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Abstract The interaction between stationary localized states hawg been stud-
ied, but localized states may undergo a number of instesilihat lead to more
complicated dynamical regimes. In this case, the effectiseointeraction are much
less known. This chapter addresses the problem of the atitenabetween oscil-
latory and excitable localized states in a Kerr cavity. Ehescillatory structures
can be considered as non punctual oscillators with a highiytnivial spatial cou-

pling, which leads to rather complicated dynamics beyondtwhn be explained in
terms of simple coupled oscillators. We also explore theibdiy of using coupled

excitable localized structures to build all-optical logfigates.

1 Introduction

Localized states (LS) are commonplace in extended systéibitrg bistability
between two different solutions [1]. Physically they imply equilibrium in a finite
region in space between dissipation and driving, and neatity and diffusion.
In the nonlinear optics context the spatial coupling is fyagiven by diffraction,
although diffusion can be also present in some cases.

All these ingredients are present in optical cavities filkétth a nonlinear medium
[2, 3]. The driving is given by a broad homogeneous holdingnbevhich is shined
on a semi-reflecting mirror of the cavity. Part of the lightlvie reflected, but the
rest enters the cavity. If the holding beam is switched dffred energy leave the
cavity through the same semi-reflecting mirror, which makessystem dissipative.
The spatial coupling is provided by the diffraction of th@pagating light, which
smoothes out any spatial inhomogeneity. Finally, a noalimeedium provides the
necessary photon-photon interactions to observe a confygleavior such as the
formation of localized states.
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Nonlinear optical cavities have long been shown to supjpaetlized states, and
stationary LS have been advocated for their use as bits inabphemories [4, 5].
An important feature of these LS is that they interact thtotigeir oscillatory tails
in such a way that they anchor at a discrete set of distanc@s$p But LS can also
undergo a number of instabilities leading to more compdidatynamical regimes
[9, 10]. In this case the role of the interaction is much lessvin. In particular, we
will focus here on the study of the interaction of oscillgtand excitable LS in a
Kerr cavity. In this system the dynamics of LS is an intrinsioperty of the coher-
ent structures that emerges from the spatially extendedeaf the system. Thus,
for instance, oscillatory LS are non-punctual oscillatoes oscillators with internal
structure or degrees of freedom. As a result, their intevadan not necessarily be
reduced to a simple coupling term between punctual oswmiafThe interplay be-
tween the oscillatory dynamics, the interaction, and therival structure can affect
the dynamics in a nontrivial way. This chapter is an atteratddress this general
problem by studying a prototypical case.

2 Mode

We study the dynamics and interaction of localized statespnototypical model,
namely the Lugiato-Lefever equation, describing the dyicaiwf the slowly varying
envelopeE(x,t) of the electric field in a ring cavity filled with a self-focurgj Kerr
medium (see Figure 1). In the mean field approximation, wtezelependence of
the field on the longitudinal direction has been averaged jiathe paraxial limit,
the dynamics oE in two transverse spatial dimensions is described by thefaig
equation [11]:
Z—Itz:—(1+ie)E+iD2E+Ein+i|E2|E, (1)

wherex = (x,y) is the transverse plane antf = 92/9x?+ 2/dy?. The first term
on the right-hand side describes the cavity losses, rastalg Ej, is the input field,
and®@ the cavity detuning with respect to input field. Space, tierg] the field have
been suitable rescaled so that Eq. (1) is dimensionless.ribdel was one of the
first proposed to study pattern formation in nonlinear apficl], and it was shown
later that LS are also observed in some parameter regiong 31.2

It is important to note that in the absence of losses and jripatintra-cavity
field can be rescaled(— Ed®") to remove the detuning term and (1) becomes the
nonlinear Schrodinger equation (NLSE). As it will be expéd later in more detalil,
the dynamics of LS in this system is connected with the cebagf the 2D solitons
in the NLSE.

Equation (1) has a homogeneous steady-state solution wghigtplicitly given
by Es = Ein/[1+ (i(6 — Is)], wherels = |Eg|?. For convenience, we will use in the
following the intra-cavity background intensity, together with8, as our control
parameters. It is well known that the homogeneous solutimws bistability for
0 > /3. Here we will restrict ourselves i < /3 so thatls is unique oncdy is
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Fig. 1 Ring cavity of length L filled with a nonlinear medium of lehdt,. Mirror M1 is only
partially reflecting, so that the cavity can be drivenHyy and read out wittEq;.

determined. Fols > 1 the homogeneous solution is modulationally unstable gnd d
namical hexagonal patterns are formed. The bifurcationbsstical and stationary
hexagonal patterns are stable below threshold [14, 15jidrsttuation, LS typically
exist and their dynamics and interactions are the subjestualy in the rest of this
chapter.

3 Overview of the behavior of localized states

The bistability of the pattern and homogeneous solutioastise origin of the exis-
tence of stable LS that appear when suitable (localizedpigat perturbations are
applied. The LS can be seen as a solution which connects afd¢b# pattern with
the homogeneous solution. While the existence of LS in tisisible regime is quite
generic in extended systems [16, 17], their stability gtprlepends on the partic-
ularities of the system. Using a Newton method it is posdiblind the stationary
LS solutions with arbitrary precision and determine th&bsity by diagonalizing
the Jacobian. Complemented with numerical simulatiofisniethod allows to gain
insight into the structure of the phase space of the syst&milf, 1].

3.1 Hopf bifurcation

Early studies already identified that LS may undergo a Hojpfrbation leading to
a oscillatory behavior [12]. The oscillatory instabilgi§20], as well as azimuthal
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instabilities, were fully characterized later [10]. Irgstingly, the oscillations of the
LS show the connection of Eq. (1) with the NLSE. The growthmt& during the
oscillations resembles the collapse regime observed fiboss in the D (or 2+ 1)
NLSE. In this case, however, after some value is attainedh®electric field E,
dissipation arrests this growth. This also explains whgpite LS are also observed
in 1D [21], oscillations are not present in that case, siratlapse does not occur in
the 1D NLSE.

As one moves in parameter space away from the Hopf bifurtatie LS os-
cillation amplitude grows and its frequency decreasesnialy, the limit cycle
touches the middle-branch LS in a saddle-loop bifurcatibicivleads to a regime
of excitable dissipative structures [22, 19]. In the nexd sBubsections we briefly ex-
plain the saddle-loop bifurcation and the excitable regifoe an extensive analysis
of this scenario see, for instance, Ref. [1].

3.2 Saddle-loop bifurcation

A saddle-loop or homoclinic bifurcation is a global bifutice in which a limit cycle
becomes biasymptotic to a saddle point, or, in other terexsoimes the homoclinic
orbit of the saddle, i.e., at criticality a trajectory leagithe saddle point through
the unstable manifold returns to it through the stable nodahifThus, at one side
of this bifurcation one finds a detached limit cycle (stableunstable), while at
the other side the cycle does not exist any more, onlyglitsst as the bifurcation
creates an exit slit that makes the system dynamics to |lde/eegion in phase
space previously occupied by the cycle. Therefore, afeebtfurcation the system
dynamics jumps to another available attractor. In the priesase this alternative
attractor is the homogeneous solution.

The fact that the bifurcation is global, implies that it cahbe detected locally
(a local eigenvalue passing through zero), but one canresibrt to the Poincaré
map technique to analyze it, and, interestingly, the maatuies of the bifurcation
can be understood from the knowledge of the linear eigepgadfithe saddle [23].
The case studied here is the simplest: a saddle point witteigenvalues, in a 2-
dimensional phase space. Strictly speaking, in our cassatidle has an infinite
number of eigenvalues, but only two eigenmodes take pahimynamics close to
the saddle [19].

To identify such a transition one can study the period of §ecclose to this
bifurcation, and to leading order it must be given by [24],

TDfiIn|979C|, 2)
u

whereA is the unstable eigenvalue of the saddle 8athe critical value of the de-
tuning. Numerically the bifurcation point is charactedz®y the fact that approach-
ing from the oscillatory side the period diverges to infineyd also because past
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Fig. 2 Left: time evolution of the maximum of the LS plotted for tkereifferent values of the
detuning: a) just below, b) at the saddle-loop bifurcatiamd c) just above. Right: sketch of the
phase space for each situation.

this bifurcation point the LS disappears and the systenxeslto the homogeneous
solution as shown in Fig. 2.

A logarithmic-linear plot of the period versus the contrarameter exhibits a
linear slope according to the theoretical prediction (2)jtw, obtained from the
linear stability analysis of the saddle [19].

3.3 Excitability

As in our case the saddle-loop bifurcation involves a fixeithippghe homogeneous
solution), on one side of the bifurcation, and an oscillation the other, the system
is a candidate to exhibit excitability [25]. It must be ssed that excitable behavior
is not guaranteeger seafter a saddle-loop bifurcation, and, in particular onedsee
a fixed point attractor that is close enough to the saddlet piwit destroys the oscil-
lation. The excitability threshold in this type of systeragtie stable manifold of the
saddle point, what implies that the observed behavior imétly Class | Excitability
[25].

This excitability scenario was first shown in Ref. [22]. Fgshows the resulting
trajectories after applying a localized perturbation imdirection of the unstable LS
with three different amplitudes: one below the excitapiiitreshold, and two above,
one very close to threshold and another well above. For tlebatow threshold
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the perturbations decays exponentially to the homogensaution, while for the
two above threshold a long excursion in phase space is pegfbbefore returning
to the stable fixed point. The refractory period for the pdyétion just above the
excitability threshold is appreciably longer due to theseffof the saddle. After an
initial localized excitation is applied, the peak grows tamme value until the losses
stop it. Then it decays exponentially until it disappearsefnant wave is emitted
out of the center dissipating the remaining energy.
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Fig. 3 Time evolution of the maximum intensity starting from thermgeneous solution plus a
localized perturbation of the form of the unstable LS belblu¢ dashed line), just above (green
solid line) and well above (red dotted line) threshold.

At this pointit is worth noting that neglecting the spatiapg¢ndence Eq. (1) does
not present any kind of excitability. The excitable behaiscan emergent property
of the spatial dependence and it is strictly related to theadyics of the 2D LS.

Finally, it is interesting to remark that the excitable wgin parameter space
is quite large and, potentially easy to observe experiniignt@hile this excitable
behavior belongs to Class | (the period diverges to infinihewa perturbation hits
the saddle), due to the logarithmic scaling law for the pk(®), the parameter range
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over which the period increases dramatically is extremalyow. Therefore, from
an operational point of view, systems exhibiting this scemaight not be classified
as Class | excitable, as the large period responses may iheressed [26].

4 Interaction of two oscillating localized states

In the previous section we have reviewed the dynamics of@esinS. In this one
we study the interaction between two oscillating LS, and h@iffects their dynam-
ics. Oscillating LS are an example nbn-punctual oscillatorsi.e. oscillators with
an internal structure. The interaction between such aseily structures through
the tails can not be, in general, reduced to a simple coujgirng between oscilla-
tors, but it modifies the internal structure of the osciltatthemselves, affecting the
dynamics in a nontrivial way. The interplay between the dimgpand the internal
structure of non-punctual oscillators is a general phemameot well understood.
This chapter aims to be an approach to the subject.

We will first describe in section 4.1 the dynamics of two cagpbscillating LS
in the full system, and then in section 4.2 we will study howctmof the observed
dynamics can be explained by means of a simple model for twpled oscilla-
tors, and which effects can or can not be attributed to théadptension of the
oscillators.

4.1 Full system

Throughout this section we will set ~ 0.84, and6 = 1.27 corresponding to a
region of oscillatory structures [22, 19]. This value gis close to the modulational
instability that occurs ats = 1, and because of this LS have large tails. As the
interaction between the structures is mediated by thelse wairking in this region
has the advantage that the interaction is strong and itsteféee more evident.

Localized structures in this system have an intrinsic isitgrprofile with spa-
tially oscillatory tails, and since the system is translally invariant, the struc-
tures are free to move once created. When two stationartgtas are placed close
to each other, the presence of an adjacent structure sgts aidcrete set of rela-
tive positions at which the structures can anchor, giverbyritensity profile of the
tails. Then if the structures are placed at arbitrary pasgithey will move until they
sit at the zeros of the gradient of this intensity profile.sTlicking has been stud-
ied, both theoretically and experimentally, for statignkocalized structures only
[6, 7, 8].

Similarly to what happens with stationary LS, when two datdlry localized
structures are placed close to each other they move unyilgéelocked by the tail
interaction. For the selected parameters we observe thrkbeium distances that
ared; ~ 7.8,d, ~ 15.8 anddz ~ 19.9. Beyondds the interaction is so weak that the
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structures can be considered as independent. The movefrtaetsiructures from

an arbitrary position towards the equilibrium distancegeisy slow compared with

the oscillation period. Therefore we will restrict oursedvto study the behavior
of the system when the structures are at the equilibriunanicgts, to avoid long
transient times and complex effects introduced by the mevemof the LS.

RelE)

Fig. 4 Anti-phase (top) and in-phase (bottom) moded§et 0.86 andd = d; = 7.8. These modes
have been obtained from a full 2D linear stability analysis.
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Fig. 5 Hopf bifurcation for two coupled LS at = d;. From left to right, 1s=0.81,0.8266,0.83. Red
and green dots are the eigenvalues corresponding to thpfeage and in-phase modes respectively.
The blue dots are three zero eigenvalues of the three Gaklstmdes of the system of two LS,
corresponding to global translations in thandy directions, and to the rotation of the pair. The
black dot is a damped mode associated with perturbatiorisrtbdify the distance between the
two LS.
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A single LS undergoes a Hopf bifurcation @t= 0.8413 and starts to oscil-
late. At the bifurcation point this solution has then two qex conjugate eigen-
values whose real part becomes positive with an imaginatydiféerent from zero.
If we now consider two very far apart (non interacting) stanes the system has
globally two degenerate pairs of Hopf unstable eigenval8e=e in this case the
structures are independent from each other, they beconudtaimeously unstable at
Is=0.8413 and the LS can oscillate at any relative phase.

If the two LS are now placed closer together, at one of thelibguim positions,
the structures are no longer independent. Now the interadiieaks the degen-
eracy of the spectrum splitting the eigenvalues in two diffié pairs of complex
conjugates: a pair corresponding to in-phase oscillatoksother to anti-phase os-
cillations (Fig. 4). Since the eigenvalues of these modesarlonger degenerate,
increasing the driving, one of these two pairs will cross upf bifurcation first
(see Fig. 5). Because of the splitting, the threshold of tloelenthat become first
unstable is, generically, lower that the threshold of tinglei LS. Physically this is
due to the fact that the coupling can transfers energy froen.é&hto the other, such
that the collective oscillation can have a lower threshbét &1 single LS. Although
the splitting takes place mainly in the direction of the redk, the imaginary part
is also slightly modified, so the two new cycles have difféfesquencies. This de-
generacy breaking mechanism is crucial to understand taeaiction of these LS.

Ford = dg the interaction is very weak, and the degeneracy is merekgor. The
real part of the eigenvalues corresponding to the in-phedeati-phase oscillations
become positive almost simultaneously, although the iaspttycle appears first at
Is=0.8412, very close to the threshold of an isolated LS. As a tethd in-phase
solution is stable close to the bifurcation and the antisghsolution is created just
after and it is unstable. The stability is, however, interoged for larger values of
the input intensity in favor of the antiphase solution. Tisidlustrated in Fig. 6a,
where the bifurcation diagram of the in-phase and anti-pbgsles is shown for the
third equilibrium distancels.

Ford = d; the difference between the two pairs of eigenvalues isvaily small
but, this time, the anti-phase mode crosses the Hopf bifiercéirst. The changes
in the threshold are still almost imperceptible. The atiage solution remains then
stable for all values of the input intensity (Fig. 6 b). Instlcase the inphase solution
is always unstable.

Finally for d = d; the degeneration is completely broken, and the anti-phase
mode crosses the Hopf bifurcation much before than the as@lone, as shown in
Fig. 5. For this the closest distance the interaction isegstitong and the situation
is more complicated. First the stable anti-phase limiteyskreated dt ~ 0.8266,
much before that the threshold of an isolated LS. Initiddlyth structures have the
same oscillation amplitude. A ~ 0.828 there is a symmetry breaking bifurcation
and the oscillation amplitude of the two structures becodifsrent, i.e. the two
structures oscillate around the same mean value in ansiegha with different am-
plitudes (regime Il in Fig. 6¢). The difference in the osilbn amplitude between
the two structures grows gradually with An interesting effect due to the extended
nature of the solutions is that in this region the pair of LSva®due to the asym-
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Fig. 6 Amplitude of the in-phase (orange), anti-phase (black)raned (green) oscillations as a
function of g for the first three equilibrium distances:d) = 19.9, b)d, = 15.8, and c)d; = 7.8.

metry [27]. The centers of the two structures drift alongxteis in the direction
of the structure with larger oscillation amplitude. Foglerls the unstable in-phase
limit cycle is created and it becomes stabldgat 0.84. In this case we observe
also a third branch connecting the in-phase and anti-phadesccorresponding to
a mixed mode. Since the two cycles have a slightly differegqdiency, this mode
presents a beating at the frequency difference of the isgpaad anti-phase modes.
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This situation is illustrated in detail in Fig. 7. Each of thanels in the figure
corresponds to one of the tags in Fig. 6¢, showing a time waeach dynamical
regime. Fig. 7 | shows the anti-phase oscillations. Inénegs, we reach the regime
where the anti-phase oscillations are asymmetric (Fig).7Further increasindg
the anti-phase cycle become unstable and the amplitude afsttillations is mod-
ulated by a slow frequency. Close to the anti-phase cyclégtescillations of this
modulated cycle are almost in anti-phase (Fig. 7 IIl). Néa&r énd of this branch
the fast oscillations are almost in phase (Fig. 7 IV). Finathe amplitude of the
modulations decreases until we reach a the regime of inepbsdllations (Fig. 7
V).

4.2 Simple model: two coupled Landau-Stuart oscillators

As the oscillating LS are extended oscillators it is intéresto wonder which part
of the dynamics observed in the previous subsection cantbbusd to the ex-
tended nature of the LS and which one simply to two coupledlasws. To try to
discern these to components in the dynamics we considendesinodel describing
two interacting limit cycle oscillators close to a Hopf hi¢ation, namely two cou-
pled Landau-Stuart (L-S) equations. We give some hints anthodetermine the
effective parameters of these pair of equations from thiesftdtem, and describe
the different dynamical regimes that arise from them.

We try to understand, then, the interaction of two osciigtLS in terms of a
phase-amplitude reduction of two subsystems close to a bifyfcation. In their
classical paper Aronsoet al. [28] analyze this situation. They arrive to a center
manifold reduction for two limit cycles that allows to writke interaction in terms
for the complex amplitude&; andA; of two Landau-Stuart oscillators,

AL = Adp+iw— (y+ia)[Ad? + (B+i0)(Az — kA1)
Ao = Aol +iw— (y+ia)|Agl] + (B+18) (A1 — KAg) €)

Here, for clarity, we have not rescaled the parameters afsh#lators and the only
assumption we have done is that both oscillators are iddnti¢th the presence of
the parameted we consider the most general case of a nonscalar couplihgr(ot
authors also call it reactive, elastic or nondiagonal ciogp! Physically, in a me-
chanical system, this couples momentum coordinates tdi@osind/or viceversa.
In optics this corresponds to the coupling associated feadifon (in the paraxial
approximation). Its most important consequence is thabuiptes amplitude with
phase, breaking thus, the usual assumption that we carilskesoupled oscillators
only through their phases and neglecting amplitudes.

Another important ingredient that allows for a rich dynaatibehavior is non-
isochronicity, i.e., the nonlinear dependence of the femgy with the amplitude
(also called shear or nonlinear frequency pulling in therditure) given byr. We
note also that we have included, as in [28], khe [0, 1] parameter, such that= 1
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corresponds to the usual coupling (diffusive in the casé dha 0), while k =0
corresponds to direct coupling (no self-interaction term)

From these equations, usidg » = Ry ,exp(i612), one can obtain the following
equations in polar coordinates

Ry = Ru(i — Bk — YR]) + Ro(B cosy — 3siny) (4)
Ry = Ro(14 — BK — YRS) + Ru(B cosy + &siny) (5)
L,'Ua(RfR%)Bsinw<§—;+%>+6cosw<§—l%> (6)

where the phase differenge= 6, — 0, is the only relevant angular variable, due
to the invariance symmetry under transformations with eesfo the global phase
exhibited by the evolution equations.

Let us first analyze the two symmetric solutions, Wk= R; = Ry, the in-phase
and the anti-phase solutions. As they are fixed point saigtiboth of them satisfy

U — Bk —yR2+ Bcosy =0 (7
or,
RE=[u+B(1—K)]/y (8)
for the in-phase solution)( = 0), and
R =[u—B(1+K))/y ©)

for the anti-phase onel(= ). As the amplitude (squared) for an uncoupled oscil-
lator isR2 = u/y, we note that, for positiv@ (attractive coupling), except for the
so-called diffusive couplingq = 1), the amplitude of the in-phase solutiorbigger
than the amplitude of an uncoupled oscillator. The oppegiteld happen for repul-
sive couplingB < 0. Similarly, for attractive couplingd > 0) the amplitude of the
anti-phase synchronized solutiorsimallercompared with the uncoupled oscillator
(the opposite would happen for repulsive coupling).

4.2.1 Estimation of parametersl|

From the previous results one gets a procedure to determine sffective param-
eters from the full model. Comparing the amplitudes of thplase and anti-phase
symmetric solutions, and keeping all parameters fixed, feams. (8) and (9) one
gets

R%p_Rg:B(l_K)/V
Rﬁngntip:B(leK)/y (10)

whereRy is the amplitude of single uncoupled oscillator, @Rgh and Rantip are
the amplitudes of the in-phase and anti-phase limit cy@spectively. As shown in
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Fig. 6, Rinp andRantip, as well asRy, can easily be calculated from the numerical
integration of the full model (1). Themw, and3/y can be obtained from the system
of two equations (10):

Q: RLZJ*Rgntip_ 1+k
K = %Q? (12)
B_; = Rﬁ_%(Rt%p'i'Rgntip) (12)

We note that measuringy, Rinp andRantip for the same values of the parameters
require working in a region of coexistence between in-plaaskanti-phase oscilla-
tions. This is not necessarily possible and the stabilittheftwo limit cycles must
be first checked. Nevertheless in some cases it is possible@surérinp or Rantip
even if one of these solutions is unstable. In order to doteogtowth rate of the
unstable mode must be much slower that the frequency of ttle,cso that start-
ing from an initial condition close to the unstable solutare can observe several
oscillations where the radius does not change significantly

We have also assumed here thatas well asff and é are the same for the
in-phase and anti-phase solutions. This is again not gtesdndue to the spatial
nature of the oscillators, and the coupling could dependi@stp on the shape of
the solutions. In any case, for weak interaction (long distabetween oscillators)
this should be a reasonable first order approximation.

4.2.2 Estimation of parameters||: quenching experiments

In [29] Hynne and Sorensen reported a method to determineabiécients of the
cubic term of the Landau-Stuart normal form of a Hopf, namegnda. This is
based on a so-called quenching experimentwhich one makes a perturbation of
a system sitting on a stable limit cycle to make it jump moraghton the unstable
fixed point (focus) in its center. One then measures quaingta the return of the
trajectory to the limit cycle attractor. The procedure gag$ollows. One starts with
a single, uncoupled, Landau-Stuart oscillator,

A=Alu+io—(y+ia)A?, (13)
or in polar representation

R=R(u—yR) (14)
6 =w-aR, (15)

1 A theory of quenching is presented in [30]
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being the limit cycle defined bR, = \/1/y and the unstable focus at its center
by R= 0. Then, one can determine the slapg of the tangent to a time series
of the radius at the half amplitude poiRt= R,/2 (see Fig. 8) from a quenching
experiment. Using Eq. (14),

andy can be determined as,
y=8s1/2/3R}. (16)

020 T T SRR R

0.05

0.00 . Leiiiine, L, e, e,
0 1000 2000 3000 4000 5000

Fig. 8 Time trace of the maximum of a LK) in a quenching experiment starting from the unstable
focus.

To determine the nonisochronicity one has to analyze the dynamics of the
phasef. From Eq. (15) one obtain that

a=Aw/R 17)

whereAw is the difference between the frequencyirdfnitesimally small oscilla-
tionsand the frequency of the stable limit cycle. The frequenapefsmall oscilla-
tions around the unstable fixed point is given by the imagipart of the unstable
eigenvalue of the focus, which can be determined exactiy fidinear stability anal-
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ysis. The frequency of the stable limit cycle is easily dateed from a numerical
simulation of the full system.

Finally, knowing how to determing (3 can be obtained from (12), apdcan also
be easily estimated from the amplitude of the limit cyRle Thus, all the parameters
of the system have been estimated, except for the reactiyaling coefficientd,
determined in the next section.

4.2.3 Estimation of &

To obtain the reactive coupling coefficiedtone needs to study the relaxation of
two coupled oscillators to a stable limit cycle after an asyetric perturbation. In
particular, it can be seen that the dynamics of the two @doilé close to the limit
cycle depends directly on the value®{31]. Then, to determine this coefficient we
have performed systematically simulations of the simplelehatarting from the
same asymmetric initial condition, and different value®o¥We then compare the
results with a simulation of the full model where the two LS&&een initialized
with equivalent phases and radius than the two Landau4{Stgaations, and we
choose the value a¥ that better fits the dynamics of the full system.

Fig. 9 shows the evolution of the full and simple models fouieglent initial
conditions and the best value &f There is a very good agreement between the
dynamics of the two models, although this is the most diffiemd less accurate
estimation of all.

4.2.4 Resultsand dynamical regimes of the smple model

As aresult of the procedures described above, we obtaieddlitbwing parameters
for the largest distanad:

Is H K y a B
0.843 [0.001584393[2.264330.04300-0.266999252.9723% 10>
0.845 |0.003416477RL.892870.04256-0.2823105}3.5184% 10>
0.847 |0.005266779(1.630810.04249-0.276175583.93145¢10 >
0.849 |0.007065313RL.511090.04208-0.2785194%4.09333< 10>
5=9x107°

Table 1 Estimated parameters fdr= ds.

For these parameters the dynamics of the two Landau-Styaatiens accept-
ably reproduce the dynamics observeddgand, possibly fod,. Fig. 10 shows the
results of the stability analysis of the in-phase and ah#ige solutions of Eq. (3)
for the parameter values given in Table 1. For small posiaieies ofd the in-
phase solution is stable, while the anti-phase solutiomsable. The opposite sit-
uation occurs for small negative valuesdfin the previous Section we estimated
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Fig. 9 Time evolution of the radiuR of each oscillator, and their relative phage for the full
system (solid lines) and the simple model of two coupled laar8tuart equations (dashed lines)
after applying an asymmetric perturbation to the stable@mse limit cycle. For the right value

of  there is a very good agreement between the evolution of theyatems.
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& = 9x 1072, which is in agreement with the fact that for= d3 we observe the
in-phase solution to be stable close to the Hopf bifurcatidnile the anti-phase
solution is unstable, although the simple model do not ceptie interchange of
stability observed in the full model for larger values of thput intensity. The esti-
mation ofd is, however, not very accurate and since the valu@ isfso small, the
error bars would include both positive and negative valtesertheless, the fact
that we findd to be close to zero makes possible the fact thatiferd, we observe
the opposite situation than fdr= dz, namely that the anti-phase solution is stable
and the in-phase solution unstable, although we have natasid the parameters
for that distance.

g.010f T T T T T

0.008

0.006

0.004

Re(N)

0.002

0.000

0.05 0.10

00020« .
—-0.10 —0.05 0.00
0

Fig. 10 Real part of the eigenvalues of the in-phase (solid line)antdphase (dashed line) limit
cycles of the two coupled Landau-Stuart equations as aitumof é for the estimated parameters
(Table 1).

In principle, this approach assumes that the only parasétet change from
one distance to another are those associated with the ngupd.a, 3 andk, while
those of an isolated oscillator remain the same. In the dade-al;, the interaction
is so strong that we can not use the techniques explaineccabasstimated the
parameters. We have then explored numerically differeluegof the parameters
of the coupling, but we have not found any region where theplnmodel can
exactly reproduce the dynamics of the full modeldiot d;. This seems to indicate
that this approach is to simple for this case and that theadpattension of the
oscillators do play a role in the complex dynamics. Possthlyinteraction changes
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somehow the effective values of the parameters of the iddalioscillators, or even
more, these parameters may not even be constant at alltilt ossible, however,
that for more remote effective parameter values, the sysfdwo coupled Landau-
Stuart Equation can reproduce, at least partially, therobseegimes, but this needs
further investigation.

5 Interaction of excitablelocalized states: logical gates

In this section we explore the possibility of using excitaldcalized structures to
perform logical operations. Computational propertiesa¥@s in chemical excitable
media (e.g. the Belousov-Zhabotinsky reaction) have beed to solve mazes [32],
to perform image computation [33], and also logic gates lh@exn constructed from
these (chemical) systems [34, 35, 36]. After all, exciigbit a property exhibited
by neurons and used by them to perform useful computatiafjsja different way
than the more usual attractor neural networks [38, 39].

Optical computing, via photons instead of electrons, hawy lappealed re-
searchers as a way of achieving ultrafast performance oRbdtavel faster than
electrons and do not radiate energy, even at fast frequeraespite the constant
advances and miniaturization of electronic computergcaptomputing remains
a strongly studied subject. Probably the strategy to followot to seek to imitate
electronic computers, but rather to try to fully utilize tRhysics of these systems,
e.g., their intrinsic parallelism.

Most of the systems studied in optical computing appliceimnply light prop-
agation, for example optical correlators, already comia#yaused in optical pro-
cessing applications [40]. Instead, with the goal of deisigmore compact optical
schemes, localized structures have emerged as a potgnteaful strategy for infor-
mation storage, where a bit of information is represented bg. One can take this
idea a step further and discuss the potential of LS, for gagrgut computations,
i.e., not just for information storage. In particular, logjates can be designed using
LS. We will show here how an AND and OR gates can be implemeimded) three
excitable LS.

To make use of the excitable regime we use a set of addressingsan beams
that allow us to set precisely the distance between exeitgbts and control the
excitable threshold of each one [41]. Strictly speaking tBaussian beam changes
slightly the scenario, but the underlying physics remaiasidally the same as de-
scribed in section 3.3. So, to design a logical gate, we se¢taddressing beams at
proper distances and intensities such that their intenactieates a dynamics whose
response to two input perturbations is given by Table 2 mypeing an AND and an
OR logical gates.

In particular we consider three excitable LS in a linear@gement, with a sepa-
rationd between them. Three permanent Gaussian localized bearappzl'red:léﬁ
and|!2 at each side for the input LS, ang, in the middle for the output LS. The
Gaussian beams fix the spatial position of input and outputiiLtBere is an ex-
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Input 1 Input 2 Output

OR

AND

ROoORrROlFrOrR O
PR OOkrroo
P OOOkrErEro

Table2 Truth Table of AND and OR logic gates.

citable excursion in the central localized structure thigotis interpreted as a “1”
and if there is no excitable response as a “0”. At the inpuiesiinreshold perturba-
tions (i.e. causing an excitable excursion) correspondiiv ‘d.”, while subthresh-
old (or the absence of) perturbations will be consideredlais“@”. Physically, the
interaction is mediated by the tails of the structures ared#mnant wave that ra-
diate from the LS dissipating the energy to the surroundithging the excitable
excursion.

©\

S S b

e e

e < IS

Fig. 11 Resonse of an OR logic gate to a (“1”, “0”) input.

Then, if the distancel between the input LS and the output is small enough,
such that the excitable excursion of a single LS at the inpehibugh to excite an
excursion at the output we will have an OR gate. To avoid thabutput can excite
the input LSI} andI!2 are smaller thanQ, so that the excitable threshold of the
input LS is too high to be excited by the excitable excursibtihe output LS. If we
simply maked larger so that the interaction of a single LS is not enoughxtite
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Fig. 12 The same as in Fig. 11 for a (“1”, “1") input.

S < S

the output, but the combined effect of the two input LS is, \weehimplemented an
AND gate according to Table 2.

Fig. 11 shows the dynamics or an OR gate for a (“1”, “0”) inppplying a
similar perturbation td)éﬁ [corresponding to (“0”, “1")], the same result is obtained.
Finally, if we simultaneously apply the same perturbatioothll and1Z [cor-
responding to (“1”, “1")], a similar excitable excursion abtained for the central
(output) LS, as shown in Fig. 12.

Fig. 13 Response of an AND logic gate to a (“1”, “0”)input.
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Fig. 14 The same as in Fig. 13 for a (“1”, “1") input.

Figs. 13 and 14 show the response of an AND gate to a (“1”, “@9 a (“1”,
“1") inputs respectively.

With these two basic gates combined with a NOT gate, not égudahere, it
is possible to build the two universal logic gates, NAND an@R which are the
pillars of logic. In electronics, these gates are built frivamsistors, but they can be
built by means of other technologies. We propose here usicigable LS. We have
to note, however, that using excitability to perform congtiasns may imply rela-
tively long times inherent to the slow dynamics close to adigeint. This drawback
can be minimized by properly tuning the parameters of théeegygnd optimizing
the form of the perturbations. The aim of this work is justiagtthe basis of a new
way to perform all-optical logical operations using loeelil states.

6 Summary

It is remarkable how such a simple model as (1) can show such amd surprising
behavior through the dynamics of coherent structures. itiqodear, localized states
show different emergent behavior that can not be explaingdrims of the local
dynamics of the model, but it is a self-organized phenomehento the spatial
coupling provided by diffraction. In the first part, we haveefly reviewed two
instabilities, namely a Hopf and a saddle-loop bifurcattbat signal the boundaries
between three different dynamical regimes: stationawillatory and excitable. An
extensive analysis of this scenario can be found in [1].
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Then, we have focused in the study of the interaction betwwen_S in the os-
cillatory regime. We have shown how the interaction brealksdegeneracy of the
spectrum of two LS creating two limit cycles with slightlyfigirent frequencies.
These two cycles bifurcate also for slightly different \ediof the control parameter
and they correspond to in-phase and anti-phase osciltathamimportant issue ad-
dressed in this section is the role of the internal struabfiteS in the dynamics. For
long distances between LS, i.e. weak interaction, we haweisihat the dynamics
can be reasonable explained by means of two simple couptéithts's. We have
given a simple model and described a method to estimateaitsneters from the
dynamics of the full system. For the closest distance, hewave observe a much
more complex dynamics, and the simple model does not repeotthis behaviour,
at least for the adjusted parameters. This seems to indlwa@téhe internal degrees
of freedom play a role in the dynamics and that interactiampées, for instance, the
movement in the transverse plain with the oscillations.

Finally, in the last section, we have shown how coupling sEVeS in the ex-
citable regime, one can perform logical operations. Thienspthe possibility to
build new all-optical components to process informatiosdubon the use of LS.
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