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Ion-trap simulation of the quantum phase transition in an exactly solvable model of
spins coupled to bosons
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It is known that arrays of trapped ions can be used to efficiently simulate a variety of many-body quantum
systems. Here we show how it is possible to build a model representing a spin chain interacting with bosons
that is exactly solvable. The exact spectrum of the model at zero temperature and the ground-state properties are
studied. We show that a quantum phase transition occurs when the coupling between spins and bosons reaches
a critical value, which corresponds to a level crossing in the energy spectrum. Once the critical point is reached,
the number of bosonic excitations in the ground state, which can be assumed as an order parameter, starts to
be different from zero. The population of the bosonic mode is accompanied by a macroscopic magnetization of
the spins. This double effect could represent a useful resource for phase transition detection since a measure of
the phonon can give information about the phase of the spin system. A finite-temperature phase diagram is also

given in the adiabatic regime.
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I. INTRODUCTION

Quantum spin chains play a fundamental role in the study
of many-body systems and quantum phase transitions. These
phenomena take place at zero temperature, that is, in a purely
quantum regime, and are induced by the variation of an
internal parameter causing a critical change in the ground
state due to level crossing in the energy spectrum [1]. In recent
years, a renewed interest in quantum phase transitions has
been developed to understand the behavior of entanglement
near the critical point [2-5]. On the contrary, the study
of interactions between spins and light is considered the
starting point to introduce the framework of open systems,
where the appearance of dissipation and decoherence can
be understood [6]. A prototypical example is the so-called
spin-boson model [7], consisting of a single spin interacting
with a multimode electromagnetic radiation, modeled as the
distribution of quantum harmonic oscillators. Here we discuss
the case where a series of spins (arranged in an isotropic
XY chain) interacts with one or more bosonic
modes.

Despite the importance of spin systems, they are not
always directly accessible experimentally, and efficient ex-
perimental quantum simulation methods are needed to study
their properties. It has been shown that spin chains can be
efficiently simulated using internal and external degrees of
freedom of trapped particles [8—12]. In particular, arrays of
laser-cooled trapped ions seem to be very promising from
an experimental point of view. Ions can be trapped with
a high spatial accuracy, and their internal states can be
manipulated with a high precision by means of the interaction
with electromagnetic fields. The first experimental evidence
of coupling between two-level systems, consisting in the
transition from paramagnetic to ferromagnetic order in a
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two-spin quantum Ising model, has recently been reported
[13]. Furthermore, ion traps offer the possibility of engineering
spin-boson coupling [11,14]. Since spin chains are also impor-
tant for practical applications, like quantum communication
protocols [15], their simulation would allow estimation of the
decoherence effects which derive from the interaction with the
environment [16].

As said before, we propose a model which allows us to
observe the phase transition in an isotropic XY spin chain
coupled with external boson modes. The model we introduce
in the following is exactly solvable. The phase transition
manifests itself in a nonanalytical variation of the amplitude of
the bosonic field. In correspondence with this change, the chain
acquires a finite magnetization. The physical implementation
of this model can be done within the framework of trapped
ions discussed before.

The paper is organized as follows. In Sec. II we first
introduce the general argument of simulation of spin chains
with trapped ions. Then we show how it is possible to simulate
a particular model, consisting of a chain of spins in contact
with a bosonic environment. The critical properties at zero
temperature of this model are discussed in Sec. III, while in
Sec. IV we study the phase diagram at finite temperature in the
case of a single slowly oscillating phonon. Finally, in Sec. V
we present our conclusions.

II. ARRAYS OF TRAPPED IONS AND INTERACTION
BETWEEN SPINS AND BOSONS

As shown in Refs. [8] and [9], Coulomb chains in linear
Paul traps can simulate spin-spin interactions. An effective
spin-spin Hamiltonian emerges as the result of the interaction
of the internal (electronic) states of ions with the phononic
degrees of freedom generated by Coulomb repulsion. The total
Hamiltonian includes a phonon bath (H,), a state-dependent
force produced by a set of lasers along the directions @ = x,y,z
(Hy), and an effective magnetic field that can be generated by
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forcing transitions between the internal ion states (H,,). In
units of 7 = 1, we have (see [8])

_ t
H, = E Wa,nly ;Ao,ns

a,n

Hy = —22Faqm,(1 +a), 1)

a,l
2: a_a
Hm: BGI’
a,l

where a, , is the annihilation operator of the n vibrational
mode in the ¢ direction of the phonon bath due to the Coulomb
repulsion, F,, are the laser forces, g, is the displacement, with
respect to its equilibrium position, of ion / in direction «, and
B is the effective magnetic field. Expressing the coordinates
in terms of collective modes through the matrices M%,

(aw +au)(1+07). (2

H; = F,
A spin-spin Hamiltonian is obtained after the application of

a suitable canonical transformation U = e, introduced to
eliminate H: if

S = Fp————
0;, /2ma)z

the total system Hamiltonian turns out to be

- aa,n)(l +0[a)» (3)

H=UHU'=H, + - ZJIJO'IG +ZB’°‘U°‘+HE,
a,l,j a,l
“)
where B = B* — F2/(m?), the coupling parameters J are

functions of F,M,w, and Hg is a residual term that can be
neglected at low temperatures or by using highly anisotropic
traps [8]. A particular case of Eq. (4) is represented by the
isotropic XY chain in the presence of a transverse field,
numerically studied in Ref. [9].

Here we show that a different interpretation of the unitary
transformation allows us to obtain other kinds of phase
transitions, involving, for instance, the interaction between
spins and bosons. A possible way to do that consists in applying
different transformations along the three axes. In fact, by
limiting the transformation given before to the directions x
and y, through

Sy = Fy———
’ O‘ZX:) ; \V 2mw2 n

we obtain

aotn)(l + o/ ) &)

S HeSw = H, +ZF (i’n+a1,n)(1~|—af)

M,
\/zmwzn
+ = ZZJ”GIU —i—ZBZ <

ozxslj

+ZZB

a=x,y

¢ 4+ Hp. (6)
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Here the correction Hj can be neglected in the same limit
of Hg. In the case of a spatially homogeneous array, we can
drop the dependence from the ion position in both M and in
J. Moreover, if the Coulomb interaction can be considered
as a perturbation with respect to the trapping potential (stiff
limit), the trapping frequencies can be tuned to obtain relevant
spin-spin coupling only between nearest neighbors [8]. Along
the transverse direction, a boson displacement can be applied
to eliminate the term ) _, FZM,ﬁ/(‘/2ma)Z,,,)(a;n +a,,). Asa
result,

= Z Zal 01+ Z s (‘ﬁ +azn) Yo + Hy
!

a=x,y
(B —2Zg" )Za, + > ZB
a=x,y
8n
—Nanw—n, (7)

where gi = F,M?,/(N/2mw, ). The last term is a constant
that translates all the energies, and the fields B’ can be set to
0. By fixing the external magnetic field B> =2 (g:*/wy),
we arrive at

FI—%Z(J
NB:

+Z 8 (! ”—i—aw)ZGl +H - ®)

ooy + 0] ay)

It is worth noting that, since the mutual distance between the
ions makes any direct spin-spin interaction negligible, the spins
we introduced are effective two-level systems that, because
of the unitary transformation, are not trivially related to the
original internal degrees of freedom of the ions. Nevertheless,
the bosonic variables do refer to the real phonon modes along
the z direction, so their measurement appears to be the natural
way to get information about the overall system.

III. CRITICAL PROPERTIES

To describe the critical properties of this model, let us first
discuss the simpler single-mode version. By assuming J* =
JY = J, the Hamiltonian is

N

‘m_JZ o al+1+Hc]+wa a+—(aT+a)Zol,
=1 VN =1

©))

where N is the total number of spins and where periodic
boundary conditions are imposed. As it is useful to work
with adimensional quantities, we use J as the energy unit
and define the rescaled phonon frequency y = w/J as well as
the bare coupling constant A = g2/(Jw). Using this notation
the Hamiltonian reads

N N
A
Hy, = E lo;" 03, + Hel+ ya'a + ./ Wy(af +a) E of.
=1 =1

(10)
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To diagonalize it, first we introduce the Jordan-Wigner trans-
formation [17], defined by o7 =1 — 2c;cl,al+ =[]0~
2c;cj)cl, and 0, = Hj<l(1 - 2CjCj)Cl]L, mapping spins into
spinless fermions. Then the Fourier transform,

1 N
Zelznk[/l\/cl’ (11)
N =1

allows us to write, in the thermodynamic limit,

A 4
Han =Y acler +yala -+ @ + @ Y (1 = 2¢fe),
k k

12)

with €, = —2cos(2wk/N). Fermions can be decoupled from
the bosonic degree of freedom by applying the displace-
ment operator D = exp[&(alf — a)] such that DaDt = b, & =
—VA/(yN) Y., (1 — 2¢l ;) being an operator in the fermionic
space. Since [&, ) ekc}:ck] = 0, fermions are not transformed
into polarons because of the application of D. Moreover, it is
immediately seen that [b,h'] = 1. This displacement replaces
the boson vacuum with a coherent state whose amplitude is
determined by the transverse component of the total spin. The
final Hamiltonian is

2
_ s
Hp =Y excier +yb'b — 5 [Z(l - 2c,ick)] . (13)
k k

Adding the boson displacement D to S, and S, of Sec. II
amounts to building the total S of Ref. [8] for a particular
choice of parameters. If one disregards the term yb'h, the
Hamiltonian (13) can now be interpreted as a XXZ spin
chain with short-range coupling along the radial direction and
axial long-range coupling. These kinds of interaction ranges
are realistic, since radial modes can mediate nearest-neighbor
spin-spin interactions (stiff limit), and transverse modes are
known to generate long-range interactions (soft limit). While
the range of interactions along the transverse direction depends
only on the number of ions and cannot be manipulated by
means of laser fields, the stiff limit in the radial direction
can be reached by increasing the trapping frequencies [9].
Performing the unitary transformations in two separate steps
helped us to interpret this model in terms of the coupling with
a real phonon. Without performing the two steps separately,
we could not discuss the spin-boson phase transition.

At first sight, H,, is similar to that of the XX chain in
a transverse field [18], whose Hamiltonian in the Jordan-
Wigner space would be Y excici — h Y (1 — 2cc). While
the latter model has the U(1) symmetry, since it is invariant
under rotations around the z axis, the Hamiltonian (9) has an
additional symmetry, also being invariant under the action of
the operator S = [, 0/ ® exp [iratal. The U(1) symmetry
implies, in the language of fermions, that eigenstates of H
have a fixed number of particles. The symmetry S could be
broken, for instance, by adding a displacing bosonic field,
a + a', and then sending it to 0. The average value of a + a'
can be assumed as an order parameter to study the breakdown
of S.

Since we are interested in the implementation in an array
of ion traps, finite-size effects should be taken into account.
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A detailed analysis of XY Z models in finite cycles has been
made in several papers [18-20]. In our model, after the Jordan-
Wigner transformation, the Hamiltonian becomes

N-1
Hy,, = Z(CI_HCIT + clclTH) — 'P(C]ILCN + c;,cl) + yaTa

Py
n /W”(af +a) Xk:(l —2cler), (14)

where N is assumed to be an even number and where P =
]_[11\; (1= ZCITCI). Its possible eigenvalues are £1. Note that P
is a measure of the parity of the number of particles of each
state. Since [ Hy,, Pl = 0, all eigenstates of Hp, have definite
parity, and we can proceed to a separate diagonalization of
Hgp, in the two subspaces corresponding to P = +1. Then, if
we introduce the two new Hamiltonians H3, t = Ho(P = £1),
the complete set of elgenvectors of Hyy w111 be given by the
odd eigenstates of H_, and the even eigenstates of H . The
choiceof P = —1or 73 +1 amounts to having, respectlvely,
periodic or antiperiodic boundary conditions. This implies that
H/ and H_, are diagonalized through two Fourier transforms
which differ from each other because of the set of allowed
values of k. If half-integer values (k = 1/2,3/2,...,N — 1/2)
are used to diagonalize HJ, in the case of H,, we have
k=1,2,...,N. Now the displacement operator D can be
introduced, and a structure formally identical to that given
in Eq. (13) can be done for both H}, and H_,, with the proper
choice of k.

The ground state of the bosonic part can be identified as
the vacuum state of the operator b, and it corresponds, in
the original representation, to a coherent state of amplitude
equal to the average value of the operator & calculated on the
fermionic ground state, whose structure is now enlightened.
Since both H}f, and H, are exactly solvable, their spectra can
be calculated by measuring the energy of all possible configu-
rations, obtained adding the desired number of fermions. The
energy of a state with m particles is

sm’

AMN — 2m)2

2y cos 7K (15)

where M is a string representing the occupation of different
modes. The sum is extended only to the values of k where a
particle is present. For large values of A, the first term will
be larger than the sum, unless N — 2m is very small. The
ground state corresponds to the sequences which maximize
(N —2m)?, that is, to m =0 or m = N, and it is twofold
degenerate. In fact, both the state |®*) = |0) ® |«) and the
state |[®7) =[], c,i|0) ® | — «) have energy equal to Ey =
—N . Here the state |®*) is, in the original fermion-boson
representation (before the application of D), the tensor product
of the fermionic vacuum and of a coherent bosonic state
of amplitude o = —g\/ﬁ /w, while in |®7) the fermionic
system is fully occupied, and the boson coherent state has
amplitude —«. As A decreases, the two terms in Eq. (15)
start to compete with each other. Let us call A,, the value
such that £y = min{E ¢}. Since, by symmetry, A, = An—p,
we limit out consideration to m = 1,2,...,N/2. It can be
shown that, if m < m’, then A,, < A,,. In other words, the

Epy=—
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FIG. 1. (Color online) Ground-state energy of H as a function of
A for a chain of eight spins. Both the energy and A are measured in
units of J or w (we assume J = w = 1). For any given number of
particles, only the lower level is plotted. The solid diagonal (green)
line represents the energy of |®*) and |®~), while the solid horizontal
(black) line corresponds to |®HF). As we can see, there is only one
transition, occurring at A. 2~ 0.65. All energies derived from numbers
of fermions different from 0, N /2, N are excitations. Specifically, the
dotted light gray (green) line represents the energy of the one-particle
state, the dotted gray (red) line is for the two-particle state, and
the dotted dark gray (black) line corresponds to the three-particle
state. Due to the particle-hole symmetry, states with m and N —m
particles have the same energy.

first ground-state level crossing takes place between |®™) (or
|®~)) and a state with N /2 particles. This transition occurs at
the value of Ay/» = A, determined by

MY Qk—1n

Ni, = 4ZcosT. (16)
k=1

In the thermodynamic limit, performed replacing the sum with
an integral, we obtain A, = 2/mw. As a consequence of the

half-filling, ) ", (1 — 2c;£ck) = 0, and the boson part is left in

its vacuum. This state can be writtenas [®"") = [T, _y/4 ci |0)
® 10).

By further decreasing X, no other transitions are observed.
Then the state |®HF) is the Hamiltonian ground state for
every A < A.. It is worth noting that both |®HF) and |®*)
(or |®7)) are eigenstates of H_\ . In any case, eigenstates of
H, are excitations. In Fig. 1, we plot the lowest energy levels
for a chain of eight spins. The transition |®*) — |®HF) is
observed.

While |®'F) is an eigenstate of the symmetry operator S,
this is not true in the case of |®*) and |®~). In fact, S|d*) =
|®F). The possibility of obtaining a coherent emission of light
on the bosonic mode is inherently linked to the breakdown
of the Hamiltonian symmetry, since the only coherent state
which is also an eigenstate of exp[ira’a] is the vacuum. While
symmetry breaking takes place independently of the system
size (the number of spins), only in the thermodynamic limit
does a true phase transition take place, since the Hilbert spaces
that can be built up starting from |®*) and |®~) become
unitarily nonequivalent.

The exact results we propose have been obtained in the
presence of periodic boundary conditions. By releasing this
hypothesis, they are correct only in the thermodynamic limit,
while in the case of finite size, as in the example in Fig. 1,
corrections to the energy levels are expected. Actually, the
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structure of eigenfrequencies giving rise to the phase transition
from |®*) to |®HF) can be observed also in the case of a very
short open chain (N = 4).

In the presence of multimode radiation, Hamiltonian (8)
can be recovered, modifying Hamiltonian (9) in the following
way:

Hym = Z[U/ 011 “FHC]‘I'ZVna an

+Z ”V”( +an>Zal, (17)

and it is subject to the symmetry Smm =[]0/ ®

explin ), alan]. The diagonalization is performed through
the application of the Jordan-Wigner transformation and of

the operator [], D,,, with D, = exp (¢, (ah — a,)], and &, =
—An/(YaN) Zk(l — 2c,T(ck). As a result, we have

2
3 A
Aom =Y _ exclec+ Y wublb, — 5 |:Z(1 - 2c,tck)i|
k n k
(18)

where A =) g,zl /(Jwy) is related to the spectral density of
the bath. In Ref. [14], the authors showed how baths charac-
terized by different spectral densities can be simulated. Hyp,
being formally identical to Hyy,, we expect a phase transition
for A, =2/m.For A > A, the two degenerate ground states
are |®,) = [0) ® [, la) and |®,,) = [T, cll0) ® T, | -
ay,), while for A < A, the nondegenerate half-filled ground
state is [®F) = [ _n/s c110) ® [T, 10).

To clarify the proposal, we comment on the preparation
scheme needed to observe phase transitions in this system. As
mentioned in [8], the procedure consists in initialization to the
state || --- |) and then adiabatic switching of the spin-spin
couplings. This process is repeated several times for different
ratios of J/g, while the phase transition is detected through
fluorescence of the ions internal levels, as experimentally
realized in [13]. Here we also need to perform motional
ground-state cooling as far as axial degrees of freedom are
concerned. The possible errors in simulating this model with
trapped ions comes from the canonical transformation and
H ., where the error is quantified by the boson displacements
and the mean phonon number (given by temperature) of the
neglected transverse modes. Therefore they have to be cooled
down too [8].

IV. TEMPERATURE EFFECTS IN THE ADIABATIC LIMIT

In this section we analyze the phase transition at finite
temperature in the so-called adiabatic limit (y <« 1) with a
single coupled mode. This limit corresponds to the case of a
very slowly oscillating phonon and it is asymptotically exact
at high temperatures. The adiabatic Hamiltonian is obtained
by neglecting the kinetic energy of the phonon and treating the
coordinate as a parameter:

N

2
_ Vv
HAD = Z[Ul+al+l + HC] 4+ H =+
=1

N
v
—= of. (19
N I=1
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where we have introduced the adimensional coordinate v =
(g/J)V2wmx. The Hamiltonian is an isotropic XY model
in an external field, parametrically dependent on v; it can
be diagonalized in the same way as described previously
and reduced in two blocks corresponding to odd and even
pseudofermion occupation number,

2 v

Ey + NI (20)

with €AP(v) = —2[cos(2mk/N) + v/+/N]. The energy of a
configuration with a filling m is

£ ) vm n 2 21
m=—"2— cos —k | .
\/N keM N

The partition function, defined by

H, = Z e,ﬁD(v)c,tck +
k

2
Z x /deo(v,ﬁ) exp —B (:_X + J%) (22)

with the adimensional parameter 8 = J/kpT and where
Zo(v.p) = tr{e P Tuel 0lery (23)

can be written as Z « fdv exp —BVap(v,B) so defining an
adiabatic potential,

V v Lz 24

AD(U’ﬁ) - an + W + ,3 n 0(vvﬂ)' ( )

Above the critical temperature, Vap(v, ) is minimized by
v = 0, while at the critical point, the potential admits two
minima, allowing for a displacement of the phonon. The phase
diagram obtained is plotted in Fig. 2.

The experimental procedure to measure the phase transition
is exactly as in the zero-temperature case. The radial vibrations
should be cooled, while the axial degrees of freedom can be
prepared in a “thermal state.” The temperature of this state
can be controlled by reducing the power of the laser (resolved
sideband) cooling mechanism. To raise it further, the power
of the Doppler laser cooling has to be tuned. We still expect
to observe an abrupt change in fluorescence properties, as in
the zero-temperature case, since for moderate temperatures the
coherent state |a) becomes thermal, but the mean number of
phonons does not disappear abruptly. According to Fig. 2, the
order parameter value should change as a function of 7T'.
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FIG. 2. Phase diagram in the adiabatic approximation. Data were
obtained with 10 spins and numerical evaluation of the adiabatic
potential. The left region corresponds to a single-well adiabatic
potential; the right region, to a double-well potential.

V. CONCLUSIONS

To review, we have shown that a system of trapped ions
can be mapped into an isotropic XY chain interacting with
phonons, following the scheme in Ref. [8]. Modifying the
original canonical transformations needed to write a spin-spin
Hamiltonian, the vibrational degrees of freedom along a fixed
direction are coupled with the effective spins the other degrees
of freedom are mapped onto. The resulting model is exactly
solvable and exhibits a quantum phase transition, due to the
breaking of a symmetry which takes into account both the spin
and the boson degrees of freedom. In this phase, phonons are
in a coherent state with finite amplitude. Since the phonons
refer to the real ionic vibration and not to an effective quantity,
phase transition detection should be possible using state-of-
the-art techniques. The experimental realization of the building
block of such simulations (Ref. [13]) encourages this kind of
investigation.
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