system that, for a certain rangergbecomes a limit cycle. To schematize the
behavior of the global variables andY when the diversity changes, we show in Figure 8
the phase-portrait for ffierent values of- = 0.0, 0.5, 0.8, 1.0, 1.2 and 14 (corresponding

to the values represented in Figure 7). It can be seen thatitha range of for which the
system exhibits a collective oscillatory behavior everhia absence of the weak external
modulation.

With the collective variableX(t) obtained from the adiabatic elimination we can estimate
the spectral amplification factgr Figure 9 shows the results obtained from the numerical
integration of Eqgs. (4.13)-(4.19), together with the nuicersimulation of the full system,
Egs. (2.8)-(2.4) and the adiabatic approximation obtafnech Egs. (4.21) and (4.22). It
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Figure 8. Phase-space portrait foffdrent values ofr. Grey line represents the evolution{&f Y}.
The black lines represent the nullclig(X, a) for a = 0.06 and the cubic nullclin&; (X, o) for o:
(a) 00, (b) 05, (c) 08, (d) 10, (e) 12 and (f) 14.

can be seen that our order parameter expansion is in gooelhagné with the numerical in-
tegration of the full system, even in the case in which thesdenoments are adiabatically
eliminated.

(a) analytical aprox. (b) analytical aprox.
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Figure 9. Order parameter expansion versus numerical integratitre défill system. An adiabatic
approximation is also included (see text). Twéielient periods of the external modulation have been
considered: (] = 1.6 and (b)T = 1.11. Other parameter as in Figure 3.
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5. Conclusions

We have studied thefect of the diversity in an ensemble of coupled neurons desdiy
the FHN model. We have observed that an intermediate vald&eifsity can enhance the
response of the system to an external periodic forcing. We btudied both electrical and
chemical coupling schemes finding that the electrical dagphduces a larger response
of the system to an external weak modulation, as well asiegisor a wider range. In
contrast, the chemical coupling scheme exhibits a smatigémal amplitude and narrower
range of response, however, for smaller values of the diye¥se have also found that the
response of the system in the electrical coupling scheraegtr depends on the fraction of
connected neurons in the system whereas it does not improgk above a small fraction
of connected neurons in the chemical coupling scheme. We &law developed an order
parameter expansion whose results are in good agreemérthaite obtained numerically
for the electrically (ditusively) coupled FHN system. By an adiabatic eliminatiorihaf
fluctuations we have found a closed form of tltkeetive nullclines of the global collective
variables of the system obtaining a simple expression of thendiversity influences the
collective variables of the system.

The microscopic mechanism leading the system to a resoehavtor with the exter-
nal signal is as follows: in the homogeneous situation, wtadr the units are identical,
the weak external modulation cannot induce any spike inystem. When the diversity
increases, a fraction of the neurons enters into the osijlaegime and, due to the inter-
actions, pull the other neurons with them. This leads theeays$o an oscillatory collective
behavior that follows the external signal. For larger valaéthe diversity, the fraction of
neurons in the oscillatory regime decreases and the resupbns &fer some resistance to
being pulled by the oscillatory ones; thus, the system caraspond to the external signal
anymore. These results suggest that the diversity presdnoliogical systems may have
an important role in enhancing the response of the systehetddtection of weak signals.
A physiological example of this kind of functionality can fimind in the cochlear nuclei
of the Kangaroo rat, where the diversity in théféient dynamic characteristics that neu-
rons exhibit plays a positive role in the response of the wisgktem to dferent external
signals (Moushegian et al. (1970)). In this sense, we hysitk here that evolution could
have selected the right degree of diversity for the systemvdrk "optimally”; i.e., one
could argue that being able to optimize the response to angagnvironment is indeed
beneficial from a Darwinian point of view.
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2004-005137); and MEC (Spain) and Feder (project FIS2WB28).

References

J.A. Acebron, S. Lozano, and A. Arenas. Amplified signal cese in scale-free networks
by collaborative signalingPhys. Rev. Lett99:128701, 2007.

H.S. Chen, Y. Shen, and Z.H Hou. Resonant response of fommaglex networks: The
role of topological disordetChaos 19:033122, 2009.

R. FitzHugh. Impulses and physiological states in thecaéthodels of nerve membrane.
Biophysical J. 1:445, 1961.

Article submitted to Royal Society



The constructive role of diversity on the global responseooipled neuron systents3

E. Glatt, M. Gassel, and F. Kaiser. Noise-induced synckaiitin in heterogeneous nets
of neural elementsturophys. Let}.81:40004, 2008.

M. Gosak. Cellular diversity promotes intercellular GaRave propagationBiophysical
Chemistry 139:53, 2009.

A. L. Hodgkin and A. Huxley. A quantitative description of merane current and it
applications to conduction and excitation in nergePhysiol, 117:500, 1952.

Y. Kuramoto. International symposium on mathematical fewis in theoretical physics.
In H. Araki, editor,Lectures notes in Physics No.3pringer, New York, 1975.

N.Komin and R. Toral. Phase transitions induced by micrpgcdisorder: a study based
on the order parameter expansiéwXiv:1003.1061.

M. Perc, M. Gosak, and S. Kralj. Stochastic resonance inmsafter systems: combined
effects of static and dynamic disord&oft Matter 4:1861, 2008.

S. Postnova, K. Voigt, and H.A. Braun. A mathematical moddiameostatic regulation
of sleep-wake cycles by hypocretimexin. J. of Biological Rhythm<4:523, 2009.

S.D.Monte and F.D’Ovidio. Dynamics of order parametergfobally coupled oscillators.
Europhys. Lett.58:21, 2002.

S.D.Monte, F.D'Ovidio, H. Ché&t, and E. Mosekilde. fEects of microscopic disorder on
the collective dynamics of globally coupled maysica D 205:25, 2005.

C.J. Tessone and R. Toral. Diversity-induced resonancerindel for opinion formation.
European Physical Journal,51:549, 2009.

C.J. Tessone, C.R. Mirasso, R. Toral, and J.D. Gunton. Bilyeinduced resonanc@hys.
Rev. Lett.97:194101, 2006.

C.J. Tessone, A. Scire, R. Toral, and P. Colet. Theory otctille ring induced by noise
or diversity in excitable medigPhys. Rev. E75:016203, 2007.

E. Ullner, J. Buceta, A. Diez-Noguera, and J. Garcia-OjaNoise-induced coherence in
multicellular circadian clocksBiophysical Journgl96:3573, 2009.

A.T. Winfree. Biological rhythms and the behavior of pogidas of coupled oscillators.
J. Theoret. Biol.16:15, 1967.

D. Wu, S.Q. Zhu, and X.Q. Luo. Cooperativefexts of random time delays and small-
world topologies on diversity-induced resonangerophys. Letters86:50002, 2009.

D. Zanette. Interplay of noise and coupling in heterogeseamsembles of phase oscilla-
tors. European Physical Journal 89:269, 2009.

G. Moushegian and A.L. Rupert. Response diversity of nesiromentral cochlear nucleus
of Kangaroo rat to low-frequency tones Neurophysio|.33:351, 1970.

Article submitted to Royal Society



