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Abstract. A shifted or misaligned feedback loop gives rise to a two-point nonlocality that is the spatial
analog of a temporal delay. Important consequences of this nonlocal coupling have been found both in
diffusive and in diffractive systems, and include convective instabilities, independent tuning of phase and
group velocities, as well as amplification, chirping and even splitting of localized perturbations. Analytical
predictions about these nonlocal systems as well as their spatio-temporal dynamics are discussed in one
and two transverse dimensions and in presence of noise.

1 Introduction

There is a considerable interest in dynamical regimes in
which small fluctuations and “noise” are amplified. In a
large class of optical systems this behavior is caused by
convective instabilities [1–4]. A convective instability hap-
pens in presence of some source of drift when a state of a
nonlinear system becomes unstable and the group veloc-
ity of a localized perturbation is larger than the velocity
of propagation of the instability front. As a result, in the
laboratory frame the perturbation is amplified but moves
away and eventually decays at any point in a finite spatial
domain if it is not reflected at the boundary. The exis-
tence of these instabilities has been shown in systems in
which the propagation of disturbances is characterized by
drift or walk-off, modelled by a gradient term. For such
systems small regions of convective instabilities have been
predicted and observed in hydrodynamics [5–7], plasma [8]
physics, traffic flow [9] and optics [1–3,10,11].

It was recently shown that significantly larger windows
of convective instabilities are induced by nonlocal terms
in the governing equations [12]. In optics, these terms re-
sult from the presence of an off-axis or shifted feedback
loop which is modeled by a two point nonlocality that is
the spatial analogous of a temporally delayed feedback.
This is a common experimental issue and has been sub-
ject of both theoretical and experimental study in liquid
crystals light valves [13–15], Kerr-like media [10,16,17] and
generic nonlinear systems with diffusive [12] and diffrac-
tive [18] coupling. We note that the importance of feed-
back loops goes well beyond the realm of optics [19] and
has been long recognized in other fields of physics and also
in biology and engineering [20,21]. Usually feedback loops
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are introduced to better control the system and to limit
the growth of noise, while in the papers quoted a nonlo-
cal feedback has been used mainly to study fundamental
properties of fluctuations in non linear systems when con-
vective instabilities are induced. In a recent experiment,
however, an off-axis feedback loop has been used very ef-
fectively to suppress noise-sustained structures caused by
an intrinsic drift term in a free electron laser [22], show-
ing that two-point nonlocality are not only fundamentally
interesting, but also extremely useful.

In this paper we review the effect of off-axis feedback
in a broad class of optical devices and explore the effect of
the two-point nonlocality in the case of two transverse di-
mensions. We consider passive as well as active nonlinear
media with fast decay of the polarization [23], including
media with negative refraction index [24,25] and devices
with soft apertures [26]. Within the media we consider
both diffusion and diffraction and show how an off-axis
feedback changes the nature of the first instability thresh-
old. As a consequence, there are large windows of control
parameters where small localized signals can be strongly
amplified while the background radiation in other region
of the system remains very low [18]. The amplification
does not need a continuous signal injection and takes place
even when the initial perturbation is switched off. Further-
more, in systems with diffraction and active media, the
signal moves across the cavity with transverse phase and
group velocities that are easily managed to have the same
or opposite signs [18]. In spite of the broken transverse re-
flection symmetry, localized perturbations can move both
towards or against the off-set direction and can even split
into two counter-propagating components, with the laser
operating as a signal splitter. Both noise sustained struc-
tures and signals control are shown by numerical simula-
tions of the full nonlinear model confirming our theoretical
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analysis and a rich spatio-temporal dynamics. Previous
analysis of references [18,27] are extended considering two
transverse spatial dimensions.

2 Equations

Off-axis feedback loops, in which the propagation of
light is guided, are used with nonlinear phase/amplitude
modulators in which material evolves much more slowly
than the electric field and its polarization. First exam-
ples were liquid crystal light valves with feedback signal
propagating through fibers whose position was easily con-
trolled [13–15]. These devices − in presence of a shifted
feedback − are modelled by equations of the type [12,28]

∂tϕ = ∇2
⊥ϕ + f1(ϕ; μ) + f2 (ϕΔx; μ) . (1)

ϕ(x, y, t) is a real field that represents the state of the
material − for liquid crystal based devices it is related to
the alignment of the molecules − at a point (x, y) and
time t, while ϕΔx is evaluated at point x + Δx and time
t, respectively scaled with diffusion length and diffusion
time. The control parameter μ is independent on x for
the sake of simplicity. f1, f2 are real functions that can
be derived with respect to ϕ. In the limit of infinitely
extended systems, the homogeneous states are solutions
of f1 + f2 = 0 and their domains of existence depend
upon μ but not upon Δx.

A similar feedback is used also with active materials
inside optical cavities. When the dynamics of the differ-
ence of the populations of the energy levels coupled to the
light and of the polarization of the materials is much faster
than the dynamics of the electric field, these systems are
described by a single equation of the type [18,27]

∂tE = f
(|E|2; μ)

E + deiδ∇2
⊥E + reiφEΔx. (2)

Here E is the slowly-varying amplitude of the electric field
within a scalar description, d cos δ, d sin δ are the diffusion
and diffraction coefficients (d > 0) and μ is a control pa-
rameter. Devices where only the polarization evolves much
faster than the electric field are instead modelled by

∂tE = g1

(|E|2, N ; μ
)
E + deiδ∇2

⊥E + reiφEΔx,

∂tN = g2

(|E|2, N,∇2
⊥N ; μ

)
, (3)

where N represent the internal dynamics of the material
coupled with light. We consider feedback loops in which
the time delay Δt is very small compared to the time scale
of the slowly varying envelope of the field. The feedback
can then be characterized by an amplitude 0 < r < 1 and
a phase shift φ = ωLΔt, where ωL is the carrier frequency
and couples the field E in (x, y) with the field EΔx in a
shifted point. f , g1 and g2 are nonlinear complex functions
that can be derived with respect to E and N . The trivial
solutions of equations (2) and (3) are E = 0, and E = 0,
N = N0, respectively. Interestingly, our analysis applies
also to equations with the more general feedback term
[f1(|E|2)E]Δx, with reiφ = f1(0).

Fig. 1. (Color online) Schematic representation of a nonlinear
device with shifted feedback. The output beam is re-injected
into the device after a shift Δx.

We are interested in the dynamics of perturbations
δE ∼ exp (ωt + ik · x) around the uniform states in the
linear regime. The dynamics of perturbations for equa-
tions (2) and (3) is contained in the dispersion relation

ω = β − eiδ
(
k2

x + k2
y

)
+ rei(φ+kxΔx), (4)

where space is rescaled in units of
√

d. Here β = f(0)
for equation (2) and β = g1(0, N0) for equations (3). For
class B models, perturbations δN are always damped and
decoupled from δE and can be ignored.

We note that equation (4) with δ = 0, β = ∂ϕf1,
r = |∂ϕf2| and φ = 0 or π depending on the sign of
|∂ϕf2|, is the dispersion relation for the perturbations of
the uniform states of equation (1). This shows that de-
spite the different physical meaning of the variables ϕ and
E, as well as the significant differences in the character-
istic time scales and in the light-matter coupling behind
equations (1) and (2) or equations (3), the dynamics of
the perturbations of equation (1) is a special case of the
dynamics of the perturbations of the other two cases.

From equation (4) we find that there are unstable band
of k = (kx, ky) with the most unstable ones given by

∇kωR = − (2kx cos δ + rΔx sin (kxΔx + φ), 2ky cos δ)
= (0, 0), (5)

∂2
k2

x
ωR = − (

2 cos δ + rΔx2 cos (kxΔx + φ)
)

< 0, (6)

∂2
k2

y
ωR = −2 cos δ < 0. (7)

The subscripts R and I refer to real and imaginary part,
respectively. The conditions (6)−(7) ensure that the solu-
tion of equation (5) corresponds to the perturbation with
the largest amplification; note that equation (7) is the
standard stability condition for diffusive equations.

An important feature of the instability threshold is
that it is a function of four relevant parameters, namely
φ, δ, rΔx2, and βRΔx2, and is independent on βI ; there-
fore increasing the shift size Δx produces on the device the
same effect of larger gain βR and feedback r. A specific ef-
fect of the nonlocality is that the relative strength of diffu-
sion and diffraction, δ, also becomes an effective parameter
to control the threshold position. For active materials, the
lowest gain and feedback thresholds are generally found in
the purely diffractive limit (δ ∼ π/2). The threshold value
for the scaled feedback strength rΔx2 is independent on
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Fig. 2. (Color online) Instability threshold as a function of the
shift. The control parameter μ = βR +1 is represented for easy
comparison with results in the following section. The effect
of the feedback phase on the instability is shown: thresholds
for φ = 0 (horizontal dark line) and increasing values φ =
π/4, π/2, 3π/4, π (lighter colors), δ = 0.49π, r = 0.5. The dot
corresponds to the parameter choice in Figure 5.

the sign of the refractive index (sign of δ) and increases
with diffusion. Both βR and r can be increased to cross
the laser threshold and − similarly to the case of perfect
alignment − if the feedback is out of phase then stronger
gain is required, as shown in Figure 2. For vanishing shift
(Δx = 0) this phase acts as a detuning and increases
the threshold while for larger shift values the threshold
tends asymptotically to the value for in-phase feedback
(φ = 0). Quite surprisingly, a misalignment lowers the
threshold because the most unstable mode has kx,I �= 0
and, in this case, the nonlocal coupling can reduce the
feedback dephasing. Consistently with this interpretation,
when the feedback perfectly in phase with the intracavity
field (φ = 0) the most unstable mode is homogeneous with
kx,I = 0 and the threshold is independent on the lateral
shift Δx.

The dispersion equation (4) has in general a not van-
ishing imaginary part corresponding to a non null phase
velocity

vp = −ωI(k)
k

|k|2

= − [
βI −

(
k2

x + k2
y

)
sin δ + r sin (kxΔx + φ)

] k
|k|2 .

(8)

For the most unstable k, kc, the phase velocity is

vp (kc) =
(

kxc sin δ − βI

kxc

+
2 cos δ

Δx
, 0

)
, (9)

and group velocity is

vg (kc) = ∇kωI (kc)

= (2kxc sin δ − rΔx cos (kxcΔx + φ), 0)

=

⎛

⎝2kxc sin δ ∓
√

1 − 4kx
2
c cos δ2

r2Δx2
, 0

⎞

⎠ . (10)

Fig. 3. (Color online) Variation of phase (upper plot) and
group (lower plot) velocies, vp,x(kc) and vg,x(kc) respectively,
depending on δ and rΔx2. Other parameters: β = 0.2 − i0.02
and φ = π/4.

Note that both vp(kc) and vg(kc) are null in the direc-
tion orthogonal of the shift and coincide with the one di-
mensional values. In equation (10) the − sign solution
always satisfies equation (6) and therefore corresponds to
a wave-packet with frequency spectrum centered on a lo-
cal maximum of the amplification. On the contrary, the +
sign may not satisfy equation (6). We remind that equa-
tions (9−10) with δ = 0, φ = 0 or φ = π give the velocities
for the diffusive systems of equation (1). An example of
the large variability of phase and group velocities at the
critical wave-number are shown in Figure 3.

The analysis above shows that the phase velocity at
kc and the group velocity are always parallel to the shift,
while their sign varies. There are manifolds in the control
parameter space that separate regions in which the group
and the phase velocity of the most unstable perturbation
have the same sign from region in which these velocities
have opposite sign. Moreover, the real part of the disper-
sion relation may have more than one maximum, so that a
single perturbation may split into two wave-packets. The
independent tunability of phase and group velocity is a
specific feature of optical systems with two-point nonlocal-
ity: as a matter of fact, gradient terms fix both velocities
in the same direction of the drift, while two-point nonlo-
cality in diffusive systems gives always opposite velocities
at the critical wavenumber (vp(kc) = −vg(kc)).

In the purely diffractive limit δ → π/2, both velocities
are actually odd functions of kc; this symmetry is reduced
by the effect of diffusion (|δ| < π/2). Therefore, even if
for φ = π both +kc and −kc are unstable, from the linear
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analysis we do not expect intensity stripes above threshold
in such optical systems. As a matter of fact, the instability
of these two states (different traveling waves) is rather
peculiar and opens the possibility of bistability instead of
stripe pattern formation.

Note that the tunability of transverse phase and group
velocities is a general property that is valid also in the
case in which Δt is of the order of the time scale of the
slowly varying amplitude [27]. This tunability is therefore
a rather robust and distinctive feature of two-point nonlo-
cality with respect to models where velocities are induced
by drift terms [28]. We remark that the parameters φ and
δ are essential for this tunability: for this reason in the
diffusive systems of equation (1) the tunability is absent
and the phase and group velocities have always opposite
sign.

We now consider whether the perturbations with non
null group velocities grow fast enough to occupy the entire
system (absolute instability) or if their group velocity is
such that the perturbations, although growing, move away
(convective instability).

The analysis is performed in an infinite system eval-
uating the asymptotic behavior of perturbations both in
a traveling and in a fixed reference frame. Note that the
distinction between absolutely and convectively unstable
regimes is generally given in infinite system while the in-
clusion of boundary effect in finite systems can change, in
some case even drastically, the instability scenario. The
simpler example is the case of periodic boundary con-
ditions: in this case no convective instability does ex-
ist at all. Another interesting related question for finite
systems is the phenomenon of transient growth of per-
turbations observed in cases where the linear stability
operator is non normal, i.e. does not commute with its
adjoint [29–31]. The connection between convective insta-
bility and transient growth of perturbations is still an open
question [32]. What has been characterized is the macro-
scopic amplification of quantum noise in optical systems
in this regime [33,34].

We determine absolute thresholds by evaluating
asymptotically the Green function: we extend analytically
the dispersion relation to complex wavevectors k (for one
transverse dimension) and find the appropriate integra-
tion paths in the plane k. A detailed analysis is given
in [27], here we remark only that for the purely diffusive
systems of equation (1) the asymptotic evaluation of the
Green function is done by closing the integration contour
using only equiphase lines from saddle points. Further-
more, it turns out that the absolute threshold is deter-
mined only by the saddle closest to the imaginary axis.
For equations (2) and (3) instead, we close with steepest
descent paths a finite segment [kIm, kIM ] of the imagi-
nary axis containing all the kI with wR(0, kI) > 0 and
with kIm, kIM , such that wR(0, kI) < 0 for kI ≤ kIm and
kI ≥ kIM . For these two cases, the correct determination
of the absolute thresholds requires to identify the integra-
tion paths and to evaluate the contribution to the Green
functions of the saddle points that are part of it, excluding
all the others.

Fig. 4. (Color online) Regimes in which the homogeneous solu-
tion is stable, convectively unstable and absolutely unstable as
a function of the shift and for δ = 0.45π, r = 0.56, φ = 0.25π.

Summarizing, our analysis allows to distinguish three
regimes both in diffusive [12] and laser [18] systems with
a two-point nonlocality, as shown in Figure 4 for a partic-
ular parameters choice. The homogeneous (vanishing or
non-lasing) state becomes unstable above a first threshold
(convectively unstable regime) corresponding to positive
dispersion equation (4). The absolutely unstable regime
is found only after evaluation of the asymptotical growth
of perturbations, involving an integral whose approximate
value is found with a non-trivial application of the saddle-
point technique. This calculation is fully described in [18]
and [27] and here we only stress that not monotonic
threshold dependence on the shift can be found (Fig. 4)
and have been also checked by numerical simulations of
dynamical equations.

3 Nonlinear and stochastic spatio-temporal
dynamics

The general analysis of the previous section encompasses a
broad class of non-diffractive as well as laser models. Main
features of the spatio-temporal dynamics of specific sys-
tems can be anticipated from the linear stability analysis
and we will see some examples in the case of a class A [36]
laser:

∂

∂t
E = −E (1 + iθ − N) + eiδ∇2

⊥E + reiφE (x + Δx, y)

+ εξ(x, y, t)

N =
μ

1 + |E|2 (11)

with ξ(x, y, t) complex Gaussian white noise. Numerical
simulations of this nonlinear model are performed with
a second-order in time Runge-Kutta method and using
the random number generator of reference [37]. The con-
nection with the analysis of the previous section is given
by β = μ − 1 − iθ. Numerical simulations confirm the
predicted instability diagram; the wavenumbers dynami-
cally selected and the velocities are well approximated by
those obtained from the analytical analysis of the linear
dispersion.
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Fig. 5. (Color online) Spatio-temporal intensity dynamics
showing the interaction of signals in a 1D class A laser with
parameters Δx = 1, μ = 1.3, θ = −1, δ = 0.49π, r = 0.5,
φ = π, ε = 0 (see Fig. 2). Evolution starting from two small
Gaussian perturbations as can be recognized in the picture at
time t = 0.

3.1 Signal splitting and interactions

The regime of convective instability allows the amplifica-
tion of localized light signals below the lasing threshold.
The direction of propagation of these signals depends on
the group velocity equation (10) and steering can be ob-
tained also non-mechanically by varying the feedback loop
phase, as shown in Figures 3 and 4 of reference [18]. Par-
ticularly interesting is the case in which the feedback is
negative, φ = π, first discussed in reference [18]. The re-
covered symmetry in the dispersion relations gives rise
to instability of both positive and negative wave-vectors
and, as a peculiar consequence of the two-point nonlo-
cality, these waves propagate in opposite directions. This
allows the system to operate as a signal splitter in which
an initial perturbation, such as a localized spot of light,
is divided into two counter-propagating copies. This phe-
nomenon is robust also in presence of noise [27] and devi-
ations from the symmetry, i.e. differences between the left
and the right propagating signals, are due to nonlinear
effects [33–35].

Once excited, these localized signals are amplified and
propagate in the system (even in opposite directions) with-
out giving rise to any intensity modulation, even if the field
is actually spatially oscillating. We will now focus on a dif-
ferent aspect of signal control, namely signal interaction
when they cross each-other. As localized perturbations are
split into counter-propagating ones it is actually possible
to have signals crossing during temporal evolution. This
case is represented in Figure 5. In this example the system
is excited in two separated points at an initial time and the
dynamics is considered in the case of only one transverse
dimension. We see that two of the four generated signals
cross and locally interfere generating a transient intensity
stripe in the center of Figure 5. Moreover, looking on the
left (right) side, we see that due to the different velocities
of perturbations fronts, the trailing edge of the left signal
is reached by the leading edge of the following signal and
this also generates intensity modulation by interference.
Finally, after a transient time (not shown in Fig. 5) and

Fig. 6. (Color online) (a) Spatio-temporal evolution of the
intensity field for one transverse dimension and starting from
a noisy initial condition. (b) Intensity |E(x, t = 100)|2 (black
line), real part (green dotted line) of the field, and pump profile
μ (orange line). Parameters: Δx = 2, θ = 0, δ = 0.45π, r =
0.56, φ = π/4, ε = 10−3. Super-Gaussian profile of μ with
maximum value 0.6.

as expected, due to the convective character of the insta-
bility, the system evolves locally back to the homogeneous
vanishing state.

3.2 Patterns in one and two dimensions

In previous works we described the spatio-temporal dy-
namics of class A lasers assuming a one dimensional trans-
verse geometry [18,27]. Good agreement with the theoret-
ical predictions (threshold position, pattern wave-length,
phase and group velocity) was found when considering
rather large systems where boundary conditions effects
are negligible. The importance of the boundaries is partic-
ularly evident in the convectively unstable regime. In Fig-
ure 6 we show the evolution of a noise sustained structure
for δ = 0.45π, r = 0.56, φ = 0.25π and super-Gaussian
pump with maximum value μ = 0.6 in the central re-
gion (see Fig. 6b). From Figure 4 and remembering that
βR = μ − 1, we see that for these parameters the nonlas-
ing state is convectively unstable and the field in Figure 6a
has the typical incoherent profile discussed in [27]. Here
we show that a large system is needed in order to observe
noise sustained structures intensities in the system: the in-
tensity represented in Figure 6b is significantly high only
in half of the system, far from the right edge of the pump
profile μ. In other words, the intensity growth – in this
case against the shift direction – is rather slow and large
systems are needed to observe an intense noise sustained
pattern. Oscillations appear in the field profile (phase pat-
tern given by the green line in Fig. 6b).
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Fig. 7. (Color online) Temporal evolution of the intensity (up-
per line) and of the real part (lower line) of the field starting
from a noisy initial condition. Parameters: Δx = 2, θ = 0,
δ = 0.45π, r = 0.56, φ = π/4, ε = 10−3. Super-Gaussian pro-
file of μ with maximum value 0.6 inside the circular area. For
this value of μ the vanishing state is convectively unstable.

Fig. 8. (Color online) Section plot of the 2D intensity (black
line) and real part (green dotted line) of the field for t = 100.
The corresponding values are multiplied by a factor 10 to be
compared with the pump profile μ (orange line). Same param-
eters of Figure 7.

In order to give a representation of the aspect of spa-
tial structures as they would appear in experiments with
broad area lasers, it is interesting to consider the evo-
lution of two-dimensional field E(x, y, t). In Figure 7 we
represent both fields profiles and intensities for the same
parameters as in Figure 6, showing the aspect of a noise
sustained structure in the convective regime. Three snap-
shots give an example of the dynamic character of this
structure: numerical simulations in presence of noise show
an incoherent traveling structure whose aspect is contin-
uously changing. The importance of the boundary and
system size in this case is evident as it leads to a very low
intensity noise sustained structure. Due to the reduced
size of the pumped area with respect to previous 1D nu-
merical simulations (compare μ super-Gaussians in Figs. 6
and 8) the intensity profile is dominated by a smooth front
emerging on the right side and remains very small.

When the pump is increased this front becomes steeper
and and a uniform intensity state occupies a broad part
of the system. Above the absolutely unstable threshold a
coherent phase pattern arises as shown in Figure 9 and
the system is in the lasing state. Starting from a noisy
initial condition, perturbations are washed away from the

Fig. 9. (Color online) Temporal evolution of the intensity (up-
per line) and of the real part (lower line) of the field for van-
ishing state absolutely unstable. Parameters: Δx = 2, θ = 0,
δ = 0.45π, r = 0.56, φ = π/4, ε = 10−5. Super-Gaussian profile
of μ with maximum value 1.

system and the intensity profile becomes intense and uni-
form. Also the coherence of the underlying phase pattern
increases (in this case the pattern aspect ratio is very small
and only one oscillation is actually seen in Fig. 9). Note
also that the intensity profile is deformed and displaced
against the direction of the shift, i.e. it is not exactly cen-
tered in the pumped region (white circle in Fig. 9, panels
at t = 75).

The most peculiar patterns in lasers with nonlocal
feedback occur for φ = π, when the system operates as
a signal splitter. The change in the pattern aspect when
increasing the pump is shown in Figure 10. In the convec-
tively unstable regime (two panels with μ = 1.4) there are
now two regions of larger intensity, as perturbations with
opposite wave-numbers travel apart, as expected. Intense
light spots correspond to a certain coherence in the under-
lying phase pattern, while the intensity drops down where
there are defects in the phase stripes. Intensity reaches
larger values on one side (here the left one, against the
positive shift direction, Δx = 2) [18,27,35].

Noise sustained patterns for negative feedback are then
characterized by off-axis spots and have a vanishing inten-
sity in the central area, while crossing the absolute insta-
bility threshold an intense and uniform profile is reached
– after a transient – in the whole pumped region. Note
that the phase pattern has larger wave-numbers in the
noise sustained structure. After a longer transient (not
shown in the picture) the stripe in the absolutely unsta-
ble regime (Fig. 10 for μ = 2.1) becomes orthogonal to
the shift direction, as theoretically predicted.

3.3 Conclusions

Two-point nonlocality can be easily induced in optical
devices through a displaced feedback loop and leads to
distinctive effects opening interesting possibilities in ex-
periments in extended devices. We have presented its
analytical characterization through linear approximations,
allowing to predict instability convective and absolute
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Fig. 10. (Color online) Spatial distributions of the intensity
(left panels) and field real part (right panels) for numerical
simulations with super-Gaussian pump profiles with maximum
intensity μ = 0.7, 1.4, and 2.1 inside the circular areas. In the
external region the gain vanishes. Other parameters are Δx =
1, θ = 0.2, δ = 0.49π, r = 0.5, φ = π, ε = 10−5. Simulations
are started from noise initial condition.

thresholds, unstable wave-numbers and velocity of drifting
packets, in a broad class of two-dimensional nonlinear sys-
tems. Many differences with respect to the most studied
drift, modelled by a gradient term, make this two-point
nonlocality an interesting and versatile tool in view of
experiments. In particular, such nonlocality opens signifi-
cantly larger windows of control parameters where the sys-
tem output state is sustained by the presence of noise in-
stead of the dynamics (convective regime). In such regime
the system can be locally excited generating a signal that
is amplified during propagation. Note that the amplifica-
tion here considered occurs once the (initial) local per-
turbation is removed, at difference of laser amplification
above transparency, generally considered in presence of a
continuous signal injection.

Another distinctive feature of displaced feedback and
two-point nonlocality is the possibility to independently
tune phase and group velocity, while gradient terms fix
both velocities in the same direction of the drift. In optical
systems such velocities have been shown to be either par-
allel or opposite and can be tuned even non-mechanically
through the feedback phase φ (without touching the ex-
periment alignment). Such large tunability is a charac-

teristic of optical systems, while two-point nonlocality in
diffusive systems gives always opposite velocities at the
critical wavenumber (vp(kc) = −vg(kc)). Another distinc-
tive feature of two-point nonlocality in optical systems is
the possibility to control the feedback phase to operate the
laser as a signal splitter (for φ = π). Then an initial per-
turbation is split in two copies amplifying (even when the
injection is removed) during their propagation in opposite
directions through the broad area device.

In general, no oscillations are observed in the intensity
profile and only phase patterns are present in lasers here
considered. The interaction of traveling signals, however,
displays also intensity modulation in the interaction re-
gion, as discussed in Section 3.1. Similarly, if instead of
initial localized perturbations the system is considered in
presence of noise, a central area of intensity stripes can be
observed in a laser as shown in Figure 10 of reference [27].
Numerical simulations considering only one transverse di-
mension allow to easily visualize the spatio-temporal dy-
namics, as in the case of the signals interactions in Fig-
ure 5, or to see the spatio-temporal coherence of noise
sustained structures, as in Figure 6. On the other hand,
simulations in two transverse dimensions here presented
are important in view of experimental realizations, show-
ing pattern features in the shift direction and in the or-
thogonal one. Examples are the orientation of phase os-
cillations, the elongated aspect of transients domains, as
well as the displacement of lasing state with respect to
the pumped region, as shown in Section 3.2. A last impor-
tant aspect to be considered in view of experiments is the
system size: analytical predictions for infinite systems are
in quantitative agreement with simulations for relatively
large systems, while a finite system effects gives important
deviations in small systems not only when few oscillations
of the phase patterns are present but also in the cases in
which smooth fronts modulate the light intensity profile.
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