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We study the effect that the heterogeneity present among the elements of an ensemble of
coupled excitable neurons have on the collective response of the system to an external
signal. We have considered two different interaction scenarios, one in which the neurons
are diffusively coupled and another in which the neurons interact via pulse-like signals. We
found that the type of interaction between the neurons has a crucial role in determining the
response of the system to the external modulation. We develop a mean-field theory based
on an order parameter expansion that quantitatively reproduces the numerical results in the
case of diffusive coupling.
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1. Introduction

Synchronized behavior arising among the constituents of anensemble is common in nature.
Examples include the synchronized flashing of fireflies, the blossoming of flowers, cardiac
cells giving rise to the pacemaker role of the sinoatrial node of the heart and the electrical
pulses of neurons. This global behavior can originate from acommon response to an exter-
nal stimulus or might appear in autonomous, non-forced, systems. The theoretical basis for
the understanding of synchronization in non-forced systems was put forward by Winfree
(Winfree (1967)) who showed that the interaction –i.e. coupling– between the constituents
is an essential ingredient for the existence of a synchronized output. The seminal work on
coupled oscillators by Kuramoto (Kuramoto (1975)) offered a model case whose solution
confirms the basic hypothesis of Winfree: while interactionhelps towards the achievement
of a common behavior, a perfect order can be achieved only in the absence of diversity
–heterogeneity– among the components of an ensemble. In theKuramoto model, diver-
sity manifests when the oscillators have different natural frequencies, those they display
when uncoupled from each other. While this result holds for systems that can be described
by coupled oscillators, recent results indicate that in other cases diversity among the con-
stituents might actually have a positive role in the settingof a resonant behavior with an
external signal. This was first demonstrated in (Tessone et al. (2006)) and has been since
extended to many other systems (Gosak (2009); Ullner et al. (2009); Zanette (2009); Tes-
sone and Toral (2009); Postnova et al. (2009); Chen et al. (2009); Wu et al. (2009); Zanette
(2009); Ullner et al. (2009); Perc et al. (2008); Acebron et al. (2007)). In the case of non-
forced excitable systems, a unifying treatment of the role of noise and diversity has been
developed in Tessone et al. (2007).

Many biological systems, including neurons, display excitability as a response to an ex-
ternal perturbation. Excitability is characterized by theexistence of a threshold, a largely

Article submitted to Royal Society TEX Paper
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independent response to a suprathreshold input and a refractory time. It is well established
that the dynamical features of neurons can be described by excitable models: when a neu-
ron is perturbed by a single impulse, the neuron can generatea single spike, and when
perturbed by a continuum signal, a train of spikes with a characteristic firing frequency can
appear instead. Although the creation and propagation of electrical signals has been thor-
oughly studied by physiologists for at least a century, the most important landmark in this
field is due to Hodgkin and Huxley (Hodgkin and Huxley (1952)), who developed the first
quantitative model to describe the evolution of the membrane potential in the squid giant
axon. Because of the central importance of cellular electrical activity in biological systems
and because this model forms the basis for the study of excitable systems, it remains to
this date an important model for analysis. Subsequently a simplified version of this model,
known as the FitzHugh-Nagumo (FHN) model (FitzHugh (1961)), that captures many of
the qualitative features of the Hodgkin-Huxley model was developed. The FHN model has
two variables, one fast and one slow. The fast variable represents the evolution of the mem-
brane potential and it is known as the excitation variable. The slow variable accounts for
theK+ ionic current and is known as the recovery variable. One virtue of this model is that
it can be studied using phase-plane methods, because it is a two variable system. For in-
stance, the fast variable has a cubic nullcline while the slow variable has a linear nullcline
and the study of both nullclines and their intersections allow to determine the different
dynamical regimes of the model. The FHN model can then be extended by coupling the
individual elements, and provides an interesting model, for example, of coupled neuron
populations.

In the initial studies of the dynamics of the FHN and similar models, the individual
units (e.g. neurons) were treated as identical. However, itis evident that real populations of
neurons display a large degree of variability, both in morphology and dynamical activity;
that is, there is a diversity in the population of these biological units. Then, it is natural to
ask what role diversity plays in the global dynamical behavior of these systems and a lot
of activity has been developed along these lines in the recent years. In general, it has been
found, as noted above, that diversity can in fact be an important parameter in controlling
the dynamics. In particular, it has been shown that both excitable and bistable systems can
improve their response to an external stimulus if there is anadequate degree of diversity in
the constituent units (Tessone et al. (2006)).

In this paper we continue our study of the effect of diversity, investigating in some
depth its role in the FHN model of excitable systems. We consider in detail a system of
many neurons coupled either chemically or electrically. Weshow that in both cases a right
amount of diversity can indeed enhance the response to a periodic external stimulus and we
discuss in detail the difference between the two types of coupling. The outline of the paper
is as follows: In section 2 we present the FHN model and the coupling schemes considered.
Next, in section 3 we present the main results we have obtained from numerical simula-
tions. Afterwards, in section 4 we develop an approximate theoretical treatment based on
an order parameter expansion which allows us to obtain a quantitative description of the
behavior of the model and compare its predictions with the numerical results. Finally, in
section 5 we summarize the conclusions.
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2. FitzHugh-Nagumo model

(a) Dynamical equations

Let us consider a system of excitable neurons described by the FHN model. The dy-
namical equations describing the activity of a single neuron are:

ǫ
dx
dt

= x(1− x)(x− b) − y+ d, (2.1)

dy
dt

= x− cy+ a, (2.2)

wherex(t) andy(t) represent, respectively, the fast membrane potential andthe slow potas-
sium gating variable of a neuron. We assume that the time scales of these variables are well
separated by the small parameterǫ = 0.01. Other parameters are fixed tob = 0.5, c = 4.6
andd = 0.1 (Glatt et al. (2008)), while the value ofa will fluctuate from one neuron to the
other, so reflecting the intrinsic diversity in the neuronalensemble.

Let us concentrate first on the dynamics of a single neuron as described by Eqs. (2.1)-
(2.2). This dynamics has a strong dependence on the parameter a. Three different operating
regimes are identifiable: fora . −0.09 the system has a stable focus in the right branch
of the cubic nullcline leading the system to an excitable regime; for −0.09 . a . 0.01 a
limit cycle around an unstable focus appears (oscillatory regime) and for 0.01. a a stable
focus appears again, now at the left side of the cubic nullcline (excitable regime). Figure 1
(a) shows the nullclinesf (x) = x(1 − x)(x − b) + d andg(x,a) = (x + a)/c of the system
in the three operating regimes described above, fora = −0.1, 0.0 and 0.06, respectively. In
the excitable regime, spikes (also known as pulses), can appear as a result of an external
perturbation of large enough amplitude. A convenient definition is that a spike appears
when the membrane potential of the neuron exceeds a certain threshold value, e.g.x ≥ 0.5.
In the oscillatory regime, spikes appear spontaneously with an intrinsic firing frequencyν
which, as shown in Figure 1 (b), does not depend much on the value ofa.
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Figure 1. (a) Nullclines of the FHN system for three different values of the parametera. f (x) (solid
line) andg(x, a) for a = −0.1 (dotted line);a = 0.0 (dash-dotted line) anda = 0.06 (dashed line). (b)
Dependence of the firing frequencyν ona.

To illustrate the dynamical behavior ofx(t) andy(t), we show in Figure 2 the phase-portrait
for three different values ofa = −0.1, 0.0 and 0.06 corresponding to the three nullclines
represented in Figure 1 (a).
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Figure 2. Phase-space portrait of the FHN system for different values ofa. Gray line represents the
evolution of{x, y}. f (x) (black line) andg(x,a) for (a) a = −0.1 dotted line (excitable regime); (b)
a = 0.0 dash-dotted line (oscillatory regime) and (c)a = 0.06 dash line (excitable regime).

(b) Coupling scenarios: electrical versus chemical interaction

We consider now that we have an ensemble ofN coupled neurons. Each one is de-
scribed by dynamical variablesxi(t), yi(t), i = 1, . . . ,N, obeying the FitzHugh-Nagumo
equations. The neurons are not isolated from each other, butinteract mutually. The full set
of equations is now:

ǫ
dxi

dt
= xi(1− xi)(xi − b) − yi + d + I syn

i (t), (2.3)

dyi

dt
= xi − cyi + ai , (2.4)

whereI syn
i (t) is the coupling term accounting for all the interactions ofneuroni with other

neurons. To take into account the natural diversity of the units, we assume that the pa-
rameterai , which controls the degree of excitability of the neuron, varies from neuron to
neuron. In particular we assign toai random values drawn from a Gaussian distribution
with mean〈ai〉 = a and correlations

〈

(ai − a)(a j − a)
〉

= δi jσ
2. We useσ as a measure of

the heterogeneity of the system and, in the following, we usethe value ofσ as an indicator
of the degree of diversity. Ifσ = 0, all neurons have exactly the same set of parameters,
while large values ofσ indicate a large dispersion in the dynamical properties of individual
neurons.

The most common way of communication between neurons is via chemical synapses,
where the transmission is carried by an agent called neurotransmitter. In these synapses,
neurons are separated by a synaptic cleft and the neurotransmitter has to diffuse to reach
the post-synaptic receptors. In the chemical coupling casethe synaptic current is modeled
as:

I syn
i (t) =

K
Nc

Nc
∑

j=1

gi j r j(t)
(

Es
i − xi

)

. (2.5)

In this configuration, we consider that neuroni is connected toNc neurons randomly chosen
from the set ofN − 1 available neurons. Once a connection is established between neuron
i and j, we assume that the reciprocal connection is also created. Then, the connection
fraction of each neuron is defined asf = Nc/(N−1). In Eq. (2.5) K determines the coupling
strength andgi j represents the maximum conductance in the synapse between the neurons
i and j. For simplicity, we limit our study to the homogeneous coupling configuration,
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wheregi j = 1 if neuronsi and j are connected andgi j = 0 otherwise. The character of
the synapse is determined by the synaptic reversal potential of the receptor neuron,Es

i .
An excitatory (resp. inhibitory) synapse is characterizedby a value ofEs

i greater (resp.
smaller) than the membrane resting potential. We considerEs

i = 0.7 for the excitatory
synapses andEs

i = −2.0 for the inhibitory ones. We also define the fraction of excitatory
neurons (those that project excitatory synapses) in the system asfe = Ne/N beingNe the
number of excitatory neurons.

Finally, r j(t) is a time dependent function representing the fraction of bound receptors
and it is given by:

r j(t) =















1− e−αt for t ≤ ton,
(

1− e−αton
)

e−β(t−ton) for t > ton
(2.6)

whereα = 2.5 andβ = 3.5 are the rise and decay time constants, respectively. Here
ton = 0.1 represents the time the synaptic connection remains active andt is the time from
the spike generation in the presynaptic neuron.

There is another type of synapse where the membranes of the neurons are in close
contact and thus the transmission of the signal is achieved directly (electrical synapses). In
this case of electrically-mediated interactions, also known as diffusive coupling, the total
synaptic current is proportional to the sum of the membrane potential difference between
a neuron and its neighbors, and it is given by:

I syn
i (t) =

K
Nc

Nc
∑

j=1

(

x j − xi

)

. (2.7)

The last ingredient of our model is the presence of an external forcing that acts upon all
neurons simultaneously. Although our results are very general, for the sake of concreteness
we use a periodic forcing of amplitudeA and periodT. More precisely, the dynamical
equations under the presence of this forcing are modified as:

ǫ
dxi

dt
= xi(1− xi)(xi − b) − yi + d + I syn

i (t), (2.8)

dyi

dt
= xi − cyi + ai + Asin

(

2π
T

t

)

, (2.9)

which is the basis of our subsequent analysis.

3. Results

We are interested in analysing the response of the global system to the external forcing.
We will show that its effect can be enhanced under the presence of the right amount of
diversity in the set of parametersai , i.e. a conveniently defined response will reach its
maximum amplitude at an intermediate value of the root mean square valueσ.

In order to quantify the global response of the system with respect to the diversity, we
use the spectral amplification factor defined as

η =
4
A2

∣

∣

∣

∣

〈

e−i 2π
T tX(t)

〉

∣

∣

∣

∣

2
. (3.1)

whereX(t) = 1
N

∑N
i=1 xi(t) is the global, average collective variable of the system and 〈·〉

denotes a time average. We will analyze separately the casesof electrical and chemical
coupling.
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(i) Electrical coupling

In this subsection we concentrate on the situation in which the neurons are electrically
(diffusively) coupled in a random network, where a neuroni is connected randomly with
Nc = f (N − 1) other neurons. The mean value of the Gaussian distribution of the param-
etersai is fixed toa = 0.06 and the coupling strength toK = 0.6. Figure 3 shows the
spectral amplification factorη as a function of the diversityσ for fixed values of the am-
plitude A = 0.05 and two different values of the periodT of the external forcing, for an
increasing connection fractionf . It can be seen from Figure 3 that intermediate values of
σ give a maximum response in the spectral amplification factor. Moreover, the maximum
value shifts slightly to smaller values ofσ as the fraction of connected neuronsf increases.
We have also observed that a periodT of the external forcing close to the inverse of the
intrinsic firing frequency of the neurons (ν ≈ 0.9, according to Figure 1b) yields the largest
response.
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Figure 3. Spectral amplification factorη as a function ofσ for an increasing fraction of connected
neuronsf for two different periods of the external modulation. (a)T = 1.6 and (b)T = 1.11. Other
parameters:a = 0.06,K = 0.6 andA = 0.05.

In order to further illustrate the response of the system to the external sinusoidal modula-
tion, Figure 4 shows the raster plot of the ensemble (lower panels) and the time traces of
ten randomly chosen neurons (upper panels) for different values of the diversity parameter.
It can be seen in both the top and bottom panels of this figure that an intermediate level of
diversity gives a more regular behavior than either smalleror larger values ofσ. This fact
is more evident in the time traces where the amplitude of the oscillation varies randomly
for largeσ values.

(ii) Chemical coupling

We consider in this subsection the situation in which the units are chemically coupled.
Figure 5 shows the spectral amplification factorη as a function of the diversityσ for fixed
values of the amplitudeA = 0.05 and two different periods of the external modulation
when the fraction of randomly connected neuronsf increases. The coupling strength is
fixed to K = 1.5. The fraction of excitatory neurons in the system is set tofe = 0.8. It
can be seen from Figure 5 that the spectral amplification factor η increases asf increases,
reaching the maximum response atf ≃ 0.05. Interestingly, beyond this valueη does not
change significantly, indicating that the response of the system does not improve when
the percentage of connected neurons is larger than 5%. Or, put in another way, with a 5%
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Figure 4. Time traces of ten randomly chosen neurons and raster plot (every time a neuron spikes
a dot is drawn) of the fully connected,f = 1, ensemble in the case of electrical coupling for three
different values of the diversity parameter: (a)σ = 0.1, (b)σ = 0.4 and (c)σ = 0.9. Other parameters:
a = 0.06,K = 0.6, A = 0.05 andT = 1.6.
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Figure 5. Spectral amplification factorη as a function ofσ for an increasing fraction of connected
neuronsf . The fraction of excitatory neurons was fixed tofe = 0.8. Two different periods of the
external modulation have been considered: (left)T = 1.6 and (right)T = 1.11.

connectivity, the system already behaves as being fully connected as far as the response
to the external forcing is concerned. It is also worth notingthat the maximum response is
always at the same value ofσ, independent off . The effect of changing the ratio of exci-
tatory/inhibitory synapses in our system is shown in Figure 6 in the globally coupled case
f = 1. The spectral amplification factor increases as the fraction of excitatory connections
fe increases, while the position of the maximum shifts slightly to larger values ofσ ≃ 0.05.

Comparing the results from both electrical and chemical coupling schemes, it can be
seen that the electrical coupling gives a larger value ofη but requires, at the same time,
a larger diversity. The electrical coupling also exhibits alarger range of diversity values
for which the system has an optimal response compared with the chemical coupling. In
contrast, the optimal response in the chemical coupling scheme occurs for small values of
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Figure 6. Spectral amplification factorη as a function ofσ for an increasing fraction of excitatory
synapsesfe in the case that neurons are globally coupled,f = 1. Other parameters:a = 0.06,K = 1.5,
A = 0.05 andT = 1.6.

the diversity and does not significantly change in amplitudeand width when the percentage
of connected neuronsf is increased above 5%.

4. Order Parameter Expansion

It is possible to perform an approximate analysis of the effect of the diversity in the case
of diffusive (electrical) coupling. The analysis allows to gain insight into the amplification
mechanism by showing how the effective nullclines of the global variableX(t) are modified
when varyingσ. The theoretical analysis is based upon a modification of theso-called or-
der parameter expansion developed by Monte and D’Ovidio (Monte and D’Ovidio (2002);
Monte et al. (2005)) along the lines of Komin and Toral (2010). The approximation be-
gins by expanding the dynamical variables around their average valuesX(t) = 1

N

∑

i xi and
Y(t) = 1

N

∑

i yi as x j(t) = X(t) + δx
j (t), y j(t) = Y(t) + δyj (t) and the diversity parameter

around its mean valuea j = a+ δaj . The validity of this expansion relies on the existence of
a coherent behavior by which the individual unitsx j deviate in a small amountδx

j from the
global behavior characterized by the global average variable X(t). It also assumes that the
deviationsδaj are small. We expand equations (2.8) fordxi

dt and (2.9) fordyi

dt up to second
order inδx

i , δyi andδai ; the resulting equations are:

ǫ
dxi

dt
= f (X,Y) + fx (X,Y) δx

i + fy (X,Y) δyi +
1
2

fxx (X,Y)
(

δx
i
)2
, (4.1)

dyi

dt
= g (X,Y,a) + gx (X,Y,a) δx

i + ga (X,Y,a) δai , (4.2)

where
f (x, y) = x(1− x)(x− b) − y+ d − Kx,

g(x, y,a) = x− cy+ a+ Asin
(

2π
T t

)

,
(4.3)

and we used the notationfx to indicate the derivative off with respect tox and so forth.
Note that Eq. (4.2) is exact since it is linear in all the variables. If we average Eq. (4.1)-(4.2)
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using〈·〉 = 1
N

∑

i · we obtain:

ǫ
dX
dt

= f (X,Y) +
1
2

fxx (X,Y)Ωx, (4.4)

dY
dt

= g (X,Y,a) , (4.5)

where we have used〈δx
j 〉 = 〈δ

y
j〉 = 〈δ

a
j 〉 = 0 and defined the second momentΩx = 〈(δx

j )
2〉.

We also definedΩy = 〈(δyj )
2〉,σ2 = 〈(δaj )

2〉, and the shape factorsΣxy = 〈δx
jδ

y
j〉, Σ

xa = 〈δx
jδ

a
j 〉

andΣya = 〈δ
y
jδ

a
j 〉. The evolution equations for the second moments are found from the first-

order expansioṅδx
j = ẋ j − Ẋ, so thatΩ̇x = 2〈δx

j δ̇
x
j 〉 andΣ̇xy = 〈δ̇x

jδ
y
j + δ

x
j δ̇

y
j〉, were the dot

stands for time derivative.

ǫδ̇x
i = fxδ

x
i + fyδ

y
i +

1
2

fxx

[

(

δx
i
)2
−Ωx

]

, (4.6)

δ̇
y
i = gxδ

x
i + gyδ

y
i + gaδ

a
i , (4.7)

Ω̇x =
2
ǫ

[

fxΩ
x + fyΣ

xy
]

, (4.8)

Ω̇y = 2
[

gxΣ
xy + gyΩ

y + gaΣ
ya
]

, (4.9)

Σ̇xy =
1
ǫ

[

fxΣ
xy + fyΩ

y
]

+ gxΩ
x + gyΣ

xy + gaΣ
xa, (4.10)

Σ̇xa =
1
ǫ

[

fxΣ
xa + fyΣ

ya
]

, (4.11)

Σ̇ya = gxΣ
xa + gyΣ

ya + gaσ
2. (4.12)

The system of Eq. (4.4)-(4.5) together with Eq. (4.8)-(4.12) forms a closed set of dif-
ferential equations for the average collective variablesX(t) andY(t):

ǫẊ = −X3 + (1+ b)X2 − (b+ 3Ωx)X + (1+ b)Ωx + d − Y, (4.13)

Ẏ = X − cY+ a+ Asin

(

2π
T

t

)

, (4.14)

ǫΩ̇x = 2(−3X2 + 2(1+ b)X − b− K)Ωx − 2Σxy, (4.15)

Ω̇y = 2
[

Σxy − cΩy + Σya] , (4.16)

Σ̇xy =
1
ǫ

[

(−3X2 + 2(1+ b)X − b− K)Σxy −Ωy
]

+ Ωx − cΣxy + Σxa, (4.17)

ǫΣ̇xa = (−3X2 + 2(1+ b)X − b− K)Σxa − Σya, (4.18)

Σ̇ya = Σxa − cΣya + σ2. (4.19)

Numerical integration of this system allows us to obtainX(t), from which we can compute
the spectral amplification factorη. The value ofη obtained from the expansion is later
compared with that obtained from the numerical integrationof the Eqs. (2.8)-(2.4) (see
Figure 9 below).

We can obtain another set of closed equations forX(t) andY(t) if we perform an adi-
abatic elimination of the fluctuations, i.e.,Ω̇x = Ω̇y = Σ̇xy = Σ̇xa = Σ̇ya = 0, yielding
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to:

Σxa =
σ2

cH(x) − 1
, Σya =

H(x)σ2

cH(x)−1 , Σxy =
H(x)σ2

(cH(x)−1)2 ,

Ωx =
σ2

(cH(x) − 1)2
, Ωy =

H2(x)σ2

(cH(x)−1)2 ,

(4.20)

with H(x) = −3x2 + 2(1+ b)x − b − K. SubstitutingΩx in Eqs. (4.13)-(4.14), we find a
closed form for the equations describing the evolution of the mean-field variablesX(t) and
Y(t):

ǫẊ = −X3 + (1+ b)X2 −

[

b+
3σ2

(cH(X) − 1)2

]

X +
(1+ b)σ2

(cH(X) − 1)2
+ d − Y, (4.21)

Ẏ = X − cY+ a+ Asin

(

2π
T

t

)

(4.22)

These equations provide a closed form for the nullclines of the global variablesX andY
for the non-forcing caseA = 0. They also reflect how diversity influences these variables.
Figure 7 shows these nullclinesY1(X, σ) andY2(X,a) of Eqs. (4.21)-(4.22) respectively for
a = 0.06 and different values of the diversityσ. It can be seen in the figure that the diversity

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.2  0.4  0.6  0.8  1

Y

X

σ=0.0

σ=1.4

Figure 7. Nullclines of Eq. (4.21)-(4.22) for increasing values of thediversity σ. Y1(X, σ) for σ
(from bottom to top): 0.0, 0.5, 0.8, 1.0, 1.2 and 1.4. The nullclineY2(X,a) of Eq. (4.22) fora = 0.06
is represented with a black line.

changes the shape of the cubic nullclineY1(X, σ) leading to a loss of stability of the fixed
point of the system that, for a certain range ofσ, becomes a limit cycle. To schematize the
behavior of the global variablesX andY when the diversity changes, we show in Figure 8
the phase-portrait for different values ofσ = 0.0, 0.5, 0.8, 1.0, 1.2 and 1.4 (corresponding
to the values represented in Figure 7). It can be seen that there is a range ofσ for which the
system exhibits a collective oscillatory behavior even in the absence of the weak external
modulation.
With the collective variableX(t) obtained from the adiabatic elimination we can estimate
the spectral amplification factorη. Figure 9 shows the results obtained from the numerical
integration of Eqs. (4.13)-(4.19), together with the numerical simulation of the full system,
Eqs. (2.8)-(2.4) and the adiabatic approximation obtainedfrom Eqs. (4.21) and (4.22). It
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Figure 8. Phase-space portrait for different values ofσ. Grey line represents the evolution of{X,Y}.
The black lines represent the nullclineY2(X,a) for a = 0.06 and the cubic nullclineY1(X, σ) for σ:
(a) 0.0, (b) 0.5, (c) 0.8, (d) 1.0, (e) 1.2 and (f) 1.4.

can be seen that our order parameter expansion is in good agreement with the numerical in-
tegration of the full system, even in the case in which the second moments are adiabatically
eliminated.

Figure 9. Order parameter expansion versus numerical integration ofthe full system. An adiabatic
approximation is also included (see text). Two different periods of the external modulation have been
considered: (a)T = 1.6 and (b)T = 1.11. Other parameter as in Figure 3.
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5. Conclusions

We have studied the effect of the diversity in an ensemble of coupled neurons described by
the FHN model. We have observed that an intermediate value ofdiversity can enhance the
response of the system to an external periodic forcing. We have studied both electrical and
chemical coupling schemes finding that the electrical coupling induces a larger response
of the system to an external weak modulation, as well as existing for a wider range. In
contrast, the chemical coupling scheme exhibits a smaller optimal amplitude and narrower
range of response, however, for smaller values of the diversity. We have also found that the
response of the system in the electrical coupling scheme strongly depends on the fraction of
connected neurons in the system whereas it does not improve much above a small fraction
of connected neurons in the chemical coupling scheme. We have also developed an order
parameter expansion whose results are in good agreement with those obtained numerically
for the electrically (diffusively) coupled FHN system. By an adiabatic elimination ofthe
fluctuations we have found a closed form of the effective nullclines of the global collective
variables of the system obtaining a simple expression of howthe diversity influences the
collective variables of the system.

The microscopic mechanism leading the system to a resonant behavior with the exter-
nal signal is as follows: in the homogeneous situation, where all the units are identical,
the weak external modulation cannot induce any spike in the system. When the diversity
increases, a fraction of the neurons enters into the oscillatory regime and, due to the inter-
actions, pull the other neurons with them. This leads the system to an oscillatory collective
behavior that follows the external signal. For larger values of the diversity, the fraction of
neurons in the oscillatory regime decreases and the rest of neurons offer some resistance to
being pulled by the oscillatory ones; thus, the system cannot respond to the external signal
anymore. These results suggest that the diversity present in biological systems may have
an important role in enhancing the response of the system to the detection of weak signals.
A physiological example of this kind of functionality can befound in the cochlear nuclei
of the Kangaroo rat, where the diversity in the different dynamic characteristics that neu-
rons exhibit plays a positive role in the response of the whole system to different external
signals (Moushegian et al. (1970)). In this sense, we hypothesize here that evolution could
have selected the right degree of diversity for the system towork ”optimally”; i.e., one
could argue that being able to optimize the response to a varying environment is indeed
beneficial from a Darwinian point of view.
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Foundation (Grant DMR- 0702890); G. Harold and Leila Y. Mathers Foundation; European
Commission Project GABA (FP6-NEST Contract 043309); EU NoEBiosim (LSHB-CT-
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