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Abstract The interaction between stationary localized states have long been stud-
ied, but localized states may undergo a number of instabilities that lead to more
complicated dynamical regimes. In this case, the effects ofthe interaction are much
less known. This chapter addresses the problem of the interaction between oscil-
latory and excitable localized states in a Kerr cavity. These oscillatory structures
can be considered as non punctual oscillators with a highly non-trivial spatial cou-
pling, which leads to rather complicated dynamics beyond what can be explained in
terms of simple coupled oscillators. We also explore the possibility of using coupled
excitable localized structures to build all-optical logical gates.

1 Introduction

Localized states (LS) are commonplace in extended system exhibiting bistability
between two different solutions [1]. Physically they implyan equilibrium in a finite
region in space between dissipation and driving, and nonlinearity and diffusion.
In the nonlinear optics context the spatial coupling is mainly given by diffraction,
although diffusion can be also present in some cases.

All these ingredients are present in optical cavities filledwith a nonlinear medium
[2, 3]. The driving is given by a broad homogeneous holding beam which is shined
on a semi-reflecting mirror of the cavity. Part of the light will be reflected, but the
rest enters the cavity. If the holding beam is switched off all the energy leave the
cavity through the same semi-reflecting mirror, which makesthe system dissipative.
The spatial coupling is provided by the diffraction of the propagating light, which
smoothes out any spatial inhomogeneity. Finally, a nonlinear medium provides the
necessary photon-photon interactions to observe a complexbehavior such as the
formation of localized states.
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Nonlinear optical cavities have long been shown to support localized states, and
stationary LS have been advocated for their use as bits in optical memories [4, 5].
An important feature of these LS is that they interact through their oscillatory tails
in such a way that they anchor at a discrete set of distances [6, 7, 8]. But LS can also
undergo a number of instabilities leading to more complicated dynamical regimes
[9, 10]. In this case the role of the interaction is much less known. In particular, we
will focus here on the study of the interaction of oscillatory and excitable LS in a
Kerr cavity. In this system the dynamics of LS is an intrinsicproperty of the coher-
ent structures that emerges from the spatially extended nature of the system. Thus,
for instance, oscillatory LS are non-punctual oscillators, i.e. oscillators with internal
structure or degrees of freedom. As a result, their interaction can not necessarily be
reduced to a simple coupling term between punctual oscillators. The interplay be-
tween the oscillatory dynamics, the interaction, and the internal structure can affect
the dynamics in a nontrivial way. This chapter is an attempt to address this general
problem by studying a prototypical case.

2 Model

We study the dynamics and interaction of localized states ina prototypical model,
namely the Lugiato-Lefever equation, describing the dynamics of the slowly varying
envelopeE(x, t) of the electric field in a ring cavity filled with a self-focusing Kerr
medium (see Figure 1). In the mean field approximation, wherethe dependence of
the field on the longitudinal direction has been averaged, and in the paraxial limit,
the dynamics ofE in two transverse spatial dimensions is described by the following
equation [11]:

∂E
∂ t

= −(1+ iθ )E+ i∇2E+Ein + i|E2|E, (1)

wherex = (x,y) is the transverse plane and∇2 = ∂ 2/∂x2 + ∂ 2/∂y2. The first term
on the right-hand side describes the cavity losses, rescaled to 1,Ein is the input field,
andθ the cavity detuning with respect to input field. Space, time,and the field have
been suitable rescaled so that Eq. (1) is dimensionless. This model was one of the
first proposed to study pattern formation in nonlinear optics [11], and it was shown
later that LS are also observed in some parameter regions [12, 13].

It is important to note that in the absence of losses and input, the intra-cavity
field can be rescaled (E → Eeiθt) to remove the detuning term and (1) becomes the
nonlinear Schrödinger equation (NLSE). As it will be explained later in more detail,
the dynamics of LS in this system is connected with the collapse of the 2D solitons
in the NLSE.

Equation (1) has a homogeneous steady-state solution whichis implicitly given
by Es = Ein/[1+(i(θ − Is)], whereIs = |Es|2. For convenience, we will use in the
following the intra-cavity background intensityIs, together withθ , as our control
parameters. It is well known that the homogeneous solution shows bistability for
θ >

√
3. Here we will restrict ourselves toθ <

√
3 so thatIs is unique onceEin is
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Fig. 1 Ring cavity of length L filled with a nonlinear medium of length Lm. Mirror M1 is only
partially reflecting, so that the cavity can be driven byEin and read out withEout.

determined. ForIs > 1 the homogeneous solution is modulationally unstable and dy-
namical hexagonal patterns are formed. The bifurcation is subcritical and stationary
hexagonal patterns are stable below threshold [14, 15]. In this situation, LS typically
exist and their dynamics and interactions are the subject ofstudy in the rest of this
chapter.

3 Overview of the behavior of localized states

The bistability of the pattern and homogeneous solutions isat the origin of the exis-
tence of stable LS that appear when suitable (localized) transient perturbations are
applied. The LS can be seen as a solution which connects a cellof the pattern with
the homogeneous solution. While the existence of LS in this bistable regime is quite
generic in extended systems [16, 17], their stability strongly depends on the partic-
ularities of the system. Using a Newton method it is possibleto find the stationary
LS solutions with arbitrary precision and determine their stability by diagonalizing
the Jacobian. Complemented with numerical simulations, this method allows to gain
insight into the structure of the phase space of the system [18, 19, 1].

3.1 Hopf bifurcation

Early studies already identified that LS may undergo a Hopf bifurcation leading to
a oscillatory behavior [12]. The oscillatory instabilities [20], as well as azimuthal
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instabilities, were fully characterized later [10]. Interestingly, the oscillations of the
LS show the connection of Eq. (1) with the NLSE. The growth of an LS during the
oscillations resembles the collapse regime observed for solitons in the 2D (or 2+1)
NLSE. In this case, however, after some value is attained forthe electric field,E,
dissipation arrests this growth. This also explains why, despite LS are also observed
in 1D [21], oscillations are not present in that case, since collapse does not occur in
the 1D NLSE.

As one moves in parameter space away from the Hopf bifurcation, the LS os-
cillation amplitude grows and its frequency decreases. Eventually, the limit cycle
touches the middle-branch LS in a saddle-loop bifurcation which leads to a regime
of excitable dissipative structures [22, 19]. In the next two subsections we briefly ex-
plain the saddle-loop bifurcation and the excitable regime. For an extensive analysis
of this scenario see, for instance, Ref. [1].

3.2 Saddle-loop bifurcation

A saddle-loop or homoclinic bifurcation is a global bifurcation in which a limit cycle
becomes biasymptotic to a saddle point, or, in other terms, becomes the homoclinic
orbit of the saddle, i.e., at criticality a trajectory leaving the saddle point through
the unstable manifold returns to it through the stable manifold. Thus, at one side
of this bifurcation one finds a detached limit cycle (stable or unstable), while at
the other side the cycle does not exist any more, only itsghost, as the bifurcation
creates an exit slit that makes the system dynamics to leave the region in phase
space previously occupied by the cycle. Therefore, after the bifurcation the system
dynamics jumps to another available attractor. In the present case this alternative
attractor is the homogeneous solution.

The fact that the bifurcation is global, implies that it cannot be detected locally
(a local eigenvalue passing through zero), but one can stillresort to the Poincaré
map technique to analyze it, and, interestingly, the main features of the bifurcation
can be understood from the knowledge of the linear eigenvalues of the saddle [23].
The case studied here is the simplest: a saddle point with real eigenvalues, in a 2-
dimensional phase space. Strictly speaking, in our case thesaddle has an infinite
number of eigenvalues, but only two eigenmodes take part in the dynamics close to
the saddle [19].

To identify such a transition one can study the period of the cycle close to this
bifurcation, and to leading order it must be given by [24],

T ∝ − 1
λu

ln |θ −θc| , (2)

whereλu is the unstable eigenvalue of the saddle andθc the critical value of the de-
tuning. Numerically the bifurcation point is characterized by the fact that approach-
ing from the oscillatory side the period diverges to infinity, and also because past
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Fig. 2 Left: time evolution of the maximum of the LS plotted for three different values of the
detuning: a) just below, b) at the saddle-loop bifurcation,and c) just above. Right: sketch of the
phase space for each situation.

this bifurcation point the LS disappears and the system relaxes to the homogeneous
solution as shown in Fig. 2.

A logarithmic-linear plot of the period versus the control parameter exhibits a
linear slope according to the theoretical prediction (2), whit λu obtained from the
linear stability analysis of the saddle [19].

3.3 Excitability

As in our case the saddle-loop bifurcation involves a fixed point (the homogeneous
solution), on one side of the bifurcation, and an oscillation, on the other, the system
is a candidate to exhibit excitability [25]. It must be stressed that excitable behavior
is not guaranteedper seafter a saddle-loop bifurcation, and, in particular one needs
a fixed point attractor that is close enough to the saddle point that destroys the oscil-
lation. The excitability threshold in this type of systems is the stable manifold of the
saddle point, what implies that the observed behavior is formally Class I Excitability
[25].

This excitability scenario was first shown in Ref. [22]. Fig.3 shows the resulting
trajectories after applying a localized perturbation in the direction of the unstable LS
with three different amplitudes: one below the excitability threshold, and two above,
one very close to threshold and another well above. For the one below threshold



6 Damià Gomila, Adrián Jacobo, Manuel A. Matı́as, and PereColet

the perturbations decays exponentially to the homogeneoussolution, while for the
two above threshold a long excursion in phase space is performed before returning
to the stable fixed point. The refractory period for the perturbation just above the
excitability threshold is appreciably longer due to the effect of the saddle. After an
initial localized excitation is applied, the peak grows to alarge value until the losses
stop it. Then it decays exponentially until it disappears. Aremnant wave is emitted
out of the center dissipating the remaining energy.

Fig. 3 Time evolution of the maximum intensity starting from the homogeneous solution plus a
localized perturbation of the form of the unstable LS below (blue dashed line), just above (green
solid line) and well above (red dotted line) threshold.

At this point it is worth noting that neglecting the spatial dependence Eq. (1) does
not present any kind of excitability. The excitable behavior is an emergent property
of the spatial dependence and it is strictly related to the dynamics of the 2D LS.

Finally, it is interesting to remark that the excitable region in parameter space
is quite large and, potentially easy to observe experimentally. While this excitable
behavior belongs to Class I (the period diverges to infinity when a perturbation hits
the saddle), due to the logarithmic scaling law for the period (2), the parameter range
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over which the period increases dramatically is extremely narrow. Therefore, from
an operational point of view, systems exhibiting this scenario might not be classified
as Class I excitable, as the large period responses may be easily missed [26].

4 Interaction of two oscillating localized states

In the previous section we have reviewed the dynamics of a single LS. In this one
we study the interaction between two oscillating LS, and howit affects their dynam-
ics. Oscillating LS are an example ofnon-punctual oscillators, i.e. oscillators with
an internal structure. The interaction between such oscillatory structures through
the tails can not be, in general, reduced to a simple couplingterm between oscilla-
tors, but it modifies the internal structure of the oscillators themselves, affecting the
dynamics in a nontrivial way. The interplay between the coupling and the internal
structure of non-punctual oscillators is a general phenomenon not well understood.
This chapter aims to be an approach to the subject.

We will first describe in section 4.1 the dynamics of two coupled oscillating LS
in the full system, and then in section 4.2 we will study how much of the observed
dynamics can be explained by means of a simple model for two coupled oscilla-
tors, and which effects can or can not be attributed to the spatial extension of the
oscillators.

4.1 Full system

Throughout this section we will setIs ∼ 0.84, andθ = 1.27 corresponding to a
region of oscillatory structures [22, 19]. This value ofIs is close to the modulational
instability that occurs atIs = 1, and because of this LS have large tails. As the
interaction between the structures is mediated by these tails, working in this region
has the advantage that the interaction is strong and its effects are more evident.

Localized structures in this system have an intrinsic intensity profile with spa-
tially oscillatory tails, and since the system is translationally invariant, the struc-
tures are free to move once created. When two stationary structures are placed close
to each other, the presence of an adjacent structure sets only a discrete set of rela-
tive positions at which the structures can anchor, given by the intensity profile of the
tails. Then if the structures are placed at arbitrary positions they will move until they
sit at the zeros of the gradient of this intensity profile. This locking has been stud-
ied, both theoretically and experimentally, for stationary localized structures only
[6, 7, 8].

Similarly to what happens with stationary LS, when two oscillatory localized
structures are placed close to each other they move until they get locked by the tail
interaction. For the selected parameters we observe three equilibrium distances that
ared1 ∼ 7.8,d2 ∼ 15.8 andd3 ∼ 19.9. Beyondd3 the interaction is so weak that the
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structures can be considered as independent. The movement of the structures from
an arbitrary position towards the equilibrium distances isvery slow compared with
the oscillation period. Therefore we will restrict ourselves to study the behavior
of the system when the structures are at the equilibrium distances, to avoid long
transient times and complex effects introduced by the movement of the LS.

Fig. 4 Anti-phase (top) and in-phase (bottom) modes forIs = 0.86 andd = d1 = 7.8. These modes
have been obtained from a full 2D linear stability analysis.

Fig. 5 Hopf bifurcation for two coupled LS atd = d1. From left to right, Is=0.81,0.8266,0.83. Red
and green dots are the eigenvalues corresponding to the anti-phase and in-phase modes respectively.
The blue dots are three zero eigenvalues of the three Goldstone modes of the system of two LS,
corresponding to global translations in thex andy directions, and to the rotation of the pair. The
black dot is a damped mode associated with perturbations that modify the distance between the
two LS.
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A single LS undergoes a Hopf bifurcation atIs = 0.8413 and starts to oscil-
late. At the bifurcation point this solution has then two complex conjugate eigen-
values whose real part becomes positive with an imaginary part different from zero.
If we now consider two very far apart (non interacting) structures the system has
globally two degenerate pairs of Hopf unstable eigenvalues. Since in this case the
structures are independent from each other, they become simultaneously unstable at
Is = 0.8413 and the LS can oscillate at any relative phase.

If the two LS are now placed closer together, at one of the equilibrium positions,
the structures are no longer independent. Now the interaction breaks the degen-
eracy of the spectrum splitting the eigenvalues in two different pairs of complex
conjugates: a pair corresponding to in-phase oscillationsand other to anti-phase os-
cillations (Fig. 4). Since the eigenvalues of these modes are no longer degenerate,
increasing the driving, one of these two pairs will cross theHopf bifurcation first
(see Fig. 5). Because of the splitting, the threshold of the mode that become first
unstable is, generically, lower that the threshold of the single LS. Physically this is
due to the fact that the coupling can transfers energy from one LS to the other, such
that the collective oscillation can have a lower threshold that a single LS. Although
the splitting takes place mainly in the direction of the realaxis, the imaginary part
is also slightly modified, so the two new cycles have different frequencies. This de-
generacy breaking mechanism is crucial to understand the interaction of these LS.

Ford = d3 the interaction is very weak, and the degeneracy is merely broken. The
real part of the eigenvalues corresponding to the in-phase and anti-phase oscillations
become positive almost simultaneously, although the in-phase cycle appears first at
Is = 0.8412, very close to the threshold of an isolated LS. As a result, the in-phase
solution is stable close to the bifurcation and the anti-phase solution is created just
after and it is unstable. The stability is, however, interchanged for larger values of
the input intensity in favor of the antiphase solution. Thisis illustrated in Fig. 6a,
where the bifurcation diagram of the in-phase and anti-phase cycles is shown for the
third equilibrium distanced3.

Ford = d2 the difference between the two pairs of eigenvalues is stillvery small
but, this time, the anti-phase mode crosses the Hopf bifurcation first. The changes
in the threshold are still almost imperceptible. The anti-phase solution remains then
stable for all values of the input intensity (Fig. 6 b). In this case the inphase solution
is always unstable.

Finally for d = d1 the degeneration is completely broken, and the anti-phase
mode crosses the Hopf bifurcation much before than the in-phase one, as shown in
Fig. 5. For this the closest distance the interaction is quite strong and the situation
is more complicated. First the stable anti-phase limit cycle is created atIs≃ 0.8266,
much before that the threshold of an isolated LS. Initially,both structures have the
same oscillation amplitude. AtIs ≃ 0.828 there is a symmetry breaking bifurcation
and the oscillation amplitude of the two structures becomesdifferent, i.e. the two
structures oscillate around the same mean value in anti-phase but with different am-
plitudes (regime II in Fig. 6c). The difference in the oscillation amplitude between
the two structures grows gradually withIs. An interesting effect due to the extended
nature of the solutions is that in this region the pair of LS moves due to the asym-
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Fig. 6 Amplitude of the in-phase (orange), anti-phase (black) andmixed (green) oscillations as a
function ofIs for the first three equilibrium distances: a)d3 = 19.9, b)d2 = 15.8, and c)d1 = 7.8.

metry [27]. The centers of the two structures drift along thex axis in the direction
of the structure with larger oscillation amplitude. For largerIs the unstable in-phase
limit cycle is created and it becomes stable atIs = 0.84. In this case we observe
also a third branch connecting the in-phase and anti-phase cycles corresponding to
a mixed mode. Since the two cycles have a slightly different frequency, this mode
presents a beating at the frequency difference of the in-phase and anti-phase modes.



Interaction of oscillatory and excitable localized statesin a nonlinear optical cavity 11

Fig. 7 Time traces of the maximum of the two LS for different values of Is. Each panel corresponds
to one of the tags of Fig. 6.
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This situation is illustrated in detail in Fig. 7. Each of thepanels in the figure
corresponds to one of the tags in Fig. 6c, showing a time traceof each dynamical
regime. Fig. 7 I shows the anti-phase oscillations. Increasing Is, we reach the regime
where the anti-phase oscillations are asymmetric (Fig. 7 II). Further increasingIs
the anti-phase cycle become unstable and the amplitude of the oscillations is mod-
ulated by a slow frequency. Close to the anti-phase cycle thefast oscillations of this
modulated cycle are almost in anti-phase (Fig. 7 III). Near the end of this branch
the fast oscillations are almost in phase (Fig. 7 IV). Finally, the amplitude of the
modulations decreases until we reach a the regime of in-phase oscillations (Fig. 7
V).

4.2 Simple model: two coupled Landau-Stuart oscillators

As the oscillating LS are extended oscillators it is interesting to wonder which part
of the dynamics observed in the previous subsection can be attributed to the ex-
tended nature of the LS and which one simply to two coupled oscillators. To try to
discern these to components in the dynamics we consider a simple model describing
two interacting limit cycle oscillators close to a Hopf bifurcation, namely two cou-
pled Landau-Stuart (L-S) equations. We give some hints on how to determine the
effective parameters of these pair of equations from the full system, and describe
the different dynamical regimes that arise from them.

We try to understand, then, the interaction of two oscillating LS in terms of a
phase-amplitude reduction of two subsystems close to a Hopfbifurcation. In their
classical paper Aronsonet al. [28] analyze this situation. They arrive to a center
manifold reduction for two limit cycles that allows to writethe interaction in terms
for the complex amplitudesA1 andA2 of two Landau-Stuart oscillators,

Ȧ1 = A1[µ + iω − (γ + iα)|A1|2]+ (β + iδ )(A2−κA1)

Ȧ2 = A2[µ + iω − (γ + iα)|A2|2]+ (β + iδ )(A1−κA2) (3)

Here, for clarity, we have not rescaled the parameters of theoscillators and the only
assumption we have done is that both oscillators are identical. With the presence of
the parameterδ we consider the most general case of a nonscalar coupling (other
authors also call it reactive, elastic or nondiagonal coupling). Physically, in a me-
chanical system, this couples momentum coordinates to position and/or viceversa.
In optics this corresponds to the coupling associated to diffraction (in the paraxial
approximation). Its most important consequence is that it couples amplitude with
phase, breaking thus, the usual assumption that we can describe coupled oscillators
only through their phases and neglecting amplitudes.

Another important ingredient that allows for a rich dynamical behavior is non-
isochronicity, i.e., the nonlinear dependence of the frequency with the amplitude
(also called shear or nonlinear frequency pulling in the literature) given byα. We
note also that we have included, as in [28], theκ ∈ [0,1] parameter, such thatκ = 1
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corresponds to the usual coupling (diffusive in the case that δ = 0), while κ = 0
corresponds to direct coupling (no self-interaction term).

From these equations, usingA1,2 = R1,2exp(iθ1,2), one can obtain the following
equations in polar coordinates

Ṙ1 = R1(µ −β κ − γR2
1)+R2(β cosψ − δ sinψ) (4)

Ṙ2 = R2(µ −β κ − γR2
2)+R1(β cosψ + δ sinψ) (5)

ψ̇ = α(R2
1−R2

2)−β sinψ
(

R1

R2
+

R2

R1

)

+ δ cosψ
(

R1

R2
− R2

R1

)

(6)

where the phase differenceψ = θ2 − θ1 is the only relevant angular variable, due
to the invariance symmetry under transformations with respect to the global phase
exhibited by the evolution equations.

Let us first analyze the two symmetric solutions, withR= R1 = R2, the in-phase
and the anti-phase solutions. As they are fixed point solutions, both of them satisfy

µ −β κ − γR2+ β cosψ = 0 (7)

or,
R2 = [µ + β (1−κ)]/γ (8)

for the in-phase solution (ψ = 0), and

R2 = [µ −β (1+ κ)]/γ (9)

for the anti-phase one (ψ = π). As the amplitude (squared) for an uncoupled oscil-
lator isR2

u = µ/γ, we note that, for positiveβ (attractive coupling), except for the
so-called diffusive coupling (κ = 1), the amplitude of the in-phase solution isbigger
than the amplitude of an uncoupled oscillator. The oppositewould happen for repul-
sive couplingβ < 0. Similarly, for attractive coupling (β > 0) the amplitude of the
anti-phase synchronized solution issmallercompared with the uncoupled oscillator
(the opposite would happen for repulsive coupling).

4.2.1 Estimation of parameters I

From the previous results one gets a procedure to determine some effective param-
eters from the full model. Comparing the amplitudes of the in-phase and anti-phase
symmetric solutions, and keeping all parameters fixed, fromEqs. (8) and (9) one
gets

R2
inp−R2

u = β (1−κ)/γ

R2
u−R2

antip = β (1+ κ)/γ (10)

whereRu is the amplitude of single uncoupled oscillator, andRinp andRantip are
the amplitudes of the in-phase and anti-phase limit cycles respectively. As shown in



14 Damià Gomila, Adrián Jacobo, Manuel A. Matı́as, and Pere Colet

Fig. 6, Rinp andRantip, as well asRu, can easily be calculated from the numerical
integration of the full model (1). Then,κ andβ/γ can be obtained from the system
of two equations (10):

Q =
R2

inp−R2
u

R2
u−R2

antip

=
1−κ
1+ κ

κ =
1−Q
1+Q

(11)

β κ
γ

= R2
u−

1
2
(R2

inp +R2
antip) (12)

We note that measuringRu, Rinp andRantip for the same values of the parameters
require working in a region of coexistence between in-phaseand anti-phase oscilla-
tions. This is not necessarily possible and the stability ofthe two limit cycles must
be first checked. Nevertheless in some cases it is possible tomeasureRinp or Rantip

even if one of these solutions is unstable. In order to do so, the growth rate of the
unstable mode must be much slower that the frequency of the cycle, so that start-
ing from an initial condition close to the unstable solutionone can observe several
oscillations where the radius does not change significantly.

We have also assumed here thatκ , as well asβ and δ are the same for the
in-phase and anti-phase solutions. This is again not guaranteed, due to the spatial
nature of the oscillators, and the coupling could depend explicitly on the shape of
the solutions. In any case, for weak interaction (long distance between oscillators)
this should be a reasonable first order approximation.

4.2.2 Estimation of parameters II: quenching experiments

In [29] Hynne and Sorensen reported a method to determine thecoefficients of the
cubic term of the Landau-Stuart normal form of a Hopf, namelyγ andα. This is
based on a so-called quenching experiment1, in which one makes a perturbation of
a system sitting on a stable limit cycle to make it jump momentarily on the unstable
fixed point (focus) in its center. One then measures quantitatively the return of the
trajectory to the limit cycle attractor. The procedure goesas follows. One starts with
a single, uncoupled, Landau-Stuart oscillator,

Ȧ = A[µ + iω − (γ + iα)|A|2], (13)

or in polar representation

Ṙ = R(µ − γR2) (14)

θ̇ = ω −αR2, (15)

1 A theory of quenching is presented in [30]
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being the limit cycle defined byRu =
√

µ/γ and the unstable focus at its center
by R = 0. Then, one can determine the slopes1/2 of the tangent to a time series
of the radius at the half amplitude pointR = Ru/2 (see Fig. 8) from a quenching
experiment. Using Eq. (14),

s1/2 =
dR
dt

∣

∣

∣

∣

R=Ru/2
=

µRu

2
− γR3

u

8
=

γR3
u

2
− γR3

u

8
=

3
8

γR3
u

andγ can be determined as,
γ = 8s1/2/3R3

u. (16)

Fig. 8 Time trace of the maximum of a LS (R) in a quenching experiment starting from the unstable
focus.

To determine the nonisochronicityα one has to analyze the dynamics of the
phaseθ . From Eq. (15) one obtain that

α = ∆ω/R2
u (17)

where∆ω is the difference between the frequency ofinfinitesimally small oscilla-
tionsand the frequency of the stable limit cycle. The frequency ofthe small oscilla-
tions around the unstable fixed point is given by the imaginary part of the unstable
eigenvalue of the focus, which can be determined exactly from a linear stability anal-
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ysis. The frequency of the stable limit cycle is easily determined from a numerical
simulation of the full system.

Finally, knowing how to determineγ, β can be obtained from (12), andµ can also
be easily estimated from the amplitude of the limit cycleRu. Thus, all the parameters
of the system have been estimated, except for the reactive coupling coefficientδ ,
determined in the next section.

4.2.3 Estimation of δ

To obtain the reactive coupling coefficientδ one needs to study the relaxation of
two coupled oscillators to a stable limit cycle after an asymmetric perturbation. In
particular, it can be seen that the dynamics of the two oscillators close to the limit
cycle depends directly on the value ofδ [31]. Then, to determine this coefficient we
have performed systematically simulations of the simple model starting from the
same asymmetric initial condition, and different values ofδ . We then compare the
results with a simulation of the full model where the two LS have been initialized
with equivalent phases and radius than the two Landau-Stuart equations, and we
choose the value ofδ that better fits the dynamics of the full system.

Fig. 9 shows the evolution of the full and simple models for equivalent initial
conditions and the best value ofδ . There is a very good agreement between the
dynamics of the two models, although this is the most difficult and less accurate
estimation of all.

4.2.4 Results and dynamical regimes of the simple model

As a result of the procedures described above, we obtained the following parameters
for the largest distanced3:

Is µ κ γ α β
0.843 0.00158439302.264330.04300-0.266999252.97237×10−5

0.845 0.00341647781.892870.04256-0.282310573.51847×10−5

0.847 0.00526677901.630810.04249-0.276175583.93145×10−5

0.849 0.00706531381.511090.04208-0.278519494.09333×10−5

δ = 9×10−5

Table 1 Estimated parameters ford = d3.

For these parameters the dynamics of the two Landau-Stuart equations accept-
ably reproduce the dynamics observed ford3 and, possibly ford2. Fig. 10 shows the
results of the stability analysis of the in-phase and anti-phase solutions of Eq. (3)
for the parameter values given in Table 1. For small positivevalues ofδ the in-
phase solution is stable, while the anti-phase solution is unstable. The opposite sit-
uation occurs for small negative values ofδ . In the previous Section we estimated
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Fig. 9 Time evolution of the radiusR of each oscillator, and their relative phaseψ, for the full
system (solid lines) and the simple model of two coupled Landau-Stuart equations (dashed lines)
after applying an asymmetric perturbation to the stable anti-phase limit cycle. For the right value
of δ there is a very good agreement between the evolution of the two systems.
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δ = 9×10−5, which is in agreement with the fact that ford = d3 we observe the
in-phase solution to be stable close to the Hopf bifurcationwhile the anti-phase
solution is unstable, although the simple model do not capture the interchange of
stability observed in the full model for larger values of theinput intensity. The esti-
mation ofδ is, however, not very accurate and since the value ofδ is so small, the
error bars would include both positive and negative values.Nevertheless, the fact
that we findδ to be close to zero makes possible the fact that ford = d2 we observe
the opposite situation than ford = d3, namely that the anti-phase solution is stable
and the in-phase solution unstable, although we have not estimated the parameters
for that distance.

Fig. 10 Real part of the eigenvalues of the in-phase (solid line) andanti-phase (dashed line) limit
cycles of the two coupled Landau-Stuart equations as a function of δ for the estimated parameters
(Table 1).

In principle, this approach assumes that the only parameters that change from
one distance to another are those associated with the coupling, i.e.α, β andκ , while
those of an isolated oscillator remain the same. In the case of d = d1, the interaction
is so strong that we can not use the techniques explained above to estimated the
parameters. We have then explored numerically different values of the parameters
of the coupling, but we have not found any region where the simple model can
exactly reproduce the dynamics of the full model ford = d1. This seems to indicate
that this approach is to simple for this case and that the spatial extension of the
oscillators do play a role in the complex dynamics. Possibly, the interaction changes
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somehow the effective values of the parameters of the individual oscillators, or even
more, these parameters may not even be constant at all. It is still possible, however,
that for more remote effective parameter values, the systemof two coupled Landau-
Stuart Equation can reproduce, at least partially, the observed regimes, but this needs
further investigation.

5 Interaction of excitable localized states: logical gates

In this section we explore the possibility of using excitable localized structures to
perform logical operations. Computational properties of waves in chemical excitable
media (e.g. the Belousov-Zhabotinsky reaction) have been used to solve mazes [32],
to perform image computation [33], and also logic gates havebeen constructed from
these (chemical) systems [34, 35, 36]. After all, excitability is a property exhibited
by neurons and used by them to perform useful computations [37] in a different way
than the more usual attractor neural networks [38, 39].

Optical computing, via photons instead of electrons, has long appealed re-
searchers as a way of achieving ultrafast performance. Photons travel faster than
electrons and do not radiate energy, even at fast frequencies. Despite the constant
advances and miniaturization of electronic computers, optical computing remains
a strongly studied subject. Probably the strategy to followis not to seek to imitate
electronic computers, but rather to try to fully utilize thePhysics of these systems,
e.g., their intrinsic parallelism.

Most of the systems studied in optical computing applications imply light prop-
agation, for example optical correlators, already commercially used in optical pro-
cessing applications [40]. Instead, with the goal of designing more compact optical
schemes, localized structures have emerged as a potentially useful strategy for infor-
mation storage, where a bit of information is represented bya LS. One can take this
idea a step further and discuss the potential of LS, for carrying out computations,
i.e., not just for information storage. In particular, logic gates can be designed using
LS. We will show here how an AND and OR gates can be implementedusing three
excitable LS.

To make use of the excitable regime we use a set of addressing Gaussian beams
that allow us to set precisely the distance between excitable spots and control the
excitable threshold of each one [41]. Strictly speaking this Gaussian beam changes
slightly the scenario, but the underlying physics remains basically the same as de-
scribed in section 3.3. So, to design a logical gate, we set three addressing beams at
proper distances and intensities such that their interaction creates a dynamics whose
response to two input perturbations is given by Table 2 reproducing an AND and an
OR logical gates.

In particular we consider three excitable LS in a linear arrangement, with a sepa-
rationd between them. Three permanent Gaussian localized beams areapplied:I I1

sh
andI I2

sh at each side for the input LS, andIO
sh in the middle for the output LS. The

Gaussian beams fix the spatial position of input and output LS. If there is an ex-
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Input 1 Input 2 Output
OR 0 0 0

1 0 1
0 1 1
1 1 1

AND 0 0 0
1 0 0
0 1 0
1 1 1

Table 2 Truth Table of AND and OR logic gates.

citable excursion in the central localized structure the output is interpreted as a “1”
and if there is no excitable response as a “0”. At the input, superthreshold perturba-
tions (i.e. causing an excitable excursion) correspond to abit “1”, while subthresh-
old (or the absence of) perturbations will be considered as abit “0”. Physically, the
interaction is mediated by the tails of the structures and the remnant wave that ra-
diate from the LS dissipating the energy to the surroundingsduring the excitable
excursion.

Fig. 11 Resonse of an OR logic gate to a (“1”, “0”) input.

Then, if the distanced between the input LS and the output is small enough,
such that the excitable excursion of a single LS at the input is enough to excite an
excursion at the output we will have an OR gate. To avoid that the output can excite
the input LSI I1

sh andI I2
sh are smaller thanIO

sh, so that the excitable threshold of the
input LS is too high to be excited by the excitable excursion of the output LS. If we
simply maked larger so that the interaction of a single LS is not enough to excite
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Fig. 12 The same as in Fig. 11 for a (“1”, “1”) input.

the output, but the combined effect of the two input LS is, we have implemented an
AND gate according to Table 2.

Fig. 11 shows the dynamics or an OR gate for a (“1”, “0”) input.Applying a
similar perturbation toI I2

sh [corresponding to (“0”, “1”)], the same result is obtained.
Finally, if we simultaneously apply the same perturbation to bothI I1

sh andI I2
sh [cor-

responding to (“1”, “1”)], a similar excitable excursion isobtained for the central
(output) LS, as shown in Fig. 12.

Fig. 13 Response of an AND logic gate to a (“1”, “0”)input.
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Fig. 14 The same as in Fig. 13 for a (“1”, “1”) input.

Figs. 13 and 14 show the response of an AND gate to a (“1”, “0”) and a (“1”,
“1”) inputs respectively.

With these two basic gates combined with a NOT gate, not explained here, it
is possible to build the two universal logic gates, NAND and NOR, which are the
pillars of logic. In electronics, these gates are built fromtransistors, but they can be
built by means of other technologies. We propose here using excitable LS. We have
to note, however, that using excitability to perform computations may imply rela-
tively long times inherent to the slow dynamics close to a fixed point. This drawback
can be minimized by properly tuning the parameters of the system and optimizing
the form of the perturbations. The aim of this work is just setting the basis of a new
way to perform all-optical logical operations using localized states.

6 Summary

It is remarkable how such a simple model as (1) can show such a rich and surprising
behavior through the dynamics of coherent structures. In particular, localized states
show different emergent behavior that can not be explained in terms of the local
dynamics of the model, but it is a self-organized phenomenondue to the spatial
coupling provided by diffraction. In the first part, we have briefly reviewed two
instabilities, namely a Hopf and a saddle-loop bifurcation, that signal the boundaries
between three different dynamical regimes: stationary, oscillatory and excitable. An
extensive analysis of this scenario can be found in [1].
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Then, we have focused in the study of the interaction betweentwo LS in the os-
cillatory regime. We have shown how the interaction breaks the degeneracy of the
spectrum of two LS creating two limit cycles with slightly different frequencies.
These two cycles bifurcate also for slightly different values of the control parameter
and they correspond to in-phase and anti-phase oscillations. An important issue ad-
dressed in this section is the role of the internal structureof LS in the dynamics. For
long distances between LS, i.e. weak interaction, we have shown that the dynamics
can be reasonable explained by means of two simple coupled oscillators. We have
given a simple model and described a method to estimated its parameters from the
dynamics of the full system. For the closest distance, however, we observe a much
more complex dynamics, and the simple model does not reproduce this behaviour,
at least for the adjusted parameters. This seems to indicatethat the internal degrees
of freedom play a role in the dynamics and that interaction couples, for instance, the
movement in the transverse plain with the oscillations.

Finally, in the last section, we have shown how coupling several LS in the ex-
citable regime, one can perform logical operations. This opens the possibility to
build new all-optical components to process information based on the use of LS.
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