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Abstract

In the last years a new approach for making time series analysis has appeared. This
new approach considers the mapping of time series to networks, in order to character-
ize the structure of time series (and therefore the dynamics that generated the series)
via characterization of the associated network. It makes use of several metrics recently
developed in the so called Complex Network theory, and makes a bridge between this
latter discipline and the more general aspects of time series analysis and nonlinear dy-
namics. While several possibilities have been proposed, here we focus on the so called
visibility algorithm, which has received much attention in the last two years. This
method has been shown to be well defined as time series correlations are inherited
in the associated visibility graphs, opening the possibility of characterizing complex
signals from a brand new viewpoint. We will make an overview of the method, ad-
dressing two different possible mapping criteria (i.e. the visibility algorithm and the
horizontal visibility algorithm) for mapping series into graphs. This method captures
the correlations of a time series and encodes it in the topology of the associated graph.
After presenting the mapping properties, we will address within the visibility algo-
rithms three fundamental problems in nonlinear time series analysis, namely (i) the
network characterization of fractional Brownian motion, (ii) the characterization of
uncorrelated processes, and (iii) the discrimination between randomness and chaos
through the visibility algorithm.

*E-mail address: lucas @ifisc.uib-csic.es, bartolome.luque @upm.es
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1. Introduction

In the last years a brand new approach in time series analysis has appeared. In a nutshell,
time series are mapped into a network representation (where the connections between nodes
capture the series structure according to the mapping criteria) and graph theoretical tools
are subsequently employed to characterize the properties of the series. Among some pos-
sibilities (see for instance [1, 2, 3, 4, 5]) the so called visibility algorithm [3] has received
much attention, since it has been shown that it is a well defined method, in the sense that
series correlations (including periodicity, fractality or chaoticity) are captured by the algo-
rithm and translated in the associated visibility graph, opening the possibility of building
bridges between time series analysis, nonlinear dynamics, and graph theory, with potential
applications in a plethora of disciplines. The method, inspired in the concept of visibility
[6], proceeds by mapping time series into graphs according to a specific geometric crite-
rion, in order to make use of complex networks techniques [8, 9, 10, 11] for characterize
time series. In this chapter we will make an overview of the main results, including the
presentation of different possible mapping criteria (that lead to somewhat different -albeit
related- visibility graphs) and the subsequent characterization of periodic, random, fractal
and chaotic series. This topic is currently evidencing a burst of research activity, and in
this sense we assume that the present chapter will not in any case be a final overview but
instead, an introduction and a summary of recent results.

2. The Visibility algorithms: two different mapping criteria

Next we will describe the two algorithms for mapping temporal series to graphs, this will
be our main concern in this chapter.

2.1. The visibility algorithm

In short, a visibility graph is obtained from the mapping of a time series of n data into a
network of n nodes (where each datum is associated to a specific node and where temporal
order is preserved in the node labelling) according to the following visibility criterion (see
figure 1: Two arbitrary data (¢,,z,) and (¢, xp) in the time series have visibility, and
consequently become two nodes in the associated graph, if any other data (., z.) such that
tq < te <ty fulfills

tc - ta
ty —ta

Te < Tg + (p — 24) (1
Some basic properties of the mapping include connectedness (the visibility graph is alwas
connected by definition), undirectedness (undirected network), and invariance under affine
transformations (see figure 2).
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Figure 1. [llustrative example of the visibility algorithm. In the upper part we plot a periodic
time series and in the bottom part we represent the graph generated through the visibility
algorithm. Each datum in the series corresponds to a node in the graph, such that two nodes
are connected if their corresponding data heights fulfill the visibility criterion of equation
1.

2.2. The Horizontal Visibility algorithm

The horizontal visibility algorithm maps time series into graphs and it is defined as follows.
Let {x;};=1.n be a time series of N data. The algorithm assigns each datum of the series
to a node in the horizontal visibility graph (graph from now on). Two nodes ¢ and j in the
graph are connected if one can draw a horizontal line in the time series joining x; and x;
that does not intersect any intermediate data height (see figure 3 for a graphical illustration).
Hence, 7 and j are two connected nodes if the following geometrical criterion is fulfilled
within the time series:

Tg,2p > 2. forall ¢ suchthat a < c <b. 2)

This algorithm is a simplification of the former algorithm. As a matter of fact, notice
that given a time series, its horizontal visibility graph is always a subgraph of its associated
visibility graph.

Accordingly, as in the former case, the horizontal visibility graph associated to a time
series is always:

(i) Connected: each node sees at least its nearest neighbors (left-hand side and right-hand
side).
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Figure 2. The visibility graph of a time series remains invariant under several transformation of the

time series: a) original time series with visibility links b) translation of the data c) vertical rescaling
d) horizontal rescaling e) addition of a linear trend to the data. As can be seen in the botom figure,
in all these cases the visibility graph remains invariant.

(if) Invariant under affine transformations of the series data: the visibility criterium is
invariant under rescaling of both horizontal and vertical axis, as well as under horizontal
and vertical translations.

Some other properties can be stated, namely:

(iii) Reversible/Irreversible character of the mapping: note that some information
regarding the time series is inevitably lost in the mapping from the fact that the network
structure is completely determined in the (binary) adjacency matrix. For instance, two
periodic series as ...,3,1,3,1,... and ..., 3,2, 3,2, ... with the same period T" = 2 would
have the same visibility graph, albeit being quantitatively different. Although the spirit of
the visibility graph is to focus on time series structural properties (periodicity, fractality,
etc.), the method can be generalized by making use of weighted networks (where the
adjacency matrix is not binary and the weights determine the height difference of the
associated data for example), if we eventually need to quantitatively distinguish time series
like above, for instance. Using weighted networks, the algorithm converts to a reversible
one. This feature will be adressed in further work.

(iv) Undirected/directed character of the mapping: Although this algorithm generates
undirected graphs, note that one could also extract a directed graph (related to the temporal
axis direction) in such a way that for a given node one should distinguish two different
degrees: an ingoing degree k;,, related to how many nodes see a given node i, and an
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Figure 3. Illustrative example of the horizontal visibility algorithm. In the upper part we
plot a time series and in the bottom part we represent the graph generated through the
horizontal visibility algorithm. Each datum in the series corresponds to a node in the graph,
such that two nodes are connected if their corresponding data heights are larger than all the
data heights between them. The data values (heights) are made explicit in the top.

outgoing degree k,,¢, that is the number nodes that node i sees. In that situation, if
the direct visibility graph extracted from a given time series is not invariant under time
reversion (that is, if P(k;;,) # P(kout)), one could assert that the process that generated the
series is not conservative. In a first approximation we have studied the undirected version,
and the directed one will be eventually addressed in further work. While the undirected
choice seems to violate causality, note that the same ’causality violation’ is likely to take
place when performing the DFT of a time series, for instance.

(vi) Comparison between geometric criteria: Note that the geometric criterion defined
for the horizontal visibility algorithm is more ’visibility restrictive’ than its analogous
for the general case. That is to say, the nodes within the horizontal visibility graph will
have ’less visibility’ than their counterparts within the visibility graph. While this fact
does not have an impact on the qualitative features of the graphs, quantitatively speaking,
horizontal visibility graphs will have typically ’less statistics’. For instance, it has been
shown that the degree distribution P(k) of the visibility graph associated to a fractal series
is a power law P(k) ~ k™7, such that the Hurst exponent H of the series is linearly
related to v [12]. Now, for practical purposes it is more recommendable to make use of
the visibility algorithm (in detriment of the horizontal version) when measuring the Hurst
exponent of a fractal series, since a good estimation of ~y requires at least two decades of
statistics in P(k), something which is more likely within the visibility algorithm. In what
follows we will show that the simplicity of the horizontal version of the algorithm -which
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is computationally faster than the original- allows analytical tractability, and nonetheless,
this latter method is well fitted to distinguish different degrees of chaos from a sequence of
uncorrelated random variables.

2.3. What is the visibility algorithm actually mapping?

In order to deepen on the geometric interpretation of the visibility graph, let us focus on a
periodic series. It is straightforward that its visibility graph is a concatenation of a motif:
a repetition of a pattern (see figure 1). Now, which is the degree distribution P(k) of this
visibility graph? Since the graph is just a motif’s repetition, the degree distribution will be
formed by a finite number of non-null values, this number being related to the period of the
associated periodic series. This behavior reminds us the Discrete Fourier Transform (DFT),
which for periodic series is formed by a finite number of peaks (vibration modes) related
to the series period. Using this analogy, we can understand the visibility algorithm as a
geometric (rather than integral) transform. Whereas a DFT decomposes a signal in a sum of
(eventually infinite) modes, the visibility algorithm decomposes a signal in a concatenation
of graph’s motifs, and the degree distribution simply makes a histogram of such ’geometric
modes’. While the time series is defined in the time domain and the DFT is defined on
the frequency domain, the visibility graph is defined on the ’visibility domain’. This is,
of course, a hand-waving analogy and further work should study its extent rigorously. For
instance, this transform is not, as presented, a reversible one. Reversibility can however
be easily obtained weighting the links in the visibility graph with the slope of the visibility
line that links the associated data heights. The weighted version of the algorithm and its
geometric transform nature are two important open problems. At this point we can comment
that whereas a generic DFT fails to capture the presence of nonlinear correlations in time
series (such as the presence of chaotic behavior), we will show that the visibility algorithm
can clearly distinguish between white noise (i.e. a sequence of identically independent
random variables) and chaotic series.

3. Some examples: periodic, random, fractal series

The key question is to know whether the associated graph inherits some structure of the time
series, and consequently if the process which generated the time series may be characterized
using graph theory. In a first step we will consider periodic series. As a matter of fact, the
example plotted in figure 1 is nothing but a periodic series with period 4. The associated
visibility graph is ordered, as long as it is constructed by periodic repetition of a pattern.
The degree distribution of this graph is formed by a finite number of peaks related to the
series period, much in the vein of the Fourier Power Spectrum of a time series. Generically
speaking, all periodic time series are mapped into motif-like graphs, the discrete degree
distribution being the fingerprint of the time series periods. In the case of periodic time
series, its regularity seems therefore to be conserved or inherited structurally in the graph
by means of the visibility map.
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Figure 4. Left figure: First 250 values of R(t), a random series of 10° data extracted from U0, 1].
Right figure: degree distribution of the visibility graph associated to R(t) (plotted in semi-log).
While the beginning of the curve approaches the result of a Poisson process, the tail is clearly
exponential. This behavior is due to data with large values (rare events), which are the hubs.

As an opposite to periodic series, in a second step we tackle a random series R(t) of 10°
data extracted from an uniform distribution in [0, 1]. Although one would expect in a first
moment a Poisson degree distribution in this case (as for uncorrelated random graphs [13]),
arandom time series has indeed some correlation, since it is an ordered set. In fact, let k; be
the connectivity of the node associated to the data ¢. If k; is large (related to the fact that the
data has a large value and that consequently it has large visibility), one would expect that
k¢+1 would be relatively small, since the time series is random and two consecutive data
with a large value are not likely to occur. It is indeed due to these "unlikely’ large values
(the hubs) that the tail of the degree distribution deviates from the Poisson distribution. Two
large values in the series data can be understood as two rare events in the random process.
The time distribution of these events is indeed exponential [14], therefore we should expect
the tail of the degree distribution in this case to be exponential instead of Poissonian, as
long as the form of this tail is related to the hub’s distribution. In the left side of figure
4 we depict the first 250 values of R(t). In the right side we plot the degree distribution
P(k) of its visibility graph. The tail of this distribution fits quite well an exponential distri-
bution, as expected. In a few pages we will tackle the full characterization of random series.

Hitherto, ordered (periodic) series convert into regular graphs, and random series
convert into exponential random graphs: order and disorder structure in the time series
seem to be inherited in the topology of the visibility graph. Thus, the question arises:
What kind of visibility graph is obtained from a fractal time series? This question is in
itself interesting at the present time. Recently, the relationship between self-similar and
scale-free networks [7, 8] has been intensively discussed [15, 16, 17, 18]. While complex
networks usually exhibit the Small-World property [19] and cannot be consequently
size-invariant, it has been recently shown [15] that applying fitted box-covering meth-
ods and renormalization procedures, some real networks actually exhibit self-similarity.
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Figure 5. Left: First 4000 data from a Brownian series of 10° data. Right: First 10° data from a
Conway series of 4 - 10° data.

So, whereas self-similarity seems to imply scale-freeness, the opposite is not true in general.

In order to explore these issues in more detail, the following two fractal series will be
considered: the well-known Brownian motion B(t) and the Conway series [20]. While the
Brownian motion represents a well-known case of self-affinity (indeed, the following rela-
tion holds: B(t) = a'/2B(t/a), the Conway series a(n) —n/2 is the recursively generated
fractal series from:

a(l)y=a(2) =1
a(n) =a(a(n —1)) +a(n —a(n —1)); n > 2.
3)

In figure 5 we show for illustrative purposes two examples of Brownian and Conway
series. In figures 6 and 7 we plot the degree distribution P (k) of their respective visibility
graphs and their mean path length L(V) as a function of the series length. First, both
series have visibility graphs with degree distributions that correspond to power laws of the
shape P(k) ~ k~¢, where we get different exponents in each case: this result enhances
the fact that in the context of the visibility algorithm, power law degree distributions (that
is, scale free networks)arise naturally from fractal series. Moreover, this relation seems
to be robust as long as the preceding examples show different kinds of fractality: while
B(t) stands for a stochastic self-affine fractal, the Conway series is a deterministic series
recursively generated. On the other hand, while the Brownian visibility graph seems to
evidence the Small-World effect (right figure 6) as L(IN) ~ log(V), the Conway series
shows in turn a self-similar relation (right figure 7) of the shape L(N) ~ N?. This fact can
be explained in terms of the so called hub repulsion phenomenon [17]: visibility graphs
associated to stochastic fractals such as the Brownian motion or generic noise series do not
evidence repulsion between hubs (in these series it is straightforward that the data with
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Figure 6. The left figure stands for the degree distribution of the visibility graph associated to the
Brownian motion. This one is a power law P(k) ~ k=% with o = 2.00 & 0.01. In the right part
of the figure we plot the mean path length of this network as a function of the network size N. The
best fitting provides a logarithmic scaling of the shape D(N) = —2.54 + 0.95In(N). This network
shows Small-World effect in addition to be scale-free.

highest values would stand for the hubs, and these data would have visibility between each
other), and consequently won’t be fractal networks following Song et al. [17]. On the other
hand, the Conway series actually evidence hub repulsion: this series is concave-shaped and
consequently the highest data won’t in any case stand for the hubs; the latter ones would be
located much likely in the monotonic regions of the series, which are indeed hidden from
each other (effective repulsion) across the series local maxima. The Conway visibility
graph is thus fractal.

Since a fractal series is characterized by its Hurst exponent, we may argue that the
visibility graph can actually distinguish different types of fractality, something that will be
explored in detail in the following section.

4. Characterization of fractal series: visibility graphs of frac-
tional Brownian motion

Self-similar processes such as fractional Brownian motion (fBm) [21] are currently used
to model fractal phenomena of different nature, ranging from Physics or Biology to
Economics or Engineering. To cite a few, fBm has been used in models of electronic
delocalization [22], as a theoretical framework to analyze turbulence data [23], to de-
scribe geologic properties [24], to quantify correlations in DNA base sequences [25], to
characterize physiological signals such as human heartbeat [26] or gait dynamics [27], to
model economic data [28] or to describe network traffic [29, 30, 31]. Fractional Brownian
motion By (t) is a non-stationary random process with stationary self-similar increments
(fractional Gaussian noise) that can be characterized by the so called Hurst exponent,
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Figure 7. The left figure stands for the degree distribution of the visibility graph associated to the
Conway series. This one is a power law P(k) ~ k~< with « = 1.2 £ 0.1. The mean path length as
a function of the size IV is depicted in the right part of the figure. The best fitting provides a power
law scaling of the shape D(N) = 1.04N°-3%. Then, this network is scale-invariant.

0 < H < 1. The one-step memory Brownian motion is obtained for H = %, whereas time
series with H > % shows persistence and anti-persistence if H < %

While different fBm generators and estimators have been introduced in the last years,
the community lacks consensus on which method is best suited for each case. This
drawback comes from the fact that fBm formalism is exact in the infinite limit, i.e. when
the whole infinite series of data is considered. However, in practice, real time series are
finite. Accordingly, long range correlations are partially broken in finite series, and local
dynamics corresponding to a particular temporal window are overestimated. The practical
simulation and the estimation from real (finite) time series is consequently a major issue
that is, hitherto, still open. An overview of different methodologies and comparisons can
be found in [32, 33, 34, 35, 36, 37, 38] and references therein.

In this section we show that the visibility graphs derived from generic fBm series
are also scale free. This robustness goes further, and we prove that a linear relation
between the exponent -y of the power law degree distribution in the visibility graph and the
Hurst exponent H of the associated fBm series exists. Therefore, the visibility algorithm
provides an alternative method to compute the Hurst exponent and then, to characterize
fBm processes.

In fig.8 we have depicted in log-log the degree distribution of the visibility graph as-
sociated with three artificial fBm series of 10° data, namely an anti-persistent series with
H = 0.3 (triangles), a memoryless Brownian motion with H = 0.5 (squares) and a persis-
tent fBm with H = 0.8 (circles). As can be seen, these distributions follow a power law
P(k) ~ k=7 with decreasing exponents yp.3 > Y0.5 > 0.8
In order to compare v and H appropriately, we have calculated the exponent of different
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Figure 8. Degree distribution of three visibility graphs, namely (i) triangles: extracted from
a fBm series of 10° data with H = 0.3, (ii) squares: extracted from a fBm series of 10° data
with H = 0.5, (iii) circles: extracted from a fBm series of 10° data with H = 0.8. Note
that distributions are not normalized. The three visibility graphs are scale-free since their
degree distributions follow a power law P(k) ~ k=7 with decreasing exponents vy 3 >

Y0.5 > 7Y0.8-

scale free visibility graphs associated with fBm artificial series of 10* data with 0 < H < 1
generated by a wavelet based algorithm [39]. Note at this point that some bias is inevitably
present since artificial series generators are obviously not exact, and consequently the nomi-
nal Hurst exponents have an associated error [40]. For each value of the Hurst parameter we
have thus averaged the results over 10 realizations of the fBm process. We have estimated
exponent +y in each case through Maximum Likelihood Estimation (MLE) [41]:

n z; -1
7:1+n{210g ] , 4)

= Lin

where n is total number of values taken into account, z;, ¢ = 1,..,n are the measured
values and x,,;, corresponds to the smallest value of = for which the power law behavior
holds. In fig.9 we have represented the relation between v and H (black circles). As can be
seen, a roughly linear relation holds (the best linear fitting is v = 3.1 — 2H).

The estimation of H through the visibility method has been applied recently with success to
several temporal series: turbulence [42], hurricanes [43] and stock markets [44]. That fBm
yields scale free visibility graphs is not that surprising. The most highly connected nodes
(hubs) are the responsible for the heavy tailed degree distributions. Within fBm series, hubs
are related to extreme values in the series, since a data with a very large value has typically
a large connectivity, according to eq. 1. In order to calculate the tail of the distribution we
consequently need to focus on the hubs, and thus calculate the probability that an extreme
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Figure 9. (Black dots) Numerical estimation of exponent y of the visibility graph associated
with a fBm series with exponent . In each case -y is averaged over 10 realizations of a fBm
series of 10* data, in order to avoid non-stationary biases (the error bars are included in the
dot size). The solid line corresponds to the theoretical prediction v(H ) = 3—2H. Note that
deviations from the theoretical law take place for values of H > 0.5 and H < 0.5 (strongly
correlated or anti-correlated series), where fBm generators evidence finite-size accuracy
problems [40], these being more acute the more we move away from the non-correlated
case H = 0.5.

value has a degree k. Suppose that at time ¢ the series reaches an extreme value (a hub)
By (t) = h. The probability of this hub to have degree T is

P(T) ~ PfT(T)T(T)7 (5

where Py, (T") provides the probability that after 7" time steps, the series returns to the same
extreme value, i.e. B(t + 1) = h (and consequently the visibility in ¢ gets truncated in
t + 1), and r(T') is the percentage of nodes between t and ¢ + 7 that ¢ may see. Py, (T) is
nothing but the first return time distribution, which is known to scale as Py,.(T") ~ TH=2 for
fBm series [45]. On the other hand, the percentage of visible nodes between two extreme
values is related to the roughness of the series in that basin, that is, to the way that a series of
T time steps folds. This roughness is encoded in the series standard deviation [21], such that
intuitively, we have r(T) ~ TH /T = TH=1 (this fact has been confirmed numerically).
Finally, notice that in this context T" = k, so eq.5 converts into

P(k’) ~ k,H—QkH—l —_ ]{32H_3, (6)

what provides a linear relation between the exponent of the visibility graph degree distribu-
tion and the Hurst exponent of the associated fBm series:
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in good agreement with our previous numerical results. Note in figure 9 that numerical
results obtained from artificial series deviate from the theoretical prediction for strongly-
correlated ones (H > 0.5 or H < 0.5). This deviation is related to finite size effects in the
generation of finite fBm series [40], and these effects are more acute the more we deviate
from the non-correlated case H = 0.5. In any case, a scatter plot of the theoretical (eq.7)
versus the empirical estimation of (H ) provides statistical conformance with a correlation
coefficient ¢ = 0.99.

5. Theorems and exact results for the horizontal visibility
graphs of random time series

In this section we make a turn and focus on the horizontal version of the algorithm. This is a
geometrically simpler version that allows full analytical tractability [46] as we will see. As
a first step towards a theory of visibility algorithms, we will focus on random uncorrelated
series.

5.1. Degree distribution

Consider a bi-infinite time series created from a random variable X with probability dis-
tribution f(z) with z € [0, 1] and let us construct its associated horizontal visibility graph
(note that if the distribution’s support is a generic interval © € [a,b], we can rescale to
[0, 1] without loss of generality since the associated graph remains invariant, and this also
applies to unbounded supports). For convenience, we will label a generic datum x as the
‘seed” datum from now on. In order to derive the degree distribution P(k) [7] of the asso-
ciated graph, we need to calculate the probability that an arbitrary datum with value x( has
visibility of exactly k other data. If xg has visibility of &k data, there always will exist two
‘bounding data’, one on the right-hand side of xy and another one on its left-hand side, such
that the £ — 2 remaining visible data will be located inside that window (in fact, k = 2 is
the minimum possible degree). As these ‘inner’ data should appear sorted by size, there are
exactly k — 1 different possible configurations {C;};—¢. x—2, Where the index ¢ determines
the number of inner data on the left-hand side of z( (see figure 10 for an illustration of the
possible configurations and a labelling recipe of the data in the case k& = 4). Accordingly,
C; corresponds to the configuration for which ¢ inner data are placed at the left-hand side
of xg, and k — 2 — ¢ inner data are placed at its right-hand side. Each of these possible
configurations have an associated probability p; = p(C;) that will contribute to P(k) such
that

k—2
P =Y pi. 8)
=0

Before trying to find a general relation for P(k) and for illustrative purposes, let us study
some particular cases. The first and simplest case is P(k = 2), that is, the probability that
the seed data has two and only two visible data, the minimum degree. These obviously will
be the bounding data, that we will label z_; and x; for left-hand side and right-hand side
of the seed respectively. The probability that g sees £ > 2 is 1 by construction, since the



14 Lucas Lacasa, Bartolo Luque

P
||
P H‘ ‘ ‘
| | | |
X_2 X_1XuX1 XZ
P
2
I mnEmil

Figure 10. Set of possible configurations for a seed data xy with kK = 4. Observe that the
sign of the subindex in x; indicates if the data is located whether at left-hand side of z( (sign
minus) or at right-hand side. Accordingly, the bounding’s data subindex directly indicates
the amount of data located in that side. For instance, Cj is the configuration where none
of the £ — 2 = 2 inner data are located in the left-hand side of x(, and therefore the left
bounding data is labeled as x_; and the right bounding data is labeled as z3. C} is the
configuration for which an inner data is located in the left-hand side of zy and another inner
data is located in its right-hand side. Finally, Cs is the configuration for which both inner
data are located in the left-hand side of the seed. Notice that an arbitrary number of hidden
data can be eventually located among the inner data, what is schematically represented in
the figure as a row of vertical lines.

horizontal visibility algorithm assures that any data will always have visibility of its first
neighbors. Now, in order to assure that £k = 2, we have to impose that the bounding data
neighbors have a larger height than the seed, that is, z_1 > x¢ and x1 > x¢. Then,

P(k =2) =Prob(z_1,z1 > 0) = /01 f(zo)dxo /1 f(z1)dxy /1 flz_1)dx_1.  (9)

Now, the cumulative probability distribution function F'(x) of any probability distribution
f(z) is defined as

F(z) = /O " fa)de, (10)

where dF'(z)/dx = f(x), F(0) = 0 and F'(1) = 1. In particular, the following relation
between f and F’ holds:
_ 1dF™(x)

n dzx

f@) " (x)

1D
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We can accordingly rewrite and compute equation 9 as

Pli=2)= [ St - Flao)da = 3, (12)

independently of the shape of the probability distribution f(z).

Let us proceed by tackling the case P(k = 3), that is, the probability that the seed has
three and only three visible data. Two different configurations arise: Cp, in which g has 2
bounding visible data (x_; and x> respectively) and a right-hand side inner data (z1), and
the same for C'; but with the inner data being place at the left-hand side of the seed, so

P(k =3) =p(Co) +p(C1) =po +p1.

Notice at this point that an arbitrary number r of hidden data n1, no...n, can eventually be
located between the inner data and the bounding data, and this fact needs to be taken into
account in the probability calculation. The geometrical restrictions for the n; hidden data
aren; <x1, j=1,...,rforCopand m; <x_y, j =1,...,s for Cy. Then,

po = PrOb((iﬁl,@ > x9) N (1 < x9) N ({n; < xl}j:l,...,r)>,

p1 = PrOb(($_2,.%’1 > l‘o) N (.1‘_1 < $0) N ({mj < $—1}j:1,...,s)>- (13)

Now, we need to consider every possible hidden data configuration (Cy without hidden data,
Cy with a single hidden data, Cjy with two hidden data, and so on, and the same for C).
With a little calculus we come to

0

1 1 . )
po:/o f(xo)dxo/ f(x_1)dm_1/ f(xg)dxg/o fay)dzy +

o) 1 1 1 20 . o

1;/0 f(@o)dzo /wo f(a:_l)da:_1/xo f(m)dmg/o f(xl)dxlgA F(n)dn;

where the first term corresponds the contribution of a configuration with no hidden data and
the second sums up the contributions of r hidden data. Making use of the properties of the
cumulative distribution F'(z) we arrive to

1 1 1 o
Do :/0 f(xo)dxo /xo f(z_1)dzr_q /xo f(xz)dm/o %dﬂcl, (14)

where we also have made use of the sum of a geometric series. We can find an identical
result for py, since the last integral on equation 14 only depends on zg and consequently the
configuration provided by C is symmetrical to the one provided by Cy. We finally have

Plr=3)=2p0 =2 [ fzo)(1 - F(zo)*In(1 - Flao)dro = 2, (15)

where the last calculation also involves the change of variable z = 1 — F'(x). Again, the
result is independent of f(x).

Hitherto, we can deduce that a given configuration C; contributes to P(k) with a product
of integrals according to the following rules:
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e The seed data provides a contribution of fol f(zo)dzo (S).

e Each boundary data provides a contribution of | xlo f(z)dz (B).

zo f(z)dz ).

e An inner data provides a contribution f =P

These diagrammatic-like rules allow us to schematize in a formal way the probability asso-
ciated to each configuration. For instance in the case k = 2, P(k) has a single contribution
po represented by the formal diagram B-S-B, while for £ = 3, P(k) = pg + p1 where
po’s diagram is B-S-I-B and p;’s is B-I-S-B. It seems quite straightforward to derive a gen-
eral expression for P(k), just by applying the preceding rules for the contribution of each
C;. However, there is still a subtle point to address that will become evident for the case
P(k =4) = po+p1+p2 (see figure 10). While in this case C leads to essentially the same
expression as for both configurations in £ = 3 (and in this sense one only needs to apply the
preceding rules to derive p1), Cp and Cs are geometrically different configurations. These
latter ones are configurations formed by a seed, two bounding and two concatenated inner
data, and concatenated data lead to concatenated integrals. For instance, applying the same
formalism as for £k = 3, one come to the conclusion that for & = 4,

e ro f(xy)dwy [0 f 952 d1‘2
]90—/O f(@o)dxo o 1—F() o / f(z dwa/ fle—1)dz_1. (16)

While for the case k = 3 every integral only depended on zg (and consequently we could
integrate independently every term until reaching the dependence on (), having two con-
catenated inner data on this configuration generates a dependence on the integrals and hence
on the probabilities. For this reason, each configuration is not equiprobable in the general
case, and thus will not provide the same contribution to the probability P(k) (k = 3 was
an exception for symmetry reasons). In order to weight appropriately the effect of these
concatenated contributions, we can make use of the definition of p;. Since P(k) is formed
by k — 1 contributions labelled Cy, C1...Ck_o where the index denotes the number of inner
data present at the left-hand side of the seed, we deduce that in general the k — 2 inner data
have the following effective contribution to P(k):

po has k — 2 concatenated integrals (right-hand side of the seed).

p1 has k — 3 concatenated integrals (right-hand side of the seed) and an independent
inner data contribution (left-hand side of the seed).

p2 has k — 4 concatenated integrals (right-hand side of the seed) and another 2 con-
catenated integrals (left-hand side of the seed).

e pi_o has k — 2 concatenated integrals (left-hand side of the seed).

Observe that p; is symmetric with respect to the seed.
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Including this modification in the diagrammatic rules, we are now ready to calculate a
general expression for P(k). Formally,

k—2

P(k) =Y _[SIBP[I;]k—2—j, (17

=0

where the sum extends to each of the k£ — 1 configurations, the superindex denotes expo-
nentiation and the subindex denotes concatenation (this latter expression can be straightfor-
wardly proved by induction). In order to solve it, one needs to firstly calculate the concate-
nation of n inner data integrals [I],, = I(n), that is

v f(z)dey T2 flaie1)deja

In) = 0 1—F(x) j=1"%j 1= Flojn) |

(18)

The calculation of I(n) is easy but quite tedious. One proceeds to integrate equation 18
step by step (first n = 1, then n = 2, and so on), and a recurrence quickly becomes evident.
One can easily prove by induction that

(=D"

n:

I(n) = [m (1- F(xo))r. (19)

According to the formal solution 17 and to equation 19, we finally have

k—2

Pk) = i

k—2 k—2
Lk (k —2)! 1/2
= > = ala) 2

’ Ik —2-7)! 3<3) 20

s / Fo)l1 — Fao)2ln(1 — F(xo))]*2dao

Surprisingly, we can conclude that for every probability distribution f(x), the degree
distribution P(k) of the associated horizontal visibility graph has the same exponential
form.

In order to check further the accuracy of our analytical results for the case of finite time
series, we have performed several numerical simulations. We have generated random series
of 10° data from different distributions f(x) and have generated their associated horizontal
visibility graphs. In figure 11 we have plotted the degree distribution of the resulting graphs
(triangles correspond to a series extracted from a uniform distribution, while circles and
squares correspond to one extracted from a Gaussian and a power law distribution f(z) ~
272 respectively). The solid line corresponds to the theoretical equation 20, showing a
perfect agreement with the numerics.

5.2. Degree versus height

An interesting aspect worth exploring is the relation between data height and the node
degree, that is, to study whether a functional relation between the height of a datum and the
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Figure 11. Semi-log plot of the degree distribution of an horizontal visibility graph associ-
ated to random series of 10° data extracted from a uniform distribution f(z) = U[0, 1] (tri-
angles), a Gaussian distribution (circles), and power law distribution f(z) ~ x 72 (squares).
Solid line corresponds to equation 20.

degree of its associated node holds. In this sense, let us define P(k|z) as the conditional
probability that a given node has degree k provided that it has height x. Observe that P(k|x)
can be easily deduced from eq. 20, such that

- )k 2

P(k|x) =Z _2_j) (1= F(2)] - [In(1 = F(2))]*. @)

Notice that probabilities are well normalized and that } 7~ , P(k|z) = 1, independently of
x. Now, we can define an average value of the degree of a node associated to a datum of
height z, K (x), in the following way

K(x) = i kEP(k|z) =2 —2In(1l — F(x)). (22)
k—2

Since F'(x) € [0,1] and In(x) are monotonically increasing functions, K (z) will also
be monotonically increasing. We can thus conclude that graph hubs (that is, the most
connected nodes) are the data with largest values, that is, the extreme events of the series.

In order to check the accuracy of the theoretical prediction within finite series, in fig.
12 we have plotted (circles) the numerical values of K (x) within a random series of 10°
data extracted from a uniform distribution with F'(x) = z. The line corresponds to eq. 22,
showing a perfect agreement.
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Figure 12. Average degree of a node, as a function of the associated datum’s height: (cir-
cles) numeric results from a random series of 10® data extracted from a uniform distribution
f(z) = UJ0,1]. The solid line corresponds to the theoretical prediction eq.22, showing a
perfect agreement. It comes evident that the hubs stand for the nodes associated to the data
with larger values (extreme events).

5.3. Local clustering coefficient distribution

The local clustering coefficient C'[8, 9, 10, 11, 7] of an horizontal visibility graph associated
to a random series can be easy deduced by means of geometrical arguments. For a given
node i, C' denotes the rate of nodes connected to ¢ that are connected between each other
(observe that in this subsection, C' denotes clustering: do not mistake this with the *C’
(configuration) of subsection 5.1). In other words, we have to calculate from a given node ¢
how many nodes from those visible to ¢ have mutual visibility (triangles), normalized with
the set of possible triangles (’2“) In a first step, if a generic node 7 has degree k = 2, these
nodes are straightforwardly two bounding data, hence having mutual visibility. Thus, in
this situation there exists 1 triangle and C'(k = 2) = 1. Now if a generic node i has degree
k = 3, one of its neighbors will be an inner data, which will only have visibility of one of
the bounding data (by construction). We conclude that in this situation we can only form
2 triangles out of 6 possible ones, thereby C'(k = 3) = 2/6. In general, for a degree k we
can form k — 1 triangles out of (g) possibilities, and then:

(23)
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Figure 13. Semi-log plot of the clustering distribution of an horizontal visibility graph as-
sociated to random series of 10° data extracted from a uniform distribution f(x) = U0, 1]
(dots). The solid line corresponds to the theoretical prediction P(C) = (1/3)(2/3)%/¢~2.
In order to avoid border effects we have imposed periodic boundary conditions in the data
series.

what indicates a so called hierarchical structure [47]. This relation between k and C' allows
us to deduce the local clustering coefficient distribution P(C):

P =1(2) = poso)

1/92 2/C-2
P(C) =+ (3) | (24)

To check the validity of this latter relation within finite series, in figure 13 we depict the
clustering distribution of an horizontal visibility graph associated to a random series of 105
data (dots) obtained numerically. The solid line corresponds to the theoretical prediction
(equation 24), in excellent agreement with the numerics.

5.4. Long distance visibility, mean degree and mean path length

In order to derive the scaling of the mean path length [7], let us first calculate the probability
P(n) that two data separated by n intermediate data be two connected nodes in the graph.
Consider again a time series extracted from a random variable X with probability distri-
bution f(z) and € [0, 1], and let us construct its associated horizontal visibility graph.
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An arbitrary value xg from this series will ‘see’ x,, (and consequently will be connected to
node x,, in the graph) iff z; < min(zg, z,) for all z;, ¢ = 1,2,...,n — 1. Then P(n) can
be expressed as:

1 rl min(zo,zn)
P(n) :/0 /0 f(xo)f(xn)dxod:cn/o
min(zo,zn)
/0 F@0) . f(@n)dzr ... dTn (25)

Since the integration limits are independent, rewriting * = min(xg, x,) we have

1 1
P(n) = /0 /O Flx0) f (x0) F" V(@) daodan. 26)

We can fix zg and move z,, without loss of generality, such that the latter equation can be
expressed as

P(n) = /0 ' /0 Y b (wo) fan) ™ () daodan + /0 1 /z z F(x0) f () F™ (w0 darodan

the minimum here is x,, the minimum here is x
27
Applying the definition of F'(x) and the relation 11, with a little calculus we get
1 1 1 1
P = (5 -1) [ s @oda+ [ fao) P wo)dny
2
= — (28)

n(n+1)

Observe that P(n) is again independent of the probability distribution of the random
variable X. Notice that the latter result can also be obtained, alternatively, with a purely
combinatorial argument that reads as it follows. Take a random series with n 4+ 1 data
and choose its two largest values. This latter pair can be placed with equiprobability in
n(n + 1) positions, while only two of them are such that the largest values are placed at

distance n, so we get P(n) = n(n2+1) on agreement with the previous development.

At this point, we can calculate the mean degree < k > of the horizontal visibility graph:

© 1. (9 k—2
<k>:ZkP(k:):Z§ 3 =4, (29)

k=2

that we can recover from P(n) as:

o0
<k>=2) P(n) =4 (30)
n=1
Now, for illustration purposes, in figure 14 we show the adjacency matrix [7] of the hori-

zontal visibility graph associated to a random series of 103 data (the entry i, j is filled in
black if nodes ¢ and j are connected, and left blank otherwise). Since every data z; has
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Figure 14. Adjacency matrix of an horizontal visibility graph associated to a random series
of 10% data.

visibility of its first neighbors x;_1, z;11, every node ¢ will be connected by construction
to nodes 7 — 1 and ¢ + 1: the graph is thus connected. Observe in figure 14 that the graph
evidences a typical homogeneous structure: the adjacency matrix is predominantly filled
around the main diagonal. Furthermore, the matrix evidences a superposed sparse struc-
ture, reminiscent of the visibility probability P(n) = 2/(n(n + 1)) that introduces some
shortcuts in the horizontal visibility graph, much in the vein of the Small-World model [8].
Here the probability of having these shortcuts is given by P(n). Statistically speaking, we
can interpret the graph’s structure as quasi-homogeneous, where the size of the local neigh-
borhood increases with the graph’s size. Accordingly, we can approximate its mean path
length L(N) as:

N-1

N-1
L(N)~ Y nP(n)=Y_
n=1

n=1

2 9log(N)+2(v— 1)+ O(I/N), (1)
n+1

where we have made use of the asymptotic expansion of the harmonic numbers and -y
is the Euler-Mascheroni constant. As can be seen, the scaling is logarithmic, denoting
that the horizontal visibility graph associated to a generic random series is Small-World
[19], according to what figure 14 suggested. In figure 15 we have plotted the numerical
results of L(NN) (dots) of an horizontal visibility graph associated to several random

series of increasing size N = 27,28, ...217. The solid line corresponds to the best fit
L(N)=1.3log(N) — 1.7.
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Figure 15. Mean path length L(NV) of an horizontal visibility graph associated to random
series of N = 27,28 ... 217 data (dots). The solid line corresponds to the better fit L(N) =
1.3log(N) — 1.7.

6. Application of the theory to discriminate chaotic series

So far we have presented exact results on the topological properties of graphs associated
to series of i.i.d. random variables (random series from now on) via the horizontal vis-
ibility algorithm. The very first application of this theory can be found in the task of
discriminating a random signal from a chaotic one. The task of identifying random pro-
cesses and more concretely discriminating (low dimensional) deterministic chaotic systems
from stochastic processes has been extensively studied in the last decades (see for instance
[48, 49, 50, 51, 52, 53, 54]). Essentially, all methods that have been introduced so far rely
on two major points: Firstly, chaotic systems have a finite dimensional attractor, whereas
stochastic processes arise from an infinitely dimensional one. Being able to reconstruct this
latter attractor is thus a clear evidence showing that the time series has been generated by
a deterministic system. Secondly, deterministic systems evidence, as opposed to random
ones, short-time prediction: the difference between the time evolution of two nearby states
will remain rather low for regular systems and increase exponentially fast for chaotic ones,
while for stochastic processes this difference should be randomly distributed. Whereas
several algorithms relying on the preceding concepts are nowadays available, the great ma-
jority of them are purely numerical and/or usually complicated to perform, computationally
speaking (these difficulties are eventually more acute for noisy series [55] or high dimen-
sional chaotic ones [56]). Furthermore, even the discrimination between a chaotic series and
a series of i.i.d. random variables, something that an autocorrelation function or a power
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Figure 16. Semi-log plot of the degree distribution of several horizontal visibility graphs
associated to: (solid line) theoretical prediction for random series (equation 20), (squares)
time series of 105 extracted from a logistic map z;,1 = px¢(1 — ;) in the fully chaotic
region j = 4, (black triangles) time series of 10° extracted from z variable of the Hénon
map (2441, ye+1) = (y¢ + 1 — ax?, br;) in the fully chaotic region (@ = 1.4, b = 0.3).

spectra fails to do but some other methods such as recurrence plots can [57] is nontrivial
when the chaotic degree of the series is high, or even when such series is polluted with
noise. All these complications provide motivation for a search for new methods that can
directly distinguish, in a reliable way, random from chaotic time series, prior to quantifying
the dimension [58] and without needs for additional sophisticated techniques such as sur-
rogate data [59] or noise reduction methods [55]. In the preceding sections we have proved
that the horizontal visibility graph associated to a random series has well-defined and uni-
versal degree distribution, local clustering distribution and P(n), independent of the shape
of the random probability distribution f(z). These theorems guarantee that horizontal visi-
bility graphs with other topological properties are not uncorrelated random series. In what
follows we explore the reliability of the method to distinguish uncorrelated randomness
from chaos in finite series.

6.1. Low-dimensional chaos

In order to test the practical usefulness of this method, we have generated the horizontal
visibility graph of several noise-free chaotic series, and have calculated numerically their
degree distribution. We have restricted our analysis to discrete systems (maps). In figure
16 we have plotted in semi-log the results of these simulations. In every case and by simple
visual inspection we can conclude that P(k) deviates from equation 20: the method is able
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to easily distinguish randomness from low-dimensional chaos (similar results are obtained
with P(n) and P(C)).

Observe at this point that if we shuffle the series data and reproduce the analysis, we
would find a degree distribution that now would correspond to equation 20, since shuffling
breaks the temporal correlations of the series: such shuffled series would be equivalent to
a random series extracted from a probability distribution equal to the system’s probability
measure (the Beta distribution in the case of the Logistic map). We can deduce that the
algorithm captures temporal correlations of time series, and that P (k) plays the role of an
autocorrelation function, but with the additional ability of capturing nonlinear correlations.
Observe also that this method neither works on the time nor on the frequency domain,
since it only makes use of topological features.

6.2. Noisy chaotic series

It is well known that standard methods evidence problems when noise is present in chaotic
signals, since even a small amount of noise can destroy the fractal structure of a chaotic
attractor and mislead the calculation of chaos indicators such as the correlation dimension
or the Lyapunov exponents [55]. In order to check the algorithm’s robustness, we have
introduced an amount of white noise (measurement noise) in a signal extracted from a
fully chaotic Logistic map (i = 4.0). In figure 17 we plot the degree distribution of its
associated visibility graph. Remarkably, the algorithm still discriminates noisy chaotic
behavior from randomness even when the noise level reaches the 100% of the signal
amplitude.

6.3. Topological properties of chaotic series

Observe in fig. 16 that the series extracted from the Logistic and Hénon maps seem to
have an associated visibility graph with a degree distribution which has an exponential tail,
yet different to eq. 20. This characteristic can be explained as follows: First, the tail of
P(k) is related to the hubs degree. Hubs correspond to the data series that have largest
visibility. These are, according to eq. 22, extreme events in the series, whose degree is
truncated by other extreme data (statistically speaking). Accordingly, the tail of P(k) es-
sentially reduces to calculate the probability distribution of recurrence times in the series.
Within random series, notice that this distribution is straightforwardly exponential (recur-
rence times in a Poisson process are exponentially distributed [14]), consistent with eq.20.
Within chaotic series, recurrence time statistics are related to the concept of Poincaré re-
currence time (PRT) [60], which measures the time interval between two consecutive visits
of a trajectory to a finite size region of the phase space. As a matter of fact, it has been
shown that Poincaré recurrence times are exponentially distributed in several hyperbolic
chaotic systems, including the Logistic and Hénon maps (see [61] and references therein).
We conjecture that the functional form of P(k) is closely related for chaotic series with
their associated Poincaré recurrence time distribution (which deviate from the Poissonian
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Figure 17. Semi-log plot of the degree distribution of an horizontal visibility graph as-
sociated to: (triangles) noisy chaotic series of 10° data extracted from the Logistic map
(1 = 4) with a measurement noise level of 10% (by amplitude), (circles) idem but for noise
level of 100%. The solid line corresponds to the theoretical prediction for random series
P(k) = (1/3)(2/3)* 2.

statistics, eq. 20, due to deterministic effects), something that will be addressed in future
work.

7. Conclusions

The family of visibility algorithms is a method to map information from time series
to graphs. This method opens the possibility of building bridges between nonlinear
dynamics, time series analysis and graph theory. Hitherto, research on this topic has
verified that the method is well defined, in the sense that series correlations are inherited
in the network. However this research is on its infancy, and important questions are yet
to be studied. Indeed, it is time now to go beyond simple network indicators such as the
degree distribution or the mean path length, and study whether if more complex topological
features -perhaps mesoscale indicators- relate to different complex dynamics. This is a
challenging research program that may have important applications in different branches
of science, ranging from finance to biology, to cite some.

On the other hand, a well ground tool merits a mathematically sound background, and
therefore a theory of visibility algorithms is also needed. Some of the first steps of this
theory have been tackled in this chapter, but the core of such theory is still lacking. This
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is another challenging research programme that entangles dynamical systems and graph
theory in a single piece.
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