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Preface

Nonlinear dynamics in photonic systems is an effervescent field that has been
continuously evolving during the last decades. The field of optical nonlinear
dynamics can be divided in two subfields, namely the study of the temporal
dynamics in nonlinear optical systems — assuming that the spatial structure of
the light field does not change in time — and the study of spontaneous pattern
formation in those systems. As an example of temporal dynamics, we refer to
e.g. periodic or chaotic spike sequences that have been observed in the output of
lasers. When considering the spatial extent of optical systems, a wealth of spatial
patterns has been found in e.g. broad-area lasers and cells filled with sodium
vapor. Most of these spatio-temporal phenomena encountered in optical systems
can also be observed in a variety of other disciplines such as hydrodynamics,
electrical discharges, chemical and biological systems, etc., because they refer to
universal concepts and essentially share the same mathematical formalism. In
this thesis, we address both temporal and spatial dynamics in optical systems.
In Part I, we study the dynamical behavior of semiconductor ring lasers, while
in Part II we examine nonlinear dynamics of spatially localized structures in
extended systems.

(I) Semiconductor ring lasers (SRLs) and semiconductor disk lasers are particular
types of semiconductor lasers where the laser cavity consists of a ring-shaped
waveguide. SRLs are presently recognized to be promising sources in photonic
integrated circuits. In particular, the possibility of bistable directional operation
has paved the way for encoding digital information in the emission direction
of SRLs with record low values for switching times and switching energies [M.
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T. Hill et al., Nature 432, 206 (2004); L. Liu et al., Nature Photon. 4, 182 (2010)].
Apart from their technological applications in the field of photonics, SRLs are
also optical prototypes for the large class of systems which are characterized
by central reflection invariance. Such symmetry, known as Z2 invariance, is
one of the most common in nature, and besides in photonic systems it is also
encountered in a wide number of bistable systems in different fields such as
biology, aerodynamics, fluid mechanics and mechanics. Therefore, we conjecture
that an in-depth study of SRLs based on a generic two-dimensional model will
prove to be interesting for researchers working in other fields too.

(II) A spatial soliton is an example of an emergent structure in spatially-extended
systems. Such a soliton can appear spontaneously and exists due to the interac-
tion of each part with its immediate surroundings in space. In more mathemati-
cal terms, a soliton is a localized solution of a partial differential equation (PDE)
describing the evolution of a (spatially) extended nonlinear system. Such local-
ized solutions of real-world systems far from equilibrium are also referred to
as dissipative solitons (DSs). These DSs are commonplace and have been shown
to arise in a wide variety of pattern forming systems, such as e.g. chemical
reactions, neural systems, granular media, binary-fluid convection, vegetation
patterns and nonlinear optics. In Part II, we will study different types of DSs in
(generalizations of) relevant universal model equations admitting DS solutions.

The connection between both parts of this thesis is the fact that we take advantage
of particular symmetries in the different physical systems to derive and study
generic models that are applicable in many fields of science. Bifurcation theory
and nonlinear dynamics are employed to (I) understand how the underlying
physical parameters of the SRL influence its experimentally observable dynam-
ical behavior and (II) to unravel the fundamental principles and bifurcation
structure of DSs.

We aspire that after reading this thesis, the reader will be — like us — intrigued
by the nonlinear dynamical behavior that permeates our physical world. In
particular, we will try to demonstrate that intricate systems can be understood
amazingly well by combining quite simple models with general concepts of
nonlinear dynamics.

Lendert Gelens
Brussels, Belgium

21 May 2010



Voorwoord

Niet-lineaire dynamica in fotonische systemen is een bruisend onderzoeks-
domein dat continu geëvolueerd is gedurende de laatste tientallen jaren. Het
domein van de optische niet-lineaire dynamica kan onderverdeeld worden in
twee subdomeinen, namelijk de studie van de temporele dynamica in niet-
lineaire optische systemen — veronderstellend dat de spatiale structuur van
het lichtveld niet varieert in de tijd — en de studie van spontane patroonvorm-
ing in deze systemen. Als een voorbeeld van temporele dynamica refereren we
naar bv. periodieke of chaotische sequenties van pulsen die geobserveerd zijn
aan de uitgang van lasers. Als we ook de spatiale omvang van optische systemen
in rekening brengen, dan heeft men ook een brede waaier van spatiale patronen
geobserveerd in bv. brede lasers en cellen gevuld met natriumdamp. De meeste
van deze spatiaal-temporele fenomenen die voorkomen in optische systemen
kunnen ook geobserveerd worden in een variëteit van andere disciplines zoals
hydrodynamica, elektrische ontladingen, chemische en biologische systemen,
enz., omdat ze gebaseerd zijn op universele concepten en essentieel hetzelfde
wiskundige formalisme delen. In deze thesis, adresseren we zowel temporele als
spatiale dynamica in optische systemen. In Deel I, bestuderen we het dynamisch
gedrag van halfgeleiderringlasers, terwijl we in Deel II de niet-lineaire dynamica
van spatiaal gelokaliseerde structuren in uitgebreide systemen bestuderen.

(I) Halfgeleiderringlasers (HRLs) en halfgeleiderschijflasers zijn bijzondere types
van halfgeleiderlasers waar de laserholte bestaat uit een ringvormige golfgelei-
der. HRLs worden momenteel erkend als beloftevolle bronnen in fotonisch
geïntegreerde circuits. In het bijzonder heeft de mogelijkheid van bistabiele
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directionele werking het pad geëffend om digitale informatie te coderen in de
richting waarin de HRLs laseren met recordwaarden voor de schakeltijden en
schakelenergiën [M. T. Hill et al., Nature 432, 206 (2004); L. Liu et al., Nature Pho-
ton. 4, 182 (2010)]. Buiten hun technologische toepassingen in het domein van de
fotonica zijn HRLs ook optische prototypes voor de brede klasse van systemen
die gekarakteriseerd zijn door een centrale reflectie invariantie. Zulke symme-
trie, gekend als Z2 invariantie, is één van de meest algemene in de natuur, en
buiten in fotonische systemen komt ze ook voor in een groot aantal bistabiele sys-
temen in verschillende domeinen zoals biologie, aërodynamica, stromingsleer en
mechanica. Hierdoor stellen we dat een diepgaande studie van HRLs gebaseerd
op een generisch tweedimensionaal model ook interessant zal blijken te zijn voor
onderzoekers in andere domeinen.

(II) Een spatiaal soliton is een voorbeeld van een opkomende structuur in spa-
tiaal uitgestrekte systemen. Zo een soliton kan spontaan verschijnen en bestaat
dankzij de interactie van elk deel met zijn onmiddelijke omgeving in de ruimte.
In meer wiskundige termen is een soliton een gelokaliseerde oplossing van
een partiële differentiaalvergelijking die de evolutie van een (spatiaal) uitge-
breid niet-lineair systeem beschrijft. Zulke gelokaliseerde structuren in realis-
tische systemen ver van evenwicht worden ook dissipatieve solitonen (DSs) ge-
noemd. Deze DSs komen vaak voor in vele verschillende patroonvormende
systemen, zoals bv. chemische reacties, neurale systemen, granulaire media,
binaire-vloeistof convectie, vegetatiepatronen en niet-lineaire optica. In Deel II
bestuderen we verschillende types van DSs in (veralgemeningen van) relevante
universele modelvergelijkingen die DS oplossingen hebben.

De connectie tussen beide delen van deze thesis is het feit dat we voordeel halen
uit de bijzondere symmetriën in de verschillende fysische systemen om gener-
ische modellen, toepasbaar in vele wetenschapsdomeinen, af te leiden en te
bestuderen. Bifurcatietheorie en niet-lineaire dynamica worden aangewend om
(I) te begrijpen hoe de onderliggende fysische parameters van de HRL zijn exper-
imenteel observeerbaar dynamisch gedrag beïnvloedt en (II) de fundamentele
principes en bifurcatiestructuur van DSs te ontrafelen.

We streven ernaar dat na het lezen van deze thesis, de lezer — net zoals ons
— geïntrigeerd zal zijn door het niet-lineaire gedrag dat onze fysische wereld
doordringt. In het bijzonder zullen we trachten te tonen dat ingewikkelde sys-
temen bijzonder goed begrepen kunnen worden door vrij eenvoudige modellen
te combineren met algemene concepten van de niet-lineaire dynamica.

Lendert Gelens



Prefacio

La dinámica no-lineal en sistemas fotónicos es un campo efervescente en con-
tinua evolución las últimas décadas. El campo de la dinámica en óptica no-lineal
puede ser dividido en dos subcampos, a saber, el estudio de la dinámica tempo-
ral en sistemas ópticos no-lineales — en el supuesto de que la estructura espacial
del campo electromagnético no cambia con el tiempo — y el estudio de la for-
mación espontánea de patrones en estos sistemas. Como ejemplo de dinámica
temporal, nos referimos, por ejemplo, a las secuencias periódicas o caóticas de
picos que se observan a la salida de algunos láseres. Al considerar la extensión
espacial de los sistemas ópticos, una gran cantidad de patrones espaciales puede
ser encontrada, por ejemplo, en láseres de área ancha. La mayoría de estos
fenómenos espacio-temporales que ocurren en sistemas ópticos también pueden
ser observados en campos tan distintos como la hidrodinámica, las descargas
eléctricas, los sistemas químicos y biológicos, etc., porque son una manifestación
de fenómenos universales y, esencialmente, comparten el mismo formalismo
matemático. En esta tesis nos ocupamos tanto de la dinámica temporal como es-
pacial en sistemas ópticos. En la Parte I se estudia el comportamiento dinámico
de los láseres de semiconductores de anillo, mientras que en la parte II se exam-
ina la dinámica no lineal de las estructuras localizadas en sistemas espacialmente
extendidos.

(I) Los Láseres de Semiconductor de Anillo (LSAs) y los láseres de semicon-
ductores de disco son tipos de láseres de semiconductor particulares, donde la
cavidad del láser consiste en una guía de ondas en forma de anillo. A los LSAs
se les reconoce actualmente como prometedoras fuentes de luz para circuitos in-
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tegrados fotónicos. En particular, la posibilidad de operar en las dos direcciones
de manera estable ha allanado el camino para la codificación de información
digital en la dirección de emisión de los LSAs [M. T. Hill, et al., Nature 432, 206
(2004); L. Liu et al., Nature Photon. 4, 182 (2010)]. Además de sus aplicaciones
tecnológicas en el campo de la fotónica, los LSAs son también prototipos ópticos
para una gran clase de sistemas que se caracterizan por la invariancia de reflexión
central. Tal simetría, conocida como la invariancia Z2, es una de las más comunes
en la naturaleza, y se encuentra en un gran número de sistemas biestables en
campos tan diferentes como la biología, la aerodinámica, la mecánica de fluidos
y la mecánica. Por lo tanto, creemos que un estudio en profundidad de los LSAs
basado en un modelo de dos dimensiones genérico resultará interesante para los
investigadores que trabajan en estos campos.

(II) Un solitón espacial es un ejemplo de una estructura emergente en un sistema
espacialmente extendido. Estas estructuras pueden aparecer de forma espon-
tánea y existen debido a la interacción de cada parte del sistema con su entorno
inmediato en el espacio. En términos más matemáticos, un solitón es una solu-
ción localizada de una ecuación diferencial en derivadas parciales (PDE) que
describe la evolución de un sistema no-lineal (espacialmente) extendido. Es-
tas soluciones localizadas de sistemas lejos del equilibrio se denominan también
solitones disipativos (SD). Estos SDs son comunes y se ha demostrado que surgen
en una gran variedad de sistemas que forman patrones, como por ejemplo, reac-
ciones químicas, sistemas neuronales, medios granulares, convección de fluidos
binarios, patrones de vegetación y sistemas ópticos no lineales. En la segunda
parte de esta tesis estudiaremos diferentes tipos de SDs en (generalizaciones de)
ecuaciones de modelos universales relevantes.

La conexión entre las dos partes de esta tesis es el hecho de aprovechar las
simetrías particulares de los diferentes sistemas físicos para obtener y estudiar
modelos genéricos que son aplicables en muchos campos de la ciencia. La teoría
de bifurcaciones y la dinámica no lineal se utilizan para (i) comprender cómo
los parámetros físicos subyacentes de los LSAs influyen en su comportamiento
dinámico observado experimentalmente y (II) para desentrañar los principios
subyacentes y la estructura de las bifurcaciones de los SDs.

Aspiramos a que, tras leer esta tesis, el lector estará — como nosotros — intrigado
por el comportamiento dinámico no-lineal que impregna nuestro mundo físico.
En particular, vamos a tratar de demostrar que los sistemas complejos se pueden
entender sorprendentemente bien mediante la combinación de modelos bastante
sencillos con conceptos generales de dinámica no-lineal.

Lendert Gelens



Part I

Semiconductor Ring Lasers

The basins of attraction of both counter-propagating modes of a semiconductor
ring laser plotted on a sphere (Courtesy of Vincent Ginis).
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CHAPTER 1

Introduction

This year we are celebrating the 50th anniversary of the discovery of the laser
by T. Maiman [1]. Moreover, it has been exactly ten years since the Nobel prize
for physics was awarded for the discovery of the double hetero structure to
Z.I. Alferov and H. Kroemer "for developing semiconductor hetero structures used
in high-speed- and opto-electronics" and to J. S. Kilby "for his part in the invention
of the integrated circuit". Shortly after the fabrication of the very first laser in
1960 by T. Maiman after ideas by Schawlow and Townes in 1958 [2], the first
semiconductor laser was developed by R.N. Hall in 1962. However, its effi-
ciency was not very high such that continuous operation at room temperature
was hampered. It is the discovery of the double hetero structure in 1963 [3]
which would later allow to develop the first practical continuously operating
lasers in Alferov’s group (1970) [4]. The concept of the double hetero structure
was conceived and published by H. Kroemer from Varian (USA), and, indepen-
dently, also published and patented by Z. I. Alferov and R.F. Kazarinov at the
Ioffe Physico-Technical Institute in the former Leningrad (USSR). Interestingly
enough Kroemer mentioned the following anecdote concerning his discovery:

When I proposed to develop the technology for the double hetero structure
laser, I was refused the resources to do so on the grounds that "this device
could not possibly have any practical applications" [5].

With hindsight, it is obvious just how wrong this assessment was. Nowadays,
semiconductor lasers are by far the most fabricated lasers and have found their
way to our everyday life. In telecommunications, they send signals for thousands
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of kilometers along optical fibers at high speeds and bitrates. In consumer
electronics, semiconductor lasers are used to read, write, erase and rewrite data
on optical discs such as Compact Discs (CDs), Digital Versatile Discs (DVDs)
and Blu-ray Discs (BDs). Other applications include, but are not limited to, laser
pointers, laser printers, pollution monitoring, displays, surgical and welding
equipment, and they are used in many different research fields. Semiconductor
lasers can also exhibit highly nonlinear dynamical behavior and as such have
proven to be ideal testbeds to study ideas from the universally applicable field
of nonlinear dynamics. Dynamics in lasers is experimentally testable under
controlled conditions and in a relatively short amount of time, which is not
always the case for dynamical systems.
Since the advent of the semiconductor laser, many novel semiconductor lasers
have been designed and developed into commercial products. One important
research path is to use semiconductor lasers in all-optical switches in future
optical fiber networks. At present the routing and switching in optical networks
is mainly done electronically after converting the optical signals to electronic
signals. The reason is that so far electronic switching is much more flexible than
optical switching. Nevertheless, recent breakthroughs have been reported which
make optical switching more competitive. The goal is to incorporate small and
power efficient optical devices in photonic integrated circuits, implementing
a variety of switching operations in the optical domain. An important step
towards this direction was the demonstration of the bistable operation of a
semiconductor ring laser (SRL) integratable on chip by M. Hill et al. in 2004
[6]. Low-energy switching in this bistable device possibly allows for all-optical
information processing on chip. In view of the potential of SRLs, in this first part
of the thesis, we will investigate in-depth how to model, physically understand
and control the bistable operation of the SRL and its dynamical behavior.
In this introductory chapter, we start from the concept of a "laser", and explain
how a pn-homojunction and a double hetero structure allow for semiconductor
laser operation. Afterwards we focus on the birth of SRLs and how they have
changed throughout the years, the possible applications SRLs have spawned
and the theoretical concepts that have been introduced to model the behavior of
SRLs. Finally, we conclude by giving an overview of the contents and goals of
the Chapters to come in Part I "Semiconductor Ring Lasers".

1.1 The laser

The acronym laser stands for "light amplification by stimulated emission of ra-
diation", which is a mechanism for emitting electromagnetic radiation, typically
light, via the process of stimulated emission. It was Einstein, who already in
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hν
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hν hν
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Figure 1.1: Illustration of absorption, spontaneous and stimulated emission
in a two-level system with energy difference ∆E = hν.

1916, proposed three different mechanisms of light-matter interaction: absorp-
tion, spontaneous emission and stimulated emission [7]. Einstein postulated
that atoms can only occupy a discrete set of energy levels. When interacting
with a photon, an atom can absorb it and as such be excited to a higher energy
level (see Figure 1.1). When being in such an excited state, the atom can sponta-
neously emit a photon of light and fall back again to a lower energy level. Only
photons with an energy equal to the energy difference ∆E = hν between both
levels can be absorbed or emitted. The excited atom can not only spontaneously
emit a photon, but can also be stimulated to do so. If a photon with the correct
frequency ν hits an atom in the excited energy state, then it can stimulate the
atom to emit an identical photon. Such an emitted photon is an exact replica
of the incident photon and their associated electric fields have the same phase,
frequency, polarization and propagation direction. In a material, absorption and
stimulated emission are taking place with the same probability. It is the process
of stimulated emission though that lies at the origin of the special properties
of the emitted laser light, which can be generally described as a coherent and
narrow beam. In order to take advantage of stimulated emission, the number of
atoms in the excited state should exceed the number of atoms in the lower en-
ergy state. This situation is called population inversion. Unfortunately, when the
system is in thermal equilibrium, this is never the case. Achieving population
inversion therefore requires pushing the system into a non-equilibrated state.
Armed with Einstein’s principles of light-matter interaction, we can now under-
stand why a laser essentially consists of three important ingredients determining
its properties:

• A gain medium that can amplify light that passes through it. Such a gain
medium is a material with properties that allow it to amplify light by
stimulated emission.
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• An energy pump source to create a population inversion in the gain
medium.

• A resonant cavity confining the light.

The gain medium can be a solid, a liquid, or a gas and the pump source can be
an electrical discharge, a flash lamp, or another laser. The gain medium absorbs
pump energy, which raises some electrons into higher-energy excited quantum
states creating population inversion. Hence, the light can be amplified1. In
its simplest form, the laser cavity consists of two mirrors arranged such that
light bounces back and forth, each time passing through the gain medium.
Typically one of the two mirrors is partially transparent. The output laser beam
is emitted through this mirror. Light of a specific wavelength is amplified as it
passes through the gain medium. The surrounding mirrors ensure that most of
the light stays in the gain medium for a long time, such that it gets amplified
many times. If the chosen pump power is too small, the gain is not sufficient
to overcome the resonator losses, and the laser will emit only very small light
powers. The minimum pump power needed to begin laser action is called
the lasing threshold2. Initially, photons will be emitted spontaneously in all
directions with random phases and polarizations. The gain medium will amplify
any photons passing through it, regardless of direction; but only the photons
aligned with the cavity manage to pass more than once through the medium
and so experience significant amplification. Therefore, not only does the laser
cavity greatly increase the amount of amplification of light waves inside the
cavity, but it also selects particular frequencies that are amplified and emitted in
the laser. Such longitudinal modes of a resonant cavity are particular standing
wave patterns formed by waves confined in the cavity.

1Population inversion is required for laser operation, but cannot be achieved in a system with two
energy-levels as shown in Figure 1.1. Any method by which the atoms are directly and continuously
excited from the ground state to the excited state (such as optical absorption) will eventually reach
equilibrium with the de-exciting processes of spontaneous and stimulated emission. At best, an
equal population of the two energy states can be achieved, resulting in optical transparency but
no net optical gain. To achieve non-equilibrium conditions, an indirect method of populating the
excited state must be used. Three-level or four-level laser are mostly used to explain how to achieve
such population inversion.

2The lasing threshold is the lowest excitation level at which a laser’s output is dominated by
stimulated emission rather than by spontaneous emission. More in particular, the threshold is
reached when the optical gain of the laser medium is exactly balanced by the sum of all the losses
experienced by light in one round trip of the laser’s optical cavity. Not taking into account the cavity
losses, the laser is said to be optically transparent if the populations of the two energy states in Figure
1.1 are the same: the rate of absorption of light exactly balances the rate of emission. Below the lasing
threshold, the laser’s output power rises slowly with increasing excitation. Above threshold, the
slope of power vs. excitation is orders of magnitude greater. The linewidth of the laser’s emission
also becomes orders of magnitude smaller above the threshold than it is below. Above the threshold,
the laser is said to be lasing.
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Figure 1.2: The conduction and valence energy band versus the crystal
momentum in a semiconductor material. The pump excites electrons,
which rapidly fall back to the bottom of the conduction band. Next, they

recombine with a hole in the valence band, emitting a photon.

1.2 Semiconductor lasers

As explained in the previous Section, every laser consists of three vital parts:
an active medium that allows for light amplification, a pump source and some
form of feedback, e.g. realized in the form of an optical resonator. In a semi-
conductor laser, the gain medium is a semiconductor material. Gain is provided
through recombination of electron-hole pairs in a suitable layer of a semicon-
ductor medium embedded in a chip forming an optical cavity. Inversion of this
medium may be achieved via an optical pump beam or by current injection via
electrical contacts. Once the pump beam or the current exceeds a characteristic
threshold spontaneous emission processes are exceeded by stimulated emission
and lasing starts [8, 9].

1.2.1 The semiconductor material

Only electrons with an energy within a certain energy band can propagate
through semiconductor materials. Due to the presence of such energy bands,
lasing operation in semiconductor materials is very different from gas and solid-
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Figure 1.3: Schematic energy band diagram of a forward biased (a) p-n
homojunction and (b) p+-p-n double heterojunction. Taken from [5].

state lasers, where only discrete and well-defined energy levels are allowed.
Figure 1.2 shows these allowed energy levels as a function of the electron’s crys-
tal momentum. At zero temperature, all electrons occupy the lowest possible
states. The highest energy band that is still occupied by electrons is called the
valence band, while the first unoccupied band is called the conduction band. The
energy gap between these two bands is called the band-gap. Semiconductors
typically have a relatively small band-gap of a few electron volts. The band-gap
of a semiconductor is called a direct band-gap if the minimum of the conduction
band and the maximum of the valence band have identical crystal momenta. If
they have different crystal momenta, it is called an indirect band-gap.
At room temperature the conduction band is no longer unoccupied as some
electrons can obtain enough energy to leave the valence band. The electrons in
the conduction band move to the lowest energy states in this band, just as the
remaining electrons in the valence band move to their lowest energy states. The
net result is that both energy bands are not fully occupied and that the electrons
are located at the bottom of each band. The top of the valence band is hence
occupied by holes instead of electrons. An electron in the conduction band can
spontaneously recombine with one of the available holes in the valence band,
emitting photons with an energy near the bandgap energy (see Figure 1.2) [8, 9].
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1.2.2 Semiconductor laser operation

Although recombination of electron-hole pairs can lead to the emission of pho-
tons in a semiconductor material, a single piece of semiconductor material can
never operate as a laser. In order to induce population inversion in a semi-
conductor and thus get laser action, one needs hetero structures: heterogeneous
semiconductor structures built from two or more different semiconductors. The
layers of semiconductor are combined in such a way that the transition region
or interface between the different materials plays an essential role in the laser
operation, or even stronger it can be said that the interface is the actual laser
medium.
The first and simplest hetero structure, the p-n homojunction, has been sug-
gested by Bernard and Duraffourg in 1961 [10]. A p-n junction is a hetero
structure consisting of two semiconductors placed next to each other. One of
them is manipulated to have an enlarged number of free electrons in the con-
duction band and is referred to as n-doped. The other material is p-doped and has
a larger amount of holes in the valence band. When bringing these two doped
semiconductor in contact their energy bands start bending3.
Consider the (highly oversimplified) energy band diagram of a p-n junction,
heavily doped on both sides, and forward-biased to reach the band diagram
shown in Figure 1.3(a). Electrons then diffuse from the n-type side to the p-type
side, and holes diffuse in the opposite direction, creating a certain concentration
of electron-hole pairs in the junction region. Their recombination causes light
emission. However, in order to obtain laser action, a population inversion has to
be achieved, which means that, in the active region (the interface), the occupa-
tion probability of the lowest states in the conduction band has to be higher than
that of the highest states in the valence band. A necessary condition for such a
population inversion is applying a forward bias voltage larger than the energy
gap such that electrons and holes are injected in the active region. However, laser
action in the p-n junction could only be achieved at either very low temperatures
or short low-duty-cycle pulses, and usually both. The reason is twofold. First

3Band bending refers to the local change in energy of electrons at a semiconductor junction due
to space charge effects. Because the common way to visualize the electron energy states and Fermi
level in a material is to draw bands on an Energy vs. distance plot, band bending refers to bending in
these diagrams and not in any physical form. Band bending can occur at a material/vacuum interface
or when two materials with different local work functions are placed in contact. In general, bands
will bend locally when materials come in contact, because the two Fermi levels of the materials will
equilibrate to the same level through a local exchange of charge (either holes or electrons). This
exchange of charge changes the energies of those charge carriers who have been exchanged, giving a
curvature to the energy vs. distance diagram near the junction. Knowing how bands will bend when
two different types of materials are brought in contact is key to understanding the operation of the
device. The degree of band bending depends on the relative Fermi levels and carrier concentrations
of the materials forming the junction.
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of all, the electron concentration in the active region will always be lower than
in the n-doped region, with an analogous limitation for the holes. Secondly,
electrons and holes diffuse out of the active region into the adjacent oppositely
doped region, preventing a population inversion from building up. Increasing
the forward bias would not be very helpful either, as the rate of outflow would
increase just as much as the rate of injection of electron-hole pairs.
The future of semiconductor laser devices operating in continuous wave was
looking very cumbersome until, in 1963, H. Kroemer heard for the first time
about such p-n junction lasers in a review talk on the topic by Dr. S. Miller.
Miller and other experts had concluded that achieving continuous laser oper-
ation at room temperature was fundamentally impossible. Kroemer, however,
immediately protested against this impossibility as follows

"but that is a pile of ..., all one has to do is give the injector regions a wider
energy gap" [5].

This suggestion provides the basis of Kroemer’s discovery of the double hetero
structure in the same year, for which he was awarded the Nobel prize in 2000.
Figure 1.3(b) shows a sketch from such a double hetero structure, taken from
Kroemer’s Nobel lecture [5]. It becomes clear from Figure 1.3(b) that introducing
an extra region with a higher doping (p+) than the original p-doped region causes
electrons and holes to be repelled at both sides. With a sufficiently high forward
bias as in Figure 1.3(b) carrier confinement and population inversion is thus
accomplished.
This layered p+-p-n structure not only confines the carriers in the active region
thus providing optical gain, but it can help to confine the optical mode in the
vertical direction as well. The active layer in a p-n homojunction, as illustrated
in Figure 1.3(a), only consists of the interface between the p-doped and n-doped
region to both confine the optical field and to provide the optical gain. In a double
hetero structure a semiconductor with the desired band gap, determining the
emission wavelength of the laser, is sandwiched between materials with larger
band-gaps. In this way, the injected electrons and holes crowd together in the
narrow middle semiconductor layer, increasing the carrier density used in the
radiative recombination needed to provide gain (see Figure 1.3(b)).
Moreover, if the middle layer in a double hetero structure is made thin enough,
it acts as a quantum well (QW)4. Using one or more thin QW layers of active
material has a number of advantages over using a more simple bulk laser. Such

4This means that the vertical variation of the electron’s wavefunction, and thus a component of
its energy, is quantized. The efficiency of a quantum well laser is greater than that of a bulk laser
because the density of states function of electrons in the quantum well system has an abrupt edge
that concentrates electrons in energy states that contribute to laser action. Lasers containing more
than one quantum well layer are known as multiple quantum well lasers. Multiple quantum wells
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Figure 1.4: Different semiconductor lasers: (a) an edge-emitting laser
(EEL), taken from [11], (b) a vertical-cavity surface-emitting lasers (VC-

SEL), taken from [11] and (c) a semiconductor ring lasers (SRL).

QW structures have a higher optical gain per injected carrier and thus a lower
threshold current, a lower chirp, a polarization dependent gain and a higher
differential gain as well. In view of these advantages, the SRLs studied in this
thesis have been fabricated using a QW material.

1.2.3 Types of semiconductor lasers

Depending on the dimensions and geometry of the cavity, semiconductor lasers
can be classified into several types of lasers. Here, we discuss the advantages
and disadvantages of three main families of semiconductor lasers: edge-emitting
lasers (EELs), vertical-cavity surface-emitting lasers (VCSELs) and semiconduc-
tor ring/disk lasers (SRLs).
In an EEL, the light is propagating in the plane of the active layer along a rectan-

gular waveguide, while the mirrors are formed by cleaving the semiconductor
wafer and by polishing the facets [see Figure 1.4(a)]. Although such EELs have
been highly successful in consumer electronics, they have several shortcomings.
The emitted beam is highly divergent and has an elliptical profile, which makes
it hard to couple the light into an optical fiber. Multimode operation is easily
obtained due to the long cavity length. Furthermore, the EELs have to be cleaved

improve the overlap of the gain region with the optical waveguide mode. Further improvements in
the laser efficiency have also been demonstrated by reducing the quantum well layer to a quantum
wire or to quantum dots.
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and packaged before they can be tested. To improve on some of these disadvan-
tages, novel semiconductor lasers have been developed.
The cavity of a VCSEL is oriented perpendicular to the active layer [12]. Hence,
opposite to EELs, the light beam is emitted vertically and has a circular profile
[see Figure 1.4(b)]. On-wafer testing is now possible, which is a considerable
industrial advantage. The cavity length is also considerably shorter than in the
case of EELs, such that they operate in a single-longitudinal mode, but due to the
short cavity length the single pass gain is insufficient to achieve lasing. There-
fore, extra layers of highly reflective dielectric mirrors are deposited on top and
bottom of the VCSEL, making VCSELs difficult to grow. Furthermore, VCSELs
cannot by integrated on a chip to perform e.g. switching operations.
Finally, semiconductor lasers with a circular cavity such as micro-ring and micro-
disk lasers [6, 13] encompass a wide variety of designs that share the common
characteristic that optical feedback is achieved by circulating light around in a
cavity that forms a loop [(see Figure 1.4(c)]. The modes supported by the cavity
are traveling waves, rather than the standing waves that occur in devices where
feedback is achieved by reflection between a pair of mirrors. Additionally, two
such independent traveling waves can exist in the ring, one clockwise (CW) and
one counterclockwise (CCW) propagating mode. The interaction between these
counter-propagating modes leads to interesting dynamical behavior in SRLs,
which will be studied in depth in this thesis. The fact that the SRL design is
not based on reflection between mirrors leads to a number of advantages. As
VCSELs, SRLs do not require cleaving of facets and thus allow for an accurate
control of the cavity length and for an easy integration of SRLs with other func-
tional elements in photonic integrated circuits (PICs). Typically, a coupler is used
to transfer power from the cavity to an output waveguide.

1.3 Semiconductor ring lasers

1.3.1 Ring lasers throughout the years

Lasers with a circular cavity have attracted a lot of attention since the first con-
ception of a ring laser in 1965 [14]. In the 70’s, 80’s and 90’s ring lasers have
especially been studied in the context of He-Ne ring lasers [15], CO2 lasers [16, 17]
and solid state lasers [18–20]. It was not until 1977 that the first semiconductor
ring laser was reported [21]. The device had as an important limitation that its
design did not incorporate any out-coupling of light from the ring. Lasing in the
device was demonstrated by measuring light scattered from its sidewalls. The
first design of a semiconductor laser with a circular symmetry and an output
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Figure 1.5: A micro-disk laser with y-junction output coupler, admitting
whispering gallery modes [22].

Figure 1.6: Schematic representation of (a) a rib waveguide and (b) a ridge
waveguide.

waveguide has been realized in 1980 [22]. The micro-disk device was fabricated
in GaAs/AlGaAs material and had a pillbox structure with a y-junction output
coupler (see Figure 1.5). Although in principle such a disk-shaped resonator can
support a large number of modes due to its lack of a clear wave-guiding ring,
the modes with the lowest losses are often the whispering gallery modes propagat-
ing along the edge of the cavity. Thus as long as the micro-disk lasers can be
characterized by two counter-propagating whispering gallery modes, their dy-
namics strongly resembles the one observed in SRLs. This design was followed
by many different ones, where various choices were made for the semiconductor
materials, waveguide designs and output coupler configurations.

Several types of waveguides have been designed to confine the light in the
SRL, the most common of which are rib and ridge waveguides. For a rib waveg-
uide, etching of the guiding ridge continues through the active layer [see Figure
1.6(a)]. The semiconductor/air interface that is created as such provides a strong
confinement of the optical field, resulting in small bending losses and thus allow-
ing for SRLs operating continuous wave with ring radii as small as 50µm [28].
Although bending losses are low when using a rib waveguide, scattering losses
due to surface roughness of the waveguide side walls can be a serious problem.
Such scattering loss has been demonstrated to be proportional to the intensity of
light at the semiconductor/air interface. As waveguide bends push the optical
mode towards the outside edge of the waveguide, scattering losses are enhanced
in bended waveguides. Furthermore, backscattering due to surface roughness
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Figure 1.7: Semiconductor ring lasers with different geometries: (a) a
racetrack cavity with evanescent out-coupling [23], (b) a square mirror
based design [24], (c) a triangular mirror based design [25], (d) two coupled
micro-squares [26], (e) two coupled rings [6], (f) a racetrack cavity with a

S-bend coupler [27].

into the counter-propagating mode also increases this way [29]. The biggest
downside of rib waveguides is the fact that the active layer gets exposed during
the etching process, causing defects and surface states in the crystal lattice. As
a consequence non-radiative recombination leads to a reduction of the quantum
efficiency of the SRL and eventually to device failure.
Scattering due to waveguide roughness can be greatly reduced by using ridge
waveguides, where one does not etch through the active layer [see Figure 1.6(b)].
In this case, however, the optical mode is confined much more weakly in the
waveguide than with rib waveguides. Consequently these waveguides are more
susceptible to bending losses and thus the ring radii cannot be as small.
Apart from the choice of the semiconductor material and the waveguide type,
a lot of attention has been given to the type of coupler to extract light from the
ring cavity. Especially in the earlier fabricated SRLs y-junction output couplers
have been widely implemented [22, 24, 28, 30]. An example of such a y-coupler
is shown in Figure 1.5 for a micro-disk laser. A y-junction coupler branches the
waveguide in two, where one branch is the continuation of the ring itself and the
other one is used as the output waveguide. The advantage of the coupler is that
it is easy to fabricate, but unfortunately its performance is quite poor. Two other
designs have been commonly used to improve on the y-junction: the evanescent
field coupler and the multimode interference coupler. We limit ourselves here to
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explaining the former one. Examples of the evanescent field coupler are shown
in Figure 1.7(a),(e),(f). Two waveguides are brought close enough to each other
such that the optical modes in both waveguides overlap and power is transferred
between the waveguides. Because a larger coupler length leads to a higher over-
lap of the modes and thus a larger coupling ratio, racetrack geometries [Figure
1.7(a),(f)] are sometimes preferred over circular geometries [Figure 1.7(e)].
Several designs have taken advantage of the low scattering using ridge waveg-
uides, while avoiding the associated size limitation imposed by bending losses
by introducing Total Internal Reflection (TIR) mirrors. Figure 1.7(b)-(c) show a
square and triangular shaped SRL [24, 25]. The rings are composed of straight
ridge sections separated by deep etched TIR mirrors. One corner is cleaved and
serves as the output facet.
Finally, one should remark that in several designs two SRLs are coupled to each
other for all-optical flip-flop operation5, see e.g. Figure 1.7(d)-(e) [6, 26]. Pre-
liminary results have shown that coupling two SRLs can possibly lead to an
increased stability in unidirectional operation. However, a device based on a
single ring benefits from having a smaller footprint. In this thesis, we will focus
on the dynamical instabilities occurring in such single SRLs.

1.3.2 Operating regimes

Figure 1.8(a) depicts a typical experimental SRL set-up. An In-P based multi-
quantum-well SRL with a racetrack geometry is pumped with a current Ip and
lases in a single-transverse, single-longitudinal mode at λ = 1.56µm. The power
is extracted from the ring cavity by direct evanescently coupling the ring to a bus
waveguide, and collected at the chip facets with a cleaved optical fiber. Figure
1.8(b) shows a typical cut of the double quantum well (DQW) structure, which
can be fabricated in GaAs-AlGaAs[33] and InP-InGaAsP [31, 32].
An experimental measurement of the extracted modal power versus the pump
current Ip of the SRL is shown in Figure 1.8(c). Several operating regimes can be
distinguished, depending on the applied electrical pump current and internal
parameters [34, 35]. Laser threshold is reached at an injection current of about
32 mA. Afterwards, the two counter-propagating modes in the SRL have ap-
proximately the same constant optical intensity. The SRL now operates in the
so-called bidirectional regime [region BI in Figure 1.8(c)] for injection currents
up to about 38 mA. From then on, one mode has a much stronger intensity than
the other mode. This is the unidirectional regime which is of interest for memory
element applications, since a bistability between both directional modes exists.
The unidirectional regime corresponds to region U in Figure 1.8(c). In between

5All-optical flip-flop operation in SRLs will be discussed in more detail in Section 1.3.3.
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Figure 1.8: (a) Experimental SRL set-up. The ring is contacted through the
pump current Ip [31, 32]. (b) A cut of the double quantum well (DQW)
ring laser (after Ref. [33]). (c) Experimental PI-curve of a single mode InP-
based DQW SRL. (d) Simulated PI-curve of a single mode SRL showing the
extremes of the modal intensity using Eqs. (1.1)-(1.3) with k = 0.44ns−1, φk =
1.5, c = 0.01, s = 0.005, κ = 100ns−1, γ = 0.2ns−1 and α = 3.5 [34]. The
maxima (minima) of the CW mode are denoted by open black squares
(circles), while the maxima (minima) of the CCW mode are denoted by

gray crosses (dots).

these two operating regions, it is possible to also detect a regime of alternate
oscillations [region AO in Figure 1.8(c)]. The intensities of the two modes start
to oscillate out of phase at a frequency in the tens of megahertz range. As these
oscillations are averaged out by the photodetector, this behavior is not visible in
Figure 1.8(c). The oscillations become evident though when one looks at e.g. the
oscilloscope in region AO during the experiment. One can also plot the extremes
of the intensity as obtained from a simulation of a rate-equation model, which
will be discussed in Section 1.4.1 [see Figure 1.8(d)].
As we will show in more detail in Chapter 2, the different operating regimes are
a result of the competition between the linear and nonlinear coupling between
both counter-propagating modes. The linear coupling can have multiple ori-
gins: a) reflections due to surface roughness in the ring itself, b) reflections at
the point of coupling between the bus waveguide and the ring cavity, c) reflec-
tions at the out-coupling facet from the chip and d) reflections at the fiber that
collects the output power of the light coupled out of the ring. This coupling is
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linear as it does not depend on the optical intensity and the different reflections
mentioned above will be lumped together in a single backscattering contribution
throughout this thesis. Nonlinear coupling is present through the fact that both
counter-propagating modes saturate their own and each others gain through
spectral hole burning and carrier heating effects. These are believed to be two of
the major physical processes underlying nonlinear gain saturation in SRLs [36]6.
At low injection currents, the intensities of the directional modes are low. Be-
cause saturation effects are negligible at low intensities, the backscattering is the
dominant coupling mechanism. It will tend to equalize the intensities of both
modes, leading to the bidirectional regime. Oppositely, for high injection cur-
rents and the associated high intensities, saturation effects become the dominant
process. Cross saturation now causes the gain of one mode to become larger than
the one of the counter-propagating mode. Therefore, one mode is suppressed,
making the SRL operate unidirectionally. In the region where coupling through
backscattering and cross saturation have comparable strengths, there exists a
wealth of dynamical behavior, which is the subject of this first part of the thesis.
While alternate oscillations are a part of the possible dynamics in this operating
region and they have been observed before (see Ref. [33]), the other dynamical
features discussed in this thesis are — to the best of our knowledge – novel in
SRLs.

1.3.3 Technological applications

Due to the fact that SRLs do not require cleaved facets or gratings for optical
feedback and are thus particularly suited for monolithic integration [30], several
practical applications have been suggested [6, 37–42]. Unidirectional bistable
operation as shown in Sect. 1.3.2 is often desirable in a SRL being used as a
photonic element integrated on chip. If the unidirectional lasing can be stably
switched between the two counter-propagating directions then functions such
as optical memories can be implemented with a SRL. Such all optical flip-flops
based on a single or on two coupled micro-rings have been fabricated and can be
switched between counter-propagating modes by injection of a signal counter-
propagating to the lasing mode [6, 43, 44]. The bistability of the SRLs also

6Spectral hole burning is the formation of a dip in the gain spectrum due to stimulated emission.
The dip occurs by the recombination of electrons and holes at a specific energy and the subsequent
redistribution of carrier energies due to carrier-carrier scattering. The scattering process takes
place on a time scale of the order of 50-100 fs. Carrier heating describes the fact that the carrier
temperatures may be different from the lattice temperature. The carrier temperatures relax towards
the lattice temperature by electron-phonon scattering with a relaxation time of 0.5-1 ps. As these
saturation phenomena occur on faster time scales than the photon life time of the SRL, they can be
added phenomenologically.
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Figure 1.9: Demonstration of all-optical switching in two coupled semi-
conductor micro-ring lasers. (a) State I where the laser is injection locked
in the CW mode. (b) State II where the laser is injection locked in the CCW

mode. Taken from [6].

opens the possibility of using them in systems for all-optical switching, gating,
wavelength-conversion functions, and optical memories [6, 38, 41, 45, 46]. We
have proposed optical switching schemes based on injecting only on one side
of the SRL [35, 47]. Monolithic SRLs exhibiting unidirectional operation are
also potentially useful in applications because of their wavelength stability [37–
39, 48, 49]. Finally, He-Ne [15], solid state [50] and semiconductor [51] ring lasers
have been demonstrated to operate as optical gyroscopes.
In order to provide some more insight into the operation of a SRL as an optical

memory element, we focus on the first demonstration of a bistable memory in
a SRL integrated on chip. In 2004, in their Nature paper [6], M. Hill et al. ex-
perimentally demonstrated low-energy switching in the bistable unidirectional
regime, which thus allows to encode digital information in the direction of emis-
sion of SRLs. Figure 1.9, taken from [6], demonstrates how bits of information
can be stored in two coupled semiconductor micro-ring lasers7 and how to switch
between both stable states. In state I, CW light from laser A is injected via the
waveguide into laser B [see Figure 1.9(a)]. The light from laser A will undergo
significant resonant amplification in laser B if the resonant frequencies of the
two laser cavities are close. If sufficient light is injected into laser B, then laser
A captures or injection-locks8 laser B, forcing light to circulate only in the CW
direction. Only small amounts of light need to enter the laser cavity to achieve
injection locking, owing to the strong resonant amplification. The reverse situ-
ation, state II, with laser B injection-locking laser A is also a stable state of the
system when the lasers are equally pumped [see Figure 1.9(b)]. To set the system

7The SRL device in Ref. [6] occupies an area of 18 x 40µm2 on an InP/InGaAsP photonic integrated
circuit,

8More information about injection-locking can be found in Section 3.2.
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in one state or another, light close to the lasing wavelength and polarization can
be injected into the waveguide connecting the lasers. This light will set both
lasers simultaneously lasing in either the CW or the CCW direction. The differ-
ent states can be distinguished by the different power levels at the two outputs.
Similar optical memory operation can be obtained in the bistable region of a
single SRL (see region U in Figure 1.8).
As discussed in Sect. 1.3.2, the directionality of the SRL depends critically
on the relative strength of the linear coupling between the directional modes
through backscattering and their nonlinear coupling through gain saturation
processes. Unidirectional operation can thus be obtained by reducing the amount
of backscattering, such that gain competition can suppress one of both modes.
By reducing the linear coupling between whispering gallery modes in an In-P
based micro-disk laser on silicon-on-insulator, low-power optical flip-flop op-
eration has recently also been obtained in micro-disks by researchers of Ghent
university [13].
While in the above applications bistability was a key element for designing e.g.
an optical memory, for other applications a highly unidirectional, yet monos-
table SRL can be desirable. Such monostable unidirectional operation in ring
lasers and disk lasers is often obtained by breaking the cavity symmetry in the
laser through preferential scattering into one direction. In Ref. [27], an extra S-
bend waveguide was incorporated into an SRL with a racetrack geometry such
that more power is coupled in one directional mode than in the other one [see
Figure 1.7(f)]. Another design that allows for a preferential linear coupling was
introduced in Ref. [38] and were termed triangular diode lasers. More recently, a
snail-type SRL has also been introduced to obtain a highly directional output [52].
The laser has one cleaved output facet, and the input waveguide is curved until
it couples with itself, forming a ring cavity. The waveguide is then terminated
inside the ring with a second, etched, facet. Further discussions of the impor-
tance of asymmetries in the design and modeling of semiconductor micro-ring
and micro-disk lasers have been addressed in Refs. [53–57]. The importance and
consequences (such as excitable behavior) of a broken cavity symmetry will be
further discussed in Chapters 5-6.

1.4 Modeling strategies

In this Section, we will introduce several types of modeling that can be used
to describe the dynamical behavior of a SRL. A first approach focuses on a
description of the time evolution of the slowly varying envelopes of the electric
fields and the carrier density in terms of rate equations. Secondly, a more
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generic description of dynamics occurring near a bifurcation point of the SRL
system is possible. Here, the underlying circular symmetry of the SRL can be
used to predict universal dynamical behavior encountered in a wide variety
of such bistable systems with that symmetry. We discuss the advantages and
disadvantages of both approaches and lay out the modeling strategy that we
will use in this thesis.

1.4.1 Rate-equation modeling

Different theoretical models have been proposed for the analysis of generalized
rings and two-mode laser systems. These theories focus on the interplay be-
tween the two counter-propagating modes and their interaction with the active
medium. A particular treatment for the SRL was devised by Sargent, who has
derived a simple model for the intensities of the two modes starting from first
principles [19]. This work has pointed out the relevance of self- and cross-
gain saturation processes in the dynamical operation of the device. Specifically,
Sargent has found that SRLs operate preferably unidirectionally due to gain
saturation. Etrich et al. have proposed a model based on the time evolution
of the electric fields [20]. They have addressed the effect on the device opera-
tion of the carrier induced grating originating from the interference of the two
counter-propagating modes. These works highlight the emergence of intensity
oscillations induced by mode to mode phase-coupling [58, 59].
The current revived interest in SRLs has not only lead to numerous technological
publications, but it has also spawned renewed interest in the theoretical model-
ing of SRLs. A general rate-equation approach has been suggested by Sorel et
al. in Ref. [37]. The model consists of two mean-field equations for the counter-
propagating modes in the SRL, and a third rate equation for the carriers. The
model accounts for self- and cross-gain saturation effects and includes backscat-
tering contributions originating at the coupler to the output-waveguide. In the
same work, bidirectional and unidirectional regimes of continuous-wave mode
operation, and a bidirectional regime where the two counter-propagating modes
experience harmonic alternate oscillations have been observed. These different
features are adequately described by the rate-equation model for SRLs in Ref.
[37]. Although this rate-equation approach explains certain experimentally ob-
served features, problems involving e.g. wavelength changes fall outside the
scope of such rate-equation models and this thesis, and a traveling wave model
would be more suited to tackle such questions [60, 61].
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Symbol Physical meaning Simulation value
κ Field decay rate 100ns−1

γ Decay rate of the carrier population 0.2ns−1

α Linewidth enhancement factor 3.5
µ Renormalized bias current 1.704
s Self-saturation coefficient 0.005
c Cross-saturation coefficient 0.01
k Backscattering parameter 0.44ns−1

φk Backscattering phase 1.5
τin Round trip time 0.6ps

Table 1.1: Summary of the physical meaning of the parameters in the rate
equations (1.1)-(1.3) and their typical values used throughout this thesis,

unless stated otherwise.

The rate-equation model from Ref. [37] is given by:

Ėcw = κ(1 + iα)
[
gcwN − 1

]
Ecw − keiφk Eccw, (1.1)

Ėccw = κ(1 + iα)
[
gccwN − 1

]
Eccw − keiφk Ecw, (1.2)

Ṅ = γ
[
µ −N − gcwN|Ecw|

2
− gccwN|Eccw|

2
]
, (1.3)

with Ecw,ccw the slowly varying amplitudes of clockwise and counter-clockwise
propagating waves and one rate equation for the carrier number N. The dot
represents differentiation with respect to time. In Eqs. (1.1)-(1.3), κ is the field
decay rate, and γ is the decay rate of the carrier population. α is the linewidth
enhancement factor, gcw = 1 − s|Ecw|

2
− c|Eccw|

2, gccw = 1 − s|Eccw|
2
− c|Ecw|

2, µ is
the renormalized injection current (µ ≈ 0 at transparency, µ ≈ 1 at lasing thresh-
old). The two counter-propagating modes are considered to saturate both their
own and each other’s gain due to e.g. spectral hole burning and carrier heating
effects as mentioned in Sect. 1.3.2. Self- and cross-saturation effects are added
phenomenologically and are modeled by s and c. For a realistic device, cross
saturation is stronger than self-saturation (c =2 s). The ring geometry, in princi-
ple, allows for the two counter-propagating waves to form a carrier grating [18].
Nevertheless, due to the high electron mobility in semiconductors, this carrier
grating is washed out on a timescale faster than the photon lifetime [61, 62].
Therefore the effect of the grating can be included in the saturation coefficients
through an adiabatic elimination. As this change in saturation coefficients is
negligible, we will consider the cross-saturation to be twice the self-saturation
coefficient. Reflection of the counter-propagating modes occurs at the point
where light is coupled out of the ring cavity into a coupling waveguide and
can also occur at the end facets of the coupling waveguide. These localized
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reflections result in a linear coupling between the two fields characterized by an
amplitude k and a phase shift φk.
A numerical simulation of a PI-curve using Eqs. (1.1)-(1.3) is shown in Fig-
ure 1.8(d) choosing the parameters as in Table. 1.1. The simulation shows that
the model contains all necessary ingredients to adequately model the different
experimentally observed operating regimes in a SRL. Nonetheless, such a high-
dimensional model needs to be simplified in order to allow for a clear bifurcation
analysis9 and to understand more deeply the influence of the different device
parameters on the underlying phase space of the SRL.

1.4.2 Symmetry-based modeling

A modeling approach based on rate equations derived from first principles has
as a big advantage that a direct connection with physically meaningful system
parameters is retained. A different and more generic approach is to analyze
the SRL properties based on the symmetries present in the system. Due to their
circular symmetry, SRLs can be seen as ideal optical prototypes for the large class
of equivariant systems which are characterized by an O(2) symmetry group of
rotations and reflections of a circle10. Perfectly symmetric systems are rare and
are often influenced by imperfections. Sometimes such imperfections do not
break the symmetry, and thus do not affect the generic problem. They can,
however, also break the O(2) symmetry, but e.g. keep a Z2 symmetry under re-
flections. Such Z2 invariance is one of the most common in nature, encountered
in a wide number of bistable systems. General Z2-symmetric systems, such as
e.g. Duffing-Van der Pol oscillators, have been studied in depth [63–67]. In
particular, insight into the bifurcation structure of Z2-invariant systems has been
proven useful in biology [68, 69], aerodynamics [70], fluid mechanics [71, 72],
laser systems [16, 17, 73] and mechanics [74].
A lot of knowledge can be inferred from studying normal forms close to a certain
type of bifurcation. In the context of laser systems, such an approach has espe-
cially proven to be insightful in the analysis of the dynamical behavior in CO2-
lasers [16, 17]. The nonlinear interaction of two transverse modes in a CO2-laser

9Bifurcation theory is the mathematical study of changes in the qualitative or topological structure
of a given family. Examples of such families are the integral curves of a family of vector fields, and the
solutions of a family of differential equations. Most commonly applied to the mathematical study
of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter
values (the bifurcation parameters) of a system causes a sudden ’qualitative’ or topological change
in its behavior. Bifurcations occur in both continuous systems (described by ODEs, DDEs or PDEs),
and discrete systems (described by maps). For more information on bifurcation theory, we refer to
[63, 64].

10The symmetry group O(2) consists of all rotations about a fixed point and reflections in any axis
through that fixed point. This is the symmetry group of a circle.
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is symmetrically similar to the interaction of the counter-propagating modes in
a SRL. In both cases, the system has a basic O(2) symmetry admitting travel-
ing wave solutions. This symmetry is then perturbed by symmetry-breaking
effects that still preserve the Z2-symmetry, creating a mixture of standing waves,
traveling waves and modulated waves. In a SRL, this O(2) symmetry is broken
by introducing a output-coupler to extract power. The unfolding of general
dynamics near a Takens-Bogdanov (TB) codimension-two bifurcation point11 al-
lows to understand experimentally observable dynamical features, albeit only
in the neighborhood of this codimension-two bifurcation point. How the SRL
dynamics unfolds from such a TB point will be shown in Chapter 2.

1.4.3 Our modeling approach

In this thesis, we prefer to follow an approach which lies somewhat in the middle
of both the rate-equation approach and the symmetry-based modeling. We will
introduce a simplified Z2-symmetric two-dimensional SRL model and use the
combination of both the full [Eqs. (1.1)-(1.3)] and a reduced rate-equation model
to gain much more insight into different novel dynamical operating regimes of
the SRL. Such a Z2-symmetric SRL model retains the connection with the different
physical parameters. However, as the rate-equation is greatly simplified, we are
still able to analyze the presence of all codimension-two bifurcation points in
function of the device parameters such that the full bifurcation diagram can be
explored. Access to Z2-symmetric phase space portraits also remains possible.
Such approach has the advantage that the model remains valid both close to
and far from the first instability, while avoiding the necessity to perform most of
the analysis numerically. Such purely numerical analysis is necessary for higher
dimensional rate equations, which means in practice that significant dynamical
phenomena are overlooked.
Finally, we would like to point out that the study presented for SRLs in this
thesis is general for lasers with a circular symmetry that admit two counter-
propagating modes that are coupled both linearly and nonlinearly. Therefore,
the presented results can readily be translated to e.g. the dynamical interaction
of whispering gallery modes in micro-disk lasers as well.

11A Takens-Bogdanov bifurcation is a well-studied example of a bifurcation with codimension-
two, meaning that two parameters must be varied for the bifurcation to occur. A system undergoes
a Takens-Bogdanov bifurcation if it has a fixed point and the linearization of the system function
around that point has a double eigenvalue at zero. Three codimension-one bifurcations occur
nearby: a saddle-node bifurcation, an Andronov-Hopf bifurcation and a homoclinic bifurcation. All
associated bifurcation curves meet at the Takens-Bogdanov bifurcation. [63, 64]
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1.5 Overview of Part I

In Chapter 2, a singular perturbation technique is applied to reduce the set of
original rate equations (1.1)-(1.3) for a SRL to two equations. The analysis takes
advantage from the different timescales present in the system. Not only do these
reduced equations simplify the bifurcation analysis of the possible steady-state
solutions considerably, they also allow for a two-dimensional phase space de-
scription of the laser. In particular, the shape of the invariant manifolds of the
saddle point in the system is studied and a full bifurcation analysis of this two-
dimensional laser system is carried out.
Chapter 3 demonstrates that a topological investigation of the phase space of a
SRL can be used to devise switching schemes which are alternative to optical
pulse injection of counter-propagating light. To provide physical insight in these
switching mechanisms, the specific topological structure of the two-dimensional
phase space is shown to be of great importance. Numerical simulations confirm
the topological predictions.
In Chapter 4, we investigate both theoretically and experimentally the stochastic
switching between two counter-propagating lasing modes of a SRL. Experi-
mentally, the residence time distribution cannot be described by a simple one
parameter Arrhenius exponential law and reveals the presence of two different
mode-hop scenarios with distinct time scales. The topological phase space pic-
ture of the two-dimensional dynamical system introduced in Chapter 2 allows
to understand the observed features. Expanding on the mode-hopping study
in the bistable region, we also show how the operation of the device can also
be steered to multistable dynamical regimes, predicted by the two-dimensional
model. By analyzing the phase space in this model, we predict how the stochastic
transitions between multiple stable states take place and confirm it experimen-
tally. Furthermore, in the limit of small noise intensity, the initial stochastic rate
equations can be reduced to an auxiliary Hamiltonian system and the optimal
escape paths can be calculated. This approach also allows to investigate the
dependence of the activation energy on the principal laser parameters.
Chapter 5 shows the bifurcation scenario and the evolution of the counter-
propagating modes in a SRL when the Z2-symmetry of the laser is broken.
Theoretical predictions and insights in the different dynamical regimes of this
asymmetric SRL are obtained.
In Chapter 6 the knowledge of the bifurcation structure obtained in Chapter 5 is
used to characterize theoretically and experimentally excitability in SRLs. The
global shapes of the invariant manifolds of a saddle in the vicinity of a homo-
clinic loop are shown to determine the origin of excitability and the features of
the excitable pulses. Finally, in Chapter 7, we summarize the results obtained in
Part I of this thesis.
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CHAPTER 2

An asymptotic rate-equation
model for semiconductor ring
lasers

“I’m absolutely top-hole, sir, with a ying and yang and yippiedeedoo.” — Hugh Laurie as George in Blackadder

In this chapter, we apply a singular perturbation technique to reduce the ori-
ginal five dimensional set of rate equations for a semiconductor ring laser
to two equations. The analysis takes advantage of the different timescales
present in the system. More specifically, the asymptotic analysis is valid on
timescales slower than the relaxation oscillations. Not only do these reduced
equations simplify the bifurcation analysis of the possible steady-state solu-
tions considerably, they also allow for a two-dimensional phase space de-
scription of the laser. In particular, the shape of the invariant manifolds of
the saddle point in the system is studied and a full bifurcation analysis of this
two-dimensional laser system is carried out.1

1The work presented in this Chapter has been published in the following journal papers: [1, 2].
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CHAPTER 2. AN ASYMPTOTIC RATE-EQUATION MODEL FOR
SEMICONDUCTOR RING LASERS

2.1 Motivation

In this Chapter, we will introduce an asymptotic Z2-symmetric two-dimensional
SRL model. Combining the full rate-equation model [Eqs. (1.1)-(1.3)] and this
asymptotic one will allow us to gain much more insight into different novel
dynamical operating regimes of the SRL, which is discussed in the following
Chapters. In this 2D SRL model we are able to determine analytically all local bi-
furcation points and determine with relative ease all global bifurcations as well2.
Calculating the loci of the bifurcations in the parameter space of the reduced
SRL model has the advantage that it keeps a direct connection with the different
physical device parameters (present in the original set of equations (1.1)-(1.3)).
Furthermore, as the asymptotic model has only two system variables, the time
evolution of the laser can be easily depicted in a simple two-dimensional plot.
Additionally, all attractors and invariant manifolds of the saddle points in the
system can be determined and analyzed as well in the plane.
The rate-equation model for SRLs can be derived from first principles using
a semi-classical approach. An exact description of the dynamical behavior of
semiconductor lasers requires a study of the electromagnetic fields in the laser
cavity and of the gain medium using electromagnetics and quantum mechanics.
To reduce the complexity of the problem, rate equations have been introduced,
which describe the evolution in time of the optical field and the carrier density
through a set of ordinary differential equations. They have proven to be success-
ful in describing the steady-state behavior and the dynamics of lasers on time
scales slower than the cavity round trip time. The appropriate rate equations
(2.1)-(2.3) for a SRL, already introduced in Section 1.4 of the previous intro-
ductory Chapter, can be found by applying a semiclassical approach, obtaining
the field dynamics in a classical way and describing the gain dynamics on a
quantum mechanical level [3, 4]. This model consists of two mean-field equa-
tions for the counter-propagating modes in the SRL, and a third rate equation
for the carriers. The model accounts for self- and cross-gain saturation effects
and includes backscattering contributions originating e.g. at the coupler to the

2One can divide bifurcations into two principal classes:

• Local bifurcations: they can be analyzed entirely through changes in the local stability prop-
erties of equilibria, periodic orbits or other invariant sets as parameters cross through critical
thresholds.

• Global bifurcations: they often occur when larger invariant sets of the system ’collide’ with
each other, or with equilibria of the system. They cannot be detected purely by a stability
analysis of the equilibria (fixed points).

For the reader not familiar with bifurcation theory and nonlinear dynamics, an introduction to this
topic has been included in Appendix A.
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2.1. MOTIVATION

output-waveguide. The rate-equation model from Ref. [5] is given by:

Ėcw = κ(1 + iα)
[
gcwN − 1

]
Ecw − keiφk Eccw, (2.1)

Ėccw = κ(1 + iα)
[
gccwN − 1

]
Eccw − keiφk Ecw, (2.2)

Ṅ = γ
[
µ −N − gcwN|Ecw|

2
− gccwN|Eccw|

2
]
, (2.3)

with Ecw,ccw the slowly varying amplitudes of clockwise and counter-clockwise
propagating waves and one rate equation for the carrier number N. The dot
represents differentiation with respect to time t. In Eqs. (2.1)-(2.3), κ is the field
decay rate, and γ is the decay rate of the carrier population. α is the linewidth
enhancement factor, gcw = 1− s|Ecw|

2
− c|Eccw|

2, gccw = 1− s|Eccw|
2
− c|Ecw|

2, µ is the
renormalized injection current (µ ≈ 0 at transparency, µ ≈ 1 at lasing threshold).
Self- and cross-saturation effects are modeled by s and c. Backscattering results
in a linear coupling between the two fields via k exp (iφk).
We will use Eqs. (2.1)-(2.3) as the starting point of our analysis of the dynamical
behavior in SRLs. These rate equations have been shown to explain the oc-
currence of bidirectional and unidirectional regimes of continuous-wave mode
operation, and a bidirectional regime where the two counter-propagating modes
experience harmonic alternate oscillations has been observed [5, 6]. Although
numerical simulations of Eqs. (2.1)-(2.3) can correctly reproduce the observed
SRL dynamics, analytical and topological insight into the mechanisms that lead
to the different instabilities are lacking, as is a clear picture of the influence of the
different device parameters. Due to the too high dimensionality of the model
only a purely numerical analysis can be used. Therefore, in the next Section,
relying on asymptotic methods we will derive a reduced model to describe the
SRL dynamics.
Using the rate-equation model Eqs. (2.1)-(2.3), we will now briefly revisit the
main operating regimes in the SRL (as also shown in Section 1.3.2 of the pre-
vious Chapter), putting emphasis on the primary bifurcations that occur in the
system. Introducing an amplitude/phase decomposition

Ecw,ccw = Qcw,ccweiφcw,ccw , (2.4)

it is possible to rewrite Eqs. (2.1)-(2.3)
˙Qcw = κ

[
gcwN − 1

]
Qcw − k cosφkQccw cosψ + k sinφkQccw sinψ, (2.5)

˙Qccw = κ
[
gccwN − 1

]
Qccw − k cosφkQcw cosψ − k sinφkQcw sinψ, (2.6)

ψ̇ = καN(c − s)(Q2
ccw −Q2

cw) + k cosφk sinψ
(

Qccw

Qcw
+

Qcw

Qccw

)
+k sinφk cosψ

(
Qccw

Qcw
−

Qcw

Qccw

)
, (2.7)

Ṅ = γ
[
µ −N − gcwNQ2

cw − gccwNQ2
ccw

]
, (2.8)
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Figure 2.1: Bifurcation diagram of Eqs. (2.1)-(2.3) depicting the extremes
of the modal intensity vs. injection current µ. Three regimes of operation
are distinguished: A: bidirectional CW operation, B: alternate oscillations,
C: bistable unidirectional operation. κ = 100ns−1, γ = 0.2ns−1, α = 3.5,
s = 0.005, c = 0.01 φk = 1.5, k = 0.44ns−1. The maxima (minima) of Q2

cw are
denoted by open black squares (circles). The maxima (minima) of Q2

ccw are
denoted by gray crosses (dots).

where the relative phase ψ is defined by

ψ = φccw − φcw. (2.9)

Performing a numerical bifurcation analysis, the following scheme can be found
(see Figure 2.1)3. At the threshold current, µ ≈ 1, laser action starts. Although
the counter-propagating modes experience nonlinear gain saturation, backscat-
tering [k exp (iφk)] favors bidirectional emission (regime A in Figure 2.1) just
above threshold. In Ref. [5], Sorel et al. studied the steady state solutions in the
bidirectional regime. We quickly review these results here. The bidirectional
regime corresponds to two symmetric solutions (Qcw = Qccw = Q0 and N = N0)
with

Q2
0 =

N0 − 1 − k cosφk cosψ
(c + s)N0

, (2.10)

N0 =
µ

1 + 2Q2
0 − 2(c + s)Q4

0

. (2.11)

These two solutions differ in their relative phase difference ψ. One of them has
ψ = 0 and is referred to as the In-Phase Symmetric Solution (IPSS), while the Out-
of-Phase Symmetric Solution (OPSS) is characterized by ψ = π. For the parameter

3An explanation of the numerical integration schemes that we use can be found in Appendix B.
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2.2. ASYMPTOTIC REDUCTION

set given in Figure 2.1, in regime A, the OPSS is found to be the stable solution
due to the positive value of cosφk, while the IPSS is unstable. Therefore, in this
case, the IPSS is of no further importance and all further bifurcations emerge
from the OPSS.
Regime B is characterized by alternate intensity oscillations between the two
counter-propagating modes. At µ ≈ 1.3, the IPSS loses its stability through a
Hopf bifurcation when

4k cosφk = κN0Q2
0(c − s), (2.12)

with a Hopf frequency

ωH = 2k
√
−(cos(2φk) + α sin(2φk)). (2.13)

At this point, a limit cycle representing a dynamic competition between the two
counter-propagating modes appears. From Eqs. (2.12) and (2.13), it is clear that
this regime is induced by backscattering, weak as it may be.
For injection currents larger than µ ≈ 1.6, in regime C, the optical output power
is mainly concentrated in one propagation direction. This regime corresponds
to two out-of-phase asymmetric solutions (OPAS) emerging from a pitchfork
bifurcation of the unstable OPSS. Because of the device symmetry two OPAS
exist: one where Qcw > Qccw and vice versa. In this regime, the device exhibits
bistability.
The bidirectional regime and its corresponding Hopf point can be found by
solving Eqs. (2.10)-(2.12). However, the unidirectional regime can only be found
by solving Eqs. (2.5)-(2.8) numerically for its steady-state values using a Newton-
Raphson method. This complicates the analysis of its bifurcation points, making
a physical interpretation of the bifurcation schemes not straightforward. In the
next Section, we will show that it is possible to simplify the dynamical equations
such that analytical results can be obtained for the unidirectional regime. Also,
this analysis provides easier expressions for the bidirectional regime, eliminating
the need for solving Eqs. (2.10)-(2.12).

2.2 Asymptotic reduction

Our numerical investigations of Eqs. (2.1)-(2.3) show that (for the given param-
eter set) the quantity N − 1 remains small. The parameter values suggest to
investigate the limit

κ/γ→∞ (2.14)
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assuming N − 1, s and c smaller than 1, and k smaller than κ. The approach that
we will follow here has already proven itself very successful in understanding
the dynamical behavior of other semiconductor laser devices such as VCSELs
[7].
To be able to define the order of magnitude of all parameters and to be able
to determine the leading order approximation to Eqs. (2.5)-(2.8), we need to
introduce a dimensionless time τ and a smallness parameter ρ as

τ = γt, (2.15)

ρ =
γ

κ
. (2.16)

From numerical simulations, we have seen that N always evolves close to the
threshold value. Hence, we define a new carrier variable

N − 1 = ρn (2.17)

where n is assumed to be O(1). Please note that in this analysis, the carrier
number N is assumed close to its steady-state value, whereas the field variables
are allowed to evolve arbitrarily. We further assume that

s = ρS, (2.18)
c = ρC, (2.19)

k/κ = ρK, (2.20)

with S, C and K of O(1). After substituting Eqs. (2.15)-(2.20) into Eqs. (2.5)-(2.8)
and taking the limit ρ→ 0, we obtain the following leading order system:

Q′cw =
(
n − SQ2

cw − CQ2
ccw

)
Qcw

−K cosφkQccw cosψ + K sinφkQccw sinψ, (2.21)

Q′ccw =
(
n − SQ2

ccw − CQ2
cw

)
Qccw

−K cosφkQcw cosψ − K sinφkQcw sinψ, (2.22)

ψ′ = α(C − S)(Q2
ccw −Q2

cw) + K cosφk sinψ
(

Qccw

Qcw
+

Qcw

Qccw

)
+K sinφk cosψ

(
Qccw

Qcw
−

Qcw

Qccw

)
, (2.23)

1 − µ + Q2
cw + Q2

ccw = 0, (2.24)

where prime now denotes derivation with respect to the dimensionless time τ.
The first three equations (2.21)-(2.23) are a simplified form of the original rate
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equations Eqs. (2.5)-(2.7). However, Eq. (2.24) is not a rate equation and does
not give us an expression for n. At this point, it is clear that our analysis differs
considerably from an adiabatic elimination of the carrier dynamics. Instead, we
have derived a conservation law for the total intensity valid on the timescale τ:

Q2
cw + Q2

ccw = µ − 1 > 0. (2.25)

Practically, this means that when reaching the conservation relation dynamically
(e.g. after a step in the injected current) the typical relaxation oscillations are
observed on a faster timescale with typical frequency ∼

√
(µ − 1)/ρ. On the slow

timescale, however, this transition will seem to have appeared instantaneously.
So, on the slow time τ, in all different operating regimes of the SRL – steady-
state bidirectional (A) and unidirectional (C) behavior as well as the alternate
oscillations (B) between the two counter-propagating modes – the total power
will remain conserved. As a result, the carrier number n will become a slaved
variable. We can now use this property to determine n from the equations for the
amplitudes Qcw,ccw. Combining Eqs. (2.21) and (2.22), we can find a dynamical
equation for the total power. Furthermore, because of the conservation law
in Eq. (2.25), this equation for the total power reduces to a algebraic equation
relating n to Qcw, Qccw andψ. Combining the resulting equation with the relation
Q2

ccw = µ − 1 − Q2
cw results in an expression for the carriers n(Qcw, ψ). Finally,

substituting the latter equation into Eqs. (2.21)-(2.23), leads to a closed set of two
rate equations

Q′cw =
[
n(Qcw, ψ) − SQ2

cw − CQ2
ccw(Qcw)

]
Qcw − K cosφkQccw(Qcw) cosψ

+K sinφkQccw(Qcw) sinψ, (2.26)

ψ′ = α(C − S)
[
Q2

ccw(Qcw) −Q2
cw

]
+ K cosφk sinψ

[
Qccw(Qcw)

Qcw
+

Qcw

Qccw(Qcw)

]
+K sinφk cosψ

[
Qccw(Qcw)

Qcw
−

Qcw

Qccw(Qcw)

]
. (2.27)

These two coupled rate equations represent the leading order approximation to
the original four equations.
Using the conservation law of Eq. (2.25) for one last time, Eqs. (2.26)-(2.27) can
be rewritten in a more appealing form. We define the dynamical variable θ as a
measure for the relative modal intensity by

Qcw =
√
µ − 1 cos

(
θ + π/2

2

)
, (2.28)

Qccw =
√
µ − 1 sin

(
θ + π/2

2

)
, (2.29)
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with θ ∈ [−π/2, π/2]. Redefining the current

J = (C − S)(µ − 1)/K, (2.30)

and rescaling time to the backscattering τ → Kτ, the reduced equations now
read

θ′ = −2 sinφk sinψ + 2 cosφk cosψ sinθ + J sinθ cosθ, (2.31)
cosθψ′ = αJ sinθ cosθ + 2 cosφk sinψ + 2 sinφk cosψ sinθ. (2.32)

Note that the renormalized injection current J can be either positive or negative
depending on the sign of C − S. Before performing a linear stability analysis
and giving analytical expressions of the different local bifurcations, we will first
consider the SRL behavior in two limiting cases.

2.3 Special cases

Eqs. (2.31)-(2.32) can be studied in two extreme cases offering a lot of physical
insight into the operation of the SRL. In the first case, we will assume that the cou-
pling between the two counter-propagating waves is purely linear. This means
that all effects of saturation are neglected (C = S). In the second case, we will
briefly study the effect of the nonlinear coupling, when no linear backscattering
is present (K = 0).

2.3.1 Linear coupling

Only linear coupling (C = S) implies that for every injection current µ the renor-
malized current J = 0. This gives:

θ′ = −2 sinφk sinψ + 2 cosφk cosψ sinθ, (2.33)
cosθψ′ = 2 cosφk sinψ + 2 sinφk cosψ sinθ. (2.34)

Solving Eqs. (2.33)-(2.34) for their steady states, we find:

θ = 0 and sinψ = 0, (2.35)

which corresponds to bidirectional emission. Backscattering effects will thus
force the SRL to emit in both directions. This is a good point to remark that these
bidirectional solutions are independent from the injection current J. On the slow
timescale τ, rapidly changing the current will therefore make the intensity of
this solution jump infinitely fast [see Eqs. (2.28)-(2.29)]. Of course, in the original
model, such a switch would be accompanied by an initial fast layer of relaxation
oscillations.
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2.3.2 Nonlinear coupling

When K = 0, J→∞, such that Eqs. (2.31)-(2.32) reduce to

θ′ = J sinθ cosθ, (2.36)
cosθψ′ = αJ sinθ cosθ, (2.37)

which also has bidirectional emission as steady-state solution. A second steady-
state solution,

θ = ±
π
2
, (2.38)

corresponds to pure unidirectional emission. The sign of J will determine which
of the two solutions is stable. For positive J, it will always be the unidirectional
emitting one, whereas for negative J, the SRL would still be emitting in both
directions. We can conclude that stronger cross-saturation then self-saturation
(C > S) gives preference to unidirectional emission.

2.4 Linear stability analysis

In this Section, we will perform the steady-state analysis of the reduced equa-
tion set (2.31)-(2.32) describing the slow time dynamics of SRLs. This will
show us how the linear and nonlinear coupling compete. Thanks to the two-
dimensionality of the given problem, the linear stability can be studied ana-
lytically. The bifurcation diagrams of the periodic solutions still need to be
constructed numerically. Moreover, Eqs. (2.31)-(2.32) motivate that the slow
time dynamical behavior of the system is limited to the phase plane (θ,ψ).

2.4.1 Bidirectional solutions

Equating Eqs. (2.31)-(2.32) to zero, it is clear that the steady-state (bidirectional)
symmetric solutions are given by

θ = 0, (2.39)
sinψ = 0, (2.40)

with ψ = 0 for the IPSS and ψ = π for the OPSS. Using Eqs. (2.31)-(2.32), we
can study the linear stability of these steady-state solutions. Considering small
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Type of bifurcation Bifurcation current
Hopf IPSS JH

IPSS = −4 cosφk
Hopf OPSS JH

OPSS = 4 cosφk

Pitchfork IPSS JP
IPSS = − 2

cosφk+α sinφk

Pitchfork OPSS JP
OPSS = 2

cosφk+α sinφk

Table 2.1: The Hopf and pitchfork bifurcation currents of the bidirectional
IPSS, OPSS solutions

perturbations around the steady-state values, we find the following characteristic
equation:

λ2
− λ

(
J ± 4 cosφk

)
± 2J

(
cosφk + α sinφk

)
+ 4 = 0, (2.41)

where the upper (lower) sign corresponds to the IPSS (OPSS).
Analyzing this characteristic equation immediately gives us the condition for

the Hopf bifurcations JH
IPSS,OPSS of the IPSS and OPSS with the corresponding

frequency ΩH
IPSS,OPSS = 2

√
−(cos(2φk) + α sin(2φk)) at onset of this oscillatory

instability . Moreover, the static bifurcation point of the IPSS and OPSS provide
us with the locus of the pitchfork bifurcation that occurs in the SRL system. For
analytical expressions of these local bifurcations, we refer to Table 2.1.

2.4.2 Unidirectional solutions

The unidirectional asymmetric solutions are less straightforward to obtain. An
elegant approach to writing an analytical expression for these solutions is to
parametrize them in ψ. The solution is then of the form

{
θ(ψ), J(ψ)

}
:

θAS
(
ψ
)

= arcsin
(
α sinφk + cosφk

α cosφk − sinφk
tanψ

)
, (2.42)

J
(
ψ
)

= 2 cscθ(ψ) secθ(ψ)
(
sinφk sinψ − cosφk cosψ sinθ(ψ)

)
. (2.43)

Four asymmetric solutions exist: two that originate at a pitchfork bifurcation
from the IPSS (θ = 0, ψ = 0), and two from the OPSS (θ = 0, ψ = π). We will
refer to them as IPAS and OPAS, respectively. The pitchfork bifurcation currents
are given in Table 2.1. When increasing the current J, these asymmetric solutions
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are stabilized at a Hopf bifurcation point:

tan2 ψH
AS =

(
sinφk − cosφkα

cosφk + sinφkα

)2

× (2.44)

sin2 φk − cos2 φk − α sin 2φk

3 sin2 φk + cos2 φk − α sin 2φk
.

For every value of α, there exists a point in parameter space (J, φk) for which the
pitchfork bifurcation and the above Hopf bifurcations coincide. Such a point is
called a Takens-Bogdanov (TB) codimension-two point4. It is known that from
these points there should also be global bifurcations emerging [8]. Therefore,
in the next Section we complement our analytical analysis of the bifurcations in
the reduced system, with a numerical approach using the continuation software
package AUTO [10]. As the TB point involves local bifurcations for which we
have obtained analytical expressions, we can determine the critical phase φTB2

k
of the TB2 point:

sin2(φTB2
k ) =

1
2
±

α

2
√

α2 + 1
, (2.45)

JTB2 = ±4 cosφTB2
k . (2.46)

Moreover, we mention that for a certain parameter regime, the IPAS (OPAS)
can be born in a saddle-node bifurcation or fold bifurcation before the pitchfork
bifurcation has occurred. This fold bifurcation is given analytically by:

cos2 ψF = ±2
cosφk + α sinφk

1 + α2 (2.47)

2.5 Bifurcation diagrams

In Figure 2.2, we summarize the previous results and study the stability of the
SRL system in a two parameter plane defined by J and φk with a fixed α. Apart
from local bifurcations which can be obtained analytically, we also numerically
determine the global bifurcations of the system.

If we choose a polar representation where x = J cosφk and y = J sinφk, the
4As also mentioned in Section 1.4.2, a Takens-Bogdanov bifurcation is a well-studied example of a

bifurcation with codimension-two, meaning that two parameters must be varied for the bifurcation to
occur. A system undergoes a Takens-Bogdanov bifurcation if it has a fixed point and the linearization
of the system function around that point has a double eigenvalue at zero. Three codimension-one
bifurcations occur nearby: a fold (saddle-node) bifurcation, an Andronov-Hopf bifurcation and a
homoclinic bifurcation. All associated bifurcation curves meet at the Takens-Bogdanov bifurcation.
[8, 9]
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Figure 2.2: Stability diagram for a fixed value α = 3.5 showing the different
stable operation regimes for J > 0. The different black solid lines indicate
the different bifurcation currents, and are depicted in a polar plot (J, φk).
The dotted lines depict four cuts for four different values of φk, for which
we show the corresponding PI-curves in Figure 2.3. The eight solid gray
dots denote the different operating points of which we plot the invariant
manifolds in Figs. 2.5-2.7. Finally, the denotations 1-6 correspond to ¬ the
pitchfork bifurcation of the OPSS (IPSS), ­ Hopf bifurcation of the OPSS
(IPSS), ® fold bifurcation of the OPSS (IPSS), ¯ subcritical Hopf bifurcation
the OPAS (IPAS), ° a double homoclinic bifurcation with gluing and ± a
fold of cycles. Multiple Takens-Bogdanov (TB) co-dimension two points

are also depicted.

pitchfork bifurcation (see Table 2.1) denoted by ¬ in Figure 2.2 is a straight line
x + αy = ±2. For a certain parameter regime, the IPAS (OPAS) are born in a
fold bifurcation before the pitchfork bifurcation has occurred, denoted by ® in
Figure 2.2. The symmetric solutions can also change stability through a Hopf
bifurcation at J = JH(φk) of the symmetric solutions (OPSS, IPSS) as described
by the expressions in Table 2.1. In Figure 2.2, these Hopf bifurcations lines are
segments of the circles [(x ± 2)2 + y2 = 4] denoted by ­. The Hopf bifurcations
lines end at the pitchfork bifurcations in a Takens-Bogdanov point with symme-
try (TB2) [9]. The asymmetric solutions can change stability through a subcritical
Hopf bifurcation given by Eq. (2.44) (¯ in Figure 2.2), emerging from a Takens-
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Bogdanov point (TB1) at the fold bifurcation line. For a generic in-depth analysis
of all possible bifurcation scenarios close to Takens-Bogdanov points in the wide
class of systems with a broken O(2)-symmetry, we refer to Refs. [11, 12] (and
references therein).
The global bifurcations emerging from the two Takens-Bogdanov points of co-
dimension two have been tracked numerically using the continuation software
package AUTO [10] and using brute force numerical simulations. From TB1, the
point where the fold bifurcation line ® and the subcritical Hopf line ¯ meet,
emerges a double homoclinic bifurcation line with gluing5 °. From TB2, the
point where the supercritical Hopf bifurcation line ­ and the pitchfork bifurca-
tion ¬ meet, emerges a double homoclinic connection with a gluing bifurcation
° and a fold of cycles ±. Finally, also the supercritical Hopf bifurcation and the
fold of cycles coincide in a co-dimension 2 point called a Bautin bifurcation point
(not shown)6.
We point out that Figure 2.2 provides a complete picture of the different dynam-
ical regimes for α = 3.5, but only for positive values of J, meaning that c > s,
being the physically relevant parameter region. The bifurcation lines for nega-
tive values of J, however, are exactly the same, but due to the following particular
invariance of the reduced system (Eqs. 2.31-2.32) the stability is reversed:

φk → φk + π, (2.48)
J → −J, (2.49)
t → −t. (2.50)

While performing a bifurcation analysis, both analytically and numerically,
many different dynamical regions of operations can be found in the reduced sys-
tem Eqs. (2.31)-(2.32), as can be seen from the different PI-curves in Figure 2.3.
Three different regions of operation A,B,C can be identified in Figure 2.3(a)-(d)
according to the relative magnitude of the linear and nonlinear coupling terms
between CW and CCW mode [see also Figure 2.1]. These three main regions of
operation have been already introduced to the reader in Section 1.3.2 and Section
2.1. However, we will revisit these operating regimes now and demonstrate that
depending on the physical parameters of the system the behavior of the SRL
can largely vary in region B where linear and nonlinear coupling are of similar

5We use the terminology gluing for bifurcations in which two limit cycles merge together to form
one limit cycle. In this case, this happens through a double homoclinic bifurcation.

6The Bautin bifurcation is a bifurcation of an equilibrium in a two-parameter family of au-
tonomous ODEs at which the critical equilibrium has a pair of purely imaginary eigenvalues and
the first Lyapunov coefficient for the Hopf bifurcation vanishes. This phenomenon is also called the
generalized Hopf (GH) bifurcation. The bifurcation point separates branches of sub- and supercriti-
cal Hopf bifurcations in the parameter plain. For nearby parameter values, the system has two limit
cycles which collide and disappear via a fold bifurcation of periodic orbits. [8, 9]
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Figure 2.3: Bifurcation diagrams of Eqs. (2.31)-(2.32) depicting the extremes
of θ vs. injection current J. The steady state values of θ are denoted by
full lines, while the extrema of periodically oscillating θ are indicated with
dashed lines. Black (gray) color is used for stable (unstable) fixed points or
limit cycles. The dotted lines represent the different bifurcation currents,
and are denoted as explained in the text. Black (gray) OPSS/IPSS/OPAS
denotations correspond to stable (unstable) OPSS/IPSS/OPAS. From (a) to

(d), we have φk = 0.2, 1.08, 1.5 and 2.3, respectively. α = 3.5.

magnitude.
At the threshold current, J ≈ 0, laser action starts. When operating close to the
threshold, at low power, the nonlinear coupling between CW and CCW is negli-
gible when compared to the linear coupling induced by the backscattering. The
resulting operation is bidirectional with CW and CCW operating either in-phase
or out-of-phase according to φk. (see region A in Figure 2.3).
For large values of the pump parameter J, the nonlinear gain saturation becomes
the dominant coupling mechanism between the modes and two out-of-phase
(in-phase) asymmetric OPAS (IPAS) solutions become possible. The optical
output power is mainly concentrated in one propagation direction, called unidi-
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rectional operation. Because of the device symmetry two OPAS exist: one where
|Ecw|

2 > |Eccw|
2 and vice versa. In this regime, the device exhibits bistability (See

Regime C in Figure 2.3).
For intermediate values of J, the linear and nonlinear coupling are comparable
(Region B) and the dynamics of the system as well as the shape of the P-I curve
depend on the value of φk. A SRL aimed to applications such as all-optical in-
formation storage is expected to be operated at the edge between region B and
C if you want to reduce the switching energy. Depending on the linear coupling
phase φk, the dynamical behavior that the SRL exhibits at the transition between
bidirectional and unidirectional operation, originates from instabilities of either
the out-of-phase or in-phase solutions. The stable bidirectional solution can be
destabilized, immediately going to stable unidirectional operation [see Figure
2.3(b)], but there can be many other possibilities of which we show a couple of
examples in the other panels of Figure 2.3. E.g. in Figure 2.3(a), there exists a
region where both the stable bidirectional solution as the stable unidirectional
solution coexist. In Figure 2.3(c), the destabilisation of the bidirectional solution
leads to region B, characterized by stable alternate intensity oscillations between
the two counter-propagating modes, which has been observed experimentally
[5]. At this Hopf bifurcation point, a limit cycle representing a dynamic com-
petition between the two counter-propagating modes appears. Furthermore,
a combination of the above situations is also possible. For instance, in Figure
2.3(d), there exists tristability between the stable IPSS and the stable OPAS, with
the presence of different unstable limit cycles separating the different basins of
attraction of these stable solutions. We will go into further detail on the pos-
sible bi- and multi-stable operation regions in Chapter 4. Both theoretical and
experimental results will be discussed there.

2.6 Intermezzo: spherical phase portraits

Because we have reduced the dynamics of the system to a phase space consisting
of two angles θ and ψ, it is possible to study the properties of the solutions on
a sphere. If the angles would be defined as the spherical coordinates [as in
Figure 2.4(a)], then bidirectional emission fixed points (θ = 0) would be situated
along the equator with the IPSS and the OPSS opposite to each other. Purely
unidirectional emission (θ = ±π/2) can be found on the North (θ = +π/2)
and South Pole (θ = −π/2). We can e.g. use this representation to study the
transient behavior exhibited by the SRL. We focus on the bifurcation scheme as
presented in Figure 2.3(c) (φk = 1.5 and α = 3.5). In this case, the IPSS is always
unstable and we will use it as our initial condition. In Figures 2.4(b)-(d), we
let the system evolve from this point for different values of the injection current
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Figure 2.4: Examples of phase space portraits in the spherical phase space
for φk = 1.5 and α = 3.5. The angles θ and ψ are defined as in (a). (b) Time
evolution from the unstable IPSS to the stable OPSS (J = 0.23). (c) Time
evolution from the unstable IPSS to the stable oscillations (J = 0.34). (d)
Time evolution from the unstable IPSS to one of the stable OPAS (J = 0.91).

J. In Figure 2.4(b), the current is fixed such that the only other attractor in the
phase space is the stable OPSS. As it is clear from this Figure, the system spirals
along the sphere in a specific way from the IPSS to the diametrically opposed
OPSS. In Figure 2.4(c), a limit cycle is the stable attractor. This limit cycle clearly
distorts the spiral. When the OPAS have become stable [Figure 2.4(d)], the spiral
disappears and the system snakes from the IPSS to one of the OPAS which is
now close to the North Pole.

2.7 Basins of attraction in the bistable regime in the
planar phase space

In the previous Section we have studied in depth the different possible bifurca-
tion scenarios of the SRL. The main question that still remains to be answered to
have a full understanding of the SRL dynamics is what the basins of attraction of
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the different attractors look like in the phase space
(
θ,ψ

)
of the SRL. Therefore,

in this Section, we investigate the 2D phase space for a SRL operating in the
bistable unidirectional regime. As this operating region is the most interesting
for all-optical processing applications, we will characterize the basins of attrac-
tion of both directional modes in this region. Such basins of attraction determine
which regions in the SRL state space (θ,ψ) evolve towards the CCW solution
and which ones go to the CW mode when time evolves. Such a picture provides
useful insight into how the SRL operates. Therefore we will use the phase por-
traits of the basins of attraction to explain several theoretical and experimental
observations in the following Chapters of this first Part of the thesis.
In the bistable regime, Eqs. (2.31)-(2.32) have four stationary solutions: an un-
stable in-phase (out-of-phase) bidirectional state in (0, 0) [(0, π)]; two symmetric
stable states CW (clockwise) and CCW (counter-clockwise) at ψ ≈ π (ψ ≈ 0) both
corresponding to undirectional operation, and a saddle point S in (0, π) [(0, 0)]
which is the unstable out-of-phase (in-phase) bidirectional solution. As we are
interested in operating regimes which are relevant for optical information stor-
age, we consider here parameter values such that we are at the edge between
region B and C (see Figure 2.3). In particular, we focus on parameters such that
we are relatively close to the fold of cycles bifurcation line ± (see Figure 2.2).
We are interested in the qualitative shape of the invariant manifolds of the
saddle-point S and their dependence on the principal parameters of the sys-
tem. In particular, we focus on the stable manifold of S separating the basins
of attractions of the CW and CCW mode, shown in black and white in Figs. 2.5,
2.6, 2.7 (The parameter sets under study in these figures are depicted by gray
dots in Figure 2.2). The invariant manifolds are depicted in the plane instead of
using the spherical phase portraits as before. Throughout the remainder of this
work, we will prefer the planar phase space pictures due to their greater ease in
graphical manipulations.

Influence of J

We study first the dependence of the phase space structures on the pump pa-
rameter J [see Eq. (2.30)]. J measures the ratio of nonlinear and linear coupling
between CW and CCW modes. Consider here (φk, α) = (1.5, 3.5); when varying
the parameter J, one observes three different regions of operation: bidirectional
operation (A), bidirectional operation with alternating oscillations (B) and uni-
directional operation (C) [see Figure 2.3] as has been experimentally observed
[5]. The shape of the stable manifold of S, and the basins of attraction of CW and
CCW are depicted in Figure 2.5. The basins of attraction of CW and CCW fold
into each-other as the stable manifold of S spirals inwards. As J increases, the
stable manifold unfolds and the basins of attraction separate. Therefore, a large
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Figure 2.5: Stable manifold at φk = 1.5, and α = 3.5 for three increasing
different values of the normalized current J: J = 0.71, 0.739, 0.8, 0.93, from
(a) to (d). The basins of attractions of the CW and CCW mode are given by

the black and white region.

bias current µ or a small coupling amplitude k correspond to unfolded basins of
attraction.

Influence of φk

It is very hard to determine the value of φk for a SRL device as this parameter
describes the phase of the backscattering that arises due to different phenomena:
localized backscattering at the output coupler region, at the end facets of the
output waveguides and distributed backscattering originating from e.g. side-
wall surface roughness in the ring itself. Therefore, it is useful to gain insight in
the effect of the linear coupling phase φk in the entire region from zero to 2π. In
order to study the influence of φk on the shape of the manifold, we will focus
on the region having the stable OPAS at higher current (φk ∈ [0, π]). The region
φk ∈ [π, 2π] is exactly the same if one interchanges everywhere in-phase (IP) and
out-of-phase (OP).
One could wonder whether this folded shape of the stable manifold is only
present if one has a region of alternating oscillations in the PI scan, as was
the case in Figure 2.5. We have checked the evolution of the manifold shape
in the region φk ∈ [0, φTB2

k ] where one does not have a Hopf bifurcation [See
Figure 2.6(d)-(f)]. φTB2

k defines the phase φk where the second Takens-Bogdanov
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Figure 2.6: Stable manifold at α = 3.5 for different values of the linear cou-
pling phase φk: from (a) to (f) (φk, J) = (1.5, 0.739), (1.64, 0.972), (1.78, 1.260),
(1.36, 0.625), (1.22, 0.625), (1.08, 0.636). The basins of attractions of the CW

and CCW mode are given by the black and white region.

bifurcation point lies. For φk ∈ [0, φTB2
k ], one can notice in Figure 2.6(d)-(f) that

although one does not observe oscillations in a PI scan, the manifold can still
have a folded shape. It unfolds continuously with decreasing values of φk. In
the region φk > φ

TB2
k , many different bifurcation scenarios can take place in a PI

scan. However, the bifurcation scheme always ends in a fold of cycles where
a stable limit cycle (originating from either the OPSS or the IPSS) touches the
unstable limit cycle formed in the gluing bifurcation. As becomes clear from
Figure 2.6(a)-(c), the manifold unfolds itself with increasing values of φk. Due
to the fact that the distance between the gluing bifurcation and the fold of cycles
also increases, the stable manifold is already more unfolded by the time the fold
of cycles occurs.

Influence of α

The linewidth enhancement factor α is a difficult parameter to estimate exper-
imentally [13]. Therefore, as α is often unknown in the SRL, we study how
α affects the dynamical system [Eqs. (2.31)-(2.32)]. The results are illustrated
in Figure 2.7. We have plotted the manifold shapes for different values of the
linewidth enhancement factor α, while keeping (φk, J)=(1.64, 0.972). We find that
increasing values of α lead to an unfolding of the stable manifold for φk > φ

TB2
k ,
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Figure 2.7: Stable manifold at (φk, J) = (1.64, 0.972) for different values of
the linewidth enhancement factorα: (a) 3.3, (b) 3.7. The basins of attractions

of the CW and CCW mode are given by the black and white region.

while for φk ∈ [0, φTB2
k ], the reverse behavior is observed. This can be explained

with the analytical expression for the pitchfork bifurcation given in table 2.1.
This pitchfork bifurcation is a straight line in Figure 2.2 with a slope given by
−1/α. Thus, on the one hand increasing the value of α for φk > φ

TB2
k will shift all

the bifurcation lines further away from the operating point (φk, J) = (1.64, 0.972),
such that the manifold unfolds itself. On the other hand, increasing the value of
α for φk ∈ [0, φTB2

k ], the pitchfork bifurcation will come closer to the chosen (φk,
J) point in the bistable regime, such that the manifold will spiral more into itself.

Similar folded shapes of the basins of attraction in the bistable regime have
been found theoretically in the context of dissipative perturbations of strongly
nonlinear oscillators that correspond to slowly varying double-well potentials
[14, 15]. In the next Section, we try to make this possible connection of the
particular shape of the basins of attraction with a weakly perturbed conservative
system more explicit.

2.8 Conservative limit case

From the previous analysis of the phase space picture of the reduced set of
equations (2.31)-(2.32) it becomes clear that the folded shape of the basins of
attraction of the two counter-propagating modes exists solely when close enough
to the homoclinic bifurcation, and i.e. close to the Takens-Bogdanov point.
We suggest to consider the limit α→∞. In this case, the Takens-Bogdanov point
TB2 is located exactly at φk → 1.5 and J → 0 [see Eq. (2.46)]. In this limit, Eqs.
(2.31)-(2.32) reduce to the following system:

θ′ = −2 sin(ψ), (2.51)
cos(θ)ψ′ = αJ sin(θ) cos(θ) + 2 cos(ψ) sin(θ), (2.52)
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or when introducing φ = ψ−π and rewriting Eqs. (2.51) and (2.52) in terms of θ
and φ:

θ′ = 2 sin(φ), (2.53)
φ′ = αJ sin(θ) − 2 cos(φ) tan(θ). (2.54)

We next expand all trigonometric functions near (θ, φ) = (0, 0). From Eqs. (2.53)
and (2.54), we find

θ′ = 2(φ −
1
6
φ3 + ...), (2.55)

φ′ = αJ(θ −
θ3

6
+
θ5

120
+ ..) − 2(1 −

1
2
φ2 + ...)(θ +

1
3
θ3 +

2x5

15
+ ...). (2.56)

We assume φ = O(θ2) and reorganize Eqs. (2.55) and (2.56) as

θ′ = 2φ + O(φ3), (2.57)

φ′ = (αJ − 2)θ − (
αJ
2

+ 2)
θ3

3
+ φ2θ +

θ5

15
(
αJ
8
− 4) + O(θ7, θ3φ2). (2.58)

We now introduce the following parameters and scaled variables

ε2
≡ αJ − 2, (2.59)

θ = εx, (2.60)
s = εt, (2.61)

with ε a small variable, such that from Eqs. (2.57)-(2.58), we find

x′′ = 2x − 2x3 + ε2

[
−

x3

3
+

x′2x
2
−

x5

2

]
+ O(ε4). (2.62)

We recognize a weakly perturbed conservative system which reminds us of the
normal form of the TB bifurcation point with symmetry, or equivalently, it is
similar to the expression of a Duffing - Van der Pol oscillator [8, 9]. The first
integral of the leading conservative equation (ε = 0) is

x′2

2
− x2 +

x4

2
= E (2.63)

where E ≥ 0 is the constant of integration (energy). This is nothing else than the
classical movement of a particle in a double potential well.
Due to resemblance of the reduced SRL model with that of a Duffing - Van der Pol
oscillator in certain parameter regions, the broad knowledge about such weakly
perturbed conservative systems can be potentially useful to gain insight into the
dynamical behavior of the SRL as well.
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2.9 Conclusion

In this Chapter, motivated by the different orders of magnitude of the parameters,
we have used asymptotic methods to derive a two-variable reduced model for the
dynamical behavior of a semiconductor ring laser. The model accounts for both
backscattering processes and gain saturation effects. Thanks to this analysis, we
have been able to perform a systematic and largely analytical bifurcation study
of all the steady states and time-periodic states of the model. Together with
the bifurcation analysis, the two-dimensionality of the reduced model has eased
the understanding of the appearance of the different operating regimes. We
have revealed a non-trivial shape of the basin of attraction of the system. In the
following Chapters, this particular intertwining shape of the basins of attraction
will be shown to be at the origin of interesting dynamical behavior of the SRL.
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CHAPTER 3

Deterministic switching mech-
anisms in the bistable regime

“Don’t follow the lights.” — Gollum in Lord of the Rings

This chapter demonstrates that the topological investigation of the phase space
of a semiconductor ring laser, introduced in the previous Chapter, can lead
to switching schemes which are an alternative to optical pulse injection of
counter-propagating light. Numerical simulations confirm the topological
predictions.1

3.1 Phase space engineered switching

The standard approach to switch the direction of operation of a SRL operat-
ing in the unidirectional regime consists of injecting an optical signal counter-
propagating to the lasing mode. Once the external signal is removed, the SRL
remains stable in this direction [3–5]. This is illustrated in phase space in Figure
3.1(a). A full understanding of the dynamical stability properties of a SRL as well
as an in depth knowledge of the phase space structure, acquired in Chapter 2, al-
lows for alternative switching schemes which rely on the topological properties
of the system [1, 2]. Figure 3.1(b) demonstrates e.g. that injecting more energy in

1The work presented in this Chapter has been published in the following journal papers: [1, 2]
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the lasing CW state can induce a successful switch to the counter-propagating
CCW state, which is at first sight rather counter-intuitive. We propose three such
novel schemes, based on the particular topology of the phase space, to switch the
operation of the ring from clockwise (CW) to counter-clockwise (CCW) mode
(or vice versa). Such schemes are based on externally steering the system in
the phase space and have been applied e.g. to increase the speed of turn-on in
semiconductor lasers in Ref. [6].

An investigation of the dependence on device parameters of the phase space(
θ,ψ

)
for a SRL operating in the bistable regime has been carried out in the

previous Chapter 2. In this bistable unidirectional regime, the two-dimensional
reduced model [Eqs. (2.31)-(2.32)] has four stationary solutions (see Figure 3.1):
an unstable in-phase bidirectional state in (0, 0) (IPSS); two symmetric stable
states CW and CCW at ψ ≈ π both corresponding to undirectional operation
(OPAS), and a saddle point S in (0, π) which is the unstable out-of-phase bidi-
rectional solution (OPSS)2. The stable manifold of the saddle-point S separates
the basins of attractions of the CW and CCW mode. The unstable bidirectional
state in (0, 0) is not shown in Figure 3.1.
Consider now for instance a SRL operating in the CW mode. In order to switch
operating direction, one needs to steer the system to the basin of attraction of the
CCW state with an external perturbation such as e.g. an optically injected pulse.
One can engineer switches in the following way. Consider the laser operating
stationary in the unidirectional regime, for instance CW

(
θCW , ψCW

)
, and intro-

duce a perturbation in the system which shifts the system away from this CW
state. It is possible to use such a perturbation to drive the system into the basin
of attraction of the opposite (CCW) state. Once the perturbation is removed,
the system will deterministically relax to CCW operation. We propose to induce
such a switch by:

1. optically injecting an external field,

2. modulation of the pump current µ,

3. external modulation of the linear coupling phase φk.

2For different values of φk, it is also possible to have an unstable out-of-phase bidirectional
state in (0, π) (OPSS); two symmetric stable states CW and CCW at ψ ≈ 0 both corresponding to
undirectional operation (IPAS), and a saddle point S in (0, 0) which is the unstable out-of-phase
bidirectional solution (IPSS).
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Figure 3.1: Principle of using the topology of the SRL phase space to
devise different switching schemes. The stable manifold of the saddle S in
Eqs. (2.31)-(2.32) is shown for φk = 1.5, J = 0.739 and α = 3.5. The basins
of attractions of the CW and CCW mode are given by the gray and white
region. (a) demonstrates the standard way to switch by crossing the barrier
close to the saddle point, while (b) shows that also increasing the energy in

the CW mode can induce a switch to CCW operation.
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3.2 Optical injection

We consider a rate-equation model for SRLs operating in a single-longitudinal,
single-transverse mode, presented in Chapter 2, now adjusted to take into ac-
count an optical injection term [1, 7]:

Ėcw,ccw = κ(1 + iα)
[
N

(
1 − s|Ecw,ccw|

2
− c|Eccw,cw|

2
)
− 1

]
Ecw,ccw

−keiφk Eccw,cw + 1
τin

Fcw,ccw(t), (3.1)

Ṅ = γ[µ −N −N
(
1 − s|Ecw|

2
− c|Eccw|

2
)
|Ecw|

2

−N
(
1 − s|Eccw|

2
− c|Ecw|

2
)
|Eccw|

2], (3.2)

with the parameters and variables defined as in Table 1.1. The term Fcw,ccw(t) =
Einjei∆t represents the optically injected field in one of the two modes. τin is
the flight time in the ring cavity, |Einj|

2 the injected power, and ∆ represents the
detuning between both lasers.
When no external signal is present, the system will relax to either CW or CCW.

However, when a signal is injected, the system is shifted away from CW/CCW
outside of the asymptotic phase plane. In particular, when injecting a signal
strong enough to lock the laser, the relative modal intensity θ and the modal
phase difference ψwill converge to new stationary values. The absolute value of
θ increases due to the change in the suppression ratio of the two modes, whereas
ψ changes due to the new phase relation between Ecw and Eccw. When the injected
signal is then removed, the system relaxes back to either CW or CCW according
to the basins of attraction.
For instance, when the system is prepared in the steady state CW (θ < 0) and
one injects a counter-propagating optical field, the relative modal intensity θwill
increase. For a strong enough signal, this can even rise above the barrier created
by the stable manifold of S. When the injection is removed, the system finds
itself in the basin of attraction of CCW and will relax to it. This is the intuitive
switching scenario of a switch induced by a counter-propagating signal.
When injecting a co-propagating signal, the value of θ is expected to decrease
further. Due to the folded shape of the stable manifold of S, the system can
eventually be driven outside the basin of attraction of CW. In this case, when
the injection is removed, the system will relax to CCW, the counter-propagating
stationary operation. This mechanism is counter-intuitiveas the mode, which
receives the least energy from the optical injection, prevails after the injection
pulse. In that sense, the laser has “backfired” after the optical injection.
This prediction has been checked by numerical integration of the full set of rate
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Figure 3.2: Results obtained from numerical simulations of Eqs. (3.1)-
(3.2). In (a) the different regimes of operation of the optically injected SRL
are indicated in the plane (∆, Einj). LR marks the stable locking region
in gray, ULR the unstable locking region, and NL the regime without
locking. ∆ represents the detuning with the injected master laser, and
Einj the amplitude of the injected signal. (b) shows the phase portrait of
the system. CW and CCW are the stable states of the system; S is the
saddle. The stable manifold of S is indicated with a black solid line. A
and B indicate the equilibrium positions of the system when the counter-
propagating (A) or co-propagating (B) signal is injected starting from the
CW state. The possible locked states from panel (a) by co-propagating
injection are again depicted by the gray region. The external field is injected
in the co-propagating direction at tin = 200ns and removed at t f in = 400ns.
The relaxation trajectories from A-B towards the corresponding equilibrium
are marked in gray solid lines. Finally, (c)-(d) depict the time-series for |Ecw|

2

(gray) and |Eccw|
2 (black) corresponding to the switches in (b). The injection

amplitude and detuning are (Einj = 3 10−4, ∆ = −1.2ns−1) in (c) and (Einj = 6
10−4, ∆ = −4.2ns−1) in (d). µ = 1.704 (J = 0.8), k = 0.44ns−1, φk = 1.5,

κ = 100ns−1, γ = 0.2ns−1, s = 0.005, c = 0.01, α = 3.5.
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equations [Eqs. (3.1)-(3.2)], including Fcw,ccw(t) , 0 to model optical injection3.
The results are shown in Figure 3.2. The system is initially prepared in the state
CW at t0 = 0; a counter-propagating [See Figure 3.2(b)-(c)] or co-propagating
[See Figure 3.2(b)-(d)] signal is injected in the system at tin = 200ns and removed
at t f in = 400ns. The parameter values have been chosen such that the system
can lock to the injected laser field. The locking region (LR), shown in grayscale
in Figure 3.2(a)-(b), mainly exists for negative values of the detuning ∆. This
asymmetry in the locking region with respect to the detuning ∆ is typical for
semiconductor lasers having a certain linewidth enhancement factor α [8, 9].
Furthermore, we point out that, in Figure 3.2(a), ∆ represents the actual detun-
ing of the free running laser frequency with the injected master laser frequency.
In fact, the linear coupling term k exp (iφk) introduces a splitting of the lasing
frequency of the SRL into a doublet structure. This frequency shift — for the
chosen parameters here ≈ 0.2ns−1 — has been taken into account in Figure 3.2(a)
by shifting the detuning ∆ used in Eqs. (3.1)-(3.2) over 0.2ns−1. For an elaborate
study of the locking regions of the optically injected SRL and the possible dy-
namical regimes that can be induced by optical injection, we refer to our study
presented in Ref. [10].
Our simulations show that for tin < t < t f in, the system locks to the external
signal after an initial transient. The corresponding locked states are indicated as
A and B in Figure 3.2(b). Both states A and B belong to the basin of attraction of
CCW. When the injection is removed (t > 400ns), the system follows the slow
time-scale dynamics of the two-dimensional phase plane. Therefore, it relaxes
towards CCW following the stable manifold of S. A successful switch to the
counter-propagating direction has been achieved in both cases.
Note that in Figure 3.2, we have given the system enough time to lock to the
injected laser light. Since this process can take several ns, injecting light pulses
with a longer pulse duration than this locking time will all have the same ef-
fect. On the contrary, we have checked that when shorter injection pulses are
used, pulse duration will clearly influence the switching scenario. Since in that
case the stationary locking state will not be reached yet, the pulse duration time
critically determines the initial point in phase space when removing the optical
pulse. Depending on this pulse duration, the SRL will switch its direction of
operation or relax back to the same directional lasing mode. The effect of pulse
duration on directional switches with resonant injection counter-propagating to
the lasing mode has been investigated in Ref. [5]. No backfiring events have
been observed in that work though. This is due to the fact that the authors have
investigated the switching behavior at higher values of the current. In that case
the stable manifold of the saddle point is completely unfolded (see Figure 2.5)
and no backfiring can occur.

3An explanation of the numerical integration schemes that we use can be found in Appendix B.
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Also, we have observed in the numerics that the switching process can become
random in the presence of noise. The randomness of the directional switches
due to noise is especially large when the injected power and detuning are such
that the locking state is close to the stable manifold of the saddle point in the
two-dimensional system without injection, shown in Figure 3.2(b).
In Ref. [1], preliminary experiments performed on a SRL have shown the pos-
sibility to switch the laser using co-propagating pulse injection. However, a
detailed experimental characterization of switching behavior in SRLs due to
both counter-propagating and co-propagating injection remains to be carried
out. Such an experimental study should then be compared with the theoretical
concepts based on the two-dimensional SRL model discussed in this Section.

3.3 Current modulation

Knowing that the OPAS separate for increasing values of the normalized pump
current J, one possibility to induce a switch is by increasing the pump current for
a certain time, such that the system relaxes to the new OPAS state with higher
intensity. If one then decreases the current fast enough, the system will find itself
in the basin of attraction of one of the original lower intensity OPAS modes. It
will follow the deterministic trajectories of this last current value and relax to
the targeted OPAS state. Which OPAS state depends on the amplitude of the
current modulation determining where in the stable manifold one ends up.
A confirmation of this behavior can be seen in Figure 3.3, where the full SRL
rate equation model [Eqs. (2.1)-(2.3)] is simulated in the unidirectional regime.
A time-varying square-wave modulation µ(m) = µbias + ∆µ(m) is applied with a
period T = 100ns. ∆µ(m) is given by 0.044m, where m is an integer describing
the mth modulation step. This ∆µ corresponds to ∆J = 0.05m. In Figure 3.3, one
can clearly see that there exist regions of ∆µ inducing a switch, and others that
do not, confirming the relevance of the two-dimensional stable manifold.
The insets I, II, III in Figure (3.3) depict the evolution of the system projected in the
two-dimensional phase plane (θ, ψ) for three values of the current modulation,
respectively for m = 4, 12 and 19. These insets demonstrate that depending
on your initial condition (determined by ∆µ), you either switch to the opposite
mode or not. More importantly, one can see that the invariant manifolds of
the saddle point as obtained from the reduced 2D model are followed by the
system described with the full SRL rate equation model, confirming the validity
of the asymptotically reduced system. However, one should note that this good
correspondence between the full rate-equation system and the reduced one is
only obtained after a certain transient time, determined by the damping rate of
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Figure 3.3: Numerical simulations of Eqs. (2.1)-(2.3), where the current
is modulated around µbias = 1.65 (Jbias = 0.739). The current modulation
µ(m) = µbias + ∆µ(m) is continuously changed in time by ∆µ(m) = 0.044m
with a period of T = 100ns, where m is an integer describing the mth

modulation step. The insets I, II, III depict the evolution of the system
projected in the two-dimensional phase plane (θ, ψ) for three values of the
current modulation, respectively for m = 4, 12 and 19. Other parameters as

in Figure 3.2.
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the relaxation oscillations (ROs). We have already mentioned before that the
two-dimensional system [Eqs. (2.31)-(2.32)] is only valid on a slow time scale
(τ = γt), such that the faster ROs should have first damped out before one can
adequately predict the evolution of the SRL with the reduced model.
In Figure 3.3, we have taken an infinitely fast rise and fall time for the current
modulation, which is not realistic from an experimental point of view. In order
to understand the effect of a finite rise/fall time, we have investigated the case
of ∆µ = 0.0528 (Inset II in Figure 3.3) for different values of the fall time. Our
simulations (not shown) reveal that fall times which are longer that a critical
t f all ≈ 1.35ns do not result in a switch, and the system returns to the original state
by following the instantaneous equilibrium states.

3.4 Phase modulation

An important drawback of using current modulation to induce directional
switches in a SRL, is that it should be feasible to electrically modulate the pump
current with fall times of the order of ns. Modulating the linear coupling phase
could help to circumvent this issue, since the modulation could be done opti-
cally. Consider for instance injection of a non-resonant external optical signal
in the coupler. Far from the resonance condition, the main effect of such signal
would be to alter the refractive index of the coupler without altering the field
inside the ring cavity. In first approximation, for a standard semiconductor, we
can disregard the changes in k and consider only changes in φk. Moreover, it
is clear from Figure 2.2, that one can induce larger effects by modulating the
phase as compared with current modulation and therefore it is more flexible. In
what follows, we propose two switching schemes that are both based on steering
induced by phase modulation.
In Figure 3.4, we show numerical simulations of the full rate-equation system
[Eqs. (2.1)-(2.3)], where the linear coupling phase is modulated betweenφk,i = 0.7
and φk, f = 1.5 [Figure 3.4(a),(c)], φk, f = 4.3 [Figure 3.4(b),(d)] with a period
T = 200ns. Figure 3.4(a)-(b) depict a timetrace demonstrating the possibility to
switch the SRL between the two OPAS. Figure 3.4(c)-(d) show the projection of
Figure 3.4(a)-(b) in the two-dimensional phase space of the reduced system in
a solid black line. CW and CCW denote the stable unidirectional states of the
system; S is the saddle. The stable (unstable) manifold of S is indicated with a
gray solid (dashed) line for the two values of the phase φk,i and φk, f , respectively
in dark gray and light gray.
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Figure 3.4: Numerical simulations of Eqs. (2.1)-(2.3), where the linear
coupling phase is modulated between φk,i = 0.7 and (a,c) φk, f = 1.5, (b,d)
φk, f = 4.3 with a period T = 200ns. (a,b) depict a timetrace demonstrating
the possibility to switch the SRL between the two OPAS. (c,d) show the
projection of (a,b) in the phase portrait of the system in a solid black line.
The stable (unstable) manifold of S is indicated with a gray solid (dashed)
line for the two values of the phase φk,i and φk, f , respectively in dark gray
and light gray. µ = 1.63 (J = 0.716) and other parameters as in Figure 3.2.

66



3.5. CONCLUSION

One can distinguish between two possible methods to switch the laser between
two OPAS (IPAS) states through phase modulation. The first one is based on
changes in φk smaller than π (∆φk < π) and do not largely affect the variable
ψ. Therefore, they involve only the areas of phase space which are close to the
initial modal phase difference ψ = π (ψ = 0). The second method takes advan-
tage of a phase modulation ∆φk > πwhich affects the complete two-dimensional
phase-plane (θ,ψ). While the first method depends on the folded shape of the
stable manifold of S as discussed in Chapter 2, the second one does not and has
a operating region which can be ten times as large.
Method 1 is shown in Figure 3.4(a)-(c). Starting from the clockwise (CW) OPAS
solution for φk,i = 0.7 (OPASφi,CW), we change the linear coupling phase to
φk, f = 1.5, such that OPASφi,CW now finds itself in the basin of attraction of the
counter-clockwise (CCW) OPAS state (OPASφ f ,CCW) for the dynamical phase pic-
ture with φk, f = 1.5. In this new situation, the system follows first the stable and
then the unstable manifold of the saddle point Sφ f , such that it finally relaxes to
the stable OPASφ f ,CCW state. If we then remove the modulation of the coupling
phase, the system feels again the manifolds of the original phase space picture
(φk,i = 0.7). Since the OPASφ f ,CCW state finds itself in the basin of attraction of
the CCW OPAS state for φk,i = 0.7, it relaxes to this OPASφi,CCW state, such that
we have accomplished a successful switch.
Since we have seen in the previous Chapter 2 that the spiraling shape of the stable
manifold is quite sensitive to parameter variations, the necessity of this folded
shape for the directional switching to occur can be a drawback of this method.
Therefore, we propose a second scheme, which is less demanding on the partic-
ular phase space structure of the reduced dynamical system. In Figure 3.4(b)-(d),
we again prepare the system in the OPASφi,CW state with φk,i = 0.7, but now we
change the coupling phase toφk, f = 4.3. In doing this, the OPASφi,CW state is now
located in the basin of attraction of the in-phase asymmetric solution IPASφ f ,CW ,
such that it relaxes to that state. Furthermore, this IPASφ f ,CW state finds itself in
the basin of attraction of the counter-propagating mode OPASφi,CCW . By remov-
ing the modulation (φk,i = 0.7), the system thus follows first the stable and then
the unstable manifold of the saddle Sφi to end up having successfully switched
to the CCW mode OPASφi,CCW . It is important to note that this second method
works for φk, f ∈ [4.27 − 4.47] (for this particular φk, f and current J), which is a
more than ten times bigger operating region than for method 1.

3.5 Conclusion

We have proposed three novel schemes to switch the operation of the ring from
clockwise (CW) to counter-clockwise (CCW) or vice versa. Such schemes relying
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on the folded shape of the invariant manifolds of the system, are alternative to
the standard approach of injecting a counter-propagating signal [1, 4, 5] and
would be unexpected if the topology of the SRL phase space is unknown.
The first of such schemes shows that the operation direction of a semiconductor
ring laser can be controlled by injecting a signal from only one port. We have
predicted the counter-intuitive phenomenon of inducing a switch by injecting a
signal which is co-propagating with the field in the ring. Such a scheme could
provide practical advantages as only one master laser is needed for the switching
back and forth.
The second scheme consists of a modulation in the bias current, which drags
the system outside the basin of attraction of the initial state and releases it when
inside the basin of attraction of the final state. Such scheme might be considered
counter-intuitive as the system is perfectly bistable. Our simulations reveal the
existence of a limiting fall time t f all for the applicability of the scheme. Although
the switching speed, obtainable with this scheme, is of course limited by the
electrical bandwidth of the modulation source, all-optical methods relying on
phase space steering [6] can be applied to increase the performance.
Finally a third scheme has been proposed which consists of modulating the
backscattering phase φk. Switching takes place in two different ways when
the amplitude of the phase modulation is larger or smaller than π. Numerical
simulations have demonstrated the applicability of the scheme in both cases.
As a final remark, we want to state that this phase space topology is common for
optical systems, for instance a nonlinear ring resonator described by the Ikeda
map [11]. Our proposed switching schemes are based on the folded shape of the
basins of attraction. Folded basins of attractions are expected for a large class of
symmetric systems [12]. A similar switching scheme can therefore be expected
to be valid in other systems with similar symmetry such as e.g. micro-disk lasers
[13] and CO2-lasers [14].
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CHAPTER 4

Stochastic mode-hopping

“Jesus did. I was hopping along, when suddenly he comes and cures me. One minute I’m a leper with a trade,
next moment me livelihood’s gone. Not so much as a by your leave. Look. I’m not saying that being a leper
was a bowl of cherries. But it was a living. I mean, you try waving muscular suntanned limbs in people’s
faces demanding compassion. It’s a bloody disaster.” — Monty Python

“Not all those who wander are lost.” — J.R.R. Tolkien - Lord of the Rings

We investigate both theoretically and experimentally the stochastic switch-
ing between two counter-propagating lasing modes of a semiconductor ring
laser. Experimentally, the residence time distribution cannot be described by
a simple one parameter Arrhenius exponential law and reveals the presence
of two different mode-hop scenarios with distinct time scales. In order to elu-
cidate the origin of these two time scales, we apply the topological approach
based on the two-dimensional dynamical system presented in Chapter 2.
Stimulated by the good correspondence between the experiments and the
predictions based on the two-dimensional semiconductor ring laser model,
we experimentally search for multistable regimes, present in the model. We
observe that monostable, bistable and multistable dynamical regimes are or-
ganized in well reproducible sequences that match the bifurcation diagrams
of the two-dimensional model. Finally, in the limit of small noise intensity, the
initial stochastic rate equations can be reduced to an auxiliary Hamiltonian
system and the optimal escape paths can be calculated. This approach also
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CHAPTER 4. STOCHASTIC MODE-HOPPING

allows one to investigate the dependence of the activation energy on the
principal laser parameters.1

4.1 Introduction

Fluctuations in active optical systems such as lasers are one of today’s tech-
nological challenges as well as a fundamental problem of modern physics as
they are the result of the quantum nature of the interaction between light and
matter [4]. Fluctuations are e.g. responsible for longitudinal mode switching in
semiconductor lasers [5], polarization mode-hopping in Vertical Cavity Surface
Emitting Lasers (VCSELs) [6–8], and they play a fundamental role in stochastic
and coherence resonances of optical systems [9–11]. SRLs are a particular class
of lasers whose operation is strongly affected by stochastic fluctuations.
Fluctuations induce spontaneous abrupt changes in the SRL’s directional opera-
tion from CW to CCW and vice versa, and therefore represent a major limitation
to their successful applications, for instance as optical memories. An in-depth
understanding of the mode-hopping in SRLs would shed light on the stochastic
properties of the large class of Z2-symmetric systems. The problem of sponta-
neous directional switches in SRLs has remained unaddressed for a long time,
partly due to the high dimensionality of the models that have been proposed for
SRLs [12, 13].
We study stochastic mode-hopping in SRLs in two independent limits. First, we
consider the asymptotic reduction of the full set of rate equations in the limit
of slow time scales as described in Chapter 2 [14]. Monostable, bistable and
multistable phase space portraits of the reduced variable set in this asymptotic
model allow us to explain experimental features of directional mode-hopping in
the SRL (see Sections 4.2-4.5). Secondly, the asymptotic limit of vanishing noise
intensity is considered [15]. As a result, we obtain an auxiliary Hamiltonian sys-
tem which describes the mode-hopping process and contains the dependence
on the original parameters of the system without any fitting or any further phe-
nomenology (see Sections 4.6-4.8). We investigate the role of the bias current
and the phase of the linear coupling between the CW and CCW modes. The
limit of a small linear coupling amplitude is addressed numerically and analyt-
ically. A different approach would be to use a phenomenological model such as
a double-well potential, but as it would require the fitting of a large number of
parameters, a direct connection with the physically meaningful parameters of
the system would be lost. A similar problem has been investigated in solid-state

1The work presented in this Chapter has been published in the following journal papers: [1–3].
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4.2. EXPERIMENTAL CHARACTERIZATION OF DIRECTIONAL
MODE-HOPPING IN THE BISTABLE REGIME

Figure 4.1: Experimental SRL set-up. Four waveguide contacts are de-
picted of which only the one denoted by Iw is biased. Ip represents the bias
current on the ring. The light is collected out from the chip by a fiber that
can be positioned by a piezoelectric controller. The light in the fiber can be
analyzed by (a) a power meter, (b) a detector connected to an oscilloscope,

(c) an optical spectrum analyzer (OSA).

ring lasers [11] to reveal stochastic resonance, but it relied on a phenomenological
double-well potential which kept the real parameters of the system hidden.

4.2 Experimental characterization of directional
mode-hopping in the bistable regime

The experimental set-up is exemplified in Figure 4.1. We consider here an InP-
based multiquantum-well SRL with a racetrack geometry and a free-spectral-
range of 53.6 GHz. The device operates in a single-transverse, single-longitudinal
mode regime at wavelength λ = 1.56µm. A bias current Ip is applied to the SRL
using a current source [Thorlabs, model LDC8002] with a resolution of 3µA. The
chip containing the SRL is mounted on a copper mount and thermally controlled
by a Peltier element with a 10 kΩ thermistor and a PID control loop. The Peltier
element is stabilized at a temperature of 28.57◦C with an accuracy of 0.01◦C. A
bus waveguide made of the same active material as the ring has been integrated
on the chip in order to couple power out from the ring. To this waveguide, an in-
dependent electrical contact has been applied. Sending a current Iw through the
waveguide reduces the absorption. The power emitted from the chip is collected
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Figure 4.2: Measured RTD in the CCW mode for a laser current of
Jring = 39.92mA; the waveguide is biased at 8.22mA and the temperature is

21.55◦C. The best fitting lines are shown in white.

with a multimode fiber. The light in the fiber can be coupled to a power meter
[Newport, model 2832] with a Germanium detector and a resolution of 0.1nW.
Time series of the SRL can be measured by detecting the light in the fiber with
a 2.4GHz photodiode detector connected to an oscilloscope [Tektronix, model
CSA7404] with a bandwidth of 4 GHz. To verify e.g. the single longitudinal
mode operation of the SRL, we have coupled the fiber to an optical spectrum an-
alyzer (OSA) [ANDO, model AQ6317] with a resolution of 0.01nm. The strength
K and phase φk of the coupling between CW and CCW modes are not control-
lable during the fabrication process and they are a priori unknown. However,
by using the cleaved facet of the fiber as a mirror, we are able to reflect power
from one mode (for instance CCW) back into the waveguide and finally to the
counter-propagating mode in the ring. The amount of power that is coupled to
the CW mode can then be controlled by tuning the current Iw on the waveguide,
whereas its phase can be tuned by positioning the fiber facet with a piezoelectric
controller. With this technique, we achieve control of the coupling parameter φk
as well as the coupling strength K.
We forward-bias the waveguide at a fixed current of 8.22 ± 0.01 mA in order to

achieve transparency, and we bias the device with increasing DC current until
it reaches the threshold at ≈ 31.5 mA. The stochastic mode-hopping starts at
approximately 39 mA. In the mode-hopping region, the time series of the power
emitted in the CCW mode have been digitally recorded with the oscilloscope
for different values of the bias current. Due to the anti-correlation of the two
counter-propagating modes [12], a direct result of the conservation law derived
in Chapter 2, a drop in power in the CW mode corresponds to an increase in
power emitted in the CCW mode. The CCW mode’s Residence Time Distribution
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MODE-HOPPING IN THE BISTABLE REGIME

Figure 4.3: Experimentally measured time series showing different kinds
of transitions. The ring was biased at Ip = 39.86mA; the waveguide was

biased at 8.22mA and the temperature was 21.55◦C.

(RTD) has been obtained from the time series and is plotted in Figure 4.2. It
is evident from Figure 4.2 that two well-separated time scales are present in
the RTD. The white lines depict the best linear fit in this logarithmic plot of
the regions where the residence times are exponentially distributed with one
of both characteristic time scales [∝ exp (−t/〈T1,2〉)]. The fast time scale corre-
sponds to an average residence time 〈T1〉 of 10ns, whereas the slow time scale
events have an average residence time 〈T2〉 of approximately 1µs. An increase
in the bias current affects the time scales in different ways: 〈T1〉 remains almost
constant, whereas 〈T2〉 increases with bias current. The appearance of the short
time scale is a characteristic feature of SRLs: similar experiments performed in
VCSELs [7, 8] or in Dye ring lasers [16] lead to RTDs that are well fitted by a one-
parameter Arrhenius distribution. A spectral analysis of the time series reveals
a relaxation-oscillation (RO) frequency between 1.0 and 2.0 GHz and therefore
rules out ROs as the origin of the non-Arrhenius features of the RTD.
In order to clarify the origin of the two separate time scales, we have directly in-
vestigated the recorded time traces. Qualitatively different switches are revealed
in these time traces as shown in Figure 4.3(a)-(c). Figure 4.3(a) shows the system
leaving the initially lasing CW mode and settling into the CCW mode. Short
excursions of the duration of approximately 10ns to the opposite mode have also
been observed as shown in Figure 4.3(b). Opposite to the case of Figure 4.3(a),
during these short excursions, the system does not settle in the other mode. The
durations of such events match the fast time scale 〈T1〉 in the RTD. Instead, the
second time scale in the RTD is related to long residences in one mode such as
depicted in Figure 4.3(a). The long residences are distributed in an exponential
way with a mean-residence-time of 1.16µs. We would like to stress here that the
RTD is not a simple superposition of independent events such as those in Fig-
ure 4.3(a),(b), but that more complex transitions are also present in the system,
such as the one depicted in Figure 4.3(c). In the latter, a number of consecutive,
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correlated short time excursions are performed before the system settles in the
counter-propagating mode.

4.3 Topological interpretation

In order to explain our experimental results, we start again from the classical
rate-equation model introduced in Chapter 2, accounting for both saturation
and backscattering effects, as given by Eqs. (2.1)-(2.3). Although perfectly ad-
equate to model the SRL’s operation, to allow for a clear topological analysis,
we will also take advantage of the reduced two-dimensional model (2.31)-(2.32)
derived in Chapter 2. The dynamical system (2.31)-(2.32) describes the asymp-
totic behaviour of the ring laser in the phase space (θ,ψ) on time scales that
are slower than the relaxation oscillations. As explained in detail in Chapter
2, θ ∈ [−π/2, π/2] represents the relative modal intensity and ψ ∈ [0, 2π] is the
phase difference between the counter-propagating modes.
When the SRL operates in a unidirectional regime, the phase portrait of the
system is exemplified in Figure 4.4(d)-(f). Two symmetric stable states CW and
CCW at ψ ≈ π, both corresponding to unidirectional operation, are shown. The
basins of attractions of the CW and CCW mode are separated by a saddle point
S in (0, π) which is the unstable out-of-phase bidirectional solution. At a critical
value Jhom of the current, a homoclinic bifurcation takes place in the system and
the stable and unstable manifold of S coincide [17]. When J > Jhom the stable
manifold spirals around S and the basins of attraction of CW and CCW fold
around each-other. Increasing the parameter J continuously unfolds the stable
manifold, as shown in Chapter 2.
When noise is present in the system, a rare, large fluctuation may drag the sys-

tem away from an initial stationary state to the basin of attraction of the opposite
mode. It is known from the theory of stochastic transitions in nonlinear systems
that in the limit of small noise strength a transition takes place in a ballistic way
along a most probable escape path (MPEP) which can be calculated by solving an
auxiliary Hamiltonian system [18]. As our arguments rely only on the topologi-
cal features of the system, an exact calculation of the MPEP is not required. In a
system such as Eqs. (2.31)-(2.32), it is known that the MPEP connects a stationary
state with the saddle S [19]. More specifically, the MPEP approaches S along its
stable manifold (for a more detailed discussion on the MPEP, we refer to Sec-
tion 4.7). Once the saddle is reached, the transition to the opposite equilibrium
state is completed by following the unstable manifold of the saddle. However,
when the system’s parameters are close to the homoclinic bifurcation, the folds
of the stable manifold cluster very tightly around each other, and the stable and
unstable manifolds of the saddle get very close to each other. Therefore, even

76



4.3. TOPOLOGICAL INTERPRETATION

Figure 4.4: Numerical simulation of Eqs. (2.1)-(2.3) showing time series
(a)-(c) and phase space trajectories (d)-(f) for different kinds of transitions.
The following parameters were used: µ = 1.59, α = 3.5, s = 0.005, c = 0.01
k = 0.44ns−1, φk = 1.5, D′ = 6.5 · 10−5 ns−1. The notation of (d)-(f) is as
follow: CW, CCW are the stable states, S is the saddle; solid line: stable
manifold of S, dashed line: unstable manifold of S, red: projection of the

time series (a)-(c).

at very low noise intensities, the system can diffuse between the folds of the
stable manifold or between the stable and the unstable manifold. Such topo-
logical considerations can explain the separated time scales 〈T1,2〉 as well as the
features of the transitions shown in Figure 4.3(a)-(c). A noise induced activation
is responsible for the slow time scale 〈T1〉, whereas a noise-sustained rotation
along the folds of the stable manifold of S produces the short excursion shown
in Figure 4.3(b).
In order to confirm our topological arguments, we perform numerical simu-
lations of Eqs. (2.1)-(2.3) using relevant parameters [12]2. The spontaneous
emission noise has been introduced in Eqs. (2.1)-(2.2) phenomenologically as
complex uncorrelated zero-mean stochastic terms described by the correlation
terms: 〈ξi (t + τ) ξ∗j (t)〉 = 2D′Nδi jδ (τ) where i, j = 1, 2 and D′ is the noise inten-
sity. For simplicity, carrier noise has been disregarded.
Three examples of numerically obtained stochastic transitions are reported in

2An explanation of the numerical integration schemes that we use can be found in Appendix B.
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Figure 4.5: RTD obtained by simulating Eqs. (2.1)-(2.3) with the parameters
chosen as in Figure 4.4. Best fitting lines are shown in white.

Figure 4.4(a)-(c) and compared with the experimental ones 3. The same trajecto-
ries projected in the θ − ψ plane are shown in Figure 4.4(d)-(f) together with the
invariant manifolds. The trajectory in Figure 4.4(a) shows a simple mode-hop
from the CW to the CCW mode as in Figure 4.3(a). In phase space [Figure 4.4(d)]
such a trajectory corresponds to a stochastic path originating at the CW state
which approaches the saddle and relaxes to the opposite CCW state along the
unstable manifold of S. When lasing in the CW mode, a short excursion to the
opposite CCW direction is possible and shown in Figure 4.4(b), corresponding to
the experimental time trace shown in Figure 4.3(b). In phase space [Figure 4.4(e)]
the trajectory rotates around the saddle, but remains inside the basin of attraction
of the initial CW mode. In Figure 4.4(c), we show an example of a more com-
plicated transition similar to the experimental trajectory shown in Figure 4.3(c).
In phase space [Figure 4.4(f)] the system escapes from the CW state and after-
wards rotates three times around S before settling in the opposite CCW state.
The simulations shown in Figure 4.4(a)-(c) are in good qualitative agreement
with the experiments in Figure 4.3(a)-(c). A direct simulation of the reduced
model Eqs. (2.31)-(2.32) leads to similar results. We remark that the described
effect takes place in regions of the parameter space

(
J, α, φk

)
which are close to

the homoclinic bifurcation. In the unphysical case of k = 0 (no backscattering)
the manifolds are completely unfolded for every value of φk and J and the effect
disappears.
Finally, we have extracted the RTD from the simulated time series [Figure 4.3(c)].
The simulations show the same non-Arrhenius structure as in the experimental

3One should be aware that the RMS for the noise background observed in the experimental time
series is dominated by the electrical noise floor of the oscilloscope and the detector.
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RTD, and quantitatively reproduce the time scales 〈T1,2〉 (see Figure 4.5).
In the following two Sections, we will extend the analysis of the problem of fluc-
tuations from bistable regimes of operation to multistable ones in SRLs. Such
multistable regions of operation have been predicted in Chapter 2. Here, we
will elaborate on the 2D phase space of the multistable SRL and experimentally
demonstrate the existence of such multiple stable attractors in the SRL.

4.4 Multistable phase space portraits

Multistability is a general feature of nonlinear systems which attracts attention
in a broad set of subjects including hydrodynamics [20], plasma physics [21], bi-
ology [22], neural networks [23, 24], chemical reactions [25] and optical systems
[26–28]. The phase space of a multistable system is in general very intricate due
to the strongly interwoven basins of attractions of the coexisting stable struc-
tures, and is often further complicated by the presence of structures such as
chaotic saddles [29, 30]. For this reason, the dynamics of a multistable system
is characterized by a larger complexity than their bistable counterpart, leading
to phenomena such as attractor hopping [30, 31] or chaotic itineracy [24]. While
being of broad interdisciplinary interest, multistability is especially interesting
in the case of semiconductor lasers, due to their large number of applications
and their wealth of dynamical regimes (see [32] and references therein). How-
ever, the fast time scales involved, the blurring of the different attractors due to
the presence of spontaneous emission of photons, the difficulty to control the
internal parameters, the inaccessibility of some dynamical variables, all make
the experimental reconstruction of the phase space of semiconductor lasers an
extremely challenging task. Therefore, despite the large number of theoretical
work [28, 30, 32–35], the dynamical complexity of multistable semiconductor
lasers remained experimentally unaddressed.
From the theoretical point of view, we have predicted many dynamical regimes
including multistable ones in Chapter 2. These dynamical regimes can be un-
derstood in a more general context from the unfolding of a Takens-Bogdanov
bifurcation with Z2-symmetry (see Chapter 2 and Ref. [36]). From the tech-
nological point of view, an understanding of the phase space of SRLs in these
different dynamical regimes would be highly desirable to improve performance
in applications such as all-optical memories [37] and allow for a better control of
the device [34, 38]. In this Section, we thus start by investigating the bifurcation
diagrams and the corresponding 2D phase space when multiple stable attractors
are present. In the following Section, we will then show how we can explore
the parameter space in a SRL experimentally and compare the results with the
corresponding theoretical phase space portraits.
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Figure 4.6: Bifurcation diagrams of Eqs. (2.31)-(2.32) for (a)φk = 0.2 and (b)
φk = 1.5 Stable solutions of Eqs. (2.31)-(2.32) are marked in black, unstable
ones in grey. Dashed lines are used to indicate periodic solutions. The

Roman numbers I - V indicate different dynamical regimes.

Consider φk = 0.2 in the reduced SRL model Eqs. (2.31)-(2.32). The bifurcation
diagram for such value of φk is shown in Figure 4.6(a) while representative ex-
amples of its phase space are shown in Figure 4.7. For small values of the bias
current, the system operates in the bidirectional regime and the phase space of
the system (not shown) consists of a stable state OPSS (out-of-phase symmetric
solution) coexisting with an unstable IPSS (in-phase symmetric solution)4. This
is denoted as Region I. An increase of the bias current J leads to the appearance
of two more stable states corresponding to unidirectional CW and CCW rotat-
ing solutions (OPAS1,2 — out-of-phase asymmetric solution). The SRL therefore
operates in a tristable regime (Region II). The corresponding phase space is
shown in Figure 4.7(a). Three stationary states OPAS1, OPAS2 and OPSS coexist.
An unstable state IPSS corresponding to bidirectional in-phase lasing and two
saddles S1,2 are also present in the system. The basins of attraction of the three
states are separated by the stable manifolds of S1 and S2 in such a way that the
basin of attraction of OPSS lies in between the basins of attraction of OPAS1 and
OPAS2. When spontaneous emission noise is introduced in the system, sponta-
neous attractor hopping may appear. In the limit of vanishing noise intensity, the
topology of the phase space predicts only transitions between a unidirectional
mode and the bidirectional mode. Direct transitions between OPAS1 and OPAS2
are possible only for larger values of the noise intensity. Increasing the value
of the bias current J, the saddles S1,2 migrate towards OPSS making the basin
of attraction of OPSS shrink. Therefore the residence time in the bidirectional
lasing mode is expected to decrease and the laser to operate most of its time in

4See Chapter 2 for more information on these solutions, their stability and notation.
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Figure 4.7: Phase space portraits of Eqs. (2.31)-(2.32) for different values
of J and φk. The notation is as defined in the text. (a) φk = 0.2, J = 1.05, (b)

φk = 1.5, J = 0.75, (c) φk = 1.5, J = 0.5, (d) φk = 1.5, J = 0.66.

either one of the unidirectional modes. When the bias current is increased above
a critical value, the saddles collide with OPSS and the bidirectional out-of-phase
mode become unstable. The SRL is then operating in a bistable regime with
two stable unidirectional modes OPAS1,2 (Region III). The corresponding phase
space is shown in Figure 4.7(b). Here OPAS1 and OPAS2 are the unidirectional
modes whereas OPSS is a saddle point. The stable manifold of OPSS separates
the basins of attraction of OPAS1 and OPAS2. In this regime, noise-induced
hopping is expected between the two unidirectional modes, whereas we do not
expect to observe any residence in the bidirectional regime. A further increase of
the current leads to longer residence times in OPAS1,2 but no further bifurcations
are expected.
When φk = 1.5 the bifurcation curve as shown in Figure 4.6(b) is qualitatively
different from the previous case. For small values of the bias current, the system
operates in the bidirectional regime, similar to Region I for φk = 0.2. Increasing
the current above a critical value, the bidirectional operation loses its stability
and the SRL exhibits periodic oscillations known as alternate oscillations [12]
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between CW and CCW modes (Region IV). In the phase space [Figure 4.7(c)]
the alternate oscillations are a stable limit cycle C1 which surrounds the unstable
bidirectional state OPSS. When the bias current J is increased, two unidirectional
solution OPAS1,2 appear, and tristability between the latter and C1 is possible
(Region V). This scenario corresponds to Figure 4.7(d). The basins of attrac-
tion of U1,2 are separated by the stable manifold of the saddle OPSS. A second
unstable cycle C2 separates the basin of attraction of C1 from the basins of attrac-
tion of OPAS1,2. When noise is present in the system hopping between OPAS1
and OPAS2 as well as hopping between OPAS1,2 and the alternate oscillations
are possible, allowing the system to burst into periodic oscillations. A further
increase of the current leads to the disappearance of C1 and the SRL operates in
a bistable regime between the two unidirectional modes OPAS1,2 (Region III).
The phase space corresponding to this regime is shown in Figure 4.7(b), similar
to the case of φk = 0.2. Spontaneous emission noise induces hopping between
OPAS1 and OPAS2, elaborately discussed in the previous two Sections, but no
periodic oscillations can appear.

4.5 Experimental exploration of stochastic mode-
hopping in multistable regimes

The experimental set-up (see Figure 4.1) is the same one as used to study the
stochastic mode-hopping in the bistable region (OPAS1 and OPAS2) in Section
4.2. We have fixed the waveguide current Iw = 9.81mA and as in Section 4.2
we have tuned the voltage on the piezoelectric controller until a symmetric op-
eration of the SRL was achieved. This corresponds to fixing the φk parameter
of the SRL. We now tune the bias current Ip on the ring, in order to reproduce
the dynamical regimes predicted by the theory. We choose here to measure with
the oscilloscope the emission in the CCW mode. Like before, due to the anti-
correlated dynamics of the counter-propagating modes [12], any change in the
power in the CCW mode corresponds to an opposite change in the emission in
the CW mode. A high (low) amplitude signal on the scope thus corresponds to
operation in the CCW (CW) mode, whereas bidirectional operation appears as
an intermediate amplitude signal. Examples of time traces of the CCW mode are
shown in Figure 4.8 (a)-(f). The ring reaches its lasing threshold at 34mA5. For
current values close to threshold, bidirectional lasing is observed (not shown).

5One can notice that the lasing threshold here is different than in the experiments discussed in
Section 4.2. The reason for this is that we now measure a different ring on the same chip containing
six SRLs. All these SRLs show qualitatively the same behavior, but have slightly different lasing
thresholds.
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4.5. EXPERIMENTAL EXPLORATION OF STOCHASTIC
MODE-HOPPING IN MULTISTABLE REGIMES

Figure 4.8: Experimentally measured time series for different bias currents
Ip and Iw corresponding to the dynamical regimes of Figure 4.7. (a) Iw =
9.81mA, Ip = 44.35mA; (b) Iw = 9.81mA, Ip = 45.21mA; (c) Iw = 9.81mA, Ip =
46.39mA; (d) Iw = 12.0mA, Ip = 40.23mA; (e) Iw = 12.0mA, Ip = 44.34mA; (f)
Iw = 12.0mA, Ip = 45.94mA. The insets show a zoom on relevant segments

of the time series.

When increasing the current above a critical value Ip ∼ 44mA, hopping between
the bidirectional regime and the two unidirectional modes appears. Segments
of time traces for Ip = 44.35mA and Ip = 45.21mA are shown in Figure 4.8(a)-(b).
The average residence time in the CW and CCW state increases with the pump
current, while the residence time in the bidirectional mode decreases. Tristabil-
ity between bidirectional and unidirectional modes is observed. In agreement
with the phase space picture in Figure 4.6(a), hopping events preferentially oc-
cur between the bidirectional and one of the unidirectional modes. A detail
of a sequential transition from the CW mode to bidirectional operation, to the
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Figure 4.9: Simulations vs. experiments for a sequential transition
OPAS1 → OPSS → OPAS2 for the phase space described in Figure 4.7(b).
(a) projection on the phase space; (b) numerical time series; (c) experimen-
tal data. The model parameters for (a)-(b) are J = 1.05, φk = 1.02, α = 3.5.
The experimental conditions for (c) were Ip = 45.31mA and Iw = 9.81mA.

CCW mode for Ip = 45.21mA is shown in Figure 4.9(c). The agreement with the
numerical simulations of Eqs. (2.31)-(2.32) as shown in Figure 4.9(a)-(b) is clear.
The simulated hopping trajectory is projected in the phase space (θ,ψ) in Figure
4.9(a). In the limit of vanishing noise intensity, the topology of the phase space
Figure 4.9(a) predicts only transitions between a unidirectional mode and the
bidirectional mode. The observation of some direct transitions between unidi-
rectional modes suggests that the noise-induced diffusion length is not negligible
when compared to the size of the basin of attraction of the bidirectional mode.
When the pump current is increased to Ip = 46.39mA as shown in Figure 4.8(c),
no bidirectional operation is observed, and direct transitions between CW and
CCW modes are possible as predicted by the phase space portrait in Figure 4.7(b).
Further increase in the bias current corresponds to an increase in the average res-
idence time in the two unidirectional modes. As such the whole bifurcation
sequence as in Figure 4.6(a) has been experimentally reconstructed.
We then fix the waveguide current to Iw = 12.0mA and we adjust the voltage on
the piezoelectric controller until the symmetry in the system is restored. Once
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again we tune the pump current Ip on the ring and we investigate the different
dynamical regimes. Typical time traces for the CCW mode are shown in Fig-
ure 4.8(d)-(f). Close to threshold the laser operates in the bidirectional regime, for
slightly higher values of the bias current, alternate oscillations appear as reported
in Figure 4.8(d) for Ip = 40.23mA. This operating regime reveals the phase space
portrait shown in Figure 4.7(c). When increasing the bias current, the amplitude
of the alternate oscillations increases until the SRL becomes multistable and the
alternate oscillations coexist with the two unidirectional modes as shown in Fig-
ure 4.8(e) for a bias current Ip = 44.35mA. The inset in Figure 4.8(e) is a zoom on a
burst that reveals the periodical oscillations. This operating regime corresponds
to the phase space portrait shown in Figure 4.7(d). In this regime both transitions
between the unidirectional modes and between the unidirectional modes and
the limit cycle are observed, as allowed by the topology of the phase space in
Figure 4.7(d). When the current is further increased, the bursts of oscillations
disappear and bistability between CW and CCW modes is achieved as shown
in Figure 4.8(f) for Ip = 45.94mA. Such regime corresponds to the phase space
pictured in Figure4.7(b). Short excursions from CW to CCW operation and vice
versa are observed in the time traces when the laser operates in this regime [see
inset in Figure 4.8(f)]. They have been previously observed [1] and explained as
noise induced diffusion between the folds of the stable manifolds of the saddle
point OPSS in Figure 4.7(b). The presence of such excursions in the time trace
of Figure 4.8(f) represents a further confirmation of the phase space structure
described in Figure 4.7(b).

4.6 Asymptotic analysis of the Fokker-Planck Equa-
tion

In the previous Sections, we have studied, both theoretically and experimentally,
stochastic transitions between different attractors in the bistable and multistable
regimes of operation of the SRL. In the bistable regime, discussed in Sections
4.2-4.3, we have investigated two different kinds of transitions using topological
arguments [1]. In particular, the first kind of transitions are the result of a noise-
induced activation process, whereas the short excursions are a consequence of
the particular shape of the stable manifold of the saddle point in the system in
combination with a noise-induced diffusion in the phase space. In this Section
and the remainder of this Chapter, we aim to address the first kind of mode-
hopping, by formulating it in the form of an activation in a non-equilibrium
bistable system.

85



CHAPTER 4. STOCHASTIC MODE-HOPPING

A non-equilibrium system is a physical system that does not satisfy the detailed
balance condition, such that they are far less symmetrical than systems that
do satisfy the detailed balance condition. In particular, the forward/backward
transitions have different probabilities and the fluctuation - dissipation theorem6

relating the intensity of noise fluctuations with the damping of energy due to
dissipation does not hold anymore [39]. Due to this lack of symmetry, out-of-
equilibrium systems are intrinsically more complicated than equilibrium ones.
The most promising results in the investigation of non-equilibrium stochastic
systems have been achieved in the limit of zero noise intensity. When considering
the Langevin equation for a general nonlinear stochastic system

ẋ = K(x, t) + σ(x, t)ξ(t), (4.1)

with K(x, t) describing the deterministic dynamics of the system and ξ(t) repre-
senting the stochastic process7, its probability ρ(x, t) has been shown to satisfy
the Fokker-Planck Equation (FPE) [40]

∂ρ(x, t)
∂t

+
∂
∂x

(K(x, t)ρ(x, t)) −D
∂2

∂x2 (Q(x, t)ρ(x, t)) = 0, (4.2)

where the matrix Q(x, t) = σ(x, t)σT(x, t) is known as the diffusion matrix.
It is known from the theory of stochastic systems [41] that activation problems
can be characterized by the mean-first-passage-time 〈τFPT〉 across the boundary
of the basin of attraction of the initial state. In other words 〈τFPT〉 gives the
average time it takes to escape from the basin of attraction of one mode, such
that the system can hop to the other mode. The mean-first-passage time can be
expressed to logarithmic accuracy by a generalized non-equilibrium potential
[8, 42–45]

〈τFPT〉 ∝ eS/D (4.3)

where S is the non-equilibrium potential and D is the intensity of the stochastic
force that drives the fluctuations. It is important to understand the dependence
of the quasi-potential S on the parameters of the system (2.1)-(2.3). However,
Eqs. (2.1)-(2.3) are too complicated for an analytical or quasi-analytical approach.
Nevertheless, one cannot introduce any ad-hoc model such as a double-well po-
tential, as this would introduce phenomenological model-parameters which are

6In statistical physics, the fluctuation-dissipation theorem is a powerful tool for predicting the
non-equilibrium behavior of a system — such as the irreversible dissipation of energy into heat —
from its reversible fluctuations in thermal equilibrium. The fluctuation dissipation theorem relies
on the assumption that the response of a system in thermodynamic equilibrium to a small applied
force is the same as its response to a spontaneous fluctuation. Therefore, there is a direct relation
between the fluctuation properties of the thermodynamic system and its linear response properties.
Often the linear response takes the form of one or more exponential decays.

7The function σ(x, t) can introduce a dependence of the noise properties on the position or on the
time.
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not related to the physically relevant quantities such as k, φk or α.
However, from the observation that the escape events are rare when compared
to the other time scales of the system, and the quasi-conservation of the total
power during the hopping, we propose that the hopping problem can be suc-
cessfully described in the framework of the asymptotically reduced model given
by Eqs. (2.31)-(2.32). The slow timescale dynamics is then described by the time
evolution of two auxiliary angular variables:

θ′ = Kθ(θ,ψ) + ξθ
= −2 sinφk sinψ + 2 cosφk cosψ sinθ

+J sinθ cosθ + ξθ, (4.4)
ψ′ = Kψ(θ,ψ) + ξψ

= αJ sinθ + 2 cosφk
sinψ
cosθ

+2 sinφk cosψ tanθ + ξψ. (4.5)

We make here the assumption of uncorrelated white Gaussian noise termsξθ,ψ for
the angular variables too. This assumption is a priori not justified, as multiplica-
tive terms and cross-correlations are expected to appear in the noise. However,
the agreement with the results of the full model (see below) and the benefits in
simplicity will justify this assumption.
In order to investigate the stochastic properties of the reduced SRL model (4.4)-
(4.5), we study the FPE [Eq. (4.2)] for the probability density ρ(θ,ψ). The FPE is
written as follows:

∂ρ

∂t
= −

∂
∂θ

Kθρ −
∂
∂ψ

Kψρ + D
∂2

∂θ2ρ + D
∂2

∂ψ2ρ (4.6)

where D is the noise intensity for the reduced system which is the small parameter
in our theory8. The value of D is the only quantity that requires a fitting in our
analysis.
In the limit of vanishing noise intensity D→ 0, an asymptotic Wentzel-Kramers-
Brillouin (WKB) expansion9 can be performed for the probability density ρ [18].

8We would like to mention that realistically the strength of the diffusion terms in Eq. (4.6) with
respect to the θ variable and the ψ variable are not equal. In fact our numerical simulations of
the rate-equation model (2.1)-(2.3) with white noise has shown us that the noise diffusion term is
larger with respect to the ψ variable. Including this difference in diffusion strength in the presented
derivation would lead to pθ and pψ having a different strength as well. The qualitative results remain
similar though.

9The WKB approximation is a widely used example of a semiclassical calculation in quantum
mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded,
and then either the amplitude or the phase is taken to be slowly changing. WKB theory is a method
for approximating the solution of a differential equation whose highest derivative is multiplied by a
small parameter.
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We stress here that we consider two separate asymptotic limits in our approach.
The first limit (discussed above) is related to time-scales separation and depends
on the laser parameters. In what follows, we introduce a second asymptotic
limit that depends on the noise intensity and not on the laser parameters.
We consider the following ansatz for ρ:

ρ = Ze−
S
D , (4.7)

with D → 0 and S an auxiliary function. S is the analogue of a potential in a
gradient system and is referred to as a quasi-potential in non-equilibrium systems
such as Eqs. (4.4)-(4.5). It is known from the theory of stochastic systems that, at
the leading order 1/D, the quasi-potential S satisfies a Hamilton-Jacobi equation
for a classical action [15, 46]:

∂S
∂t

= −H
(
θ,ψ,

∂S
∂θ
,
∂S
∂ψ

)
(4.8)

with the Hamiltonian H
(
θ,ψ, ∂S

∂θ ,
∂S
∂ψ

)
defined as:

H =
1
2

(
∂S
∂ψ

)2

+
1
2

(
∂S
∂θ

)2

+
∂S
∂θ

Kθ +
∂S
∂ψ

Kψ. (4.9)

In what follows, we will refer to the function S indifferently as action or nonequi-
librium potential. The analogy with the case of a classical Hamiltonian problem
is completed by defining the auxiliary momenta:

pθ =
∂S
∂θ

pψ =
∂S
∂ψ
, (4.10)

leading to the Hamiltonian

H
(
pθ, pψ, θ, ψ

)
=

p2
θ

2
+

p2
ψ

2
+ Kθpθ + Kψpψ. (4.11)

With this approach, the initial stochastic system (4.4)-(4.5) can be mapped into a
deterministic Hamiltonian system

θ̇ =
∂H
∂pθ

= Kθ + pθ (4.12)

ψ̇ =
∂H
∂pψ

= Kψ + pψ (4.13)

ṗθ = −
∂H
∂θ

= −
∂Kθ
∂θ

pθ −
∂Kψ
∂θ

pψ (4.14)

ṗψ = −
∂H
∂ψ

= −
∂Kθ
∂ψ

pθ −
∂Kψ
∂ψ

pψ (4.15)
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4.7. OPTIMAL ESCAPE PATHS

Figure 4.10: MPEP paths from the CW mode to the CCW mode are shown
by the grey lines for different values of the backscattering phase: (a) φk =
1.5; (b) φk = 1.08. The other parameters are J = 0.734 and α = 3.5. The

black lines represent the stable manifold of the saddle S.

The action S evolves along the solutions of (4.12)-(4.15) following the equation10

dS
dt

=
1
2

p2
ψ +

1
2

p2
θ (4.16)

The action S calculated along a certain trajectory can be interpreted as a "cost"
for such transition to take place, and ultimately its probability. Consider a
transition between an initial point xi and a final point x f . A large action indicates
a trajectory with low probability whereas a smaller action indicates a more
likely trajectory. In the limit of vanishing noise intensity D → 0, the transitions
corresponding to the minimum actions become exponentially more likely than
any other transition path, and only trajectories with minimum actions become
relevant in the calculation of the probability distribution. In other words, only
those trajectories corresponding to a global minimum can be observed in a
physical experiment in the zero noise-intensity limit [47–49].

4.7 Optimal escape paths

In the previous Section, we reviewed the general theory for stochastic fluctua-
tions in the limit of vanishing noise intensity. In this Section, we formulate the
problem for the mode-hopping in SRLs and we discuss the general topological
features of the escape trajectories that realize the hopping.
During the regular operation of SRL, the system spends the majority of its time

10 dS
dt is defined as ∂S

∂t + ∂S
∂θ

∂θ
∂t + ∂S

∂ψ
∂ψ
∂t .
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in the close vicinity of one of the stationary states. In order for a mode-hop to
take place, the spontaneous emission noise must drag the system outside the
basin of attraction of the original state (for instance CW) to the basin of attraction
of the counter-propagating mode (for instance CCW). As the basins of attraction
of the CW and CCW modes are separated by the stable manifold of the saddle
S [see Figure 4.5(d)-(f)], the mode-hop is realized by a trajectory solution of Eqs.
(4.12)-(4.15) that connects the stationary state CW with the stable manifold of the
saddle.
In general there are infinitely many solutions of Eqs. (4.12)-(4.15) that emanate
from the initial state and reach the basin boundary. According to the discussion
in Sec. 4.6, in the limit of small noise intensity D → 0, the escape takes place
with overwhelming probability along the trajectory that minimizes the action S.
This minimum of the action S is called the activation energy and the associated
escape path is known in the literature as the most probable escape path (MPEP)
[15, 19, 48, 50–52].
As the motion along the stable manifold of S is deterministic, and deterministic
motion does not increase the action, the minimal action along the stable manifold
of the saddle coincides with the saddle itself [15, 19, 48, 50, 51]. Therefore, the
MPEP satisfies the following boundary conditions: it emanates from the initial
state CW (CCW) at time t → −∞ and converges to the saddle S at time t → ∞.
The transition to the opposite mode is completed deterministically by following
the unstable manifold of S.
We have calculated the MPEP for a SRL by minimization of the action functional
(4.16) along the solutions of Eqs. (4.12)-(4.15) for different values of the system
parameters. Some examples of MPEPs are shown in Figure 4.10 for transitions
from the CW state to the CCW state. As expected according to the previous
discussion, the MPEP connects the CW state to the saddle S and a deterministic
relaxation completes the mode hop to the CCW mode. It is clear from Fig-
ure 4.10, that the backscattering phase φk plays a major role in determining the
actual shape of the MPEP. In the next sections, we will discuss the role of φk and
the other parameters of the system in the mode hopping.

4.8 Dependence of the activation energy on the pa-
rameters of the system

In order to validate our analysis and to provide insight in the dependence of the
mode hopping versus the parameters of the system, we calculate the activation
energy for different values of the current and the backscattering phase using
both numerical simulation and Hamiltonian theory.
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Figure 4.11: Activation energy as a function of the current µ for different
values of the backscattering phase. Markers are used to indicate the results
of the integration of the full rate equation model (2.1)-(2.3), whereas the
solid lines represent the solution of the auxiliary Hamiltonian system (4.12)-

(4.15).

The full set of rate equations Eqs. (2.1)-(2.3) is solved using a numerical simula-
tions [53] for different values of the noise intensity D′. The activation energy is
calculated by fitting the mean-first-passage-time versus 1/D′. The dependence
of the activation energy versus current µ and phase φk is shown in Figure 4.11
by markers.
The theoretical activation energy is calculated by solving the boundary value
problem associated with Eqs. (4.12)-(4.15) and by minimization of the function S
[48]. The parameters are the same as in Eqs. (2.1)-(2.3), excluding the noise inten-
sity D which is fitted. The results of this calculation are shown in Figure 4.11 with
lines. The agreement between theoretical and numerical values of the activation
energy is good.
In Figure 4.12(a), we show the dependence of the activation energy calculated
by solving the boundary value problem as a function of the backscattering phase
φk for different values of the bias current µ. We observe that the activation
energy increases with µ, in accordance with the results of Figure 4.11 and the
intuitive argument that increasing the bias current stabilizes the laser operation.
However, the dependence of S on the backscattering phase is nonmonotonic,
indicating that the stability of the directional modes versus random fluctuations
decreases exponentially from a maximum at φmax

k ≈ 0.85. The loss of stability of
the directional modes can be understood by considering the bifurcation scenario
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Figure 4.12: (a) Activation energy S as a function of (a) the phase of the
backscattering φk for different values of the bias current µ. (b) Activation
energy S as a function of the inverse backscattering 1/K obtained as a
solution of Eqs. (4.12)-(4.15). The current is set at µ = 1.8 and the phase at

φk = 1.3.

of a SRL as presented in Chapter 2 [17]. For the physically relevant parameters
considered in Figure 4.12(a), stable unidirectional lasing is possible between a
pitchfork bifurcation taking place at φk ≈ 0.2 and a subcritical Hopf bifurcation
taking place at φk ≈ 1.6 (see Figure 2.2). Therefore, in this limit, the decreasing
of S for φk < φmax

k corresponds to a loss of stability of the system when approach-
ing the pitchfork bifurcation line, whereas the decreasing of S for φk > φmax

k is
consistent with a loss of stability of the directional modes when approaching the
subcritical Hopf bifurcation.
The asymptotic limit J → ∞ can be treated analytically, which corresponds to

either µ→∞ or K→ 0. In this limit, we can neglect the terms depending on the
backscattering phase φk in Eqs. (4.4)-(4.5) and obtain:

θ′ = +J sinθ cosθ (4.17)
cosθψ′ = αJ sinθ cosθ (4.18)

Therefore, the dynamics of the variable θ is decoupled from the variableψwhich
becomes a follower of θ. The activation energy S can be calculated by noticing
that θ′ = −∇U with U = J cos(2θ)/4. Therefore S = J/4. In this limit, the action
is linearly dependent on J and inversely proportional to |K|. In Figure 4.12(b)
the dependence of the activation energy versus the inverse of the backscattering
magnitude for µ = 1.8 and φk = 1.3 is shown as the solution of Eqs. (4.12)-(4.15).
The linearity is evident.

Finally, we investigate the effect of a change in the linewidth enhancement
factor in the laser medium. In Figure 4.13(a), the activation energy is calculated
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Figure 4.13: Activation energy S as a function of the linewidth enhance-
ment factor α when calculated (a) by fitting the mean-first-passage-times
obtained from numerical simulations of Eqs. (2.1)-(2.3) and (b) from the
Hamiltonian formalism. Both approaches reveal the "knee". The current
is set at µ = 1.8, the backscattering amplitude to k = 0.44 and the phase at
φk = 1.2. (bottom) Qualitatively different MPEP for α = 5 (c) and α = 6 (d)

as calculated with the Hamiltonian system (4.12)-(4.15).

numerically using the full rate equation model Eqs. (2.1)-(2.3). A monotonic
increase of the activation energy with α is evident. An unexpected feature of the
dependence of S versus α is the abrupt change in the gradient of S. Such a change
in scaling can be interpreted by investigating the topology of the MPEP in the
reduced model. A typical dependence of S on α calculated using the Hamilton’s
Equations (4.12)-(4.15) is exemplified in Figure 4.13(b). The same change in
scaling as in Figure 4.13(a) is observed. Moreover, this can be explained by
studying the different topology of the MPEP for parameters corresponding to
the different branches of the S − α curve.
For values of α lower than a critical value αc, the MPEP connects the initial
stationary state CW with the saddle directly [Figure 4.13(c)], whereas, for α > αc
the MPEP surrounds the unstable in-phase bidirectional mode [Figure 4.13(d)].
At the critical value αc, the MPEP is degenerate and two qualitatively different
trajectories reach the saddle with the same probability. We would like to remark
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here that simpler double-well models, such as e.g. used for VCSELs [8], cannot
predict such a change in the gradient of the activation energy.

4.9 Conclusion

In conclusion, we have investigated the stochastic mode hopping in semiconduc-
tor ring lasers, both theoretically and experimentally. A control scheme based
on the reflection of power from the cleaved facet of an optical fiber and the active
bias of the bus waveguide has been devised in order to control the (otherwise
inaccessible) coupling parameter φk. In this way, we could explore the dynamics
of the SRL over the whole parameter space J − φk, including previously undis-
closed regimes.
In the bistable regime, we have shown that the residence time distribution for
the mode hopping in semiconductor ring lasers is non-Arrhenius and cannot be
described by a single transition rate. Two separate time scales are observed in
the residence time distribution, which can be understood in the framework of
the reduced two-dimensional model derived in Chapter 2.
Whereas alternate oscillations, bidirectional and unidirectional operation have
previously been reported in semiconductor ring lasers [12], we have observed
experimentally the coexistence between alternate oscillations and unidirectional
operation, and more generally the coexistence of a limit cycle and two stable
nodes in a semiconductor laser system. Moreover, coexistence of three stable
nodes has been demonstrated. The experimentally revealed dynamical regimes
thus match the phase space topologies of the reduced two-dimensional model.
The stochastic planar system (4.4)-(4.5), was subsequently mapped into a four-
dimensional Hamiltonian system (4.12)-(4.15) and the optimal escape paths
could be calculated. As expected from the general theory of escape in non-
linear systems [47, 48, 52], the most probable escape path connects the initial
stationary lasing operation with a saddle in the phase space. The results of the
reduced model were confirmed by the numerical simulations of the full rate
equation model (2.1)-(2.3).
In contrast to the adoption of a phenomenological bistable system such as a
double-well potential, the use of the asymptotic reduction Eqs. (4.4)-(4.5) does
not require the introduction of phenomenological parameters to be matched with
Eqs. (2.1)-(2.3). In this way we have investigated the dependence of the activation
energy on the principal parameters as shown in Figs. 4.11 – 4.13. In particular,
our asymptotic method allowed us to understand the change in scaling of the
dependence of S on α which cannot be explained with other phenomenological
models such as a double-well potential.
Our approach can be straightforwardly extended to analyze the problem of fluc-
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tuations in other bistable optical systems [5–9] or in the multistable regimes of
operation of semiconductor ring lasers, presented in Section 4.4 [3]. The anal-
ysis and experimental results presented are general and apply to any kind of
semiconductor laser with a circular geometry, such as e.g. micro-ring lasers and
micro-disk lasers.
In the next two Chapters, we will study the nonlinear dynamical behavior of
semiconductor ring lasers when their Z2-symmetry is broken. We will demon-
strate how the bifurcation scenario is qualitatively altered with respect to the
Z2-symmetric case and demonstrate that the ring laser can become excitable.
This excitability is further analyzed, both theoretically as experimentally.
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CHAPTER 5

Breaking of the Z2-symmetry

“I think I’ve broken something.” — Merry in Lord of the Rings

We theoretically study the bifurcation scenario and the evolution of the counter-
propagating modes in a semiconductor ring laser when their Z2-symmetry
is broken. Theoretical predictions and insights in the different dynamical
regimes of the asymmetric semiconductor ring laser are obtained.1

5.1 Introduction

In the previous Chapters, we have repeatedly motivated the technological inter-
est of the SRL by stressing that the bistable unidirectional regime can be used to
encode digital information in the emission direction of SRLs [2]. Therefore, we
have studied in depth the dynamical behavior of a SRL with a perfectly sym-
metric cavity and out-coupler, such that a Z2-symmetry was retained. However,
as we have already mentioned in Chapter 1, breaking the cavity symmetry in
the laser through preferential scattering into one direction can greatly enhance
the unidirectional operation in micro-ring and micro-disk lasers. This is why
several studies have focussed on the importance of asymmetries in the design
and modeling of semiconductor micro-ring and micro-disk lasers [3–10].
In this Chapter, we will tackle the problem of the SRL with a broken Z2-symmetry

1The work presented in this Chapter has been published in the following journal paper: [1].
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CHAPTER 5. BREAKING OF THE Z2-SYMMETRY

similarly as we did for the symmetric problem. Starting from a more general rate-
equation model incorporating saturation processes and the asymmetric linear
coupling between the SRL modes, we will derive (as in Chapter 2) an asymptotic
two-dimensional SRL model. A bifurcation analysis of this asymptotic model
will provide us with both a qualitative and quantitative picture of how the posi-
tion of all bifurcations shift in parameter space. Moreover, this bifurcation study
will allow us to understand the locus of different nodes, limit cycles and the
specific shape of invariant manifolds of saddle points in the two-dimensional
phase space of the SRL. This knowledge will be exploited in the next Chapter,
where we discuss excitable properties of the SRL.

5.2 Semiconductor ring laser rate-equation models
with asymmetric linear coupling

We consider a SRL operating in a single-longitudinal, single-transverse mode.
In the limit of small outcoupling from the ring cavity, the total electric field
oscillating in the ring can be written as the sum of two counter-propagating
waves (see also Section 1.4.1):

E(z, t) = Ecw(t) exp [i (ω0t − k0z)] + Eccw(t) exp [i (ω0t + k0z)] + c.c.. (5.1)

Here k0 is the longitudinal wavenumber and ω0 is the optical frequency of the
mode. In the slow varying approximation, the amplitudes of the clockwise Ecw
and counter-clockwise propagating modes Eccw vary on time scales which are
slower that ω0. The rate-equation model is formulated mathematically in terms
of two rate equations for the slowly varying amplitudes ECW,CCW and one rate
equation for the carrier number N. The equations read:

Ėcw = κ(1 + iα)
[
gcwN − 1

]
Ecw − (k − ∆k/2)ei(φk−∆φk/2)Eccw, (5.2)

Ėccw = κ(1 + iα)
[
gccwN − 1

]
Eccw − (k + ∆k/2)ei(φk+∆φk/2)Ecw, (5.3)

Ṅ = γ[µ −N − gcwN|Ecw|
2
− gccwN|Eccw|

2] (5.4)

where dot represents differentiation with respect to time t, gcw = 1 − s|Ecw|
2
−

c|Eccw|
2, gccw = 1 − s|Eccw|

2
− c|Ecw|

2, κ is the field decay rate, γ is the carrier decay
rate, α is the linewidth enhancement factor and µ is the renormalized injection
current with µ ≈ 0 at transparency and µ ≈ 1 at lasing threshold. The two
counter-propagating modes are considered to saturate both their own and each
other’s gain due to e.g. spectral hole burning effects and carrier heating (see also
Sect. 1.3.2). Self- and cross-saturation effects are added phenomenologically and
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5.2. SEMICONDUCTOR RING LASER RATE-EQUATION MODELS WITH
ASYMMETRIC LINEAR COUPLING

are modeled by s and c. A possible carrier grating formed by the two counter-
propagating waves is washed out on a time scale faster than the photon lifetime
as we discussed before in Section 1.4.1. Reflection of the counter-propagating
modes occurs at the point where light is coupled out of the ring cavity into a
coupling waveguide and can also occur at the end facets of the coupling wave-
guide. These localized reflections result in a linear coupling between the two
fields characterized by an amplitude k and a phase shift φk. Moreover, due to
unavoidable imperfections in the SRL introduced during the fabrication pro-
cess, the SRL will have a certain asymmetry in the linear coupling between both
counter-propagating modes. This asymmetry is introduced in Eqs. (5.2)-(5.4) as
∆k and ∆φk, representing the difference in backscattering strength and phase,
respectively.
In the previous Chapter, the rate-equation model with symmetric backscattering
(∆k = ∆φk = 0) has proved to provide a very good description of many of the
dynamical features that are experimentally observed in SRLs [11–13]. However,
several dynamical phenomena observed in experiments require the inclusion of
an asymmetry in the linear mode coupling [14]. An example of such behavior,
excitability, will be discussed in the next Chapter.
In the case of symmetric backscattering a two-dimensional reduced set of SRL
equations has allowed us to gain a much deeper insight in the organizing mech-
anisms of the different nonlinear dynamical regimes (see Chapter 2 and Ref.
[15]). To gain access to the same two-dimensional phase space in the case of
asymmetric mode coupling, we propose a similar asymptotic simplification of
Eqs. (5.2)-(5.4). On time scales slower than the relaxation oscillations we can still
numerically show that the total intensity is conserved:

|Ecw|
2 + |Eccw|

2 = µ − 1 > 0. (5.5)

Under the same conditions as in Chapter 2 and provided that ∆k/κ is small, the
slow time scale dynamics is described by the time evolution of two auxiliary
angular variables:

θ′ = J sinθ cosθ + 2(1 − δ) cos(φk + ψ) − (1 − sinθ)
[(1 − δ) cos(φk + ψ) + (1 + δ) cos(φk − ψ)], (5.6)

cosθψ′ = αJ sinθ cosθ − (1 + δ)(1 − sinθ) sin(φk − ψ)
+(1 − δ)(1 + sinθ) sin(φk + ψ). (5.7)

where θ = 2 arctan
√
|ECCW |

2/|ECW |
2 − π/2 ∈ [−π/2, π/2] represents the relative

modal intensity and ψ = ΦCCW − ΦCW − ∆φk/2 ∈ [0, 2π] is the phase difference
between the counter-propagating modes, with ΦCW,CCW the phases of the CW
and CCW mode, respectively. Prime now denotes derivation to the slow time
scale τ = kt. The difference in linear coupling strength has been re-normalized
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as δ = ∆k/2k. Finally, as in Chapter 2, in this reduced model the pump current
has been rescaled as

J = κ(c − s)(µ − 1)/k. (5.8)

As the phase space of Eqs. (5.6)-(5.7) is restricted to two dimensions, it allows
for a clear physical picture of the influence of all parameters on the dynamical
evolution of the variables in a plane. It is interesting to notice that the asymmetry
in the coupling phase ∆φk only arises as a shift of the auxiliary variable ψ and
does not influence the actual dynamics which happens at the level of the two-
dimensional system Eqs. (5.6)-(5.7). In a similar way, the saturation coefficients
c, s and the average backscattering strength k only rescale the pump current
J and also do not influence the underlying dynamical system Eqs. (5.6)-(5.7).
Therefore, we will focus on the influence of the relevant dynamical parameters,
being the normalized driving current J, the relative asymmetry in backscattering
δ and the average coupling phase φk. The linewidth-enhancement factor α will
be kept constant throughout this Chapter.

5.3 Bifurcation analysis

In the case of symmetric linear coupling, for δ = 0, two different types of station-
ary solutions exist. On the one hand, solutions corresponding to bidirectional
emission (θ = 0) exist for all model parameters and are identified by their
value of ψ. For ψ = 0 and ψ = π, we can distinguish between the in-phase
symmetric-solution (IPSS) and the out-of-phase symmetric solution (OPSS). On
the other hand, in-phase and out-of-phase asymmetric solutions (IPAS, OPAS)
corresponding to unidirectional emission can emerge from either a pitchfork bi-
furcation of the symmetric solutions or from a saddle-node bifurcation (see Refs.
[15, 16] and Chapter 2).
However, when the symmetry is broken (δ , 0), it becomes harder to distinguish
between bidirectional and unidirectional operation, since the symmetric solution
with θ = 0 no longer exists. All solutions are now in a sense unidirectional (with
smaller or larger values of θ), and are given in a parametrized form

{
θ(ψ), J(ψ)

}
:

θ
(
ψ
)

= 2 arctan

( − sinψ(I) − cosψ(II)
sinψ(III) + cosψ(IV)

) 1
2
 − π2 , (5.9)

J
(
ψ
)

= cscθ(ψ) secθ(ψ)[2(δ − 1) cos(φk + ψ) + (1 − sinθ)
[(1 − δ) cos(φk + ψ) + (1 + δ) cos(φk − ψ)]]. (5.10)
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5.3. BIFURCATION ANALYSIS

Figure 5.1: Bifurcation diagrams of Eqs. (5.6)-(5.7) depicting the extremes
of θ vs. injection current J. The steady state values of θ are denoted
by full lines, while the extrema of periodically oscillating θ are indicated
with dashed lines. Black (gray) color is used for stable (unstable) fixed
points or limit cycles. From (a) to (d), we have φk = 1.55, 2.6 and δ =
0 and 0.1, respectively. α = 3.5. Hsub, Hsup, P, F, Hom and FC denote
the following bifurcations: subcritical Hopf, supercritical Hopf, pitchfork,

Fold, homoclinic and fold of cycles.

with

I = (1 + δ) cos(φk) + α(1 + δ) sin(φk), (5.11)
II = α(1 + δ) cos(φk) + (1 + δ) sin(φk), (5.12)

III = (1 − δ) cos(φk) + α(1 − δ) sin(φk), (5.13)
IV = −α(1 − δ) cos(φk) + (1 − δ) sin(φk). (5.14)

This absence of the purely bidirectional solutions can be observed in Figure 5.1,
where bifurcation diagrams of Eqs. (5.6)-(5.7) depicting the extremes of θ vs.
injection current J are plotted. The steady state values of θ are denoted by full
lines, while the extrema of periodically oscillating θ are indicated with dashed
lines. Black (gray) color is used for stable (unstable) fixed points or limit cycles.
Figs. 5.1(a) and (c) depict the bifurcation diagrams in the symmetric case (δ = 0)
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for two different values of the linear coupling phase φk = 1.55 and 2.6, respec-
tively.
First, we will briefly revisit the bifurcation diagrams Figs. 5.1(a) and (c) for the
symmetric case. At the threshold current, J ≈ 0, laser action starts. When op-
erating close to the threshold, at low power, the laser operates bidirectionally
with CW and CCW operating either in-phase or out-of-phase according to φk
(see Ref. [16] and Chapter 2). For large values of the pump parameter J, the
nonlinear gain saturation becomes the dominant coupling mechanism between
the counterpropagating modes and two out-of-phase (in-phase) new solutions
can be found. In this region, the optical output power is mainly concentrated in
one propagation direction, called unidirectional operation. When the device is
symmetric two unidirectional solutions exist: one where |Ecw|

2 > |Eccw|
2 and vice

versa. Hence, the device exhibits bistability. For intermediate values of J, the
linear and nonlinear coupling are comparable and the dynamics of the system
depends on the value of φk. In Figure 5.1(a) one can find alternating oscillations
(Hsup) in this intermediate region. The large stable limit cycle corresponding to
these oscillations is destroyed in a fold of cycles (FC) with an unstable limit cycle
created slightly beforehand (for lower values of J) in a homoclinic bifurcation
(Hom). Figure 5.1(c) shows a qualitatively different behavior for intermediate
values of J. Two fold (or saddle-node) bifurcations (F) create the unidirectional
solutions while the stable bidirectional solution still exists. This creates the pos-
sibility of the coexistence of three stable solutions. Only for higher values of the
pump current J, the bidirectional solution disappears in a pitchfork bifurcation
(P), after which one is left with a bistability between both unidirectional modes.
When introducing asymmetry in the linear coupling between the two counter-
propagating fields of the SRL (δ = 0.1), one can see that the purely bidirectional
solution does not exist anymore and that the pitchfork bifurcation (creating the
unidirectional solutions in the symmetric case) is replaced by a fold bifurcation
[see Figs. 5.1(b),(d)]. The absence of the pitchfork bifurcation in the asymmetric
case is of immediate relevance in the experimental measurements of PI-curves.
When the asymmetry is non-negligible, one observes that it is always either the
CW or the CCW that is first created in a fold bifurcation. The reason for this
becomes evident from Figs. 5.1(b),(d), where one clearly sees that one of the
counter-propagating unidirectional modes is created at higher pump currents in
the fold bifurcation.
Figure 5.1(c) shows the possibility of multistability for certain values of (J, φk),
where three stable states coexist in the symmetric SRL [16]. This principle of
multistability in the symmetric SRL has been experimentally confirmed in Ref.
[13] (see Chapter 4). When introducing an asymmetry in the linear mode cou-
pling, one can observe in Figure 5.1(d) that the two fold bifurcations and one
pitchfork bifurcation now are replaced by three fold bifurcations. Moreover,
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Figure 5.2: Bifurcation diagrams of Eqs. (5.6)-(5.7) depicting the change in
the fold and Hopf bifurcation currents J for changing values of the asym-
metry in coupling strength δ and for two different values of the coupling

phase φk = 1.55 [(a)-(c)] and 2.6 [(b)-(d)]. α = 3.5.

these different fold bifurcations occur at different values of the pump current J.
Depending on the value of the parameter set (J, φk, δ), the possibility of multi-
stable behavior between more than two stable states remains. The observable
sequence of different operational regimes is, however, much richer than in the
case of a symmetric SRL, as the different fold bifurcations can occur at different
pump currents depending on the coupling phase φk and the amount of asymme-
try δ. This opens up the possibility of e.g. bistable behavior of the bidirectional
mode (or at least θ ≈ 0) and only one of the unidirectional modes. We have
experimentally verified such behavior in Ref. [1].
Bearing this in mind, we are interested in the relative position of the different

fold bifurcations as a function of (J, δ). Figure 5.2(a) and (b) depicts the fold bi-
furcation currents J as a function of the percentage of asymmetry in the coupling
strength δ, for two different values of the coupling phase (φk = 1.55 and 2.6). The
locus of the bifurcations has been determined using the continuation software
package AUTO [17]. For φk = 1.55, there was only a pitchfork bifurcation in the
symmetric case (δ = 0) and no folds were present. When increasing δ, this picture
stays qualitatively the same, but the pitchfork becomes a fold that shifts approx-
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Figure 5.3: Stability diagram for a fixed value α = 3.5 and δ = 0 showing
the different stable operation regimes for J > 0. The different black solid
lines indicate the different bifurcation currents, and are depicted in a polar
plot (J, φk). The denotations ¬- ± correspond to ¬ fold bifurcation of the
OPSS (IPSS), ­ the pitchfork bifurcation of the OPSS (IPSS), ® supercritical
Hopf bifurcation of the OPSS (IPSS), ¯ subcritical Hopf bifurcation the
OPAS (IPAS), ° double homoclinic bifurcation with gluing and ± a fold
of cycles. Multiple Takens-Bogdanov (TB) points are also depicted. The
gray dashed lines show the φk for which bifurcation diagrams are shown

in Figs. 5.1-5.2.

imately linearly to higher pump currents J for increasing asymmetry δ. More
interesting is the case for φk = 2.6, where we have previously seen that there
exist two fold bifurcations for δ = 0. For increasing values of the asymmetry δ,
the fold that corresponds with the pitchfork in the symmetric case shifts to lower
current values until it disappears when coinciding with one of the other fold
bifurcations. Only one fold remains for higher values of the asymmetry, which
as for φk = 1.55 moves to higher pump currents J approximately linearly. It is
clear that, in general, one is not only interested in the existence of multiple states,
but wishes to know where exactly these solutions are stable in time. Figure 5.2(c)
and (d) show the Hopf bifurcation currents J as a function of the percentage of
asymmetry in coupling strength δ for the same coupling phase as in Figure 5.2(a)
and (b). One can observe that for φk = 1.55 increasing the asymmetry δ above
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Figure 5.4: Stability diagram for a fixed value α = 3.5 and δ = 0.1 showing
the different stable operation regimes for J > 0. The different solid lines
indicate the different bifurcation currents, and are depicted in a polar plot
(J, φk). The denotations ¬ - ® correspond to ¬ a fold bifurcation creating
a new branch of solutions with θ < 0, ­ a fold bifurcation creating a new
branch of solutions with θ > 0 and ® a supercritical Hopf bifurcation. The
fold bifurcations are depicted in black solid lines, all Hopf bifurcations are
in dark gray solid lines, while the global bifurcations are shown in light gray
solid lines. Different Takens-Bogdanov (TB) and Bautin (Ba) co-dimension
two points are also depicted. The gray dashed lines show the φk for which

bifurcation diagrams are shown in Figs. 5.1-5.2.

about 0.45 removes the Hopf bifurcation and thus stabilizes the unidirectionally
lasing mode. However, for φk = 2.6 increasing the asymmetry δ from 0 to 1 shifts
the Hopf bifurcation current to lower and lower values of the pump current J,
but nonetheless the Hopf instability is retained over the entire domain. Only at
δ = 1 the Hopf bifurcation needs to disappear as the linear coupling coefficient
in one field equation becomes zero. Therefore, an increase in the amplitude of
that field will not be coupled back to the counter-propagating field such that no
oscillations can be sustained. We can conclude that a strong dependence on the
phase coupling φk of the loci of the Hopf bifurcation points exists in SRLs.
In Ref. [16] (see Chapter 2), an elaborate bifurcation analysis of the symmetric

SRL had been carried out for a fixed value of α = 3.5, showing the different
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Figure 5.5: A zoom of the stability diagram shown in Figure 5.4, using the
same notation and parameters. The bifurcations denoted by ¯ - ², where
¯ are subcritical Hopf bifurcations, °,² are homoclinic bifurcations, and

± a fold of cycles are shown in more detail.

bifurcation lines in the parameter plane (J, φk) for J > 0. We briefly revisit the
bifurcation scenario of the symmetric SRL in order to be able to compare it with
the asymmetric case later on. As can be seen from the polar plot in Figure 5.3, the
dynamics is organized by two co-dimension two Takens-Bogdanov points. From
TB1, the point where the fold (saddle-node) bifurcation line ¬ and the subcritical
Hopf line ¯ meet, emerges a homoclinic bifurcation line ². From TB2, the point
where the supercritical Hopf bifurcation line ® and the pitchfork bifurcation ­
meet, emerges a double homoclinic connection with a gluing bifurcation ° and
a fold of cycles ±. Finally, also the supercritical Hopf bifurcation and the fold
of cycles coincide in a co-dimension 2 point called a Bautin bifurcation point
(not shown) [18, 19]. The gray dashed lines denote φk = 1.55 and 2.6 for which
bifurcation diagrams are shown in Figures 5.1-5.2.
Introducing an asymmetry δ = 0.1, while keeping the same fixed value α = 3.5,
changes the stability diagram as shown in Figure 5.4 and Figure 5.5. The dif-
ferent fold bifurcations are depicted in black solid lines, all Hopf bifurcations in
dark gray solid lines, while the global bifurcations are shown in light gray solid
lines. The same notation as in Figure 5.3 is used. The dynamics is still organized
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Figure 5.6: Stable manifold separating the two basins of attraction (black
and white) of both asymmetric stable states for J = 0.71, φk = 1.5 and

∆φk = 0. δ = 0 and 0.05 in (a) and (b), respectively.

by TB points, but unlike in the symmetric case, there are now four TB points.
The bifurcation diagram is to a large extent similar as the symmetric SRL, with
as main difference that the subcritical Hopf bifurcations and the accompanying
homoclinic bifurcations no longer occur at the same current value J. This has as
result that the number of subcritical Hopf lines ¯ and homoclinic bifurcations
° are now doubled, and are organized by an extra TB point with respect to the
symmetric case. Moreover, the two pitchfork bifurcation lines ­ of the symmet-
ric SRL that were parallel to each other, are now replaced by fold bifurcation
lines ­ crossing at a finite parameter values. Again, the gray dashed lines de-
note φk = 1.55 and 2.6 for which the bifurcation diagrams are shown in Figs.
5.1-5.2. For a more generic and in-depth study of the unfolding of the different
bifurcations from a Takens-Bogdanov bifurcation point in a system with broken
Z2-symmetry, we refer to Refs. [19, 20].

5.4 Phase space portraits

In Refs. [12, 16] and Chapter 2, we have shown that the phase space portrait of a
symmetric SRL can have a particular shape, which is reflected in the dynamical
behavior of the SRL (see Chapters 3-4). More specifically, for values of (J, φk)
close to, but past, the homoclinic bifurcation °, the stable manifold of the saddle
point spirals around S and the basins of attraction of CW and CCW fold around
each other. For a symmetric SRL operating in a unidirectional regime this is
exemplified in Figure 5.6(a). Four stationary solutions exist for Eqs. (5.6)-(5.7): an
unstable in-phase bidirectional state in (0, 0) (not shown); two symmetric stable
states CW and CCW at ψ ≈ π, both corresponding to unidirectional operation;
and a saddle point S in (0, π) which is the unstable out-of-phase bidirectional
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solution. The folded shape of the stable manifold of S that separates the basins of
attraction of CW and CCW has lead to interesting dynamical behavior, such as a
particular kind of noise-driven mode-hopping between the CW and CCW mode
(see Chapter 4) [12] and backfire dynamics when including optical injection
[16, 21] (see Chapter 3).
We have shown that these folding basins of attraction persist in the (J, φk, α)
parameter space [16] (see Chapter 2), provided that one stays close enough to
the homoclinic bifurcation and the fold of cycles. Whereas the phase space
portraits in Figure 5.6 are drawn for φk = 1.5, similar results can be obtained for
other values of φk as long as the basins of attraction of the CW and CCW mode
intertwine. This is the case for both φk = 1.5 and 1.55 of which a cut is shown in
the stability diagram of Figure 5.4 and Figure 5.5.
When breaking the Z2-symmetry of the laser by including an asymmetry in the
linear mode coupling, the basin of attraction of either the CW or the CCW mode is
greatly enlarged. This is shown in Figure 5.6(b), where we have taken δ = 0.05.
The black and white regions represent the basins of attraction of both stable
unidirectional states, which are separated by the stable manifold of the saddle
point. Due to the large asymmetry in the basins of attraction of both counter-
propagating modes of the SRL, the CW with the much smaller basin of attraction
has become a metastable state. Unavoidable spontaneous noise fluctuations will
drive the laser out of the basin of attraction of the CW towards the CCW mode.
Therefore, with the asymmetry δ large enough, we expect in practice to see the
laser always operating in the CCW mode, as small fluctuations will drive the
system outside of the basin of attraction of the CW state. However, based on
the structure of the phase space as shown in Figure 5.6(b), we conjecture that
the same noisy fluctuations can lead to the excitation of pulses in the system.
This process, well-known since a long time in e.g. neural networks [22], is called
excitability and will be studied in depth in the next Chapter.

5.5 Conclusion

We have studied the bifurcation structure of an asymptotically derived two-
variable reduced model for the dynamical behavior of a semiconductor ring
laser when its Z2 symmetry is broken. We have shown how this two-dimensional
model for an asymmetric ring laser can be used to interpret and predict regions
of monostable, bistable and multistable behavior in the laser. As in Chapter 2,
the basins of attraction of the attractors in the bistable regime of the ring laser
have been studied in the two-dimensional phase space. In the following Chapter,
these results will be used to gain theoretical understanding of excitable behavior
in the ring laser. Then we will also compare with experiments.
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CHAPTER 6

Excitability

“That doesn’t make sense to me. But, then again, you are very small...” — Treebeard in Lord of the Rings

We reveal a mechanism of excitability in semiconductor ring lasers. This mech-
anism is general for systems close to Z2-symmetry. The global shapes of the
invariant manifolds of a saddle in the vicinity of a homoclinic loop determine
the origin of excitability and the features of the excited pulses. The charac-
teristics of these excited pulses are studied both deterministically and in the
presence of noise. We confirm our findings experimentally.1

6.1 Introduction

Excitability in systems outside equilibrium is a very fertile and interdisciplinary
research topic. It has been observed in various fields including Chemistry,
Physics, Biology or neural networks [3–9]. In particular, excitability attracts a
lot of attention in the field of optics [10–17] due to its application as a way to
generate well-defined optical pulses. In the last decade, lasers with saturable
absorber [10, 11], optically injected lasers [12, 17], lasers with optical feedback
[16] or VCSELs with opto-electronic feedback [18] have all been proposed as
optical excitable units.
A general feature of excitable systems is their highly nonlinear response to ex-
ternal perturbations. When unperturbed, the system remains quiescent and

1The work presented in this Chapter has been published in the following journal papers: [1, 2].
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resides in a resting state. Small perturbations only lead to a small-amplitude
linear response. However, if the perturbation is sufficiently large, the system is
transferred from the resting state to an excited state (the firing state). After this
strong response, the system returns to its initial resting state through a refractory
cycle. This large excursion of the system’s variables in phase space corresponds
to the emission of a large amplitude pulse. During the refractory cycle it is
impossible to generate a second pulse as the system does not respond to any
external perturbation.
In this Chapter, we aim to disclose the excitable properties of the wide class of
nonlinear dynamical systems with weakly broken Z2-symmetry [19, 20]. For
the majority of optical systems, excitability takes place around a homoclinic
bifurcation of a stable limit cycle [10–13, 17]. The presence of the stable limit
cycle can easily be observed in these systems as it leads to Q-Switching oscilla-
tions. However, it is known that only unstable limit cycles undergo homoclinic
bifurcations in SRLs [21], which are intrinsically more challenging to address
as they are not associated to observable dynamical regimes. We will analyze
the origin of the excitability based on the bifurcation study and the topology of
the invariant manifolds of SRL with broken Z2-symmetry as presented in the
previous Chapter. In such a way, we can predict the onset of excitability near the
homoclinic bifurcation of an unstable limit cycle as well as the properties of single
and multiple excited pulses. We determine both the deterministic and stochastic
properties of these excited pulses, and verify our findings experimentally.

6.2 Origin of excitability in semiconductor ring lasers

In Figure 6.1(b) we revisit the phase space picture of a SRL with broken Z2
symmetry as modeled by Eqs. (5.6)-(5.7) and also shown in Figure 5.6(b). Two
counter-propagating unidirectional stable attractors are present in the SRL — the
CW and the CCW mode — and are depicted here in the two-dimensional (θ,ψ)
phase space as in the previous Chapters. The gray and white regions indicate
the basins of attraction of the CW and the CCW mode. They are separated by
the stable manifolds of a saddle state indicated by S. The asymmetry between
both modes in Eqs. (5.6)-(5.7) becomes clear as the basin of attraction of the CW
state is much smaller than the one of the CCW state.
Assuming the unperturbed SRL resides in the CCW state, the SRL can be per-
turbed to cross the stable manifold, by e.g. optical injection, and will then respond
by making a large excursion in phase space before relaxing again to the CCW
state [see Figure 6.1(b)]. In other words, a pulse is generated which will turn
around the CW state before returning to the CCW lasing mode by following the
unstable manifold of the saddle S.
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Figure 6.1: (a) Sketch of excitability behavior near a saddle-node bifurca-
tion. (b) The phase space topology of an asymmetric SRL. CW, CCW and S
are respectively two quasiunidirectional states and a saddle state of which
the stable and unstable manifolds are displayed. The basin of attraction of

the CW (CCW) quasiunidirectional state is colored gray (white).

In the majority of excitable systems encountered in optics, the generation of an
optical pulse is initiated stochastically by the crossing of one branch of the stable
manifold of a saddle and is completed deterministically by following a branch
of the unstable manifold of the same saddle back to the initial quiescent state
[10–12, 15, 17] [see Figure 6.1(a)]. However, one notices from Figure 6.1(b) that
in the SRL model with weakly broken symmetry a second stable fixed point CW
can still be present in the system. The unstable manifold of the saddle S connects
to CW and does not lead to an excited pulse. Excitability therefore initiates by
stochastically crossing both branches of the stable manifold and continues de-
terministically in the basin of attraction of CCW initially without following the
unstable manifold of S. Only at the end of the pulse the system relaxes to the
CCW state by following the unstable manifold of S.
We point out that this excitable behavior disappears when the current J is either
too small or too large. When J is too large, the system returns to a bistable
situation such that in the presence of noise there will be a competition between
mode-hopping events between both stable states and excitable excursions (see
Chapter 4). For J too small, the system will exhibit alternating oscillations [21].
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Finally, for the asymmetry δ large enough, one of the two stationary states col-
lides with the saddle and disappears in a saddle node bifurcation [see Figures
5.1(b) and 5.2(a)]. In the corresponding regime the laser remains excitable; how-
ever, the excitability threshold is no longer associated with an invariant manifold
of the system and becomes a quasi-threshold (or separatrix) in the phase space.
A similar scenario appears for instance in FitzHugh-Nagumo and Hodgkin-
Huxley models for neural excitability [8].
Before characterizing the stochastic properties of the excited pulses in the SRL,
we will demonstrate deterministically the presence of excitability in the SRL by
optically injecting pulses to drive the SRL beyond the excitability threshold, thus
inducing an excitable excursion.

6.3 Deterministic analysis

The stable saddle manifold can be crossed by either altering the phase difference
ψ or the relative power distribution θ between the counter-propagating modes.
This can, e.g., be done by optically injecting a pulse into the SRL. We analyze
the response of the SRL for two limiting cases: long and short pulses. For long
pulses the SRL will have the time to relax to a new state from which it will be
“released” once the pulse is finished, while for short pulses the SRL will briefly
be kicked out of equilibrium.
We simulate the general rate-equation set (5.2)-(5.4) to model the CW and CCW
electric fields and the carrier density of the SRL with an asymmetric linear
coupling between both modes. Extra terms F1,2(t) = (1/τin)Ei exp (i∆t) are added
to Eqs. (5.2)-(5.4) to model the optical injection into the CW and CCW mode
(see also Eqs. (3.1)-(3.2) for a symmetric SRL). τin is the flight time in the ring
cavity (see Table 1.1), |Ei|

2 the injected power and ∆ = ωi − ω0 the detuning
between the frequency of the injected light and the longitudinal mode laser
frequency of the SRL. We always prepare the system in the stable CCW state
and inject pulses with a rectangular shape in time. The results of the numerical
time evolution simulations of the rate equations (5.2)-(5.4) are interpreted by
projecting the results in the two-dimensional phase space (θ,ψ) corresponding
to Eqs. (5.6)-(5.7).

6.3.1 Long trigger pulses

If the pulse width is long enough, the SRL will evolve to one of the stable attrac-
tors of the optically injected SRL. For our parameter values, this is the case if the
pulse width is larger than the intrinsic time scale of alternate oscillations (AO)
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Figure 6.2: Simulation of Eqs. (5.2)-(5.4). Location of the injection-locked
states for different injection amplitudes and values of the detuning. Red
(green) areas indicate counter-propagating (copropagating) optical injec-
tion. µ = 1.65 and δ = 0.045. Other parameters are as given in Table

1.1.

in the SRL. It is clear that as the system relaxes to a steady-state of the injected
SRL system, this can no longer be viewed as a small perturbation of the original
SRL without injection in which we want to investigate excitability. However, the
analysis of the projected position of the injection-locked solutions in the phase
space of the SRL without injection and the fact whether upon releasing the in-
jection a pulse is perceived provides us with a convincing confirmation of the
excitability mechanism presented in Section 6.2.
AO are an operating regime of the SRL in which the intensities of both modes
oscillate in anti-phase yielding a large clockwise excursion in the (θ,ψ) phase
space, covering a very large portion of the phase space (see e.g. Chapter 2).
Hence the period of the alternate oscillations gives us a quantitative measure for
the transit time needed to cross the phase space. The AO operating regime is
located at lower bias currents than the one we use, but is still relatively close to
our operating regime. If we choose the bias current too high, the folded structure
of the manifolds which enables the excitability will disappear. The vicinity to the
AO operating regime implies that transit times will still be very similar. Hence,
the time needed for the SRL to settle down to a new stable structure somewhere
in phase space can well be approximated by the period of AO of about 10 ns.
The knowledge of the phase space structure of the optically injected SRL now

allows us to predict its response. As shown in Ref. [22], where the dynami-
cal regimes of an optically injected (symmetric) SRL are investigated, several
stable structures may coexist in this phase space. Note that only steady states
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(injection-locked states) will provide an accurate prediction of the system’s lo-
cation in phase space; as opposed to stable periodic attractors which may cover
a considerable portion of the phase space. If the steady state is located some-
where across the stable manifold, it will induce an excitation after removing the
injection2. Due to the asymmetry in the backscattering, the SRL is no longer sym-
metric and neither are the locations of the injection-locked states (opposite to the
analysis presented in Section 3.2). Their location now depends on the mode in
which we inject: CW or CCW. Since the SRL favors CCW lasing in our case, these
can respectively be labeled as counter-propagating and copropagating injection.
The location of the injection-locked solutions for a broad range of injection am-
plitudes and values of the detuning are shown in Figure 6.2. The red regions
indicate the loci of injection-locked solutions for counter-propagating optical in-
jection. Two different regions ACW and BCW can be distinguished when injecting
in the CW mode. Both regions correspond to the existence of two resonance
tongues in the optically injected SRL, related to the two unidirectional solutions
CW and CCW in the non-injected system. For low injection powers the two sep-
arate injection-locked solutions ACW and BCW can co-exist. However, for higher
injection powers the BCW becomes unstable because of the increased effective
gain of the CW mode when optically injecting it. In contrast, when injecting
light co-propagating with the CCW mode, similar green regions indicating the
injection-locked states ACCW and BCCW exist. The stable BCCW region is smaller
than BCW due to the asymmetry of the SRL. A more elaborate discussion of the
dynamical behavior of optical-injected SRLs is given by us in Ref. [22].
Simulations of Eqs. (5.2)-(5.4) have confirmed that the injection-locked solutions
that have crossed both branches of the stable manifold indeed lead to a deter-
ministic pulse upon releasing the injected field (not shown here). The other
injection-locked solutions immediately relax to the stable state without the fir-
ing of a pulse prior to this relaxation. This result gives us confidence that the
excitability scheme based on the reduced phase space (θ,ψ) explained in the
previous Section is indeed valid. We now try to verify whether perturbing the
SRL by injecting only short trigger pulses can be used to cross the excitability
threshold to induce an optical pulse.

6.3.2 Short trigger pulses

Prior to the injection of a short pulse, the SRL will reside in the resting state,
which we choose to be the CCW state with the largest basin of attraction. When

2Assuming that the system relaxes quickly towards the two-dimensional phase-plane (θ,ψ) after
removing the optical injection such that the time evolution of the SRL can be correctly modeled by
Eqs. (5.6)-(5.7)
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Figure 6.3: Simulation of Eqs. (5.2)-(5.4) when optically injecting a 2 ns
wide square pulse. (a) Time trace of the modal intensities. The CW (CCW)
modal intensity is depicted in black (gray). The injected pulse is depicted
in black. τ indicates the time at which the injected pulse ends. (b) Two-
dimensional phase space trajectory corresponding to the time trace. The
point τ also corresponds to moment when the injected pulse ends. S
indicates the location of the saddle. The basin of attraction of the CW state
is depicted in gray. µ = 1.65, δ = 0.045 and Ei = 0.9 10−4 (Phase difference =
2.5π/2, zero detuning - resonant injection). Other parameters are as given

in Table 1.1.

injecting a short optical pulse the system can be pushed across the two folds of
the stable manifold of the saddle point and thus again find itself in the basin of
attraction of the CCW state. It will then follow a large deterministic excursion
in phase space before relaxing again to the stable CCW state. This behavior is
demonstrated in Figure 6.3 where a 2 ns wide square pulse is injected in the CW
mode to trigger an excitable excursion.
The direction in phase space in which the SRL is kicked out of its stable state
is mainly determined by the phase difference between the injected field and
the SRL field. Depending on the value of the phase difference the fields will
either constructively or destructively interfere, kicking the SRL out in opposite
directions in phase space. The initial direction of the trajectory in the (θ,ψ)
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Figure 6.4: Simulation of Eqs. (5.2)-(5.4). Influence of the phase difference
between the injected field and the SRL field on the excitability of the SRL. A
rectangular pulse with a fixed width of 2 ns is injected in the CW direction
with varying phase difference and amplitude Ei. µ = 1.65 and δ = 0.045.
Other parameters are as given in Table 1.1. Gray indicates excitation of a
single pulse while black indicates excitation of two consecutive pulses. In-
set: Magnitude of the response peak vs. amplitude of the optical excitation

pulse for a fixed phase difference of 3π/2.

phase space is hence largely determined by this phase difference, which is an
uncontrollable quantity in a practical setup and will thus play an important role
in whether or not the SRL will be excited to fire a pulse. An unfavorable phase
difference might lead to a failure to cross the stable manifold and thus a failure
to excite the SRL.
The influence of the phase difference on the firing of the SRL is shown in Figure
6.4 for resonant optical injection of a rectangular pulse with a fixed width of 2 ns.
For low injection powers, the SRL only fires a pulse when the phase difference is
close to −π/2. For higher injection powers, the phase condition is less stringent
but nevertheless does not allow firing when the phase difference is close to π/4.
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The presence of a distinct excitability threshold can be more clearly observed in
the Figure 6.4 inset. The importance of the phase difference between the fields
in exciting a pulse decreases when the length of the pulses increases or when the
frequencies are largely detuned.
This cumbersome phase dependency is an aspect that will arise in every optical
excitable system, when the excitation is done by an optically injected pulse. The
experimental results of Wünsche et al. in Ref. [15], covering an optically excitable
multisection laser, indeed show a distinct jitter in the spikes although nominally
identical pulses were injected. These failures to excite pulses in the system may
also be caused by the same phase difference as here in the SRL.

6.4 Stochastic analysis

Just as the mode-hopping events in Chapter 4 were induced stochastically, the
generation of optical excited pulses can be initiated similarly by crossing two
branches of the stable manifold of the saddle point S. In the next Section, where
we discuss our experimental characterization of excitability in the SRL using the
set-up mentioned in Section 4.2, the excitable excursions will be induced by the
spontaneous emission noise present in the system.
We first characterize the variation in the shape of noise-excited pulses. After
crossing the excitability threshold they follow first the flow of the system and
finally relax back to the initial quiescent CCW state by following the branch of
the unstable manifold of the saddle S. We will demonstrate that although this
excursion in phase space is largely deterministic the noisy conditions cause a
spread in width and amplitude of the pulses. Moreover a more complicated
interaction with the metastable CW state can largely influence the shape of the
pulses. Secondly, we briefly discuss the exponential distribution of the inter-
spike-interval (ISI) diagram of the pulses, confirming the excitability to be a
noise-activated process.

6.4.1 Pulse characterization

Figure 6.5 shows results of simulations of the full rate-equation model (5.2)-(5.4)3.
As in Chapter 4, spontaneous emission noise has been introduced in the field
equations of Eqs. (5.2)-(5.4) by zero-mean complex Langevin forces ξ described
by the correlation terms 〈ξi(t + τ)ξ∗j(t)〉 = 2DNδi jδ(τ), where i, j ={CW, CCW}, N
is the carrier density and D is the noise intensity. For simplicity, carrier noise

3An explanation of the numerical integration schemes that we use can be found in Appendix B.
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Figure 6.5: Results of simulations of Eqs. (5.2)-(5.4) with noise. (a)-(b):
D = 1.5 × 10−4 ns−1, tobs = 100 ms, (c)-(d): D = 2.5 × 10−4 ns−1, tobs = 10
ms. (a) and (c): Pulse width vs pulse height. White curve indicates the
prediction from the deterministic reduced model. (b) and (d): Histogram
of the trajectories in asymptotically reduced two-dimensional phase space.
The full (dashed) white lines indicate the stable (unstable) manifolds of the
saddle. The number of events has been rescaled by a factor 104. µ = 1.65

and δ = 0.05. Other parameters are as given in Table 1.1.

has been disregarded. During the time tobs, all noise-activated pulses across the
boundary θ = 0 are collected. After each excursion the system is put back in the
CCW lasing state and rare excursions that reside longer than 20 ns around the
metastable CW state are discarded. Figure 6.5(a) and (c) show histograms of the
collected trajectories projected onto the asymptotically reduced two-dimensional
phase space (θ,ψ), and this for two different values of the noise strength D. The
full (dashed) white lines indicate the stable (unstable) manifolds of the saddle S.
The histogram shows clearly that most of the noise-activated trajectories avoid
the saddle point and cross the two stable manifolds "earlier". Afterwards, the
excursions show a certain distribution in (θ, ψ)-space and somewhat cluster af-
ter having turned around the CW state (notice the higher number of events at
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higher values of ψ). The distribution of the pulses in (θ, ψ) for different noise
strengths seems qualitatively comparable. Such a distribution of the excited
excursions (and thus of their amplitudes as well) can also be present in other
excitable models such as the FitzHugh-Nagumo system [8].
We gain more information by analyzing the pulse width and height. The bound-
aries defining the width of the pulse in the time domain are defined by the mo-
ments at which the power in both counter-propagating modes is equal (θ = 0).
The pulse height is given by the maximum value of θ. The histograms con-
structed in this way are plotted in Figure 6.5(b) and (d). It is clear that there
exists a close correlation between the width and the height of the different pulses:
higher (larger θ) pulses move faster in phase space and are thus narrower, while
lower pulses are slower and consequently also wider. This relation holds for the
two different noise strengths, although it is clear that for lower noise strengths
[Figure 6.5(b)] the pulses tend to be less high in amplitude and thus wider than
in the case of higher noise strengths [Figure 6.5(d)]. The fact that the point cloud
opens up for decreasing pulse heights is related to the nature of these pulses.
These relatively long pulses tend to wander around the metastable CW state or
the saddle point. Near the saddle point the deterministic trajectory greatly slows
down. Hence, in this case, the transit times of the pulses are mainly determined
by the noise, giving rise to a larger spread.
In fact, this correlation between the width and height of the excited pulses as ob-

served by simulating the general rate-equation model (5.2)-(5.4) can be perfectly
understood by the topology of the associated two-dimensional phase space (θ,
ψ). The flow in the phase space imposes a clear relationship between the height
of the pulse and the pulse width. We take θ = 0 ( the moment at which the power
in both counter-propagating modes is equal) as the boundaries of our pulse in
the time domain and choose different values of ψ as initial condition. Numerical
simulations of the reduced model (5.6)-(5.7) have allowed us to construct a curve
relating the width and height shown by the white line in Figure 6.5(b) and (d).
The deterministic curve calculated from the reduced model perfectly fits the his-
togram created from the stochastic simulations of the more general rate-equation
model (5.2)-(5.4). The effect of increasing noise strength amounts to shifting the
point cloud along the curve towards lower widths and higher pulse maxima.
Decreasing the noise strength has the opposite effect.
A more tangible picture is given by showing the distribution of the pulse heights
and widths not in the two-dimensional space, but only in considering the width
distribution or the height distribution. These histograms are shown in Figure
6.6. The pulse height distribution can be properly fitted by a Gaussian distri-
bution A exp[−(θmax − B)2/C2], indicating that the height of the pulse is mainly
determined by the magnitude of the perturbation and less by the topology of
the flow. The average pulse height also increases with increasing noise intensity,
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Figure 6.6: Results of simulations of Eqs. (5.2)-(5.4) with noise. The his-
tograms N/Ntot are shown in function of the pulse heights (a),(c) and in func-
tion of the pulse widths (b),(d). D = 2.5× 10−4 for (a)-(b) and D = 1.5× 10−4

for (c)-(d). The histogram of the pulse heights can be fitted by a Gaussian:
A exp(−((x − B)/C)2). (a) 23748 events, A = 0.0503,B = 1.019,C = 0.1508.
(c) 15052 events, A = 0.0575,B = 0.9762,C = 0.1237. The vertical gray lines
show the maxima of the histograms: ≈ 7.99 ns in (b) and ≈ 9.20 ns in (d).

µ = 1.65 and δ = 0.05. Other parameters are as given in Table 1.1.

initiating excursions further away from the stable saddle manifold. On the other
hand, the pulse width distribution is asymmetric. Again, some of the pulses tend
to erratically wander around the CW state or the saddle giving rise to the tail in
the pulse width distribution. The average pulse width decreases with increasing
noise intensity indicating that the flow near the stable manifold is slower. This
also confirms the pulse height-width trade-off trend of Figure 6.5.

Finally, in Figure 6.7 we show typical pulse shape as the pulse width varies.
Figure 6.7(a)-(e) show a random collection of pulses with widths in the follow-
ing intervals: 5-6 ns, 8-9 ns, 11-12 ns, 14-15 ns, 17-18 ns, respectively. Their
corresponding trajectories in the (θ,ψ) phase space is shown in gray. The faster,
narrower pulses start out at a relatively large distance from the stable manifold,
and afterwards remain distant from the stable manifold during the whole pulse
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Figure 6.7: Simulation of Eqs. (5.2)-(5.4) with noise. Typical pulse shapes
corresponding to different pulse widths are shown. Single pulses are col-
lected from the time traces in panels (a)-(e) with below each panel (a)-(e)
the corresponding trajectories in the (θ,ψ) phase space in gray. Stable (full)
and unstable (dashed) manifolds are drawn in black. From (a) to (e) pulses
are shown with widths in the following intervals: 5-6 ns, 8-9 ns, 11-12 ns,
14-15 ns, 17-18 ns. µ = 1.65, δ = 0.05 and D = 2.5 × 10−4 ns−1. Other

parameters are as given in Table 1.1.
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Figure 6.8: Schematic explanation of the used numerical detection cri-
terium for the inter-spike-interval (ISI) between consecutive pulses. P

represents the intensity in the CW mode.

trajectory, determining its shape. This is clearly visible in the pulses in Figure
6.7(a)-(b). Oppositely, pulses that start out closer to the stable manifold slow
down and are less high. For the latter type of excursions, if the pulse trajectory
comes too close to the stable manifold it can get tangled up in the metastable
CW state or slowed down near the saddle, explaining the formation of possible
plateaus in the pulse. In the case one gets trapped in the CW state, the pulse
would show a plateau at the pulse maximum, while if the pulse slows down
near the saddle, it would reveal a plateau at the edge of the pulse. The collection
of exemplary pulse shapes with increasing width in Figure 6.7(a)-(e) illustrates
these phenomena well. A slowing down of the pulse at the falling edge (higher
values of ψ) is best visible in panels (b) and (c). In Figure 6.7(d), many of the
pulses come very close to the saddle point, resulting in an even more pronounced
slowing down, especially at the trailing edge of the pulse. Several rare pulse
events where the system briefly gets stuck in the CW state are depicted in panel
(e).

6.4.2 Inter-spike-interval diagram

In order to determine the inter-spike-interval (ISI) between consecutive pulses
we have simulated Eqs. (5.2)-(5.4) during a time t = 1ms. In general the system
resides in the CCW state. Defining the intensities of the CW and CCW state by
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Figure 6.9: Simulation of Eqs. (5.2)-(5.4) with noise showing the inter-
spike-interval diagram. Log(N/Ntot) is plotted in function of the inter-
spike-interval in µs. The best linear fit is shown by the lines in gray.
µ = 1.65, δ = 0.05 and D = 2.5 × 10−4 ns−1. Other parameters are as given

in Table 1.1.

PCW,CCW as shown in Figure 6.8, we register an excited pulse from the moment
the intensity in the CW mode P > PCCW + 0.8(PCW - PCCW). We define the end of
the pulse as the moment when the intensity P < PCCW + 0.2(PCW - PCCW). The ISI
time between two such pulses is defined as in Figure 6.8.

The distribution of the ISI between all excited pulses is shown in Figure 6.9.
We have plotted the logarithm of the normalized number of events log(N/Ntot)
in function of the inter-spike-interval in µs, with N the total number of events
in each bin and Ntot = 1.22 106 the total amount of excited pulses. It becomes
evident from Figure 6.9 that the short ISIs and long ISIs are distributed in a
different way and together represent a strongly non-Arrhenius type of behavior.
Separately, each region of the ISI diagram can be fitted by an exponential curve
[∝ exp (−t/〈T1,2〉)], where the average ISI 〈T1,2〉 is the fitting parameter. The
fast time scale corresponds to an average ISI 〈T1〉 of 12.8 ns, while the slow
time scale events have an average ISI 〈T2〉 of 0.44 µs. The short ISI times are a
signature of multiple consecutive excited pulses, while the slow ISI time scale 〈T2〉

corresponds to the generation of the pulses in an Arrhenius type noise-activation
process across the excitability threshold. The presence of these time scales was
also found in our study of stochastic mode-hopping in the bistable regime in
Chapter 4. Both a mode-hop in the bistable regime and any excitation beyond the
excitability threshold are described by a noise-activated escape, corresponding
to the slow Arrhenius time-scale. The fast non-Arrhenius character of the ISI,
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similar as for the residence time distribution for the mode-hopping, finds its
origin in a noise-induced diffusion through both branches of the stable manifold,
thus initiating another excursion in phase space before relaxing to the CCW state.

6.5 Experiments

The experiments have been performed on the same InP-based multi-quantum-
well SRL with a racetrack geometry as in Chapter 4. The experimental set-up we
have used is the one shown in Figure 4.1. A detailed description of the set-up
can be found in Chapter 4. An important feature is the fact that an electrical
contact has been applied to the bus waveguide that couples the light out of
the ring, which can be independently pumped. The purpose of the contact is
twofold: it allows to counteract absorption and to amplify on-chip the signal
emitted by the ring. More interestingly, the presence of a contact allows us to
continuously break the symmetry of the device in a controlled way by changing
in an asymmetric way the relative strength δ and the phase ∆φk of the coupling
between the CW and CCW mode. Using the cleaved facet of the fiber as mirror,
we are able to reflect power from one mode (e.g. CW) back into the waveguide
and finally to the counter-propagating mode in the ring. The amount of power
that is coupled to the CCW mode can then be controlled by tuning the waveguide
current Iw, whereas its phase can be tuned by positioning the fiber facet with a
piezoelectric controller. We analyze the output power of the CW mode using a
fast photodiode connected to an oscilloscope with a sampling rate of 4 ns. This
sampling rate is slow enough for the purpose of recording long time series for
statistical purposes, and it is fast enough to sample accurately the individual
excitable pulses.

6.5.1 Anatomy of the excited pulses

Due to the intrinsic symmetry of SRLs, the device is expected to operate with
equal probability in either the CW or the CCW state. However, by breaking
the symmetry using the piezo-controlled optical fiber and the bias-current on
the bus-waveguide, the operation in one of the states (e.g. here CCW) can be
favored. A time series of the power emitted in the CW direction is shown in
Figure 6.10(a) for a bias-current on the ring of Ip = 45.38mA and for a waveguide
current of Iw = 14.0mA. It is clear from Figure 6.10(a) that the ring operates
most of the time in the CCW mode. An example of one of the single excitable
pulses from this time series is shown in Figure 6.11(a). The average width of
these pulses is 33.9 ± 4ns. The ISI are distributed exponentially (see inset in
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Figure 6.10: (a) Experimental time trace displaying excitability for Ip =
45.38mA and for a waveguide current of Iw = 14.0mA. (b) Distribution of

the inter-spike intervals for the same Ip and Iw.

Ip [mA] ISI [µs] τ1 [ns] τpp [ns] τ2 [ns]
44.07 23.3 30 53.0 25.0
44.62 95.20 26.7 51.0 26.6
45.07 110.7 32.5 49.5 25.5
45.38 154.6 33.9 X 28.0

Table 6.1: Measured peak properties for different values of the bias cur-
rent Ip on the ring. The current on the waveguide for Ip = 45.07mA is
Iw = 14.45mA; for the other bias currents Iw = 14.0mA. The uncertainty
is ±0.01mA for the bias current and ±4ns for the other quantities. For

Ip = 45.38mA no double peaks were observed.

Figure 6.10(b)) with an average value of 154µs. We can therefore deduce that
the pulses have the characteristic signatures of excitability, being generated in
noise-activation process across a threshold and having thereafter a deterministic
evolution. We remark here that no residence in the CW state has been observed4.
The dependence of the ISI and pulse width τ1 on Ip is shown in Tab. 6.1; the
ISI increases with Ip, consistent with the picture of a noise activation process,
whereas the pulse width remains almost constant.
Among the pulses in the time series, double-pulse events are observed such as

the one shown in Figure 6.11(b). This kind of events consists of two well defined
consecutive pulses separated by a drop of power to the ground state. The peak
to peak interval τpp for different values of the bias current is shown in Tab. 6.1.
Other pulse-shapes such as the one in Figure 6.11(c) have also been observed.

4We would like to remark that the ISI diagram as shown in Figure 6.10(b) is constructed by
collecting the ISI between each excited pulse, where we have counted multi-pulses as one event.
Therefore, the non-Arrhenius behavior as shown in Figure 6.9 is not visible here.
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Figure 6.11: Panels (a)-(c) show experimentally measured excited pulses:
(a) a single excited pulse for Ip = 45.38mA with τ1 the pulse width; (b) a
double pulse for Ip = 44.62mA with τpp the inter-peak interval; (c) a pulse
with a short excursion in the metastable CW state for Ip = 44.62mA with
τ2 the distance between the two maxima. Panels (d)-(i) show the results of
numerical solutions of Eqs. (5.6)-(5.7) with noise revealing excited pulses
in time domain (d)-(f) and their projection on the phase space (g)-(i): (d)
a single excited pulse; (e) a double pulse; (f) a pulse with two maxima
associated with the "metastability" of the CW state. The parameters are the

following: δ = 0.045, φk = 1.5, α = 3.5 and J = 0.691.

They are characterized by two well-defined maxima separated by a shallow dip,
and are a signature of the metastability of the CW mode. The interval τ2 between
the consecutive maxima is shown in Table 6.1.
The above experimental results can be compared in a more quantitative way
with numerical simulations by choosing the k = 0.1715 ns−1 as the dimensionless
time in Eqs. (5.6)-(5.7) is scaled with the physical backscattering strength k. Fig-
ure 6.11(d)-(i) shows results from numerical simulations of Eqs. (5.6)-(5.7) with
noise. The numerical time series show the same experimentally observed ex-
cited pulses as shown in Figure 6.11(a)-(c). The duration τ1 of the single excited
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pulse is a deterministic time scale corresponding to a revolution of the system
in the phase space [see Figure 6.11(g)-(h)]. The peak-width has been calculated
by averaging the Full-Width-Half-Maximum of a sample of 771 peaks yielding
τ1 = 27.54ns corresponding well with the experimental time scale in Table 6.1.
The double pulses shown in Figure 6.11(b) are also found numerically, see Fig-
ure 6.11(e) and (h). Two well defined pulses are emitted by the SRL with an
average peak-to-peak interval τpp = 49.22ns (averaged on a sample of 286 dou-
ble pulses). In such double pulses, the emission of the first pulse is due to a
noise induced activation. During the pulse, the system evolves deterministically
towards the CCW state. When the Z2-symmetry is weakly broken and J is close
to the homoclinic bifurcation Jhom, the deterministic evolution of the pulse brings
the system in the vicinity of the stable manifold of S. A second excursion in
the phase space, without residence in the CCW mode is therefore possible as
shown in Figure 6.11(h). The peak-to-peak interval for such double pulses is
determined by the duration of the deterministic rotation around the saddle in
the phase space which is approximately twice the pulse-width. This topological
insight is confirmed by the almost 2 : 1 relation between τpp = 49.22 ns and the
pulse-width τ1 = 27.54ns (see also Table 6.1).
Finally, excitable events occur that are characterized by two maxima separated
by a minimum that does not reach the ground state such as the one shown in Fig-
ure 6.11(c). A numerical time trace of such an event is depicted in Figure 6.11(f)
and (i). The presence of such pulses is a result of the metastability of the CW-
mode. If the system enters the basin of attraction of CW, it starts a rotation
around CW which results in the oscillation of power. Due to the closeness to
the homoclinic bifurcation, during the rotation the system remains close to the
stable manifold of S. The noise eventually drives the SRL back into the basin of
attraction of the CCW mode as shown in Figure 6.11(i). The interval between the
two peaks corresponds to a rotation around the CW node and can be estimated
as being approximately 1/2 of the period of a full rotation around the phase
space. This is confirmed by the experimental data given in Table 6.1.

6.5.2 Width-height correlation of single pulses

In Figure 6.12 we show an analysis of the width and height of experimentally
measured excited pulses for varying values of the bias current Ip on the ring.
The pulses have been sampled with an accuracy of ±1ns. For all bias currents
used there is a clear correlation between the width and height of the pulses as
we have analyzed in more detail in Section 6.4 (see Figure 6.5). The experiments
confirm that pulses with a higher peak power are narrower, while pulses with a
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Figure 6.12: Measured width and height of the excited pulses for differ-
ent values of the bias current Ip on the ring. The current on the waveg-
uide is Iw = 14.0mA. The pulses have been sampled with an accuracy of
±1ns. From (a) to (f) the following bias current Ip have been used: (a)
Ip = 42.29mA, (b) Ip = 42.38mA, (c) Ip = 42.82mA, (d) Ip = 43.54mA, (e)

Ip = 44.1mA, (f) Ip = 44.49mA.

lower peak power are wider. This correlation becomes more pronounced as the
bias current on the ring increases.

6.6 Conclusion

In conclusion, we have investigated excitability for generic planar systems close
to Z2-symmetry and disclosed how the shape of the invariant manifolds lead to
optical pulses, either excited deterministically by e.g. an optically injected pulse
or either excited through spontaneous emission noise. An optical excitable
unit based on this concept has been implemented using a multi quantum-well
SRL with slightly asymmetric mode-coupling. Such a unit can in principle be
integrated on a chip and does not require external optical injection or feedback
from an external cavity. We have used topological analysis to predict the features
of three different types of excited pulses, as well as quantitative relations between
the relevant time-scales. The presence of an excitability threshold has been
demonstrated deterministically by optically injecting pulses to induce excitable
excursions. As pulses are excited by unavoidable spontaneous emission noise in
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the laser, we have performed a detailed investigation of the pulse characteristics
in the presence of noise. The predictions of the theory have been confirmed by
the experiments.
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CHAPTER 7

Conclusions to Part I

We have presented an analysis and discussion of several aspects of the dynamical
behavior of a semiconductor ring laser (SRL) operating in a single longitudinal
and transverse mode. The results obtained can also readily be used to under-
stand the dynamics of two interacting whispering gallery modes observed in
semiconductor micro-disk lasers. Such semiconductor micro-ring and micro-
disk lasers are a class of semiconductor lasers with a circular laser cavity. Such
a study of the nonlinear dynamics of SRLs and micro-disk lasers comes at the
right time as both lasers are presently recognized to be promising candidates
for all-optical signal processing integrated on chip. More in particular, due to
the possibility of bistable operation, SRLs and disk lasers can serve as optical
memories by encoding digital information in the emission direction, allowing
for fast switching speeds at low power [M. T. Hill et al., Nature 432, 206 (2004);
L. Liu et al., Nature Photon. 4, 182 (2010)].
The study of the possible dynamical regimes in the SRL presented here is not
only useful from an application point-of-view. SRLs are characterized by cen-
tral reflection invariance, also called Z2-invariance, which is encountered in a
wide number of bistable systems such as in the field of biology, aerodynamics,
fluid mechanics, optics and mechanics. Therefore, both the theoretical and ex-
perimental results obtained for SRLs can prove to be interesting for researchers
working in these different fields.
In Chapter 2, we have used asymptotic methods to derive a two-variable model
for the dynamical behavior of a SRL. One variable is defined by the relative
intensity distribution between the two counter-propating modes present in a
SRL, the clockwise mode and the counter-clockwise mode. The second variable
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describes the phase difference between both of these modes. The model derived
accounts for both a linear mode coupling through backscattering processes and
a nonlinear mode coupling through gain saturation effects. The derivation of
this simplified SRL model has allowed us to perform a systematic and largely
analytical bifurcation study of all the steady-state solutions and time-periodic
solutions in the system. This bifurcation analysis has provided us with an accu-
rate prediction of the different possible operating regimes in the SRL. Moreover,
we have revealed a non-trivial folded shape of the basins of attraction of the
bistable unidirectional solutions in the system.
In Chapter 3, we have used this particular intertwining shape of the basins of
attraction to propose three novel schemes to switch the operation of the ring from
clockwise to counter-clockwise or vice versa. The first of such schemes shows
that the operation direction of a semiconductor ring laser can be controlled by
injecting a signal from only one port. We have predicted the counter-intuitive
phenomenon of inducing a switch by injecting a signal which is co-propagating
with the field in the ring. Such a scheme could provide practical advantages as
only one master laser is needed for the switching back and forth. The second
scheme consists of a well-chosen modulation in the bias current, which drags
the system outside the basin of attraction of the initial state and releases it when
inside the basin of attraction of the final state. Finally a third scheme has been
proposed which consists of modulating the backscattering phase. The topologi-
cal prediction of the three switching schemes, which present an alternative to the
injection of a counter-propagating pulse to switch the laser, have been confirmed
numerically.
Chapter 4 presented a theoretical and experimental investigation of the stochas-
tic mode-hopping between the two counter-propagating lasing modes of a SRL.
Experiments pointed out that the residence time distribution of both modes
cannot be described by a simple one parameter Arrhenius exponential law and
revealed the presence of two different mode-hop scenarios with distinct time
scales. These non-Arrhenius hopping features in the SRL have been explained
using the particular topology of the two-dimensional phase-space of the SRL in
the bistable regime. We have also demonstrated how to steer the operation of the
SRL, not only to monostable and bistable operation regions, but also multistable
dynamical regimes have been uncovered. Stochastic mode-hops between multi-
ple stable states in the SRL have been observed experimentally as predicted and
understood by the two-dimensional SRL model. Finally, in the limit of small
noise intensity, an auxiliary Hamiltonian system has been defined and the opti-
mal escape paths have been calculated as well. The dependence of the activation
energy on the principal laser parameters has been investigated as well.
In Chapter 5 and Chapter 6, we have studied the nonlinear dynamical behavior
of SRLs when their Z2 symmetry is broken. A detailed bifurcation analysis has
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shown that the SRL can become excitable. The global shapes of the invariant
manifolds of a saddle in the vicinity of a homoclinic loop have been demon-
strated to determine the origin of this excitability. The presence of an excitability
threshold has been demonstrated deterministically by optically injecting pulses
to induce excitable excursions. As in general pulses are excited by unavoidable
spontaneous emission noise in the laser, we have performed a detailed investiga-
tion of the pulse characteristics in the presence of noise. A good match between
theory and experiments on an asymmetric SRL has been obtained.
In summary, the good correspondence between the experiments performed both
on a symmetric and asymmetric SRL and the theoretical predictions from the
two-dimensional reduced SRL model confirms the relevance and strength of
this model. Both the theoretical and the experimental work have benefitted from
cross-fertilization. An initial observation of two distinct time-scales in the mode-
hopping behavior of the bistable SRL motivated us to carry out a more detailed
study of the reduced SRL model. This in-depth study of the bifurcations in the
reduced system and especially a careful inspection of the two-dimensional attrac-
tor landscape of the SRL greatly increased our understanding. Novel dynamical
regimes predicted by the two-dimensional model, such as the different kinds of
tristable behavior, were observed in experiments only after and thanks to the
theory. Based on the phase-space structure of the SRL, novel switching schemes
between the unidirectional modes in the SRL could be conceived, which we hope
will be verified experimentally in the future. Finally, the topological insight into
the operation of the symmetric SRL was also expanded to the asymmetric SRL.
The theoretical and experimental pursuit of excitability in the asymmetric SRL
and the characterization of the excited pulses went hand in hand, and once again
confirmed the strength of the two-dimensional asymptotic model.
To further test the applicability of the reduced model, we will confront theo-
retical predictions such as chaos under optical injection or current modulation
and coherence resonance with experiments on a single SRL. A more ambitious
goal that we would like to pursue in the near future is to study the dynamics of
several SRLs coupled in different network topologies. Using theory of complex
dynamics and numerical simulations, we would like to focus on the emerging
behavior from network motifs that are e.g. dominantly present in neuronal net-
works. An experimental implementation and measurement of coupled excitable
SRLs can perhaps establish a first all-optical implementation of neuronal net-
work motifs. Such networks could be integrated on a chip and combine the
advantages of SRLs and the inherent parallelism and computational power of
neuronal networks.
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“And now for something completely different.” — Monty Python





Part II

Dissipative Solitons

An example of a two-dimensional cavity soliton in the Lugiato-Lefever equation
(Courtesy of Damià Gomila).
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CHAPTER 8

Introduction

Living cells, ecosystems, stock markets, the weather and society are all exam-
ples of complex systems – large aggregations of many smaller interacting parts.
These parts may be e.g. species, stocks and investors, air particles or individuals.
There is one particular property that secludes a complex system from one that
is merely complicated: emergence. Emergence is the appearance of behavior that
cannot be anticipated from the behavior of one of the constituents of the system
alone. In complex systems this behavior appears through self-organization, i.e.
there is no external entity engineering the appearance of emergent features, but
these appear spontaneously.
In this part of the thesis, we focus on emergent structures in spatially-extended
systems. We will restrict our attention to systems that are internally dissipative
and externally driven; also referred to as systems out of thermodynamical equi-
librium. Emergent structures are patterns that appear spontaneously due to the
interaction of each part with its immediate surroundings in space. Such patterns
will not arise if the various parts are simply coexisting; the presence and na-
ture of the spatial interaction of these parts is central. Well-known examples of
spontaneous pattern formation include Rayleigh-Bénard convection in a layer of
viscous fluid heated from below, Faraday surface waves on a surface of a verti-
cally shaken liquid or granular layer, and reaction-diffusion dynamics, proposed
for example to organize many processes in developmental biology [1–3].
It is interesting to note that similar patterns are seen in wildly different natural

contexts, such as e.g. the stripes of a zebra [see Figure 8.1(a)] and the ripple
patterns in a sand dune [see Figure 8.1(b)]. It turns out to be common for a
given pattern to show up in several different systems, and many aspects of the
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Figure 8.1: Examples of emergent spatial structures in nature. (a) Stripes
on the coat of zebras [4]. (b) Ripple patterns in a sand dune created by

wind or water [5].

patterns are not dependent on the finer details of the system. In fact, it has been
shown that many of the characteristics of patterns can be understood from the
underlying symmetry [3]. Combining methods of nonlinear dynamics and bi-
furcation theory led to the derivation of e.g. amplitude equations, that describe the
dynamical behavior close to bifurcation points, or phase equations, modeling the
slow distortions of patterns even far from the instability threshold [1–3]. Such
generic model equations have been essential in the development of a universal
description of pattern formation and their dynamics.
The above mentioned techniques have been proven particularly powerful to de-
scribe and understand structures with a spatial periodicity. More difficult is pro-
viding a deeper insight into the formation of spatially localized structures, which
are emergent structures where one state is "embedded" in a background consist-
ing of a different state. Such spatially localized structures in non-equilibrium
systems are also often referred to as dissipative solitons. In this thesis, we will
study these dissipative solitons in several generalizations of important universal
model equations. In the coming Section, we provide the reader with a more
detailed description and examples of dissipative solitons.

8.1 From integrable to dissipative solitons

A soliton is a localized solution of a partial differential equation (PDE) describing
the evolution of an (spatially) extended nonlinear system. Solitons are strictly
speaking particular solutions of systems which possess the property of integra-
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Figure 8.2: Examples of DSs in different experimental set-ups. (a) Isolated
peaks on the surface of a ferrofluid driven by a homogeneous magnetic
field [10]. (b) An oscillon in a vibrated layer of sand [11]. (c) A cavity

soliton in a Vertical Cavity Surface Emitting Laser (VCSEL) [12].

bility. Among other special properties, such solitons remain unchanged during
interactions, apart from a phase shift. Although in a part of the mathematical
community, the word soliton is only used in the context of integrable systems, oth-
ers have used the word soliton more loosely also for solitary waves. As real-world
systems far from equilibrium are in general dissipative and non-integrable, their
model equations do not admit the integrable solitons, but only solitary waves,
which we will refer to in the remainder of this thesis as dissipative solitons (DSs)
[6–9]. The main feature of these systems is that they include energy exchange
with external sources.

These dissipative solitons, or (spatially) localized structures (LSs), are common
and have been shown to arise in a wide variety of pattern forming systems,
such as e.g. chemical reactions [13–15], neural systems [16, 17], granular media
[11, 18], binary-fluid convection [19, 20], vegetation patterns [21, 22] and nonlin-
ear optics [12, 23–29]. A (homogeneous) external forcing is often used to sustain
the localized and extended patterns in these systems.
Figure 8.2 shows experimental observations of dissipative solitons in three dif-
ferent systems. Figure 8.2(a) depicts a ferrofluid, a liquid suspension containing
magnetic particles. When placing such a dish of ferrofluid in a spatially homo-
geneous, time-independent, vertical magnetic field one stationary, isolated peak
of liquid or clusters of several of such peaks can be formed on the surface [10].
Figure 8.2(b) shows a localized oscillation in a layer of sand, called oscillon, which
alternately takes the shape of peaks and craters as the sand is vibrated vertically
[11]. Finally, Figure 8.2(c) shows bright localized light spots at the output of a
vertical cavity surface emitting laser (VCSEL) [12]. Such bright light spots in
nonlinear optical cavities are also referred to as cavity solitons.
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The occurrence of DSs in such diverse systems points to the presence of an un-
derlying generic principle. It is generally accepted that the existence of DSs is
directly related to the presence of bistability between two states in the system.
The localized structure resembles a slug of one of these two states embedded in a
background of the other state. A DS is then interpreted as a pair of bound fronts
between both states. These two fronts typically interact with each other through
the interior of the DS. A further classification of DS can be made on the basis of
whether the bistability occurs between homogeneous or structured (patterned)
solutions. This way we can distinguish different types of DSs:

• DSs in the presence of modulational instabilities:
In systems where a homogeneous stable solution is destabilized in a mod-
ulational (or Turing) instability, patterns can be created subcritically. In
this case, the homogeneous steady state coexists with the patterned state.
In many cases, a slug of pattern (one or more peaks) embedded in the
homogeneous background can be stable, creating DSs. Moreover, in some
cases a portion of one pattern embedded in another pattern can be stable
as well [30, 31].

• DSs in the presence of bistability between two homogeneous solutions:
Bistable systems leading to the coexistence of two equivalent homogeneous
solutions represent a second large group of systems that possibly allow for
DSs. The different regions occupied by different homogeneous states are
also called domains, and the fronts between the different domains are
called domain walls. The formation and stability properties of this kind of
DSs is thus intimately related to the general problem of front propagation
or domain wall motion.

8.2 Generic models for dissipative solitons

In this Section, we will shortly present three important model equations admit-
ting DS solutions that will be used in subsequent Chapters: the Lugiato-Lefever
equation, the Swift-Hohenberg equation and the Ginzburg-Landau equation.
While the Lugiato-Lefever equation has been derived specifically for the mean
electric field in a nonlinear optical cavity, the Swift-Hohenberg equation and the
Ginzburg-Landau equation are generic amplitude equations that describe the
universal behavior near a bifurcation point.
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Figure 8.3: Different set-ups where the field A is described by the LLE. (a)
A ring cavity partially filled with a nonlinear medium. Mirror 1 partially
transmits the input beam Ain, while mirrors 2-4 are completely reflecting.
(b) A Fabry-Perot resonator filled with a nonlinear medium. (c) A nonlinear

all-fiber cavity.

8.2.1 The Lugiato-Lefever equation

Driving a nonlinear optical resonator with a homogeneous beam of light allows
for a localized bright light spot embedded in a background of a homogeneous
light distribution to exist at the output of the resonator [12] [see Figure 8.2(c)].
These bright light spots have also been named cavity solitons and are a result of
the interplay between diffraction — the spreading of a light beam as it prop-
agates — and nonlinearity. An important step forward in the study of cavity
solitons and transverse structures in general, was the seminal paper of Lugiato
and Lefever [32]. They introduced a mean-field cavity model, in which alter-
nation of propagation around the cavity with coherent addition of the input
field is replaced by a single partial differential equation with a driving term.
The Lugiato-Lefever equation (LLE) is applicable in different types of cavities as
shown in Figure 8.3. Figure 8.3(a),(b) shows schematically a ring cavity partially
filled with a nonlinear medium and a Fabry-Perot resonator containing the non-
linear medium. The LLE model can also be used in the context of fiber cavities if
diffraction is interchanged for a dispersion contribution, where dispersion leads
to the spreading of an optical pulse as it propagates [see Figure 8.3(c)] [33–35].1

The LLE can be derived from the nonlinear Schrödinger equation (NLSE). The

1When considering the LLE as a model for the slowly varying envelope of light within a fiber
cavity in the presence of dispersion, the spatial coordinate in the LLE for a spatially extended cavity
with diffraction is replaced by a time coordinate. This time then corresponds to a time coordinate in
the frame moving with the group velocity.
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NLSE assumes an infinite medium, which clearly does not exist in reality. The
propagation of temporal solitons in an optical fiber for thousands of kilometers
comes close, but when working with spatial solitons one typically has no more
than a few centimeters of material — which hardly qualifies as infinite. It is
thus natural to put mirrors at each side of the medium to enlarge the travelled
distance of the spatial solitons. This has the advantage that the intensity of the
light is built up and the larger intensity greatly enhances the nonlinear effect.
The presence of the mirrors makes the system lossy, but this can be compensated
for by introducing a driving beam that feeds the cavity. This leads to a perturbed
NLSE:

i
∂A
∂t

+
∂2A
∂x2 + η|A|2A = iε(−A − iθA + Ain) , (8.1)

where the right-hand side are perturbations of the NLSE. The first term on the
right-hand side is a linear loss (ε > 0), and the last one is the driving field Ain
needed to sustain the field A against that loss. As the NLSE admits sech-like
soliton solutions [36, 37], one can expect that for small perturbations ε Eq. (8.1)
might also admit soliton solutions for a well-chosen driving term Ain — which
is indeed the case. If one rescales Eq. (8.1), this yields the LLE, which was first
introduced to describe pattern formation [32]:

∂A
∂t

= Ain − (1 + iθ)A + iα∇2
⊥A + iη |A|2 A , (8.2)

with A(x, y, t) the scaled slowly varying amplitude of the field, Ain the input
field used as a reference frequency, θ the cavity detuning, η = ±1 determining
whether the nonlinearity is of the focusing (+) or defocusing (-) type, and ∇2

⊥
the

transverse laplacian. Time is scaled to the cavity response time. The LLE model
is valid for high finesse cavities, and assumes that only one longitudinal mode
is excited.
The stationary homogeneous solutions A0 of LLE [Eq. (8.2)] are easily found by

taking the time- and spatial derivatives zero:

|A0|
2[1 + (θ − |A0|

2)2] = |Ain|
2 (8.3)

For θ <
√

3 this equation only has one homogeneous solution, which is the
monostable regime. The homogeneous solution loses its stability at |A0|

2 = 1 at
which point a patterned solution is created either supercritically (θ < 41/30) or
subcritically (θ > 41/30). For θ >

√
3, there exist two homogeneous solutions

for a range of input intensities |Ain|
2. This is the bistable regime2. The different

2In this bistable regime, one can again recognize two other regimes, one in which the modulational
instability occurs at |A0|

2 = 1, and one where the instability shifts to higher values of |A0|
2, thus having

|A0|
2 > 1 at the instability (with critical wavenumber k = 0). These two different kinds of bistable

regions occur at
√

3 < θ < 2 and θ > 2, respectively.
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Figure 8.4: Intensity of the homogeneous solution |A0|
2 as a function of

the input intensity |Ain|
2 for a self-focusing Kerr cavity. (a) θ = 1.5 <

√
3.

(b)
√

3 < θ = 1.85 < 2. (c) θ = 3 > 2. Solid (dashed) lines indicate stable
(unstable) solutions.

monostable and bistable regions are shown in Figure 8.4. It is not hard to show
the existence of these two regimes analytically. Consider the input |Ain|

2 to be a
function of the stationary state |A0|

2, and put the derivative ∂|Ain|
2 / ∂|A0|

2 equal
to zero,

∂|Ain|
2

∂|A0|
2 = 1 + (θ − |A0|

2)2
− 2(θ − |A0|

2)|A0|
2 = 0 , (8.4)

which gives the turning points |At|
2,

|At±|
2 =

2θ
3
±

1
3

√

θ2 − 3 . (8.5)

It is clear that for θ2 < 3 there are no turning points, while for θ2 > 3 there are
two, |At±|

2. At |At−|
2 the solution switches up from the lower branch to the higher

branch, at |At+|
2 it switches down again.

In the remainder of this thesis we will mainly focus on the monostable regime
41/30 < θ <

√
3 where for |A0|

2 < 1 one stable homogeneous solution exists,
and can coexist with a stable pattern created subcritically in the modulational
instability at |A0|

2 = 1.

8.2.2 The Swift-Hohenberg equation

The real Swift-Hohenberg equation (RSHE) has proved to be an invaluable model
equation for systems undergoing a bifurcation to time-independent structured
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states with a finite wavenumber at onset [38]. The equation was originally
suggested as a model of infinite Prandtl number convection [39] but finds appli-
cation in its simplest form in the theory of buckling [40], phase transitions [41]
and nonlinear optics [42, 43]. The equation is particularly useful for understand-
ing DSs that are commonly found in systems exhibiting bistability between two
states, one of which is homogeneous in space (the trivial state) and the other
heterogeneous or structured [38]. In this case the equation takes the following
form, in one spatial dimension,

∂A
∂t

= rA − (
∂2

∂x2 + k2
0)2A + f (A) , (8.6)

where A(x, t) is a real order parameter and f (A) denotes nonlinear terms. Most
useful are the two cases, f = f23 ≡ b2A2

− A3 [44] and f = f35 ≡ b3A3
− A5 [45].

When b2 >
√

27/38k2
0 (resp. b3 > 0) the primary bifurcation from the trivial state

A = 0 takes place at r = 0 and yields a subcritical branch of spatially periodic
states with wavenumber k0. This characteristic length scale k0 can be scaled out
of the equation by applying the transformation

k4
0t→ t, r/k4

0 → r, k0x→ x, f ( · )/k4
0 → f ( · ). (8.7)

As it is convenient in the following Chapters to see the dependence of the
dynamical behavior on the length scale k0, we will leave k0 explicitly in Eq. (8.6).
Furthermore, it is interesting to note that the RSHE has a variational structure
with a Lyapunov function (free energy) FSH given by

FSH =
1

2L

∫ L

0
[−r|A|2 +

1
2
|A|4 + |(

∂2

∂x2 + k2
0)A|2]dx, (8.8)

such that
dFSH

dt
= −

1
L

∫ L

0
|At|

2dx (8.9)

and the free energy FSH continuously decreases with time until a stationary state
is reached corresponding to a local minimum of FSH.
There are many systems, however, that are described by the Swift-Hohenberg
equation for a complex order parameter:

∂A
∂t

= rA − (1 + iβ)(
∂2

∂x2 + k2
0)2A − (1 + ib) f (A), (8.10)

where A is a complex field and we take f (A) = |A|2 A as the nonlinear term in
this thesis. The equation is fully parametrized by the real coefficients r, β and b.
Eq. (8.10) models pattern formation arising from an oscillatory instability with
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a finite wavenumber at onset [46, 47]. As a result the complex Swift-Hohenberg
equation (CSHE) frequently arises in nonlinear optics. For example, Lega et
al. [48, 49] have shown that the general set of Maxwell-Bloch equations for
Class A and C lasers can be adequately described by the CSHE; see also [50].
The CSHE also describes nondegenerate optical parametric oscillators (OPOs)
[51–53], photorefractive oscillators [54], semiconductor lasers [55] and passively
mode-locked lasers [56]. In general, the resulting Swift-Hohenberg equation
for a complex field in these systems also has complex coefficients which breaks
the variational structure of the SHE and allows for more complex dynamics.
Whereas DSs in the RSHE have been studied in great depth [38, 44, 45, 57, 58],
much less is known about DSs in the CSHE.

8.2.3 The Ginzburg-Landau equation

As mentioned at the beginning of this Section, Ginzburg-Landau-type equations
(like Swift-Hohenberg-type equations) are amplitude equations that serve as uni-
versal model equations near a bifurcation point [1, 59]. The name of this type of
equations is derived from the formal similarity with the Ginzburg-Landau the-
ory of superconductivity [60], although the latter did not deal with dynamics.
However, apart from providing a theory for superconductivity, a large num-
ber of pattern forming phenomena can be analyzed by using these amplitude
equations, which describe slow modulations in space and time of a simple ba-
sic pattern that can be determined from the linear analysis of the equations of
the physical system. The form of the amplitude equation depends only on the
nature of the linear instability, but not on other details of the system. The most
important distinction is whether the basic pattern is stationary, leading to the
real amplitude equation, or intrinsically time dependent, in which case an equa-
tion with complex coefficients describes a complex amplitude. There are several
forms of these Ginzburg-Landau equations, a 1D prototype with real coefficients
of which is

∂A
∂t

= µA +
∂2A
∂x2 − A3, (8.11)

with A being a real field and µ the gain parameter. The diffusion and the nonlin-
ear term have been scaled to one without loss of generality. We will refer to Eq.
(8.11) as the real Ginzburg-Landau equation (RGLE) [1, 59], which can serve as
a prototypical model of a spatially extended system with two equivalent steady
state solutions ±

√
µ. Eq. (8.11) arises naturally near any stationary supercritical

bifurcation when the system is translationally invariant and spatially reversible
(x → −x), such as e.g. in Rayleigh-Bénard convection and Taylor-Couette flow
[61].
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If the instability leads to traveling waves, i.e. if the pattern which emerges is
time-dependent, the resulting amplitude equation generalizes to the complex
Ginzburg-Landau equation (CGLE):

∂A
∂t

= µA + (1 + iα)
∂2A
∂x2 − (1 + iβ)|A|2 A, (8.12)

where µ measures the distance from the oscillatory instability threshold, α and
β represent the linear and nonlinear dispersion. For α, β→ 0, the RGLE is recov-
ered. The CGLE equation arises e.g. in Rayleigh-Bénard convection, hydrother-
mal waves, and various optical systems, such as lasers, parametric amplifiers,
Fabry-Perot cavities filled with nonlinear material, and optical transmission lines
[1, 59, 61].
Although the RGLE and the CGLE look rather similar, the behavior of their
solutions is very different. Like the RSHE, the RGLE (8.11) can be written in a
variational form:

∂A
∂t

= −
∂FGL

∂A∗
(8.13)

with the free energy FGL

FGL =

∫
[−µ|A|2 +

1
2
|A|4 + |

∂2A
∂x2 |

2]dx, (8.14)

from which it follows that dFGL/dt ≤ 0. A lot of understanding can be gained in
this case by analyzing the energy landscape and knowing that the system evolves
towards local minima of the free energy function FGL. In the case α, β , 0 the
CGLE (8.12) can no longer be derived from a Lyapunov function and it displays
a much richer variety of dynamical behavior than its real counterpart (8.11) (just
like is the case when comparing the RSHE (8.6) and the CSHE (8.10)).
Finally, we also mention the parametrically forced Complex Ginzburg Landau
Equation (PCGLE) as a type of Ginzburg-Landau equation:

∂A
∂t

= (1 + iα)
∂2A
∂x2 + (µ + iν)A − (1 + iβ)|A|2 A + pA∗ (8.15)

where µ measures the distance from the oscillatory instability threshold, ν is the
detuning between the driving and the natural frequencies, p > 0 is the forcing
amplitude, α and β represent the linear and nonlinear dispersion. The PCGLE
is a generic amplitude equation for oscillatory systems parametrically forced at
twice the natural frequency [62]. Like the RGLE (but opposite to the CGLE) Eq.
(8.15) has two equivalent steady state solutions, a property which we will use
in later Chapters. The PCGLE has been used to describe a light sensitive form
of the Belousov-Zhabotinsky reaction [63], and finds applications in the optical
vectorial Kerr resonator [64, 65] and the degenerate Optical Parametric Oscillator
(OPO) [65, 66].
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8.3 Overview of Part II

• In Chapter 9, we investigate the snaking behavior of one-dimensional
bright and dark solitons in a nonlinear optical cavity with diffraction
and/or dispersion compensation. Opposite to previous studies, higher
order spatial/temporal effects are taken into account. A stability analysis
of a LLE with fourth-order spatial derivatives is carried out. Furthermore,
the snaking bifurcation structure of both bright and dark solitons in the
presence of a subcritical modulational instability towards patterns is stud-
ied.

• In Chapter 10, we explore the size and dynamical instabilities of dissipa-
tive solitons in a nonlinear optical cavity, called cavity solitons, modeled by
the LLE model with higher order spatial derivatives. These higher order
terms need to be included in the region of diffraction compensation. For
small values of the diffraction coefficient, we show that higher order spatial
derivatives can impose a new limit on the width of cavity solitons, going
beyond the traditional diffraction limit. Furthermore, we elaborate on
the different possible mechanisms that can destabilize the cavity solitons,
leading to stable oscillations, expanding patterns, or making the solitons
disappear. Multiple routes towards excitability are shown to be present
in the system and we demonstrate that different regions admitting sta-
tionary, oscillating or excitable solitons unfold from two Takens-Bogdanov
codimension-2 points.

• In Chapter 11, we study the CSHE with real coefficients admitting phase-
winding states in which the real and imaginary parts of the order parameter
oscillate periodically but with a constant phase difference between them.
Such solutions can be unstable to a longwave instability. We demonstrate
that depending on parameters the evolution of this instability may or may
not conserve phase. In the former case the system undergoes slow coarsen-
ing described by a Cahn-Hilliard equation; while in the latter it undergoes
repeated phase-slips leading either to a stable phase-winding state or to
a faceted state consisting of an array of frozen defects connecting phase-
winding states with equal and opposite phase. The transitions between
these regimes are studied and their location in parameter space is deter-
mined.

• In Chapter 12, we expand the study of the CSHE presented in Chapter
11 by allowing the coefficients to be complex, breaking the variational
structure of the model equation. A convective Cahn-Hilliard type equation
is derived to describe the evolution of long-wavelength instabilities in the
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system and a great complexity in dynamical behavior is uncovered in the
CSHE.

• In Chapter 13, we demonstrate that nonlocal coupling strongly influences
the dynamics of fronts connecting two equivalent states. In two Ginzburg-
Landau prototype models, the RGLE and the PCGLE, we observe a large
amplification in the interaction strength between two opposite fronts in-
creasing front velocities several orders of magnitude. By analyzing the
spatial dynamics we prove that way beyond quantitative effects, nonlocal
terms can also change the overall qualitative picture by inducing oscilla-
tions in the front profile. This leads to a mechanism for the formation
of localized structures not present for local interactions. Finally, nonlocal
coupling can induce a steep broadening of localized structures, eventually
annihilating them.

• Finally, in Chapter 14, we shortly revisit the obtained results in Part II of
this thesis.

References

[1] M. Cross and P. Hohenberg, “Pattern-formation outside of equilibrium,”
Rev. Mod. Phys. 65, 851–1112, 1993.

[2] J. Murray, Mathematical Biology, Springer, New York, 1989.

[3] R. Hoyle, Pattern Formation: an introduction to methods, Cambridge Univer-
sity Press, 2006.

[4] “http://upload.wikimedia.org/wikipedia/commons/e/e1/Zebras_in_
love-JD.jpg,”

[5] “http://en.wikipedia.org/wiki/File:Sand_dune_ripples.jpg,”

[6] S. Trillo and W. Toruellas, Spatial Solitons, vol. 82 of Springer Series in Optical
Sciences, Springer-Verlag, Berlin, 2001.

[7] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic
Crystals, Academic Press, San Diego, 2003.

[8] N. N. Rosanov, Spatial Hysteresis and Optical Patterns, Springer series in
synergetics, Springer, Berlin, 2002.

160

http://upload.wikimedia.org/wikipedia/commons/e/e1/Zebras_in_love-JD.jpg
http://upload.wikimedia.org/wikipedia/commons/e/e1/Zebras_in_love-JD.jpg
http://en.wikipedia.org/wiki/File:Sand_dune_ripples.jpg


REFERENCES

[9] T. Ackemann and W. J. Firth, “Dissipative solitons in pattern-forming non-
linear optical systems: Cavity solitons and feedback solitons,” in Lecture
Notes in Physics, Berlin Springer Verlag, 661, 55–100, 2005.

[10] R. Richter and I. V. Barashenkov, “Two-dimensional solitons on the surface
of magnetic fluids,” Phys. Rev. Lett. 94, 184503, 2005.

[11] P. B. Umbanhowar, F. Melo, and H. L. Swinney, “Localized excitations in a
vertically vibrated granular layer,” Nature 382, 793–796, 1996.

[12] S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici,
T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, and R. Jäger,
“Cavity solitons as pixels in semiconductor microcavities,” Nature 419, 699–
702, 2002.

[13] J. E. Pearson, “Complex patterns in a simple system,” Science 261, 189–192,
1993.

[14] K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney, “Pattern
formation by interacting chemical fronts,” Science 261, 192–194, 1993.

[15] V. K. Vanag and I. R. Epstein, “Localized patterns in reaction-diffusion
systems,” Chaos 17, 037110, 2007.

[16] C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermentrout, “Multiple bumps
in a neuronal model of working memory,” SIAM J. Appl. Math. 63, 62–97,
2002.

[17] S. Coombes, “Waves, bumps, and patterns in neural field theories,” Biolog-
ical Cybernetics 93(2), 91–108, 2005.

[18] O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and J. Fineberg, “Os-
cillons and propagating solitary waves in a vertically vibrated colloidal
suspension,” Phys. Rev. Lett. 83, 3190–3193, 1999.

[19] J. J. Niemela, G. Ahlers, and D. S. Cannell, “Localized traveling-wave states
in binary-fluid convection,” Phys. Rev. Lett. 64, 1395, 1990.

[20] O. Batiste and E. Knobloch, “Simulations of localized states of stationary
convection in He-3-He-4 mixtures,” Phys. Rev. Lett. 95, 244501, 2005.

[21] E. Meron, E. Gilad, J. von Hardenberg, M. Shachak, and Y. Zarmi, “Veg-
etation patterns along a rainfall gradient,” Chaos, Solitons and Fractals 19,
367–376, 2004.

161



REFERENCES

[22] O. Lejeune, M. Tlidi, and P. Couteron, “Localized vegetation patches: A
self-organized response to resource scarcity,” Phys. Rev. E 66, 010901, 2002.

[23] A. J. Scroggie, W. J. Firth, G. S. McDonald, M. Tlidi, R. Lefever, and L. A.
Lugiato, “pattern-formation in a passive kerr cavity,” Chaos, Solitons and
Fractals 4, 1323, 1994.

[24] V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: Lo-
calized structures in a laser with a saturable absorber in a self-imaging
resonator,” Phys. Rev. A 56, 1582–1591, 1997.

[25] M. Pesch, E. Große Westhoff, T. Ackemann, and W. Lange, “Observation of
a discrete family of dissipative solitons in a nonlinear optical system,” Phys.
Rev. Lett. 95, 143906, 2005.

[26] M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized
patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643, 1994.

[27] U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G. Kozyreff, “Bista-
bility between different localized structures in nonlinear optics,” Phys. Rev.
Lett. 93, 253901, 2004.

[28] X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J. R. Tredicce,
M. Brambilla, T. Maggipinto, I. M. Perrini, G. Tissoni, and L. Lugiato,
“Cavity solitons in broad-area vertical-cavity surface-emitting lasers below
threshold,” Phys. Rev. A 69, 043817, 2004.

[29] P. Genevet, S. Barland, M. Giudici, and J. Tredicce, “Cavity soliton laser
based on mutually coupled semiconductor microresonators,” Phys. Rev.
Lett. 101, 123905, 2008.

[30] U. Bortolozzo, M. G. Clerc, C. Falcon, S. Residori, and R. Rojas, “Localized
states in bistable pattern-forming systems,” Phys. Rev. Lett. 96, 214501, 2006.

[31] G. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. Seipenbusch,
and J. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B
- Quantum. S. O. 1, 161, 1999.

[32] L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive
optical systems,” Phys. Rev. Lett. 58, 2209–2211, 1987.

[33] M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov,
and M. Taki, “Control and removal of modulational instabilities in low-
dispersion photonic crystal fiber cavities,” Opt. Lett. 32, 662, 2007.

162



REFERENCES

[34] G. Kozyreff, M. Tlidi, A. Mussot, E. Louvergneaux, M. Taki, and A. G.
Vladimirov, “Localized beating between dynamically generated frequen-
cies,” Phys. Rev. Lett. 102, 043905, 2009.

[35] M. Tlidi and L. Gelens, “High-order dispersion stabilizes dark dissipative
solitons in all-fiber cavities,” Opt. Lett. 35, 306, 2010.

[36] R. Chiao, E. Garmire, and C. Townes, “Self-trapping of optical beams,” Phys.
Rev. Lett. 13, 479–482, 1964.

[37] V. Zakharov and A. Shabat, “Exact theory of two-dimensional self-focusing
and one-dimenstional self-modulation of waves in nonlinear media,” Sov.
Phys. JETP 34, 1972.

[38] A. R. Champneys, “Homoclinic orbits in reversible systems and their ap-
plications in mechanics, fluids and optics,” Physica D 112, 158–186, 1998.

[39] J. Swift and P. Hohenberg, “Hydrodynamic fluctuations at convective in-
stability,” Phys. Rev. A 15, 319–328, 1977.

[40] G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. A. Wadee,
C. J. Budd, and G. J. Lord, “Cellular buckling in long structures,” Nonlinear
Dynamics 21, 3–29, 2000.

[41] P. L. Geissler and D. R. Reichman, “Nature of slow dynamics in a minimal
model of frustration-limited domains,” Phys. Rev. E 69, 021501, 2004.

[42] M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized
patterns in optical bistability,” Phys. Rev. Lett. 73, 640, 1994.

[43] G. Kozyreff and M. Tlidi, “Nonvariational real Swift-Hohenberg equation
for biological, chemical, and optical systems,” Chaos 17, 037103, 2007.

[44] J. Burke and E. Knobloch, “Localized states in the generalized Swift-
Hohenberg equation,” Phys. Rev. E 73, 056211, 2006.

[45] J. Burke and E. Knobloch, “Snakes and ladders: Localized states in the
Swift-Hohenberg equation,” Phys. Lett. A 360, 681–688, 2007.

[46] B. A. Malomed, “Nonlinear waves in nonequilibrium systems of the oscil-
latory type. 1.,” Z. Phys. B 55, 241–248, 1984.

[47] M. Bestehorn and H. Haken, “Traveling waves and pulses in a 2-
dimensional large-aspect-ratio system,” Phys. Rev. A 42, 7195–7203, 1990.

[48] J. Lega, J. V. Moloney, and A. C. Newell, “Swift-Hohenberg equation for
lasers,” Phys. Rev. Lett. 73, 2978–2981, 1994.

163



REFERENCES

[49] J. Lega, J. V. Moloney, and A. C. Newell, “Universal description of laser
dynamics near treshold,” Physica D 83, 478–498, 1995.

[50] K. Staliunas, “Laser Ginzburg-Landau equation and laser hydrodynamics,”
Phys. Rev. A 48, 1573–1581, 1993.

[51] S. Longhi and A. Geraci, “Swift-Hohenberg equation for optical parametric
oscillators,” Phys. Rev. A 54, 4581–4584, 1996.

[52] V. J. Sánchez-Morcillo, E. Roldán, G. J. de Valcárcel, and K. Staliunas, “Gen-
eralized complex Swift-Hohenberg equation for optical parametric oscilla-
tors,” Phys. Rev. A 56, 3237–3244, 1997.

[53] K. Staliunas, G. Slekys, and C. O. Weiss, “Nonlinear pattern formation
in active optical systems: shocks, domains of tilted waves, and cross-roll
patterns,” Phys. Rev. Lett. 79, 2658–2661, 1997.

[54] K. Staliunas, M. F. H. Tarroja, G. Slekys, C. O. Weiss, and L. Dambly, “Anal-
ogy between photorefractive oscillators and class-A lasers,” Phys. Rev. A 51,
4140–4151, 1995.

[55] J.-F. Mercier and J. V. Moloney, “Derivation of semiconductor laser mean-
field and Swift-Hohenberg equations,” Phys. Rev. E 66, 036221, 2002.

[56] J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse
generation in passively mode-locked lasers modeled by the complex quintic
Swift-Hohenberg equation,” Phys. Rev. E 66, 066610, 2002.

[57] P. D. Woods and A. R. Champneys, “Heteroclinic tangles and homoclinic
snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bi-
furcation,” Physica D 129, 147, 1999.

[58] J. Knobloch and T. Wagenknecht, “Homoclinic snaking near a heteroclinic
cycle in reversible systems,” Physica D 203, 82–93, 2005.

[59] I. S. Aranson and L. Kramer, “The world of the complex Ginzburg-Landau
equation,” Rev. Mod. Phys. 74, 99–143, 2002.

[60] V. Ginzburg and L. Landau Zh. Eksp. Teor. Fiz. 20, 1064, 1950.

[61] W. van Saarloos, “Front propagation into unstable states,” Phys. Rep. 386,
29–222, 2003.

[62] P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerowicz, “Breaking chi-
rality in nonequilibrium systems,” Phys. Rev. Lett. 65, 1352–1355, 1990.

164



REFERENCES

[63] V. Petrov, Q. Ouyang, and H. L. Swinney, “Resonant pattern formation in a
chemical system,” Nature 388, 655–657, 1997.

[64] D. Gomila, P. Colet, G.-L. Oppo, and M. San Miguel, “Stable droplets and
growth laws close to the modulational instability of a domain wall,” Phys.
Rev. Lett. 87, 194101, 2001.

[65] D. Gomila, P. Colet, M. San Miguel, A. J. Scroggie, and G.-L. Oppo, “Stable
droplets and dark-ring cavity solitons in nonlinear optical devices,” IEEE J.
Quantum. Electron. 39, 238–244, 2003.

[66] K. Staliunas, “Transverse pattern-formation in optical parametric oscilla-
tors,” J. Mod. Opt. 42, 1261, 1995.

165





CHAPTER 9

One dimensional snaking of
bright and dark cavity solitons

“And god said to the snake "ye shall crawl on your belly for the rest of your days". Not really a punishment
for a snake.” — Ricky Gervais in Animals.

In this Chapter, we study the snaking behavior of one-dimensional bright and
dark dissipative solitons in a nonlinear optical cavity with diffraction/dispersion
compensation, taking into account higher order spatial/temporal effects. A
stability analysis of a Lugiato-Lefever equation with fourth-order spatial deriva-
tives is carried out. Next, the bifurcation structure of both bright and dark
solitons in the presence of modulational instabilities is studied. 1

9.1 Introduction

In the introduction of the second part of this thesis, we have discussed two types
of spatially Localized Structures (LSs): LSs in the presence of modulational
instabilities and LSs in the presence of bistability between two homogeneous
solutions. In the next two Chapters, we will focus on the first type, LSs that
can form in subcritical pattern forming bifurcations, where the homogeneous
steady state coexists with a heterogeneous or patterned solution arising from the

1The work presented in this Chapter has been published in the following journal papers: [1, 2].
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instability (usually referred to as a Turing instability or as modulation instability
in the optics literature). In some cases, a part of these stable patterns (one or
more isolated peaks) embedded in the homogeneous stable solution can be sta-
ble as well, forming a LS. In optics, this has been demonstrated in many different
configurations [3–5], and in particular in self-focusing Kerr cavities [6], where
these LSs have been called Kerr cavity solitons.
The existence of this kind of LSs in nonlinear optics was first reported in a Swift-
Hohenberg equation describing, in the weak dispersion limit, nascent optical
bistability with transverse effects [3]. This equation was valid (i) close to the crit-
ical point associated to the onset of bistability and (ii) in the limit of large (long
wavelength) pattern forming systems. More generally, the Swift-Hohenberg
equation has proved to be an invaluable model equation for systems under-
going a bifurcation to time-independent structured states with a finite wave
number at onset [7]. As shown in Figure 9.1 and also discussed in Section 8.2.2,
depending on the nonlinear terms and the parameters, a subcritical branch of
spatially periodic states (P) can be created at a modulational instability point
(r = 0) in the Swift-Hohenberg equation. This branch is unstable but acquires
stability at finite amplitude at a saddle-node bifurcation. In addition, it is known
that on the real line there are two branches of spatially LSs that bifurcate from
the homogeneous solution simultaneously with the periodic states, and do so
likewise subcritically. These states are therefore also initially unstable. When
followed numerically these states become better and better localized and once
their amplitude and width become comparable to the amplitude and wavelength
of the competing periodic state these states begin to grow in spatial extent by
adding rolls symmetrically at either side. In a bifurcation diagram this growth is
associated with back and forth oscillations across a pinning interval. This behav-
ior is known as homoclinic snaking [7–11], and is associated with repeated gain
and loss of stability of the associated LS.
Homoclinic snaking can be understood both on a qualitative level and on a
mathematical level. Qualitatively this behavior is related to the movement and
pinning of fronts. A LS is formed when fronts at either side of that LS "pin" to
the heterogeneous structure between them [12]. In general, either the pattern
or the homogeneous solution will dominate, such that the front connecting both
will move until the entire space is filled with the dominant state. However, there
can exist a Maxwell point M in parameter space, shown in Figure 9.1, at which
the dominant role switches from the pattern to the homogeneous state (or vice
versa). At this point the free energy, as defined by the Lyapunov function in Eq.
(8.8), of both solutions is equal. The pinning interval in which the LSs exist has in
fact spread out into a locking range with finite width around the Maxwell point.
Mathematically, the snaking behavior is a consequence of transverse inter-
section of the two-dimensional unstable manifold of the homogeneous state
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Figure 9.1: (a) Bifurcation diagram showing the snakes-and-ladders struc-
ture of LSs in the subcritical real Swift-Hohenberg equation. The L2-norm
of the solutions u(x) is plotted. Away from the origin the snaking branches
L0 and Lπ are contained within the pinning region (shaded) between E− and
E+. Both snaking branches snake up until they eventually connect to the
periodic patterned branch P. Solid (dotted) lines indicate stable (unstable)
states. (b) shows examples of the localized profiles when snaking up the

branch. (reprinted with permission from Ref. [16])

and the three-dimensional center-stable manifold of the spatially periodic state
[7, 8, 13, 14], together with reversibility under x → −x. These results are re-
viewed in [15].
This phenomenon of homoclinic snaking of LSs has been widely studied in the

real Swift-Hohenberg equation [7–11, 13, 14]. This equation can be used as a
prototypical model for many systems. Nevertheless, there still exists a wealth
of other systems for which the real Swift-Hohenberg equation cannot be used as
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Figure 9.2: Schematic setup of a ring cavity filled with right-handed and
left-handed materials. The cavity is driven by a coherent external injected

beam.

it is variational and only models a real field. In this Chapter, we will study the
snaking of LSs in non-variational models for a complex field. In particular, we
will consider a generalized version of the LLE model (Lugiato-Lefever equation
[17]) that has been derived to model the light in a microresonator driven by a
coherent optical beam taking into account higher order spatial effects [1, 18].
The formation of LSs in such microresonators can be attributed to the balance
between nonlinearities due to light-matter interaction, transport processes (dif-
fusion and/or diffraction), and dissipation [19–22]. The LSs take the shape of
bright or dark light spots at the output of the cavity. Such LSs, also referred to
as cavity solitons, have been proposed for information encoding and processing
[20, 21, 23].

Thanks to recent advances in the fabrication of metamaterials and photonic
crystal fibers (PCFs), it is now possible to conceive a nonlinear system which
allows for diffraction and/or dispersion management. On the one hand, the pro-
gression of the fabrication of left-handed metamaterials (lhm) towards optical
frequencies [24, 25], and the proposition of nonlinear lhm [26, 27] allow control
of diffraction. In Refs. [28, 29] the possibility of altering the strength of diffraction
is considered by inserting a layer of lhm, in addition to a layer of right-handed
material (rhm) [see Figure 9.2], in the cavity of an optical microresonator, and
they show how to reduce the diffraction coefficient to (in principle) arbitrarily
small values. In this case, higher order spatial effects can no longer be neglected.
On the other hand, photonic crystal fibers (PCFs) allow for a high control along
the dispersion curve [30], such that wavelengths at which the dispersion is al-
most zero can be engineered. Near such a zero dispersion wavelength, high
order dispersion effects in a fiber cavity [see Figure 8.3(c)] have to be taken into
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account as well. In this Chapter, the existence of snaking of Kerr cavity solitons
(LSs in an optical cavity with Kerr type nonlinearity) will be verified and the
influence of a higher order bilaplacian term on these LSs is investigated.

9.2 Model

We consider a microresonator driven by a coherent optical beam. In each
roundtrip, the light passes through two adjacent nonlinear Kerr media: a rhm
and a lhm (see Figure 9.2). It has been shown in Ref. [28] that the evolution of
the electric field in this microresonator is governed by the well-known LLE [17],
with the diffraction coefficientD given by

D =
λF

2π2

(
lR
nR
−

lL
|nL|

)
. (9.1)

nR, nL, lR and lL are the indices of refraction and the lengths of the rhm and the
lhm, respectively. λ is the wavelength of the light in the cavity and F the finesse
of the resonator. By changing lR and lL, D can be engineered to ever smaller,
positive diffraction coefficients. From the LLE, one can estimate the diameter of
localized solutions to be

Λ0 = 2π

√
D

2 − θ
, (9.2)

with θ the cavity detuning. Therefore, LS will become infinitely small when D
tends to zero. In that case, however, higher order effects will start to dominate
the spatial dynamics. Indeed, from the derivation of the LLE, one can show that
a nonlocal response comes into play when diffraction becomes negligible. The
effect of such higher order spatial contributions remains largely unexplored. Un-
der the same approximations under which the LLE is valid, i.e., slowly varying
envelope approximation, weak nonlinearity and a nearly resonant cavity, it is
shown that the nonlocality comes in as follows [31]:

∂A
∂t

= −(1 + iθ)A + Ain + i |A|2 A + iD∇2
⊥A + i

∫∫
δ(r⊥ − u)A(u)du. (9.3)

The kernel function δ, describing the nonlocal response of the linear lhm, effec-
tively couples the electric field at different positions. The details of the derivation
of Eq. (9.3) can be found in Ref. [31]. When the nonlocality is weak, the last term
of Eq. (9.3) can be expanded in a series of spatial derivatives of A, and, taking
into account the rotational invariance of the system, it is found that∫∫

δ(r⊥ − u)A(u)du ' δ0A + δ1∇
2
⊥A + δ2∇

4
⊥A. (9.4)
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Figure 9.3: Influence of the nonlocality to diffraction ratio η on the marginal
stability curves as given by Eq. (9.6). The wavevectors inside the curves
destabilize the homogeneous steady state solution of Eq. (9.5). θ = 1.23.

(a) Positive η. (b) Negative η. [1]

The first two terms in Eq. (9.4) only change the value of the detuning and diffrac-
tion coefficients, respectively. In what follows, we absorb their contribution into
the parameters θ and α, keeping the same notation. We finally arrive at

∂A
∂t

= −(1 + iθ)A + Ain + i |A|2 A + iα∇2
⊥A + iβ∇4

⊥A. (9.5)

9.3 Linear stability analysis

Eq. (9.5) is similar to the LLE, and has the same homogeneous steady state
(hss) solutions As. In this work, we want to study the LS arising from the
modulational instability of the homogeneous solution. If β = 0 and for 41/30 <
θ <
√

3 , the system admits one homogeneous solution that creates a subcritical
patterned branch at |As|

2 = 1.2 Therefore, close to that modulational instability
point (|As|

2 = 1), there exists a region of coexistence of the patterned branch and

2In one spatial dimension with β = 0, the conditionθsub = 41/30 determines the threshold between
a supercritical and a subcritical bifurcation towards patterned solutions. In the remainder of this
Chapter, we will continue to work in the regime corresponding to θsub < θ <

√
3. The threshold

θsub, however, will shift when including β , 0.
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Figure 9.4: (a) A transverse cut of a cavity soliton for β = 0.07, |As|
2 = 0.93

and θ = 1.23 over a domain width of L = 48. In (b) the fourier transform
of (a) is shown, from which it is clear that there are two characteristic

wavevectors.

the stable homogeneous solution. In this Section, we focus on this monostable
regime and investigate the linear stability of the homogeneous solution in the
presence of the higher order diffraction term (β , 0).
We have performed a stability analysis by linearizing Eq. (9.5) around the steady
state solution, and seeking for the deviation in the form A = As + δA exp(i k · r +
λt), with k = (kx, ky) and r = (x, y). The marginal stability (λ = 0) is given by

αk2
− βk4 = 2|As|

2
− θ ±

√
|As|

4 − 1. (9.6)

The modulational instability (MI) depends strongly on the parameter η, defined
as the nonlocality to diffraction ratio η = β/α2. In Figure 9.3, the marginal
stability curves are shown for several values of η.3

For η > 0 [see Figure 9.3(a)], these curves have the form of a cardioid, which
contains the unstable wavevectors. A first MI arises with two critical wave
numbers at an intensity of |As|

2 = 1. This corresponds to the threshold associated

3By rescaling the field A and space, one can impose α = 1 and write Eq. (9.5) in function of η .
Take x′ = x/

√
α. Eq. (9.5) changes to

∂A
∂t

= −(1 + iθ)A + Ain + i |A|2 A + i∇2
⊥A + iη∇4

⊥A,

with η = β/α2.
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with the pattern forming instability even in the absence of higher order diffraction
(β = 0). However, when considering the bilaplacian term β , 0, this bifurcation
becomes degenerate. At |As|

2 = 1, there exist two unstable wave numbers km
that appear simultaneously and spontaneously in this system:

k2
m =

α ±
√
α2 + 4β(θ − 2)

2β
. (9.7)

This can lead to the formation of complex patterns with two wavevector com-
ponents [1, 32]. In Figure 9.4, a typical profile of a stationary LS and its Fourier
spectrum is shown for a background of |As|

2 = 0.93. It is clear that there indeed
exist oscillations with two characteristic wave vectors. It has also been shown
that, close to this degenerate MI point, the beating can be localized [33]. As η
increases above ηcr = 1/4(2−θ), the cardioid form evolves into an elliptical shape
with equal critical wave numbers at both sides: βk4

m = 1/4η. In both cases, at
higher background intensities stability of the hss is recovered. When increasing
η even more such that η > 1/4

(√
3 − θ

)
, the unstable region contained in the

marginal stability curve disappears, effectively stabilizing all the hss. For η < 0
[see Figure 9.3(b)], the MI occurs again for intensities |As|

2 > 1, but here the hss
are not stabilized for high input fields.
In the following Sections, we focus on the effect of the fourth-order spatial deriva-
tive in Eq. (9.5) on the snaking bifurcation structure of both bright and dark 1D
LSs. The bright LSs originate at the first MI point at |As|

2 = 1. Dark LSs are dips
in a stable homogeneous background intensity, and thus can only exist for η > 0
such that the homogeneous solution is stabilized at higher intensities.

9.4 Snaking of 1D bright cavity solitons

In the introduction, we briefly reviewed a bifurcation structure for 1D LSs that is
commonplace, called homoclinic snaking. Homoclinic snaking of 1D LSs has been
widely studied in several model equations, such as e.g. the Swift-Hohenberg
equation [7–11, 13, 14]. Figure 9.1 demonstrates the "classical" snakes-and-ladders
structure of LSs in the subcritical real Swift-Hohenberg equation [16]. In Ref.
[34], it was shown that the same homoclinic snaking structure is present for 1D
bright cavity solitons in a nonlinear optical cavity as described by the LLE [Eq.
(9.5) where β = 0]. Furthermore, in that work it was demonstrated that extra
complexity, including the existence of additional LSs and complexes, arises due
to homoclinic and heteroclinic intersections of the stable and unstable manifolds
of the high and low-amplitude periodic solutions [34].
In this Section, we extend the analysis of 1D cavity solitons near zero diffraction
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Figure 9.5: Bifurcation diagram demonstrating the snaking of the bright
LSs. The parameters are chosen to be: θ = 1.7, α = 0.5, β = 0.2 (η = 0.8) and
the width of the cavity L = 89.6. The bright LS branches are structured in
isolas, plotted in a dotted line, where the color coding black/grey represents
stable/unstable solitons. The homogeneous solutions As are depicted by a
solid line and periodic pattern branches P by a dashed curve. For these
curves the colors black/grey also depict stable/unstable structures. Figure

9.6 provides a zoom of the upper isola.

by considering high order diffraction (or equivalently dispersion in fiber cavi-
ties). We consider here the case where η < ηcr, such that in principle patterns with
two different wave numbers (or possible mixed mode patterns) can be formed.
In particular, we study the changes in the snaking structure of 1D bright cav-
ity solitons when adding a fourth order spatial derivative in the Lugiato-Lever
equation [Eq. (9.5) with β , 0].

In Figure 9.5, the bifurcation diagram of bright LSs is depicted for θ = 1.7,
α = 0.5, β = 0.2 and L = 89.6. The detuning θ is chosen to operate in the
monostable regime (θ <

√
3). Moreover, for these values, η = 0.8 is smaller than

ηcr = 0.83. Therefore at the MI point around |As|
2 = 1, the homogeneous solution

destabilizes for periodic modulations with two unstable wave numbers, being
k2

m = 1 and 1.5 [see Eq. (9.7)]. In Figure 9.5, the bright cavity soliton branches
are plotted in a dotted line, where the color coding black/grey represents sta-
ble/unstable solitons. The homogeneous solutions As are depicted by a solid line
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Figure 9.6: A zoom is shown from the isola containing the stable 5-peak
LSs in Figure 9.5. The bright LS branches are plotted in a dotted line, where

the color coding black/grey represents stable/unstable solitons.

and periodic pattern branches P by a dashed curve. For these curves the colors
black/grey also depict stable/unstable structures. For all the solution branches
in this bifurcation diagram, the energy is plotted as a function of the input field
amplitude, where the energy is defined as (1/L)

∫
dx |A|2 (L2-norm), and L is the

domain width. Periodic boundary conditions are used and the domain width
L is chosen large enough such that the width of the LSs is much smaller then
the domain itself. The solutions are found by time integration with appropriate
initial conditions and are then continued in parameter space using a Newton
method.4

The bifurcation picture is qualitatively very different from the "classical" snaking
structure shown in Figure 9.1 [11, 16], where one continuous branch of LSs snakes
up with back and forth oscillations across the pinning interval. Here, in Figure
9.5, a similar pinning interval is present, but the LSs are no longer located on one
continuous snaking branch, but instead they live on isolas. Two such isolas are
shown in Figure 9.5, namely one associated to the stable one-peak LS and one to
the stable five-peak LS. A more detailed picture of the isola containing the stable
five-peak LS is given in Figure 9.6. The isolas corresponding to two, three, four,
six . . . peaks are omitted here in order not to obscure the figure.

4The equation is discretized, from which a set of coupled nonlinear equations is obtained. Since the
equation is linear in the spatial derivatives, the diffraction term can be computed in the spatial Fourier
space. This approach is very accurate and automatically generates the Jacobian operator, whose
eigenvalues determine the stability of the solutions. Note that this method finds both stable and
unstable stationary solutions. An appropriate initial condition is found by numerically simulating
the equation in time using the integration scheme explained in Appendix B.
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Figure 9.7: Examples of the localized profiles of the bright LSs obtained
for input amplitudes Ain as shown by the black dots in Figure 9.5. The

parameters are as in Figure 9.5.

The black dots labeled (a)-(l) in Figures 9.5 and 9.6 give the positions on the
bifurcation diagram of which profiles of the corresponding LSs can be found
in Figure 9.7. Panels (a)-(d) in Figure 9.7 provide the profiles of the bright
one-peak cavity solitons living on the first isola. The one-peak LSs bifurcate
subcritically from the homogeneous solution simultaneously with the periodic
states. These states are therefore initially unstable and still small in amplitude
[see Figure 9.7(a)]. When followed numerically these states become better and
better localized and once their amplitude and width become comparable to the
amplitude and wavelength of the competing periodic state the LSs stabilize [see
Figure 9.7(b)]. When continuing the branch further around the bend, two extra
peaks are added symmetrically at each side. However, instead of connecting to a
branch of stable LSs with 3 peaks, the LSs on the branch with profiles (c) and (d)
are unstable and terminate again at the MI point of the homogeneous solutions.
Profiles of the LSs on the different branches of the isola associated to the stable

5-peak LSs can be found in Figure 9.7(e)-(l). This isola, shown in more detail in
Figure 9.6, contains eight different connected branches of which only one 5-peak
LS branch is stable. A profile of such a stable LS is given in Figure 9.7(g). When
numerically continuing this stable structure, at each turn in parameter space the
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profile of the LS changes qualitatively [see Figure 9.7(e)-(l)]. It goes through
many different kinds of LSs where one or more of the 5 peaks exhibit a drop in
amplitude. All these different solutions are, however, unstable.
The LLE (9.5) without higher order diffraction (β = 0) does not show this break-
up of the snaking structure in isolas. The breaking up of the homoclinic snaking
structure into stacks of isolas has been reported in the literature, but mainly
in the context of the 1D real Swift-Hohenberg equation. In Ref. [10], it was
shown that dark LSs embedded in a non-zero background can be organized in
stacks of figure-eight isolas. In the current case of the LLE (9.5) with bilaplacian
term, however, one can notice that the isolas can be much more involved than
a figure-eight shaped isola. In the same system, it was demonstrated that LSs
corresponding to n-homoclinic orbits, with n >1, do not exist on a snaking curve,
but also rather live on an isola [14, 35]. These isolas of n-homoclinic orbits still
roughly follow the snaking curve of the one-homoclinic orbits, but their curves
do not connect to each other. This scenario is not applicable in our case either
as we only consider 1-homoclinic orbits. Yet another mechanism in the Swift-
Hohenberg equation that leads to the organization of LSs in stacks of isolas was
reported in Ref. [36]. Breaking of the spatial reversibility of the system leads to
the destruction of the homoclinic snaking as it is a direct consequence of such
spatial reversibility. In this case, however, the LSs also drift. As Eq. (9.5) is still
spatially reversible, this mechanism cannot be used to explain the creation of
stacks of isolas here.
In the context of the LLE (9.5) with β = 0, Gomila et al. have shown in Ref. [37]
that using an external periodic forcing in space leads to the merging of the isolas
corresponding to n-homoclinic orbits with the snaking curve of the 1-homoclinic
orbits which are structured in a homoclinic snaking branch. In fact, it seems that
this scenario is closely related to our observations here. Whereas in Ref. [37] an
external forcing was applied to the LLE, we have in a way created an internal
periodic forcing due to the creation of two distinct wave numbers km1 and km2
at the MI. Whether the peaks with two different amplitudes inside a single LS
in Figure 9.7 correspond as well to two different widths (related to km1 and km2)
remains to be verified in future work.

9.5 Snaking of 1D dark cavity solitons

In this Section, we focus on the second MI point of the system that allows the
homogeneous steady state to restabilize (see Section 9.3). We show that fourth
order diffraction (or dispersion in the case of PCFs) allows the nonlinear optical
cavity to exhibit dark cavity solitons, whereas this was impossible without the
fourth order diffraction (dispersion) term. These structures consist of dips in
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a uniform background of the intensity profile. The number of dips and their
temporal distribution is solely determined by the initial conditions. In Section
9.5.1, we show that, for the same parameters as in the previous Section, dark
cavity solitons are organized in the "classical" homoclinic snaking bifurcation
structure, in contrast to the stacks of isolas in the case of bright cavity solitons.
Afterwards, in Section 9.5.2, we consider a slightly altered LLE equation (9.5) that
has been derived recently in the context of diffraction compensation in cavities
with left-handed materials [31]. In this model, we study the snaking behavior of
dark LSs in the bistable regime (θ >

√
3).

9.5.1 Dark cavity solitons in the monostable regime

In the monostable regime (θ <
√

3), one can generate stable dark solitons that
consist of dips in the amplitude of light that can be either isolated or randomly
distributed. An example of these solitons is plotted in Figure 9.8(b)-(f). Just like
their bright counterparts, dark cavity solitons are characterized by oscillatory
tails that decay at large x as shown in Figure 9.8(b)-(f). All these structures are
obtained for the same values of the parameters. Therefore, they exhibit multi-
stability behavior in a finite range of parameters, the pinning region. Since the
minima of these structures are close to one another, we plot again the energy
of the LSs as a function of the input field amplitude in a bifurcation diagram
in Figure 9.9 [where the energy is defined as in the previous Section]. The
LSs branches are plotted in a dotted line, where the color coding black/grey
represents stable/unstable LS. For completeness, the homogeneous solutions As
are depicted by a solid line and periodic pattern branches P by a dashed curve.
For these curves the colors black/grey also depict stable/unstable structures.
The bifurcation diagram consists of two snaking curves; one describes dark LSs

with 2p dips, the other corresponds to 2p + 1 dips (with p a positive integer).
Here we only plot the branch corresponding to an odd number of dips. As the
energy decreases, at each turning point where the slope becomes infinite, a pair
of dips appears. Extra pairs of dips are added each turn until the LS fill the
entire domain and the branches exit the snaking region and connect to a periodic
pattern branch. Unlike the more complicated snaking structure of the bright
cavity solitons, the dark LS are organized in the well-known homoclinic snaking
structure [11].
While the snaking structure of Figure 9.9 is very similar to the widely studied
homoclinic snaking structure in an infinite domain, as reviewed in Ref. [11],
several features that are not accounted for are due to the finite domain size. In
particular, it is clear from Figure 9.9 that the dark LSs are not created at the MI
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Figure 9.8: Examples of the localized profiles of the dark LSs obtained
for input amplitudes Ain as shown by the black dots in Figure 9.9. The

parameters are the same as in Figure 9.5.

point of the homogeneous solution. Instead, they form as a result of a secondary
bifurcation of a spatially periodic pattern, here a periodic pattern with wave
number k16 = 2π16/L. The states produced in this bifurcation are initially only
weakly localized [see Figure 9.8(a)], but evolve into strongly LSs by the time the
branch enters the pinning region. This effect of the finite period is also present at
the other end of the snaking branches, where the dark LSs almost fill the whole
domain [see Figure 9.8(f)], forcing the snaking to terminate. The branch now
exits the snaking region and terminates on a branch of spatially periodic states
whose wave number depends on the domain size. This wave number has been
shown to be typically close to the smallest wave number associated with the LSs
in the pinning region [38]. Here this periodic branch at which the LSs terminate
has as wave number k15 = 2π15/L. As one can expect decreasing the cavity width
L, the two periodic branches split more and the single LS is created further up
the pattern branch [point (a) in Figure 9.9]. Oppositely, when increasing L, the
origin of the single LS branch moves more to the MI of the homogeneous steady
state and both periodic pattern branches tend to merge together. Moreover, we
have verified the existence of the LSs in a wider range of system parameters,
demonstrating the robust existence of these structures.
Changes of the snaking structure due to the presence of a finite domain width
are important as in experiments or numerical simulations the available domain
is never infinite. For more information on the effects of a finite domain and of
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Figure 9.9: Bifurcation diagram demonstrating the snaking of dark LSs.
The parameters are the same as in Figure 9.5. The branches of dark LSs
are plotted in a dotted line, where the color coding black/grey represents
stable/unstable solitons. The homogeneous solutions As are depicted by a
solid line and periodic pattern branches P by a dashed curve. For these

curves the colors black/grey also depict stable/unstable structures.

arbitrary boundary conditions on both the birth and disappearance of spatially
LSs, we refer to Refs. [38–41].
In the next Section, we discuss preliminary results on the snaking behavior of
dark LSs in the presence of a bistability between the homogeneous states in the
system.

9.5.2 Dark cavity solitons in the bistable regime

When operating around the zero-diffraction regime and by taking into account
the nonlocal properties of light propagation in an optical cavity filled with a
left-handed material and a right-handed material (see Figure 9.2), it has been
shown in Ref. [31] that the spatiotemporal evolution of the intracavity field can
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be described by the following dimensionless partial differential equation

∂A
∂t

= Ain − (1 + iθ)A + iΓ |A|2 A + iα∇2
⊥A +

(
iβ −

α2

2

)
∇

4
⊥A (9.8)

where A is the slowly varying envelope of light within the ring cavity, Ain is the
amplitude of the injected field, θ is the normalized cavity detuning parameter,
and Γ is the normalized nonlinear Kerr coefficient. The Laplace operator acting
on the transverse plane r⊥ = (x, y) is ∇2

⊥
= ∂2

xx + ∂2
yy. The effective diffraction

coefficient is denoted by α and β accounts for the effective coefficient of spatial
dispersion. The time has been scaled as in Ref. [31]. We would like to remark that
this model equation is the same as the Eq. (9.5) discussed in Chapters 9-10, apart
from the term α2

2 ∇
4
⊥

A on the right-hand side. For decreasing diffraction strength
α → 0, this term can be neglected such that Eq. (9.8) and Eq. (9.5) become the
same.
A theoretical study of the model Eq. (9.8) without this diffusion term, α2

∇
4
⊥

A,
reveals that high order diffraction can give rise to a degenerate MI where two
separate unstable wavelengths simultaneously appear, as discussed in Section
9.3 [1, 18]. Close to the first MI threshold, we have shown that bright LSs are
structured in a nontrivial snaking structure, i.e. they lie on stacks of isolas. This
can possibly be attributed to the presence of two unstable wavenumbers at the
MI point. Furthermore, for the same parameter set, the dark LSs are stabilized
due to the higher order diffraction term and are organized in the homoclinic
snaking structure (see Section 9.5.2). In this Section, we show that the presence
of a higher order term of the form

(
iβ − α2

2

)
∇

4
⊥

A also stabilizes both 1D and 2D
dark LSs.
The homogeneous steady states solutions (hss) As of Eq. (9.8) are still given by

A2
in = [1 + (θ − ΓIs)2]Is. As before for Eq. (9.5), the transmitted intensity Is = |As|

2

as a function of the input intensity Ii = A2
in is monostable for θ <

√
3 and the

bistable behavior arises for θ >
√

3. The hss are not affected by the high order
diffraction and dispersion terms. However, these effects play an important role
in the linear stability analysis with respect to finite wavelength perturbations of
the form exp(λt + iq.r⊥) with q = (qx, qy). The MI occurs when λ = 0. This leads
to the marginal stability curve:(

β2 +
α4

4

)
q8 + 2αβq6 + 2[β(2ΓIs − θ) + α2]q4

− 2α(θ − 2ΓIs)q2 + 1 − θ2
− ΓIs(4θ − ΓIs) = 0. (9.9)

The threshold associated with the MI as well as the wavelength of the periodic
structure emerging from that threshold can be obtained when ∂Is/∂q2 = 0. The

182



9.5. SNAKING OF 1D DARK CAVITY SOLITONS

Figure 9.10: (a) The bistable input-output characteristics. The dashed
cuve indicate unstable solutions and solid lines indicate instable ones. (b)
The marginal instabily curve Is = |As|

2 as a function of wavenumber q. The
hatched area correpond to unstable region with respect to the Modulational

instability. Parameters are θ = 2, β = 0.2, Γ = 1 and α = 0.5.

results of the linear stability analysis are summarized in Figure 9.10. When de-
creasing the input field intensity Ii, the upper homogeneous steady state becomes
unstable at IM = |AM|

2. At this bifurcation point, the most unstable wavelength
is 2π/qM as shown in Figure 9.10. When further decreasing Ii, the lower branch
of the bistable input-output characteristics is reached which is stable again.

As in the previous Section, we focus on the situation where the MI appears
subcritically. This way there exists a finite domain for I > IM where the periodic
structure coexists with the upper state, which are both linearly stable. In con-
trast to earlier subsections, we consider here θ >

√
3 such that the input-output

characteristics of the hss in Eq. (9.8) have a bistable region. In this range of
parameters, we generate numerically a single or multiple dips in the intensity
profile. Examples of such dark LSs are shown in Figure 9.11, where only panels
(b), (g) and (i) of Figure 9.11 present profiles of stable dark LS.
In order to analyze dark LSs in more detail in 1D, we draw a snaking bifurcation
diagram in Figure 9.12, plotting the ”energy” as a function of the input field
amplitude (where the energy is defined as in the earlier subsections). Stable
(unstable) solutions are colored in black (gray). These solutions are found by
using appropriate initial conditions and are then continued in parameter space
using a Newton method. Periodic boundary conditions are again used.
To simplify the analysis, we present only dark LSs with 1, 3 and 5 dips in the

intensity profiles of the intracavity field. Although the snaking curve in Figure
9.12 is very similar to the homoclinic snaking as e.g. shown in Figure 9.13, one
can notice that on the left-hand side of the snaking curve the process of growth
is more complicated. In order to nucleate an extra pair of dark LSs the system
evolves through a more intricate transient with dips showing a double-peaked
minima. This is clarified by the intermediate profiles in Figure 9.11(c)-(f), which
show in more detail the evolution from a stable single dark LS [see Figure 9.11(b)]
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Figure 9.11: Examples of 1D dark LSs obtained for input field amplitudes
as indicated in Figure 9.12. Others parameters are the same as in Figure

9.10.

Figure 9.12: Snaking bifurcation diagram of the stable (black) and unstable
(gray) 1D dark localized structures. Parameters are the same as in Fig. 9.10

and the profiles at points (a)-(i) are shown in Figure 9.11.
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Figure 9.13: Examples of 2D multiple dark localized structures obtained
for the same parameters as in Figure 9.10 with Ain = 1.437. Minima are
colored in black and the grid is 256×256. The domain size of the system in

both transverse directions is Lx = Ly = 89.6.

to a stable dark LS consisting of three dips [see Figure 9.11(g)]. The added com-
plexity in the snaking branches on the left-hand side of the snaking curve can
either be attributed to the higher value of θ that leads to the existence of a region
of bistability between the lower and upper homogeneous solutions close to the
snaking curves, or either to the presence of the extra term α2

∇
4
⊥

A in Eq. (9.8).
This question remains to be addressed in future work.
In a 2D setting, the number of dark LSs can be much higher than in 1D. We
focus on the situation where 2D dark LSs are close to one another. They exert
mutual forces due to their overlapping oscillatory tails. As the number of dark
LSs increases, the transverse profile of the output electric field exhibits clustering
behavior as shown in Figure 9.13. As in the 1D case, the number of 2D dips and
their spatial distribution depends only on the initial condition used. Examples
of 2D dark LSs are plotted in Figure 9.13. Figure 9.13(a)-(c) correspond to the
real part, and Figure 9.13(d)-(f) to the imaginary part of the intracavity field. All
these dark LS profiles are obtained for the same values of parameter. The system
exhibits a high degree of multistability. Also in 2D the boundary conditions used
in the numerical simulations are periodic.

9.6 Conclusion

Due to recent advances in the fabrication of metamaterials and photonic crystal
fibers, it is now possible to conceive nonlinear systems that allow for diffraction
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and/or dispersion management. In the case of low diffraction and/or dispersion,
higher order spatial/temporal effects have to be taken into account as well. We
have shown that such a higher order spatial term can effectively stabilize the
system in certain conditions. We have investigated the existence and nature of
snaking of both bright and dark Kerr cavity solitons and the influence of the
higher order bilaplacian term has been evaluated. We have demonstrated a
stabilization of dark cavity solitons, which is attributed to fourth order diffrac-
tion/dispersion effects. In the monostable regime, the dark cavity solitons have
been shown to be organized in a homoclinic snaking structure, while the bright
cavity solitons are organized in complicated stacks of isolas. In the bistable
regime, the dark solitons are also organized in a snaking structure, which is
more complicated than the homoclinic snaking.
In the next Chapter, we investigate the influence of the higher order diffraction
term on the size and dynamical instabilities of two-dimensional bright cavity
solitons. We study the different possible mechanisms that can destabilize the
cavity solitons, leading to stable oscillations, expanding patterns, or disappear-
ance of the solitons.
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CHAPTER 10

Dynamical instabilities of two
dimensional bright cavity soli-
tons

“If you were to ask me to name three geniuses, I probably wouldn’t say Einstein, Newton... (struggles for
word). I’d go Milligan, Cleese, Everett. ” — David Brent in the Office.

In this Chapter, we explore the size and dynamical instabilities of radially
symmetric two-dimensional cavity solitons in a generalization of the Lugiato-
Lefever model that includes a higher order spatial derivative. Such a model
can describe an optical micro-resonator that allows for diffraction compen-
sation. It is shown that higher order spatial derivatives can impose a new
limit on the width of cavity solitons, going beyond the traditional diffraction
limit. Furthermore, we elaborate on the different possible mechanisms that
can destabilize the cavity solitons, leading to stable oscillations, expanding
patterns, or making the solitons disappear. Multiple routes towards excitabil-
ity are shown to be present in the system and we demonstrate that different
regions admitting stationary, oscillating or excitable solitons unfold from two
Takens-Bogdanov codimension-2 points. 1

1The work presented in this Chapter has been published in the following journal papers: [1, 2].
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CHAPTER 10. DYNAMICAL INSTABILITIES OF TWO DIMENSIONAL
BRIGHT CAVITY SOLITONS

10.1 Introduction

In the previous Chapter, we have introduced a generalization of the well-known
Lugiato-Lefever model [3] that takes into account higher order spatial effects by
inclusion of fourth-order spatial derivatives. This more general equation (10.1)
has been derived in Refs. [1, 4]:

∂A
∂t

= −(1 + iθ)A + Ain + i |A|2 A + iα∇2
⊥A + iβ∇4

⊥A. (10.1)

Localized structures (LSs) are relatively well understood in one transverse di-
mension [5], whereas an analytical analysis in two transverse dimensions is still
largely unexplored and most of the results are obtained by numerical simula-
tions. In this Chapter, as in the previous Chapter, we will focus on controllable
LSs in optical cavities, also referred to as cavity solitons. However, instead of
focussing on the snaking bifurcation structure of 1D cavity solitons, we will now
study the influence of the bilaplacian term in Eq. (10.1) on the width and dynam-
ical instabilities of 2D cavity solitons.
Their formation can be attributed to the balance between nonlinearities due to
light-matter interaction, transport processes (diffusion and/or diffraction), and
dissipation [6–9]. These bright spots have been proposed for information encod-
ing and processing [7, 8, 10]. Decreasing the size of LSs would be advantageous
for these applications, while also being of fundamental interest. In optical de-
vices, the spatial dimension of LSs is generally restricted by diffraction, imposing
the diameter to be of the order of

√
D, where D = lF /(πk) is the diffraction co-

efficient, with k the wavenumber of the beam, and l and F the length and the
finesse of the resonator. E.g. in Ref. [7], LSs at a wavelength of 0.5µm have a
transverse size that reaches the diffraction limit of 10µm.
The use of transverse index modulation has been proposed to overcome the
diffraction limit of mid-band LSs in a certain class of resonators [11]. These LSs
have a large intrinsic transverse velocity that prevents its use for many practical
applications. Recently, a different strategy was motivated by the advances of the
fabrication of left-handed materials (lhm) towards the optical spectrum [12, 13],
and the introduction of nonlinear lhm [14, 15]. In Refs. [16, 17], Kockaert et al.
study the possibility of altering the strength of diffraction by inserting a layer
of lhm, in addition to a layer of right-handed material (rhm), in the cavity of an
optical microresonator, and they show how to reduce the diffraction coefficient
to arbitrarily small values. As the soliton width scales with the square root of the
diffraction coefficient, this method potentially allows for sub-diffraction-limited
LSs. Unlike with the use of photonic crystals, this technique works in principle
for all types of LSs and microresonators. Although the diffraction limit can be
encompassed in this way, one can reasonably expect that the sub-wavelength
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structure of lhmwill impose a new size limit on LSs. Here, we will show that the
higher order spatial derivative terms — which can now no longer be neglected—
will significantly change the properties of LSs when diffraction is tuned down,
and a new size limit of LSs will be revealed.
Secondly, we elaborate on the different possible mechanisms that can destabilize
the LSs. While in many instances the localized structures are stable, there are
situations in which they develop different kinds of instabilities. Some insta-
bilities lead to the formation of an extended pattern and therefore the localized
character of the LSs is destroyed. More interesting are the instabilities that, while
preserving its localized character, induce the LSs to start moving, breathing or
oscillating [18–21]. Since LSs can be considered as an entity on their own, these
instabilities may lead to dynamical regimes that appear not to be present in the
dynamical behavior of the extended system. In this context it has recently been
reported that LSs arising in a prototype model for optical cavities filled with a
nonlinear Kerr media may show excitable behavior, while locally the system is
not excitable [22, 23]. Thus, excitability can be an emergent property arising from
the spatial dependence, which allows for the formation of LSs. In that situation
excitability is mediated by a saddle-loop bifurcation and the whole scenario is
organized by a Takens-Bogdanov (TB) codimension-2 point. In parameter space
the TB point is located in the asymptotic limit in which the model becomes
equivalent to the Nonlinear Schrödinger Equation (NLSE).
Since this excitability scenario is an emergent property of the spatial dependence
of the system, it is particularly important to characterize how this scenario may
change when the nature of spatial coupling is varied. In the Lugiato-Lefever
model [3] considered in Refs. [22, 23] the spatial coupling arises from optical
diffraction in the paraxial approximation and is therefore accounted for by a
Laplacian term. Here, we consider an extension of the model, which extends
the range of spatial interaction [1, 2]. It will be argued that the additional
spatial interaction term is able to shift the bifurcation lines such that now two
Takens-Bogdanov points move from infinity to finite parameter values, acting
as organizing centers of a richer dynamical behavior.

10.2 Bifurcation diagrams and width of the local-
ized structures

In Section 9.3, we have presented a linear stability analysis of Eq. (10.1). For
positive values of η = β/α2 > 1/4(2 − θ), we have shown that the MI instability,
both the MI at low and high background intensities, occurs with equal critical
wave numbers βk4

m = 1/4η. From this wave number, we can estimate the typical
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width of LSs to be of the order of

Λ+ = 2π 4
√

4βη. (10.2)

In the limit of small diffraction, Eq. (10.2) predicts that the width of LSs increases
when α decreases, while Eq. (9.2) indicates a decreasing width. Therefore, there
must exist a value of the diffraction strength α for which the LS is of minimal
width. In this Section, we will use a numerical method to determine this opti-
mum. However, we want to point out that this minimal size LS can be unstable.
Our calculations will also provide insight in this matter. For η < 0, at the MI
point, we can derive the following estimate for the LS width :

Λ− =
2π 4

√
4βη√

1 +
√

1 − 4(2 − θ)η
. (10.3)

Consequently, when η < 0, the LS width will still decrease with the diffrac-
tion strength α, but due to the nonlocality the width will saturate at Λlim =

2π 4
√
−β/(2 − θ). Again, the possibility that the LS become unstable before reach-

ing this limit exists, emphasizing the need to numerically check the stability of
these structures.
Since two-dimensional cavity solitons are radially symmetric they correspond
to stationary solutions of the radial form of Eq. (10.1) with boundary conditions
∂rA(r = 0) = 0 and ∂rA(r→ ∞) = 0. We solve this equation numerically using a
Newton method [1, 23].2

An example of a typical 2D cavity soliton solution is shown in Fig. 10.1. Such a
CS solution can then be continued in parameter space using the Newton method.
Several bifurcation diagrams calculated in this way are shown for different val-
ues of η in Fig. 10.1. In the absence of nonlocality (η = 0), as previously studied
in Refs. [20, 22], a branch of LSs emerges subcritically from the hss at |As|

2 = 1.
The negative slope part of this branch corresponds to unstable LSs; the positive
slope higher branch is stable for low values of |As|

2. At higher background in-
tensities the intensity peaks become higher and narrower, attributed to the more
prominent self-focusing effect, and at a certain point they become again unstable
with respect to azimuthal perturbations. For η > 0 [Fig. 10.1(a)], we observe
that the branches extend to smaller |As|

2 with increasing η, while the domain of

2The radial form of this equation is discretized, from which a set of coupled nonlinear equations is
obtained. Since the equation is linear in the spatial derivatives, the diffraction term can be computed
in the spatial Fourier space. Zero derivatives at the boundaries are imposed. This approach is
very accurate and automatically generates the Jacobian operator, whose eigenvalues determine the
stability of the solutions. Note that this method finds both stable and unstable stationary solutions.
An appropriate initial condition is found by numerically simulating the equation in time using the
integration scheme explained in Appendix B.
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Figure 10.1: Left: Example of a 2D cavity soliton (|A| is plotted in the 2D
space). Right: Maximal intensity of the cavity soliton vs. the background
intensity for different values of η. Solid lines indicate stable structures,
whereas dashed lines correspond to unstable solutions. θ = 1.23. (a)

Positive η. (b) Negative η.

stability is enlarged. This trend is reversed from a certain η on, and the stability
range decreases. Also note that due to the higher order diffraction due to e.g.
nonlocality, which physically tends to spread out the intensity to neighboring
points, the peak intensity of cavity solitons drops. For η < 0 [Fig. 10.1(b)], the
branches move monotonically to higher background intensity and to lower peak
intensity with stronger η. Again note that the stability range is reduced consider-
ably. A more detailed study of the regions of stability in function of the different
parameters is given in the next Section.
To find the minimal LS size as discussed above, we have investigated the scaling

of the renormalized full width at half maximum (ξ = dFWHM/
4
√
|β|) of the LS with

η in Figure 10.2. Note that this renormalization enables us to obtain a general
result only depending on the detuning θ. For each value of η, we indicate the
width ξ of the upper branch LS at the change of stability, when stable LSs exist,
while plotting the ξ at the saddle-node bifurcation when the entire upper branch
is unstable. For η > 0 [Figure 10.2(a)], one can distinguish two regions of stable
LSs, one in which the width decreases with decreasing diffraction strength, and
the other with the inverse effect. One can identify the minimal width ξmin and
its corresponding optimal ηopt in the leftmost region. For η < 0 [Figure 10.2(b)],
the width decreases monotonically with decreasing diffraction strength, until
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Figure 10.2: Renormalized full width at half maximum ξ vs. diffraction
strength (|η|−1/2). The width ξ is shown of the higher branch LSs at the
change of stability or of the LSs at the saddle-node bifurcation when no
stable LSs exist Stable LSs are indicated by solid lines, whereas the unstable

LSs are in dotted lines. θ = 1.23. (a) Positive η. (b) Negative η.

stability of the LSs is lost. At this point, the minimal width ξmin is obtained. Our
numerical calculations thus qualitatively confirm the prediction by the linear
stability analysis given above. We have also repeated this procedure for several
values of the detuning, which gives us the optimal parameter set that produces
minimal size LS given a certain β [1]. In the next sections, we will elaborately
discuss all the different kinds of instabilities that can occur in this system.

10.3 Phase diagrams

In this section, we show the different possibilities of dynamical behavior of LSs
in parameter space (see Figure 10.3). LSs can undergo two kinds of instabilities,
radial instabilities which preserve the localized character of the structure and
azimuthal instabilities which lead to the formation of extended patterns. The
last ones appear only for large values of the background intensity (Is = |As|

2 close
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Figure 10.3: Phase diagram of LSs in the Kerr cavity for θ = 1.23. LSs
do not exist in Region I, below the saddle node line (SN). LSs are stable
between the saddle-node bifurcation (solid line - SN) and the Hopf bifur-
cation (dashed line - H), namely in Regions II, III, VI and VIII (see also
Figure 10.4). In Regions IV and VII delimited by a Hopf and a saddle-
loop bifurcation (dotted line - SL) there are stable oscillatory LSs while the
stationary LSs are unstable. In Region V the static LSs is unstable and
the phase space generated after the destruction of the limit cycle at the
SL induces a regime of excitable LSs. Region VI corresponds to a regime
of conditional excitability with both stable and excitable LSs. Finally in
Region VIII one encounters tristability: a stationary and an oscillatory LSs
coexist with the homogeneous solution. Where the saddle-node bifurca-
tion line and the Hopf bifurcation line meet is a Takens-Bogdanov (TB)

bifurcation.

to 1) [20]. We focus here on the radial instabilities, so phase diagrams (Figs. 10.3
and 10.4) are plotted only up to Is = 0.93, before the azimuthal instabilities take
place.
Since the system has three parameters (Is, θ, β), for the sake of clarity we fix the
detuning at θ = 1.23 in this section and analyze a slice of the whole parameter
space. Figure 10.3 shows the region of the parameter plane (β, Is) that contains
the most relevant regimes of dynamical behavior of the system. The line that
dominates this parameter plane has the shape of a deformed parabola, and is a
line of saddle-node (SN) bifurcations in which two LSs are created. Below this
line one has Region I where no LSs exist. We recall that in all the parameter range
covered by Figure 10.3 the spatially homogeneous solution is always stable. The
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Figure 10.4: Zoom of Figure 10.3 near TB1 (a) and TB2 (b). Lines have been
determined using the method explained in Section 10.3 with the exception
of the SL line in panel (b). In that case the filled squares display the location
of the SL obtained from numerical integration of Eq. (10.1), while the grey

line through these points is only to guide the eye. θ = 1.23.

different regimes above this line are organized by two codimension-2 Takens-
Bogdanov points, TB1 (β = 0.00987, Is = 0.7741) and TB2 (β = 0.02944, Is = 0.6707),
discussed in the next two Sections.
Without the bilaplacian term there is only one TB point [22, 23]. In that case, the
TB point is found only asymptotically for the limit θ → ∞. As we will discuss
later, that TB point corresponds in fact to the TB1 point found here. Therefore,
the bilaplacian term β has brought this bifurcation to finite parameter values
allowing us to fully study the different dynamical regimes around the TB1 point.

10.4 Dynamical behavior around the TB1 point

A Takens-Bogdanov (or double-zero) bifurcation is associated to the presence of
two (non-diagonalizable) degenerate null eigenvalues [24, 25]. Such a bifurca-
tion occurs when, in a line of SN bifurcations, one of the modes transverse to the
center manifold (of the SN bifurcation) passes through zero, implying that this
transverse mode switches from stable to unstable or vice versa. If this transverse
mode is stable we will denote the SN bifurcation line as SN−, while we use SN+

if this mode is unstable. Throughout the remainder of this Chapter, we will
use − for bifurcations for which there is a stable emerging solution and + if the
emerging solutions are unstable. H− will describe a supercritical Hopf, and H+

a subcritical one.
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Another feature of a TB point is that two new bifurcation lines emerge from it
[26]: a Hopf bifurcation line3 and a saddle-loop (homoclinic) bifurcation line4.
In order to specify whether the cycle that emerges from the saddle-loop bifur-
cation is stable or unstable, it is useful to define the saddle-quantity ν. For
low-dimensional dynamical systems this quantity is given by ν = λs + λu, with
λu > 0 and λs < 0 the unstable and stable eigenvalues of the saddle, respectively.
The emerging cycle will be stable if ν < 0, and unstable in the opposite case:
ν > 0 [26].
At the TB1 point, the saddle-node bifurcation is stable (SN−), the Hopf is super-
critical (H−), and the saddle-loop creates a stable cycle (SL−). Along the SN−

line a pair of stationary LSs are created, one stable (upper branch) and the other
(middle branch) unstable along a single direction in phase space (thus, a saddle
point in dynamical systems parlance). So, Region II is characterized by stable
LSs coexisting with the spatially homogeneous solution. A qualitative sketch of
the most relevant different kinds of behavior in the system as β is increased can
be found in Figure 10.5 (this corresponds to a horizontal line in Figure 10.4 for
Is ≈ 0.8). In this figure, panel (a) reflects the behavior inside Region II, where
the LS is the stable focus, the homogeneous solution is the stable node and the
middle branch LS is the saddle.
The upper branch LS solution becomes unstable at the supercritical Hopf bi-
furcation, H−, and leads to Region IV, characterized by oscillatory LSs, i.e.,
autonomous oscillons. Figure 10.5 (b) illustrates the behavior past the Hopf
bifurcation: the stable oscillatory LS and the unstable focus in the center can
be seen. Approaching the SL− line a saddle-loop (homoclinic) bifurcation takes
place, in which the limit cycle (oscillatory LS) becomes a homoclinic orbit of
the saddle (middle branch LS). The SL− is a global bifurcation, and cannot be
detected through a local analysis. Thus, in this study it has been determined
through numerical simulations of Eq. (10.1)5. Panel (c) in Figure 10.5 illustrates
the cycle growing in amplitude and approaching the saddle, while in panel (d)
the cycle has become the homoclinic orbit of the saddle. The approach of the sta-
ble cycle to the saddle can also be seen quantitatively in panel (a) of Figure 10.6:
in this figure bifurcation diagrams corresponding to vertical cuts in parameter
space, i.e. with β fixed (cf. Figure 10.3), are presented. Beyond the SL−, the
behavior of the system is excitable (Region V) [22, 23], in particular of type (or
class) I [27], as the excitability threshold is the stable manifold of the saddle. An
excitable excursion is achieved when localized perturbations beyond this thresh-

3The imaginary part of the eigenvalues at the Hopf bifurcation is singularly zero at the TB point,
in order to have a double zero.

4This is an example of the local origin of a global bifurcation, one of the few situations in which
the existence of such a bifurcation can be established analytically.

5An explanation of the numerical integration scheme that we use can be found in Appendix B.
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Figure 10.5: Qualitative evolution of the phase space at Is ≈ 0.8 andθ = 1.23
for increasing values of β, corresponding to the different dynamical behav-
ior in a horizontal cut of Figure 10.3. From (a) to (i), one goes from stable
LS (Region II) to an oscillating LS (Region IV), followed by an excitable LS
(Region V), a conditional excitable LS (Region VI), a coexistence of stable

LS and oscillatory LS (Region VIII).

old are applied to the spatially homogeneous solution. Fig 10.5 (e) sketches the
phase space in the excitable regime past the saddle-loop bifurcation.
Inside Region V, no stable LSs are found, only unstable LSs solutions exist, and
the system is excitable for all values of Is above the SN+ line. This line which
is just the continuation of SN− past the TB1 point was not observed in [22, 23]
since the TB point without bilaplacian term is located at θ → ∞. The SN+ line
creates a saddle-unstable node pair (middle and upper branch, respectively).
The pair of unstable solutions can be seen in the bifurcation diagram shown in
Figure 10.6(b) corresponding to a vertical cut of the parameter plane just to the
right of TB1 point.
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Figure 10.6: Bifurcation diagrams showing the maximum intensity of the
LS as function of the background intensity Is, for: (a) β = 0.005; (b) β =
0.015; (c) β = 0.0268; (d) β = 0.0272; (e) β = 0.05. The lowest solid line
represents the stable homogeneous solution. The lowest dashed line shows
the maximum intensity of the unstable middle branch LS. Above that line,
the upper branch LS is shown, where the solid line stands for the stable LS
and the dashed line for the unstable LS. In (a), (c) and (d) the system exhibits
stable oscillatory behavior (see text). In these cases, the maximum and
minimum intensity of the oscillating LS are depicted as filled squares. The
grey dashed line, representing the unstable limit cycle, is only a guiding
line for the eye. When the limit cycle touches the middle branch LS, a

saddle-loop bifurcation occurs. θ = 1.23.

10.5 Dynamical behavior around the TB2 point

An even richer scenario is found around the TB2 point. Comparing Figure 10.4(a)
and (b), one can see that the TB2 does not yield the same scenario as around TB1.
In TB1 the two lines that emerge involve stable objects (H− and SL− create and
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destroy, respectively, a stable limit cycle), while in TB2 the Hopf line is subcritical
(involving an unstable cycle). Furthermore, in the TB1 point the two lines, H−

and SL− are tangent to the line SN− of stable saddle-node bifurcations while the
opposite happens for TB2 (the lines unfolding are tangent to SN+) [26].
Crossing the H+ line coming from Region V, the unstable (upper branch) LS
exhibits a subcritical Hopf bifurcation and becomes a stable focus. The cycle that
is created is unstable and has only a single unstable direction. In Region VI the
system is then bistable (upper branch LS and homogeneous solutions coexist)
and the unstable cycle is the basin boundary of the upper branch stable LS as
qualitatively illustrated in Figure 10.5(f). Just after the bifurcation this basin of
attraction is small (since the initial cycle amplitude is zero) and grows as one
moves away from the bifurcation line. This can be seen in the bifurcation dia-
gram displayed in Figure 10.6(c) corresponding to a vertical cut of Figs. 10.3 and
10.4 at β = 0.0268. The upper branch LS becomes stable around Is = 0.8. The
dashed grey line has been drawn with the purpose of guiding the eye only. It
represents the unstable cycle that we do not compute. This bifurcation diagram
also shows the existence of a stable limit cycle (plotted as squares) correspond-
ing to an oscillatory LS. The stable limit cycle comes from a fold of cycles (FC)
bifurcation, discussed in more detail later, which takes place at a larger value
of Is. Decreasing Is the stable limit cycle disappears at a saddle-loop bifurcation
which takes place when the stable limit cycle becomes the homoclinic orbit of the
saddle (middle branch soliton). In Figure 10.6(c) Region VI corresponds to the
values of Is limited on the left by the subcritical Hopf (H+) and the right by the
saddle loop (SL+ and SL−). Precise values for the SL− obtained from numerical
integration of Eq. (10.1) are plotted as filled squares in Figure 10.4(b) while the
grey SL line joining the points have been drawn to guide the eye6. As we will
discuss in the next section, Region VI corresponds to a regime of conditional
excitability.
In Figure 10.6(c), the FC on the one hand and the SL− on the other limit a new
region of tristability where a stationary LS, a oscillatory LS and the homoge-
neous solution coexist. In Figure 10.4(b) the tristable region is labeled as VIII. In
Figure 10.5 the panel (g) sketches the phase space at the saddle-loop while the
panel (h) illustrates the tristable regime. Increasing β or Is in parameter space
the stable cycle decreases in amplitude while the unstable limit cycle increases
until both the stable and unstable cycles are destroyed in the fold bifurcation
(Figure 10.5(i)). Figure 10.7 shows the time evolution in the tristable regime
obtained starting from an initial condition belonging to the basin of attraction of
the limit cycle and from an initial condition within the basin of attraction of the
stable LS.
In the phase diagram (Figure 10.4(b)) the SL− line can also be located to the left

6An explanation of the numerical integration scheme that we use can be found in Appendix B.
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Figure 10.7: Dynamical evolution of the LS in the tristable regime, where
the spatially homogeneous fundamental branch (not shown), stable oscil-
latory LS regime (solid line), and stable focus (gray line) coexists. The

maximum intensity of the LS is plotted.

of H+ (Region VII). The bifurcation diagram in this case would be similar to the
one shown in Figure 10.6(c), except for the fact that the SL− becomes a SL+ and
the H+ takes place at a larger value of Is than the SL−. Therefore VII is a region
of bistability where a stable limit cycle corresponding to the oscillatory upper
branch LS coexist with the homogeneous solution while the steady state upper
branch LS is an unstable focus.
The last region in the phase diagram to be described is Region III, located to
the right of the SL+ and FC lines. The phase space corresponding to this broad
region is again the one of Figure 10.5(a). The upper branch stationary LS is a
stable point and coexists with the homogeneous solution. Figure 10.6(e) shows
a quantitative bifurcation diagram corresponding to a vertical cut of Figure 10.3
for β = 0.05, to the right of the TB2. For Is < 0.7 only the homogeneous solution
exists (Region I) while above Is = 0.7 one enters in Region III of coexistence of
the stable LS with the homogeneous solution.
We now analyze in detail the fold of limit cycles bifurcation. It appears at a
secondary codimension-two point referred to as resonant side-switching, where
the fold and the saddle-loop bifurcation, that delimit the region of tristability,
coalesce [28, 29]. This occurs, roughly, around β = 0.0272 and Is = 0.82. Fig-
ure 10.6(d) depicts a bifurcation diagram close to this codimension-2 point, for
which the region of existence of stable limit cycles is quite narrow: the repre-
sented square is very close both to the saddle-loop bifurcation and to the fold of
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cycles. In the phase diagram shown in Figure 10.4(b) this codimension-2 corre-
sponds to the point where the FC and the SL (SL− and SL+) lines meet.
The occurrence of the resonant side-switching bifurcation is related to the eigen-
value spectrum of the saddle, namely, the saddle quantity of the middle branch
LS approaches zero, and the cycle emerging from the saddle-loop changes from
stable to unstable. Close to TB2 point the saddle-loop bifurcation must destroy an
unstable cycle (transition from Region VI to III), hence ν > 0, while after the fold
has taken place it destroys a stable cycle (transition from Region VIII to VI), so
ν < 0. Close to the SL+ that emerges from the TB2 point, where the saddle quan-
tity is positive, four localized modes play a role in the dynamical behavior of
the system. However, when moving away from the SL+ line, only two localized
modes determining the dynamics remain. So, in conclusion, we can say that the
system is essentially two-dimensional for the same reasons as discussed in Ref.
[25], except close to the SL+ line, originating from the TB2 point.

10.6 Excitability and conditional excitability

When crossing a saddle-loop bifurcation from a region where a stable oscillatory
LS exist one enters in a excitable regime. As discussed in Subsection 10.4, this
scenario takes place when going from Region IV (where the oscillatory LS is
stable) to Region V where LS exhibit excitability. Of course it is also possible to
enter in Region V from the other side, namely from the side of the TB2 point. In
fact a similar scenario is found when going from Region VII where the oscillatory
LS is stable to Region V. In any case the stable manifold of the saddle (middle
branch LS) plays the role of excitability threshold, so the excitable response is
triggered only by localized perturbations of the homogeneous solution that bring
the system beyond this threshold. Excitability is of Class I [27], characterized by
long response times for perturbations that leave the trajectory close to the saddle
in phase space.
Close to the TB2 point there is another region, VI, where one can enter crossing a
saddle-loop line. However, the dynamical behavior in Region VI is qualitatively
different from Region V since the upper branch LS is an unstable focus in the last
one, while it is stable in the former. As discussed before, the upper branch LS has
been made stable by the subcritical Hopf bifurcation H+ that separates Region V
from VI. The H+ bifurcation generates also an unstable limit cycle, which is not
present in Region V. Therefore, although the transition from Regions III or VIII to
Region VI goes through a saddle-loop bifurcation, the scenario must be qualita-
tively different from the one discussed above which leads to the usual excitability
found in Region V. In Region VI, one finds a regime of conditional excitability,
in which the LS is simultaneously excitable and bistable. The excitable behavior
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Figure 10.8: The conditional excitability regime is illustrated for β = 0.0272
and Is = 0.8. The solid line (excitable trajectory) corresponds to time
evolution of the maxima of the peak after a localized perturbation of the
homogeneous state that brings the system beyond the excitability threshold
but outside the basin of attraction of the upper branch LS. The grey line
corresponds to a stronger localized perturbation that brings the system

inside the boundary of attraction of the upper branch LS.

is also Class I.
To clarify what conditional excitability means, we refer to the phase space
sketched in Figure 10.5(f). In this situation, while as usual, perturbations of
the homogeneous solution that are not able to cross the excitability threshold
(stable manifold of the saddle) lead to normal relaxation, there are two possible
different dynamical responses for supra-threshold perturbations. If a localized
perturbation of the homogeneous state brings the system inside the basin of
attraction of the stable focus, namely inside the unstable cycle, the system jumps
from the fundamental solution to this attractor. Therefore after this perturbation
the system relaxes to the stable LS in a oscillatory way. The grey line in Figure 10.8
shows the dynamical evolution of the maxima of the peak in this situation. In-
stead, for localized perturbations of the homogeneous solution which bring the
system beyond the stable manifold of the saddle but outside the unstable cycle,
the response is excitable. The system exhibits a large response corresponding
to a circulation around the unstable limit cycle before returning to the stable
homogeneous solution. The black line in Figure 10.8 shows the time evolution
of maxima of the peak for a excitable trajectory.
So, in summary, the dynamical response of perturbations is more complex than
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simply sub- and supra-threshold, and for the latter type of perturbations two
possible regimes are possible. When going from Region VI to Region V at the
H+ line, the upper branch LS becomes unstable and the unstable limit cycle re-
sponsible for the conditional excitable response to supra-threshold perturbations
disappears, so the conditional excitability becomes a usual one.

10.7 Conclusion

We have studied the nonlinear dynamical behavior of 2D localized structures
in a model for an optical cavity filled by a Kerr nonlinear medium and a left-
handed metamaterial [1]. The model is a generalization of the Lugiato-Lefever
equation [3], and includes higher order spatial effects. Our study confirms the
possibility to reduce the size of cavity solitons beyond the diffraction limit by us-
ing diffraction compensation techniques. However, we have shown that higher
order spatial interactions not only hinder this size reduction, but also alter the
stability of cavity solitons in a manifest way, imposing a new limit on their
size. We have demonstrated the existence of regions with stationary, oscillating
and excitable localized structures. Furthermore, we have shown that the differ-
ent bifurcation lines originate from two Takens-Bogdanov (TB) codimension-2
points, which is a strong signature for the presence of a homoclinic bifurcation
[2]. This homoclinic bifurcation offers a route to the excitable behavior of the 2D
localized structures. Finally an extra secondary codimension-2 point (resonant
side-switching bifurcation) creates a fold of cycles that leads to two new regimes,
one of tristability and one of conditional excitability.
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CHAPTER 11

Coarsening and faceting
dynamics

“My theory by A. Elk, brackets, Miss, brackets. This theory goes as follows and begins now. All brontosauruses
are thin at one end, much much thicker in the middle, and the thin again at the far end. That is my theory, it
is mine, and it belongs to me, and I own it, and what it is, too.” — Miss. Anne Elk in Monty Python.

The complex Swift-Hohenberg equation models pattern formation in lasers,
optical parametric oscillators and photorefractive oscillators. With real coef-
ficients this equation admits time-independent phase-winding states in which
the real and imaginary parts of the order parameter oscillate periodically but
with a constant phase difference between them. We show that these states
may be unstable to a longwave instability. Depending on the parameters the
evolution of this instability may or may not conserve phase. In the former
case the system undergoes slow coarsening described by a Cahn-Hilliard
equation; in the latter it undergoes repeated phase-slips leading either to
a stable phase-winding state or to a faceted state consisting of an array
of frozen defects connecting phase-winding states with equal and opposite
phase. The transitions between these regimes are studied and their location
in parameter space is determined.1

1The work presented in this Chapter has been published in the following journal papers: [1, 2].
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CHAPTER 11. COARSENING AND FACETING DYNAMICS

11.1 Introduction

The complex Swift-Hohenberg equation (CSHE) has a number of applications
in nonlinear optics. For example, the CSHE describes, under appropriate con-
ditions, Class A and C lasers [3–5]. The CSHE also describes nondegenerate
optical parametric oscillators (OPOs) [6–8], photorefractive oscillators [9], semi-
conductor lasers [10] and passively mode-locked lasers [11]. More generally,
the CSHE models pattern formation arising from an oscillatory instability with
a finite wave number at onset [12, 13]. In most of these examples the bifur-
cation towards non-zero spatially homogeneous solutions in the CSHE arises
supercritically, implying the presence of spatially structured states for parameter
values exceeding the linear stability threshold. In general, the resulting CSHE
has complex coefficients and hence time-dependent solutions. In this Chapter,
we restrict our attention to an important but special case of the CSHE, namely the
case of real coefficients, that admits only stationary solutions. Understanding of
this special case is a prerequisite for gaining a deeper insight into the behavior
of the supercritical CSHE with complex coefficients, studied in the next Chapter.

11.2 Formulation of the problem

We study the supercritical CSHE with real coefficients,

ut = ru − (∂2
x + k2

0)2u − |u|2 u, (11.1)

where u is a complex field and the subscripts x and t indicate partial derivatives
with respect to position and time. The equation is fully parametrized by the real
parameter r; in the following we find it convenient to retain the wave number k0
in the formulation despite the fact that it can be scaled out. We study Eq. (11.1)
on a periodic domain with period L� 2π/k0 as a function of both r and k0 using
a combination of analytical and numerical tools [1]. The equation has variational
structure with a Lyapunov function (free energy) FSH given by

FSH =
1
L

∫ L

0
[−r|u|2 +

1
2
|u|4 + |(∂2

x + k2
0)u|2]dx. (11.2)

Thus
dFSH

dt
= −

2
L

∫ L

0
|ut|

2dx (11.3)

and FSH decreases with time until a stationary state is reached corresponding to a
local minimum of FSH. As throughout this Chapter, we will interpret the results

210



11.2. FORMULATION OF THE PROBLEM

Figure 11.1: Time evolution of the CSHE with r = 1, L = 300 and N = 1024
discretization points, starting from random initial conditions. Coarsening
behavior is observed in panels (a)-(d) for k0 = 0.2. Faceting behavior is
observed in panels (e)-(h) for k0 = 1. The spatio-temporal evolution of
K = ∂xφ is shown in panels (a) and (e), with the corresponding profiles at
t = 3 105 in (c) and (g). The evolution of the amplitude R is given in panels

(b) and (f), with the corresponding profiles at t = 3 105 in (d) and (h).

in terms of either the real and imaginary parts of the order parameter u(x, t), or
in terms of amplitude and phase variables, we write Eq. (11.1) also as follows:

Rt = (r − k4
0)R − R3

− 2k2
0Rxx + 2k2

0Rφ2
x + 6Rxxφ

2
x (11.4)

+12Rxφxφxx − Rφ4
x + 3Rφ2

xx + 4Rφxφxxx − Rxxxx,

Rφt = −4k2
0Rxφx − 2k2

0Rφxx + 4Rxφ
3
x − 6Rxxφxx (11.5)

−4Rxφxxx − 4Rxxxφx + 6Rφ2
xφxx − Rφxxxx.

where u(x, t) is defined by

u(x, t) = uR(x, t) + iuI(x, t) ≡ R(x, t)eiφ(x,t). (11.6)

Figures 11.1(a)-(d) show typical time evolution obtained using direct numerical
integration of Eq. (11.1) when r = 1 and k0 = 0.2 starting from random initial
conditions2. Figure 11.1(a) depicts the spatio-temporal evolution of the phase
gradient K ≡ φx, while the evolution of the amplitude R is depicted in Fig. 11.1(b).
The profiles of both the phase gradient K and the amplitude R at the final time
step of the numerical simulation are shown in Figs. 11.1(c) and (d). Initially
a modulational instability develops after which several kink-antikink pairs or

2An explanation of the numerical integration scheme that we use can be found in Appendix B.
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CHAPTER 11. COARSENING AND FACETING DYNAMICS

"bubbles" are created in the system. These bubbles are unstable and in time
smaller bubbles repeatedly merge forming larger and larger structures, a process
called coarsening [14]. This merging of bubbles continues until only one bubble
remains in the system. Quite different behavior is observed when k0 is larger,
as indicated in Figs. 11.1(e)-(h) for k0 = 1, again starting from random initial
conditions. For this set of parameters no coarsening dynamics is observed.
Instead the different bubbles present in the system are stationary and take the
form of stable facets with wavenumbers K = ±k0 connected by sharp interfaces
with oscillatory internal structure. The existence of these structures was noted
already by Raitt and Riecke [15, 16] in the context of the fourth order Ginzburg-
Landau equation; in the following we refer to them as spatially localized states
(LS)..
In this Chapter, we provide a detailed analysis of both the coarsening dynamics
and the faceting dynamics in the CSHE. Insight into the transition between
both regimes is provided as well. We first describe the basic properties of this
equation, following recent work by us on the subcritical case [1]. In Section
11.4, we introduce the notion of phase-winding states and study their stability
properties. Phase-winding states are solutions of the CSHE in which the real
and imaginary parts of the order parameter oscillate (in space) with a constant,
but nonzero, phase difference. The phase of each jumps by the same integer
multiple of 2π across the domain. In Section 11.5, we study the evolution of
the longwave instability of phase-winding states as identified in Section 11.4
and show that under appropriate conditions it follows Cahn-Hilliard dynamics,
leading to slow coarsening in wave number space. In Section 11.6, we show
that in other regimes the longwave instability generates phase-slips, resulting
either in stable phase-winding states with a different wave number or localized
states that take the form of defects connecting phase-winding states with equal
and opposite phase lag. We refer to states of this type as faceted, and show that
bound states of such defects can be stable over a wide range of parameter values.
Finally, in Section 11.7, we examine the transition between the coarsening and
faceting regimes. Direct numerical simulations of the CSHE complement the
theory throughout.

11.3 The spatially homogeneous solutions

Spatially homogeneous solutions, hereafter referred to as “flat”, take the form
u = R0(t)eiφ0(t). Thus

R0t = (r − k4
0)R0 − R3

0, (11.7)
φ0t = 0, (11.8)
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11.3. THE SPATIALLY HOMOGENEOUS SOLUTIONS

Figure 11.2: Stationary homogeneous solutions Rs for k0 = 1. These states
are always unstable to phase modes, although the amplitude mode be-
comes stable beyond the Turing bifurcation T of the non-zero state (solid

line).

with stationary solutions given by

R2
0 = R2

s ≡ 0, r − k4
0, (11.9)

φ0 = φs, (11.10)

where φs is a constant (Rs , 0). The amplitude Rs of these homogeneous states
is shown in Figure 11.2.

11.3.1 Temporal stability

To determine the stability of these states we let u(x, t) = (Rs + δ(x, t)) exp iφs,
where δ is a complex infinitesimal perturbation satisfying

δt = rδ − (∂2
x + k2

0)2δ − R2
s (2δ + δ̄). (11.11)

Writing δ ≡ δR + iδI we obtain

δRt = rδR − (∂2
x + k2

0)2δR − 3R2
sδR, (11.12)

δIt = rδI − (∂2
x + k2

0)2δI − R2
sδI. (11.13)
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Thus with (δR, δI) ∝ exp(ikx + σt) we find the pair of growth rates

σR = −2R2
s + (2k2

0 − k2)k2, (11.14)

σI = (2k2
0 − k2)k2, (11.15)

describing the stability of the flat states Rs , 0 with respect to amplitude and
phase perturbations, respectively.

Temporal stability of the trivial state:
The state u = 0 is destabilized by periodic modulations with wave number k = k0
at r = 0 (point T0) in a Turing bifucation (also called modulational instability in
the optics literature). A band of unstable wave numbers develops around k = k0
for r > 0 and spreads to k = 0 when r reaches r = k4

0 (point P) corresponding to a
reversible pitchfork bifurcation to nonzero flat states.

Temporal stability of the nonzero flat states:
As can be seen from Eqs. (11.14)-(11.15), the nonzero flat states are always un-
stable to phase perturbations with wave number k in the range 0 < k2 < 2k2

0;
translation invariance implies that the phase growth rate of these perturbations
vanishes when k = 0. Thus the states beyond the Turing point T (r > 3k4

0/2)
are amplitude-stable but phase-unstable, and for small wave numbers (k � k0)
the growth rate of the instability is positive but small. This observation will be
important in what follows.
Figure 11.2 summarizes these results. Solid/dashed lines denote solutions that
are stable/unstable with respect to the amplitude mode.

11.3.2 Spatial stability

In order to understand the presence of LS homoclinic or heteroclinic to the flat
states we also need to know their stability properties in space. For this purpose we
write R(x) = (Rs + δ(x)) exp iφs, where δ ≡ δR + iδI ∝ eλx. The spatial eigenvalues
λ satisfy the equations

λ4 + 2λ2k2
0 + 2R2

s = 0, (11.16)

λ2(λ2 + 2k2
0) = 0. (11.17)

The former gives the spatial eigenvalues corresponding to amplitude perturba-
tions; these are as in the real Swift-Hohenberg equation. The latter equation
gives the spatial eigenvalues corresponding to phase perturbations. Evidently
there is always a pair of zero spatial eigenvalues, a consequence of the invariance
of the CSHE under phase shifts, together with spatial reversibility. In addition,
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11.4. THE PHASE-WINDING STATES

Figure 11.3: RW: A phase-winding state in terms of its amplitude Rs and
the modulation wave number Ks ≡ ∂xφs (top two panels), the real (solid)
and imaginary (dashed) parts of the field u (third panel), and the field u
in the complex plane (bottom panel). Parameters: r = 0.5, k0 = 1, L = 100,

N = 512.

there is a pair of purely imaginary eigenvalues. Neither of these depends on the
state or the value of r.

11.4 The phase-winding states

In the numerical simulations we encounter states in which the phase is no longer
constant in space: over large parts of the domain the phase may vary linearly with
the spatial coordinate x. Stable states of this type, referred to as phase-winding
states, were observed in Ref. [17] and studied in the context of the subcritical
CSHE by us in Ref. [1]. These states take the form u = Rs exp iφs, Rs , 0, where

R2
s = r − (K2

s − k2
0)2, (11.18)

φs = Ksx, (11.19)

and Ks is a real constant. In the following we refer to the quantity Ks ≡ ∂xφs
as the wave number of the solution. These states are characterized by the free
energy

FSH,RW = −
1
2

[r − (K2
s − k2

0)2], (11.20)
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Figure 11.4: Temporal growth rate σ1 of the phase-winding solution for k0

= 1, r = 0.7 and Ks = 1.3 as given by Eq. (11.21); σ2 is not shown since it is
always more stable.

as obtained from Eq. (11.2). Thus states with Ks = k0 minimize the free energy at
each fixed r.
Figure 11.3 shows an example of a stable phase-winding state when r = 0.5
and k0 = 1, obtained using time integration of Eq. (11.1) with periodic boundary
conditions at x = 0,L and N = 512 mesh points. Observe that this state is not
symmetric under spatial reflection; generically states of this type are expected
to drift but here these states are necessarily stationary. This is a consequence of
the variational nature of Eq. (11.1) when the coefficients are real. In view of the
constant phase difference (in space) between the real and imaginary parts of the
order parameter u [Figure 11.3(c)] we refer to phase-winding states of this type
as rotating waves (RW): in the (uR,uI) plane the RW correspond to closed orbits
around the origin [Figure 11.3(d)]. In contrast, we refer to the spatially periodic
states in which uR and uI oscillate in phase as standing waves (SW). In the complex
u plane the SW correspond to oscillations along straight lines through the origin.
The solution shown in Figure 11.3 shows that time evolution of Eq. (11.1) may

result in stable states with a wave number that differs from k0. In view of the
imposed periodic boundary conditions the net phase jump ∆φ across a domain
of length L associated with a solution must be 2πn, where n is an integer. When
this phase jump is uniformly distributed it produces a constant phase gradient
specified by Kn ≡ 2πn/L. In the event that Kn = k0 the corresponding phase-
winding solution bifurcates at r = 0, i.e., simultaneously with the SW branch.
However, although these two periodic states have, in this case, the same wave
number k0 they are distinct.
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11.4.1 Temporal stability

Writing R = Rs +δReikx+σt andφ = φs +δφeikx+σt, where Rs andφs are given by Eqs.
(11.18)-(11.19), one finds that the temporal growth rate σ satisfies the quadratic
equation

σ2 + σ[2k4 + 11K2
s k2
− 3k2

0k2 + 2R2
s ]

−k2[2k2
0 − k2

− 6K2
s ][k4

− 2k2(k2
0 − 3K2

s ) + 2R2
s ]

−16k2K2
s [k2

0 − k2
− K2

s ]2 = 0. (11.21)

When Ks = 0 this equation reduces to Eqs. (11.14)-(11.15). In the following we
refer to the two roots of this equation as σ1,2; Figure 11.4(a) shows the larger root
σ1 as a function of k2 when Ks = 1.3. It becomes clear that the phase-winding
states are unstable to longwave perturbations. The solution is stable for large
wave number perturbations.

11.4.2 Spatial stability

Writing R = Rs + δReλx and φ = φs + δφeλx, where Rs and φs are given by Eqs.
(11.18)-(11.19), one finds that the spatial eigenvalues λ satisfy

λ2[(λ4 + 2(k2
0 − 3K2

s )λ2 + 2R2
s ][λ2 + 2k2

0 − 6K2
s ]

+16λ2K2
s [λ2 + k2

0 − K2
s ]2 = 0. (11.22)

This equation reduces to Eqs. (11.16)-(11.17) when Ks = 0. When Ks , 0 the pair
of zero eigenvalues remains but the remaining sixth order characteristic equation
no longer factors.

11.5 Coarsening dynamics: the Cahn-Hilliard equa-
tion

In this section, we study the evolution of the longwave instability of both the flat
and the phase-winding states. The analysis is motivated by the temporal stability
results which indicate the presence of a slowly growing long wavelength phase
mode [Eqs. (11.15) and (11.21)]. We show that the evolution of this mode is
described by a Cahn-Hilliard-type equation for the perturbation wave number.
In the region of validity of this equation, there is no locking of oscillatory tails and
coarsening of the growing perturbations is predicted. This prediction compares
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well with direct numerical simulations of the CSHE described in Section 11.5.4.
Extensions of the theory to other regimes do predict locking of adjacent structures
and hence evolution to a frozen asymptotic state (Section 11.6).

11.5.1 Derivation of the Cahn-Hilliard equation

We consider the evolution of long wavelength phase modulation of the flat
state R2

0 = R2
s ≡ r − k4

0, φ0 = φs, where φs is a constant. We first rewrite Eqs.
(11.4)-(11.5) as coupled equations for the amplitude R(x, t) and modulation wave
number K(x, t) ≡ ∂xφ(x, t):

Rt = rR − R3
− 2k2

0Rxx − (k2
0 − K2)2R + 6K2Rxx

+12KKxRx + 3K2
xR + 4KKxxR − Rxxxx (11.23)

Kt = −2
(
2k2

0
Rx

R
K + 2

Rxxx

R
K + 3

Rxx

R
Kx + 2

Rx

R
Kxx

−2
Rx

R
K3

)
x
− 2k2

0Kxx − Kxxxx + 2(K3)xx. (11.24)

Writing R = Rs(1 + u) and K = v, where u = O(ε2), v = O(ε) and ε � 1 is a
small parameter measuring the wave number of the perturbation, one obtains
the following equation for u:

ut = −2R2
s u − 3R2

s u2 + 2k2
0v2 + 2k2

0uv2

+3v2
x + 4vvxx − v4

− 2k2
0uxx + higher order terms (11.25)

We now write u = αv2 + w, where α = O(1) and w is of order O(ε4), and take
∂t ≡ O(ε4), obtaining α = k2

0/R
2
s and

w =
1

2R4
s

[−(R2
s + k4

0)v4 + (3R2
s − 4k4

0)v2
x + 4(R2

s − k4
0)vvxx]. (11.26)

Equation (11.24) now yields the result

vt = −[2k2
0v + vxx + κ0v3]xx, (11.27)

where κ0 ≡ (8k4
0/3R2

s ) − 2, correct to O(ε5). This is the Cahn-Hilliard equation
[14]. In the CSHE context this equation first appears in the work of Malomed et
al. [18].
The Cahn-Hilliard equation was originally derived to describe the dynamics
of phase separation in systems with a conserved quantity in the context of
binary alloys [14]. However, the model equation arises in many other areas of
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Figure 11.5: Potential V(v) as a function of v for k0 = 0.1 and κ0 = −2.

physics as well [19], including spinodal decomposition in thin films [20], pattern
formation on surfaces, dislocations of microstructures, crack propagation and
electromigration, where it is used to describe progressive coarsening [19]. The
equation also describes wavelength selection in fixed flux thermal convection
[21]. In the present context the form of the equation is a consequence of phase
conservation across the domain, together with the symmetry of Eqs. (11.23)-
(11.24) with respect the spatial reflection: x→ −x, R→ R, K→ −K.
Equation (11.27) describes the evolution of the longwave instability triggered by
the negative diffusion coefficient γ = −2k2

0. The equation applies for solutions
with zero mean, so that ∆φ = 0 across the domain, as required of any perturbation
of a constant phase state.

11.5.2 Stationary solutions of the Cahn-Hilliard equation

The Cahn-Hilliard equation, Eq. (11.27), has the Lyapunov functional

FCH[v] =

∫
dx[

1
2

v2
x − V(v)], (11.28)

where (see Figure 11.5)

V(v) ≡ k2
0v2 +

1
4
κ0v4, (11.29)
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defined such that
vt = ∂xx[δFCH(v)/δv(x)]. (11.30)

Thus
dFCH

dt
= −

∫ L

0
[vxx + V′(v)]2 dx (11.31)

and FCH[v] decreases until it reaches a stationary state of Eq. (11.27). These
stationary states satisfy

vxx + 2k2
0v + κ0v3 + λ1 + λ2x = 0, (11.32)

where λ1, λ2 are integration constants. Symmetry with respect to reflection in v
requires that λ1 = 0, while the requirement that v = 0 is a solution implies that
λ2 = 0. Thus

1
2

v2
x + V(v) = E; (11.33)

we refer to the integration constant E as the energy.
Since V has two identical maxima (κ0 ≈ −2), there is a pair of symmetry-related
spatially homogeneous steady states given by

vs ≈ ±k0 (11.34)

with energy Es = −k4
0/κ0 > 0. When 0 < E < Es, there is a family of spatially

periodic nonlinear solutions of zero mean whose period and amplitude depend
on E. These solutions are, however, known to be unstable [22, 23]. As E → Es
from below these solutions degenerate into a pair of heteroclinic states connect-
ing a pair of symmetry-related equilibria. These states are called kinks if the
phase increases across the associated defect, and antikinks if it decreases. A
kink-antikink pair is the long time zero-area attractor of the equation [22–24].
Thus a system consisting of several kink-antikink pairs or “bubbles” is unstable
and in time exhibits coarsening dynamics, in which smaller bubbles repeatedly
merge together forming larger and larger structures. This process is driven by
the mutual interaction between the kink and antikink pairs and is present when-
ever the spatial eigenvalues of vs ≈ ±k0 are real, i.e., provided there is no pinning.
At large times the width of the broadest bubble increases exponentially slowly
as a result of the exponentially small interaction between kinks and antikinks
when these are widely separated [25, 26].

11.5.3 Derivation of the Cahn-Hilliard equation for phase-winding
states

In this section we consider the growth of unstable perturbations of phase-
winding states given by R = Rs, K = Ks, where R2

s = r − (k2
0 − K2

s )2 and Ks , 0 is a
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constant. As before we write R = Rs(1 + u), K = Ks(1 + v) but this time take both
u and v to be O(ε). At the same time we suppose that spatial derivatives are O(ε)
and time derivatives of at least O(ε3). Substitution into Eqs. (11.23) and (11.24)
yields coupled equations for u and v. As before we can solve for u in terms of v:

u = β1v + β2v2 + β3v3 + β4vxx + O(ε4), (11.35)

where

β1 =
2K2

s (k2
0 − K2

s )

R2
s

(11.36)

β2 =
K2

s (k2
0 − 3K2

s )

R2
s

−
5
2
β2

1 (11.37)

β3 = −β1(β2
1 + 3β2) (11.38)

+
K2

s

R2
s

[(k2
0 − K2

s )(β1 + 2β2) − 2(β1 + 1)K2
s ] (11.39)

β4 =
−(k2

0 − 3K2
s )β1 + 2K2

s

R2
s

. (11.40)

It follows that v satisfies the equation [27]

vt = [γv − δvxx −
1
2
κ1v2

−
1
3
κ2v3]xx, (11.41)

where the coefficients are given by

γ = −2k2
0(1 + 2β1) + 2K2

s (3 + 2β1) (11.42)

δ = 1 + 4β1 + 4(k2
0 − K2

s )β4 (11.43)

κ1 = 4[k2
0(β1 − β

2
1 + 2β2) − K2

s (3 + 3β1 − β
2
1 + 2β2)] (11.44)

κ2 = −4k2
0(2β2

1 − β
3
1 − 2β2 + 3β1β2 − 6β3) (11.45)

−2K2
s (3 + 6β1 − 6β2

1 + 2β3
1 + 12β2 − 6β1β2 + 6β3).

Note that since Eq. (11.1) is variational, the phase dynamics is also variational.
Equation (11.41) resembles the Cahn-Hilliard equation (11.27) except for the
presence of an asymmetrical potential V. When γ = O(ε2), ε � 1, the dynamics
is described by

vt = (γv − δvxx −
1
2
κ1v2)xx, (11.46)

provided v = O(ε2). Such an equation is thus valid for small wave number
changes near the stability boundary γ = 0 (Figure 11.6). A similar equation
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Figure 11.6: The condition Rs > 0 with the Eckhaus-stable region (γ > 0) in
gray and the Eckhaus-unstable region (γ < 0) in white in the (Ks, r) plane.

No solutions Rs are present in the black region. (a) k0 = 0.2. (b) k0 = 1.

arises in the classical theory of the Eckhaus instability based on the complex
Ginzburg-Landau equation with real coefficients [28, 29], where γ < 0 in the
Eckhaus-unstable regime (white regions in Figure 11.6 near Ks = ±k0) and the
nonlinear term drives v, and hence u, to such large amplitudes that R reaches zero
and a defect forms. In this case phase is no longer conserved: the conservation
law

∫ L

0 v dx = 0 implied by Eqs. (11.24) and (11.46) requires that R > 0 throughout
the evolution of R and K. Equations of the form (11.46) arise in other systems
with variational dynamics, including the rupture of thin liquid films [30] and
compressible fixed heat flux convection [31], and require that both γ and v are
taken so small that the stabilizing fourth derivative term is competitive. In all
these applications the resulting dynamics leads to the formation of a singularity.

In this present case we find that if the effective value of ε, as defined by the
magnitude of γ, is not too small, the quartic term in the potential does enter into
the dynamics and may, under appropriate conditions, prevent the formation
of defects. In these circumstances the Cahn-Hilliard equation (11.41) describes
the behavior of the CSHE for all time, and one again observes coarsening. In
the CSHE this is the case for small wave numbers Ks, i.e., near band center. In
contrast, the Ginzburg-Landau approximation applies near Ks = ±k0, and here
the band center is Eckhaus-stable (Figure 11.6 and [15]). However, away from the
band center in the CSHE, i.e., for Ks sufficiently far from zero, one does observe
defect formation instead of coarsening, much as in the Eckhaus-unstable regime
in the Ginzburg-Landau equation. We discuss this behavior next.
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11.5.4 Numerical verification of coarsening dynamics

In this section we confirm that the CSHE equation does indeed follow the coars-
ening dynamics predicted from the Cahn-Hilliard equations with Ks = 0 and
Ks , 0 provided that Ks is appropriately small.
In Figs. 11.7 and 11.9 we show the results of simulations starting from a phase-
winding state with a net phase jump ∆φ = 2πn across the domain, where n is an
integer. Such a state has wave number Ks = Kn ≡ 2πn/L. In the region of validity
of Eq. (11.41) this phase jump should be conserved by the evolution, i.e. the area
A ≡

∫ L

0 K(x, t) dx = 2πn throughout the evolution. When γ < 0 (white regions
in Figure 11.6) the phase-winding state is modulationally unstable. Figure 11.7
shows the spatiotemporal evolution of the real and imaginary parts of the com-
plex field u and of the wave number K when k0 = 0.2 (Figure 11.6(a)) and r = 2,
Ks = 2π/100 = 0.063 (n = 1). The simulations confirm the conservation of the
area A and demonstrate that the phase-winding state develops a modulational
instability after which the system coarsens in time until only one bubble remains.
From area conservation the width d− of the K < 0 part of the bubble is given by

d− =
LK+

K+ − K−
−

2πn
K+ − K−

, (11.47)

where n is an integer determined by the initial condition (here n = 1) and K± are
the wave numbers connected by the pair of heteroclinic connections that form as
t→∞. We find that K± = Ks(1 + v±), where v± correspond to the two maxima of
the potential V2(v) ≡ λ1v − 1

2γv2 + 1
6κ1v3 + 1

12κ2v4 associated with Eq. (11.41). Of
course, such a connection is only possible when the two maxima are identical,
a requirement that selects the quantity λ1. With this choice of λ1 the potential
V2 remains asymmetrical but resembles Figure 11.5. The numerical simulations
indicate, in addition, that the resulting values of v± are such that K± ≈ ±k0, i.e.,
the evolution of the system replaces the phase-winding state with wave number
Ks with the preferred wave number k0. Thus the asymmetrical potential is a
consequence of the fact that Ks , k0.

To understand the numerical results in more detail we rewrite Eq. (11.41) in
terms of the wave number K = Ks(1 + v) obtaining

Kt = [(γ + κ1 − κ2)K − δKxx +
ρ

Ks
K2
−
κ2

3K2
s

K3]xx. (11.48)

Figure 11.8(a) shows the quantity ρ ≡ κ2 −
1
2κ1 that measures the importance of

the quadratic term in Eq. (11.48) as a function of k0. Thus for small to moderate
values of k0 the quadratic term is indeed small, and coarsening is expected.
Figure 11.8(b) shows, moreover, that in this regime the selected wave numbers
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Figure 11.7: Time evolution of the CSHE with k0 = 0.2 and r = 2
starting from an unstable phase-winding state with initial wave number
Kn = 2πn/L, where L = 100 and n = 1. For these parameter values coarsen-
ing behavior is observed in panels (a)-(f). The spatio-temporal evolution of
K = ∂xφ is shown in panel (a), with the corresponding profiles at t = 104 in
(b). The evolution of the real part and imaginary part of the field is plotted
in panels (c) and (e), with the corresponding profiles at t = 104 in (d) and

(f).

satisfy

K± = ±Ks
√

3(γ + κ1 − κ2)/κ2 ≈ ±k0. (11.49)

For larger values of Ks, or equivalently of γ, the quadratic term in the potential
is no longer negligible, and the evolution begins to resemble behavior familiar
from earlier studies of the nonlinear evolution of the Eckhaus instability [28, 29].
In this regime defects form and phase is no longer conserved. A typical example
of this type of evolution is shown in Figure 11.9. We again take k0 = 0.2 and
r = 2, but now consider a phase-winding state with Kn = 2π(18/100) ≈ 1.131
(n = 18). As shown in Figure 11.6(a) for these parameters γ < 0 indicating that
this phase-winding state is also modulationally unstable. However, coarsening
does not take place and one observes instead successive formation of defects.
The associated change in phase is tracked in Figure 11.9(c); the final state that
results is a phase-winding state with a stable wave number Kn, n = 5. Thus
the modulational instability acts to shift the wave number of the state from an
unstable wave number to one that is stable (shaded region in Figure 11.6(a)).
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Figure 11.8: (a) The quantity ρ ≡ κ2 −
1
2κ1 and (b) the location K± of the

maxima of the resulting potential V2 when these are equal, both as functions
of k0. Parameters: r = 2 and Ks = 0.1.

11.5.5 Transition from coarsening to Eckhaus dynamics

In an attempt to locate the transition from coarsening behavior to evolution via
phase slips we have performed a series of numerical computations spanning the
unstable regions (γ < 0) in Figure 11.6. We describe here the results for k0 = 0.2,
r = 2 on a domain of length L = 300 with N = 1024 mesh points. In each case we
initialize the calculation with an unstable phase-winding state, specified by n,
and allow numerical error to trigger the instability. As a result we do not control
the initial condition and so find the most “likely” outcome of the instability. We
emphasize that multiple outcomes are in general possible, depending on initial
conditions, and that even small changes in the resolution (for example) lead to
different results. This is because the Eckhaus instability in effect amplifies small
amplitude noise which develops into a distribution of phase slips that depends
on the noise details. Thus in the Eckhaus-unstable regime the outcome of the
instability requires a probabilistic description.
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Figure 11.9: Time evolution of the CSHE with k0 = 0.2 and r = 2
starting from an unstable phase-winding state with initial wave number
Kn = 2πn/L, where L = 100 and n = 18. Panels show the spatio-temporal
evolution of (a) Re(u) and (b) Im(u), while (c) shows the evolution of the

total phase jump over the domain.

n = KsL/2π 1 2 3 4 5
behavior C C C C C
n f inal 1 2 3 4 5
n = KsL/2π 47 48 49 50 51 52 53 54 55 56 57
behavior E E E E E E E E EC EC EC
n f inal 44 31 26 24 17 16 15 7 5 0 -2

Table 11.1: Outcome of the modulational instability of phase-winding
states when k0 = 0.2, r = 2, L = 300, N = 1024. The top row specifies the
wave number of the unstable initial state while n f inal specifies the phase
jump across the domain in the final state. The letters C (coarsening) and
E (Eckhaus) indicate the evolution type; EC indicates evolution via phase

slips followed by coarsening.
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The results are summarized in Table I. The top row specifies the wave number
Kn of the unstable initial state while the third row lists n f inal ≡ ∆φ f inal/2π that
measures the total phase jump across the domain in the final state of the sim-
ulation. The letter C indicates evolution via coarsening. Since this process is
phase-conserving, n f inal = ninitial. This type of behavior dominates throughout
the unstable band near Ks = 0. In the remaining unstable regions in Figure 11.6
the evolution is via phase slips and we label this type of evolution with the letter
E. The final states reached consist of new phase-winding states with a wave num-
ber in the Eckhaus-stable regime. The table reveals that near the inner boundary
of these regions the Eckhaus instability generates only a small number of defects,
ninitial−n f inal. However, this number increases approximately linearly with ninitial,
until the total phase jump across the domain is almost zero. The corresponding
wave numbers, as measured by n f inal are once again in the unstable regime near
Ks = 0 and one therefore anticipates a second phase of the evolution resembling
coarsening. We indicate this type of behavior using the symbol EC.
Figure 11.10 shows an example typical of the EC regime. Numerous phase slips
take place that reduce the effective n from its initial value ninitial = 55 to n f inal = 5.
At this point the solution is still far from a phase-winding state with a linear
phase gradient but from this point on no additional phase slips take place and
evolution via coarsening takes over, as expected from a Cahn-Hilliard equation
initialized with a large number of “bubbles”. The final state of the system is
therefore a single stable bubble whose area is determined by the net phase jump
across the domain at the end of the Eckhaus phase.

11.6 Faceting of phase-winding states

11.6.1 Origin of frozen facets

In this section we describe the corresponding results for the case k0 = 1 (Figure
11.6(b)). Figures 11.11 and 11.12 show the time evolution of the CSHE for
r = 2 starting with unstable phase-winding states with wave numbers Kn ≡

2πn/L with L = 100 and n = 2, 22, respectively. As anticipated the solutions
evolve by generating defects, thereby changing their wave number into a stable
one. However, the manner with which this is accomplished depends on both
parameters and initial conditions. In Figure 11.11, corresponding to n = 2, the
system evolves into a state with wave numbers K = ±k0 connected by (a pair
of) heteroclinic connections or fronts. Owing to the complex spatial eigenvalues
λ of these states the fronts lock to each other via their overlapping oscillatory
tails [15, 32] forming a bound state of two fronts, i.e., bound states of a kink
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Figure 11.10: Time evolution of the CSHE with k0 = 0.2 and r = 2
starting from an unstable phase-winding state with initial wave number
Kn = 2πn/L, where L = 300 and n = 55. Panels show the spatio-temporal
evolution of (a) K = ∂xφ and (c) Re(u), with the corresponding profiles at

t = 50 and t = 104 shown in (b) and (d).

and an antikink, and this structure is reflected in the amplitude R as well. The
formation of such a bound state suppresses further evolution of the system and
no coarsening is observed, even when multiple bound states are present. In
contrast, Figure 11.12, corresponding to n = 22, reveals behavior that conforms
to standard Eckhaus evolution, resulting in the formation of a stable phase-
winding state with n = 19. Here the phase gradient remains homogeneous in
space and no facets form.

11.6.2 Bifurcation structure of the frozen facets

In this section, we examine the properties of faceted states of the type shown
in Figure 11.11. These states are the typical final states obtained in numerical
simulations starting either from an unstable RW as initial condition or starting
with random noise. These structures are spatially localized in both amplitude
and phase, and can be symmetric or asymmetric under reflection in x. States
of this type exhibit pronounced localization in amplitude together with almost
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Figure 11.11: Time evolution of the CSHE with k0 = 1 and r = 2
starting from an unstable phase-winding state with initial wave number
Kn = 2πn/L, where L = 100 and n = 2. Panels show the spatio-temporal
evolution of (a) K and (b) R, while panels (c)-(d) show the solution profiles
at the last time step of (a)-(b). Panels (e)-(f) show the evolution of Re(u) and
Im(u), respectively, while (g) shows the evolution of the total phase jump

over the domain.

linear phase variation, typically with slopes ±k0 on either side of the resulting
localized structure (LS). The resulting phase variation thus resembles a faceted
surface, with the relatively abrupt changes in the phase gradient associated with
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Figure 11.12: Time evolution of the CSHE with k0 = 1 and r = 2
starting from an unstable phase-winding state with initial wave number
Kn = 2πn/L, where L = 100 and n = 22. Panels show the spatio-temporal
evolution of (a) K and (b) R, (c) Re(u) and (d) Im(u). The final state has a

uniform amplitude and wave number corresponding to n = 19.

the amplitude defect. In general, the widths of the amplitude and wave number
defects are comparable. In the presence of periodic boundary conditions LS
of this type necessarily come in pairs. In view of the variational structure of
Eq. (11.1) asymmetric LS remain stationary and hence can easily be continued in
parameter space using standard continuation techniques.
Figure 11.13 shows the bifurcation structure of the different types of LS using

the L2 norm (hereafter, the energy) as a function of the control parameter r when
k0 = 1. Stable (unstable) solutions are shown in solid (dashed) lines. The branch
of in-phase oscillations with wave number k0, labeled as SW (Standing Waves),
bifurcates from u = 0 at r = 0. An example of an SW [profile (2)] can be seen
in Figure 11.14. As r increases beyond r = 0, the SW branch bifurcates at point
A resulting in a branch of Modulated Rotating Waves (MW), consisting of an
equidistant pair of identical defects of opposite chirality. Once again, the phase
outside of these defects varies almost linearly, with alternating gradients ±k0
and no overall phase jump ∆φ = 0. In this type of solution the amplitude
defects are symmetric under reflection since each defect lies exactly midway
between its neighbors on either side. Near A the phase gradient is markedly
nonuniform in space [see Figure 11.15, profile (3)]. However, with increasing r the
nonuniformity in both amplitude and the phase gradient gradually decreases,
and the solution resembles more and more a front connecting equal and opposite
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Figure 11.13: Bifurcation diagram showing the classical periodic states (SW,
black), together with the new phase-winding (RW, black) and faceted states
(MW/BS, gray). The integers indicate locations used for solution profiles in
subsequent figures. Solid (dashed) lines depict stable (unstable) solutions.
As the stable branches of BS and MW have very similar energies as the
MW the former have been displaced slightly downward. Parameters: k0 =

1, L = 100, N = 512.

wave numbers ±k0 [see Figure 11.15, profile (4)]. In space these bifurcations
correspond to the spatial analogue of the direction-reversing Hopf bifurcation
from a group orbit of periodic states discussed in [33].

For comparison, Figure 11.13 also shows a branch of phase-winding states
(RW) from Eqs. (11.18)-(11.19), with phase gradient Kn ≡ 2πn/L with n = 16.
In general, numerical simulation produces several LS that are localized in both
amplitude and phase (MW, BS in Figure 11.13) but in some cases one obtains
a constant amplitude phase-winding state. Figure 11.3 [profile (1)] shows one
such state obtained by numerical simulation. The phase gradient on this branch
is constant and hence equal to Kn = 2πn/L (here n = 16).

Figure 11.13 reveals, in addition, the presence of additional but disconnected
solution branches (only the stable part of these branches is shown). The solutions
on these branches also consist of states with a pair of defects but the defects are
no longer equally spaced [Figure 11.16, profiles (5)-(7)]. We refer to solutions of
this type as bound states (BS). The BS form via locking between the oscillatory
tails of individual LS forming, at each r, a discrete family of BS with different
separations. Each of these states lies on a distinct solution branch with like

231



CHAPTER 11. COARSENING AND FACETING DYNAMICS

Figure 11.14: SW: Solution profile at location (2) in Figure 11.13. Top two
panels: amplitude R and modulation wave number K ≡ ∂xφ. Third panel:
real (solid) and imaginary (dashed) parts of the field u. Bottom panel: the
field u in the complex plane. Parameters: r = 0.5, k0 = 1, L = 100 and

N = 512.

Figure 11.15: MW: Solution profiles at locations (3)-(4) in Figure 11.13, r =
0.04, 0.5, respectively. Top two panels: amplitude R and modulation wave
number K ≡ ∂xφ. Third panel: real (solid) and imaginary (dashed) parts of
the field u. Bottom panel: the field u in the complex plane. Parameters: k0

= 1, L = 100 and N = 512.

behavior [15]. Similar bifurcation structure is also present in the subcritical case
[1].
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Figure 11.16: BS: Solution profiles at locations (5)-(7) in Figure 11.13,
r = 0.5, 0.5, 0.8, respectively. Top two panels: amplitude R and modu-
lation wave number K ≡ ∂xφ. Third panel: real (solid) and imaginary
(dashed) parts of the field u. Bottom panel: the field u in the complex

plane. Parameters: k0 = 1, L = 100 and N = 512.

11.7 Transitions between coarsening, frozen faceted
structures and Eckhaus dynamics

11.7.1 Transition from coarsening to frozen faceted structures

As discussed in the previous two sections, the behavior of faceted structures in
the CSHE depends on the characteristic length scale 2π/k0. When k0 is small the
facets coarsen indefinitely as described by a Cahn-Hilliard equation, while for
larger values of k0 the coarsening ceases leading to a frozen faceted structure. In
this case the fronts connecting equal and opposite phase gradients k0 form bound
states permitting the coexistence of multiple stable bubbles. In this section we
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Figure 11.17: The (a) real and (b) imaginary parts of the spatial eigenvalues
of the phase-winding state as a function of the phase gradient Ks, 0 ≤ Ks ≤ 1,
and Ks set equal to k0 as observed in all numerical simulations resulting
in localized states. Thus the plot also represents the variation of the real
and imaginary parts of the relevant spatial eigenvalues as a function of the

basic wave number k0 with r = 1.

examine the transition between these two regimes.
In order to predict the value of k0 at which the transition from coarsening to

faceting behavior takes place we examine the spatial eigenvalues of the phase-
winding state with Ks = k0 as described by Eq. (11.22). Since the decay of
spatial perturbations around this state is controlled by the slowest eigenvalue,
i.e., the eigenvalue with the smallest nonzero real part, coarsening will take
place whenever this eigenvalue is purely real and oscillatory tails are absent. On
the other hand, whenever this particular eigenvalue has a nonzero imaginary
part oscillatory tails will be present allowing adjacent kink and antikinks to lock
to one another [32]. In this case one expects to observe faceting. It follows,
therefore, that the transition between coarsening and faceting dynamics is given
by the point in parameter space where the eigenvalue with the smallest real part
acquires a non-zero imaginary part.
In Figure 11.17 we show the real and imaginary parts of the spatial eigenvalues

of a phase-winding state with wave number Ks in the special case in which
Ks = k0. This choice is motivated by our numerical simulations which show
that the phase gradients involved in the formation of a localized structure are
always ±k0. For the parameters r = 1 and Ks = k0 ∈ [0, 1] the eight eigenvalues
[as obtained from Eq. (11.22)] are organized as follows: there is a quartet of
complex eigenvalues (λ1,2,3,4 = ±λr ± λi), two purely real eigenvalues (λ5 = −λ6)
and a double zero eigenvalue (λ7,8 = 0). As already mentioned zero eigenvalues
are a consequence of the invariance of the CSHE under phase shifts, together
with spatial reversibility. From Figure 11.17 it is clear that there is a cross-over
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Figure 11.18: Spatio-temporal simulation of the CSHE from an initial con-
dition consisting of two bubbles of different widths. Parameters: r = 1,
L = 300, N = 1024 and k0 = 0.35, 0.55 in panels (a)/(b) and (c)/(d), respec-
tively. Panels (a) and (c) show the space-time contour plot of K ≡ ∂xφ.
High/low K is color-coded by white/black. Panels (b) and (d) show profiles

taken from panels (a) and (c) close to onset.

between the magnitude of the real parts of the complex quartet and the purely
real eigenvalues. This cross-over occurs at Kcross ≈ 0.43 and splits the graph in
two regions: a coarsening region for Ks = k0 < Kcross and a faceting region where
the LS can pin to the oscillatory tails of the fronts (Ks = k0 > Kcross). This prediction
of the structure of the spatial eigenvalues is verified in Figure 11.18, where we
show two temporal simulations of the CSHE, one for Ks = k0 = 0.35 < Kcross
[Figure 11.18(a)] and one for Ks = k0 = 0.55 > Kcross [Figure 11.18(c)]. In both
cases we use the same initial condition consisting of two bubbles, one of which
is much smaller in width than the other, and identical values of r and L. The
results reveal an unambiguous qualitative change in the dynamical behavior
of the system, from coarsening to faceting. Moreover, the front profiles of the
bubbles [Figure 11.18(b)-(d)], confirm the absence/presence of oscillatory tails
when coarsening/faceting takes place.

11.7.2 Transition from frozen faceted states to Eckhaus dy-
namics

In Figure 11.18 the evolution was started from an initial state with two bubbles
to examine the transition form continued coarsening to locking. However, when
k0 = 1.0, r = 2 and the simulations are initialized with an unstable phase-winding
state the evolution always leads to phase slips. Depending on the wave number
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n = KsL/2π 1 2 3 4 5 6 7 8 9 10
behavior EF EF EF EF EF EF E EF EF E
n f inal 24 8 0 11 14 9 50 16 44 53
n f acets 2 4 3 3 4 5 0 4 1 0
n = KsL/2π 11 12 13 14 15 16 17 18 19 20
behavior E E E E E E E E E E
n f inal 52 52 51 52 51 52 52 50 51 51
n f acets 0 0 0 0 0 0 0 0 0 0
n = KsL/2π 21 22 23 24 25 26 27 28 29 30 31
behavior E E E E E E E E E E E
n f inal 52 47 48 47 46 46 45 44 44 41 37
n f acets 0 0 0 0 0 0 0 0 0 0 0
n = KsL/2π 66 67 68 69 70 71 72 73 74
behavior E E E E E E EF E EF
n f inal 57 53 51 49 59 45 42 49 13
n f acets 0 0 0 0 0 0 1 0 3

Table 11.2: Outcome of the modulational instability of phase-winding
states when k0 = 1.0, r = 2, L = 300, N = 1024 (or N = 2048 for n ≥ 66). The
top row specifies the wave number of the unstable initial state while n f inal

specifies the phase jump across the domain in the final state. The letters E
(Eckhaus) and EF (Eckhaus-faceting) indicate the evolution type.

Kn of the unstable state the phase slips may lead to a frozen faceted structure
(EF) or to a stable phase-winding state with wave number in the Eckhaus-stable
region in Figure 11.6 (E). Table II lists the results for k0 = 1.0, r = 2, L = 300 and
N = 1024 and different initial wave numbers Kn (N = 2048 is used for the initial
n ≥ 66). In addition to the initial and final values of n and the labels EF and
E distinguishing the different types of behavior the table also lists the number
n f acets of frozen facets in the final state. We mention that for these parameter
values γ reaches maximum (maximum stability) when Ks = 1.18, corresponding
to n = 56.5. On the other hand the Kn minimizing the Swift-Hohenberg energy
FSH corresponds to n = 48. Thus the evolution of the instability only rarely
selects the lowest energy phase-winding state and the other states listed in the
table corespond to thermodynamically metastable states. The frozen faceted
states have even larger energies FSH but these are also linearly stable, and hence
also correspond to local minima of the energy landscape.
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11.8 Conclusion

We have described a new class of time-independent states in the supercritial
complex Swift-Hohenberg equation with real coefficients which we have called
phase-winding states. These complex-valued solutions oscillate periodically in
space, like the periodic states of the real Swift-Hohenberg equation, but with a
well-defined phase difference between the real and imaginary parts. Such states
are the spatial analogue of states known as rotating waves in the time domain.
The solutions fall into different families characterized by the overall phase jump
across the domain, which must be a nonzero integer multiple of 2π. These states
are easily found in numerical simulations and then followed in parameter space
using numerical continuation.
Defects of this type have been studied in the context of pattern-forming sys-
tems with a near-degenerate neutral curve. When the neutral curve admits two
nearby minima the patterns that result may consist of domains consisting of
wave trains with two distinct wavenumbers connected by fronts. As shown in
Refs. [15, 16] an envelope description of such domain structures leads to a fourth
order Ginzburg-Landau equation, an equation that can be written in the CSHE
form (11.1). Our work extends existing work [15, 16] on such domain struc-
tures in two directions. (a) It shows that such states can be readily followed in
parameter space using numerical continuation and their bifurcation properties
determined, and (b) it explains how their presence relates on the one hand to
phase slips generated by the Eckhaus instability in some wavenumber regimes
and on the other to the coarsening dynamics observed in others.
Specifically, we have seen that these defect structures are associated with the
presence of fronts connecting equal and opposite phase gradients. The fronts
that are observed for order-one wave number k0 have oscillatory tails allowing
Pomeau locking between kinks and antikinks, stabilizing the localized states. In
this region the phase variation resembles a faceted surface with abrupt changes
in the phase gradient. On the other hand, when the characteristic wave number
k0 is small, stable facets and defects are no longer present. Instead numerical
simulations reveal coarsening dynamics of the fronts. A theoretical analysis of
the stability of the zero phase gradient state with respect to long wavelength
perturbations showed that the observed coarsening is described by the Cahn-
Hilliard equation for the perturbation phase gradient, thereby confirming the
coarsening results obtained from simulations of the complex Swift-Hohenberg
equation. For larger values of k0 the cubic term in the effective potential becomes
dominant and simulations reveal the formation of defects that shift the wave
number of the phase-winding state towards increased stability, behavior that is
familiar from existing studies of the Eckhaus instability. We have quantified the
parameter regimes where this type of evolution leads to stable phase-winding
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states and where the final state consists of two or more time-independent defects.
Each defect connects phase-winding states with wave number ±k0 and pairs of
defect form bound states locked to a fixed separation determined by the oscilla-
tory tails of the fronts connecting the ±k0 phase-winding states. In some cases
the Eckhaus instability of the phase-winding state with large Ks selects unstable
wave numbers near k0; if the spatial eigenvalues of this state are real the initial
Eckhaus phase is followed by slow evolution via coarsening into a single bubble
state. In other cases the eigenvalues are complex and the Eckhaus instability
leads to a frozen defect state.
Throughout this Chapter we have chosen to vary the basic length scale 2π/k0 in
the complex Swift-Hohenberg equation even though on the real line this length
scale can be scaled out of the equation. Such a rescaling changes the bifurcation
parameter r to r/k4

0. Thus small values of k0 correspond to large values of the
scaled bifurcation parameter, potentially explaining why the coarsening behav-
ior described here is not more widely known. On the other hand for k0 = 1
faceting resulting from phase slips is the generic behavior of the system. One-
dimensional fronts in the two-dimensional Swift-Hohenberg equation for a real
order parameter may also undergo a faceting or zigzag instability [34, 35]. This
instability results in a faceted front and is distinct from the faceting in the spatial
phase of the pattern described here.
In future work we will confront the predictions obtained here for the supercriti-
cal complex Swift-Hohenberg equation with direct numerical simulations of the
Maxwell-Bloch equations [17] or the equations modeling nondegenerate optical
parametric oscillators [6–8]. An extension of the present study to the complex
Swift-Hohenberg equation with complex coefficients is presented in the follow-
ing Chapter.
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CHAPTER 12

Traveling wave dynamics

“Aren’t echoes brilliant? They’re not a modern invention, you just shout and it comes back exactly the same,
you don’t have to do ’owt, the mountain does it all for you. Some mountains are volcanoes, and they really are
brilliant. Flooding. Fantastic. Great big waves. Brilliant. Lightning. Brilliant. Forest fires, yeah. Tornadoes,
they’re the best, wow, amazing.” — The Fast Show

In this chapter, we expand our investigation of the complex Swift-Hohenberg
equation, presented in the previous Chapter, by allowing the coefficients to
be complex, breaking the variational structure of the model equation. A con-
vective Cahn-Hilliard type equation is derived to describe the evolution of
long-wavelength instabilities in the system and a great complexity in dynam-
ical behavior is uncovered.

12.1 Introduction

In the previous Chapter, we have studied the complex Swift-Hohenberg equation
(CSHE) with real coefficients. This study was motivated by the fact that the
CSHE models pattern formation arising from an oscillatory instability with a
finite wavenumber at onset [1, 2]. More in particular, the CSHE has a number
of applications in nonlinear optics, it provides a description for e.g. Class A
and C lasers [3–5], nondegenerate optical parametric oscillators (OPOs) [6–8],
photorefractive oscillators [9], semiconductor lasers [10] and passively mode-
locked lasers [11]. Having acquired a good understanding of the CSHE with
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CHAPTER 12. TRAVELING WAVE DYNAMICS

real coefficients, we now have a solid base to expand the previous analysis to
the more general case of the CSHE with complex coefficients and hence time-
dependent solutions.
We study the existence and dynamics of different kinds of localized states (LSs)
in the one-dimensional CSHE:

ut = ru + iζuxx − (1 + iβ)(∂2
x + k2

0)2u − (1 + ib)|u|2 u, (12.1)

where u is a complex field. The equation is fully parametrized by the real
coefficients r, ζ, β and b [1–4].
The stability and interaction of LSs and their transition to spatio-temporal chaos
has especially been studied for the complex Ginzburg-Landau equation (CGLE)
[12–15]. E.g. propagating, breathing and composite pulses and holes have been
found to stably exist.
In this study, we focus on LSs in the CSHE that arise as defects (or also called
domain boundaries [16, 17]) connecting a right and left traveling wave (TW).
Experimentally, TW patterns have been e.g. observed in binary-fluid thermal
convection [18] and in electrohydrodynamic convection in liquid crystals [19].
Such TWs are closely related to the phase-winding states in the CSHE, studied
in the previous Chapter. Phase-winding states break the right/left symmetry
and will start moving when introducing complex coefficients that break the
variational structure of the CSHE. A typical TW pattern consists of domains
where waves propagate in different directions. These domains are separated
by defects: sources that send out TWs and sinks that absorb them [20]. Non-
variational effects lead to qualitative differences between these defects and their
equilibrium counterparts (which are the LSs studied in the previous Chapter).
As we will show later, the sinks and the sources are not symmetrical. It has been
demonstrated that sinks are generally stable, while the sources are more prone
to instabilities [17, 20, 21].
Although TW patterns have been shown to exist in the CSHE [17], most often
the field u is expressed as a linear combination of a right and left TW, leading to a
system of two coupled CGLE equations for each complex amplitude of the right
and left TW (which is valid for r is sufficiently small) [17, 20–24]. In two spatial
dimensions, similar studies have been done within the framework of amplitude
equations of the Newell-Whitehead-Segel type [16]. The TW dynamics in the
CSHE remains, however, largely unexplored.
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12.2 Traveling wave solutions

In order to find exact solutions of Eq. (12.1), we prefer to write the complex field
u in its amplitude and phase form:

u(x, t) = uR(x, t) + iuI(x, t) = R(x, t)eiφ(x,t). (12.2)

Writing Eq. (12.1) in an amplitude and phase equation, one gets:

Rt = rR − R3 + β[−4φ3
xRx + 6φxxRxx + 4Rxφxxx + 4φxRxk2

0 + 4φxRxxx (12.3)

−6Rφ2
xφxx + 2Rk2

0φxx + Rφxxxx] + [−2k2
0Rxx + 6φ2

xRxx + 12φxRxφxx

−Rk4
0 − Rφ4

x + 2Rk2
0φ

2
x + 3Rφ2

xx + 4Rφxφxxx − Rxxxx] − ζRφxx

Rφt = −bR3 + β[−2k2
0Rxx + 6φ2

xRxx + 12φxRxφxx − Rk4
0 − Rφ4

x + 2Rk2
0φ

2
x(12.4)

+3Rφ2
xx + 4Rφxφxxx − Rxxxx] − [−4φ3

xRx + 6φxxRxx + 4Rxφxxx

+4φxRxk2
0 + 4φxRxxx − 6Rφ2

xφxx + 2Rk2
0φxx + Rφxxxx] + ζRxx

Searching for traveling wave solutions of the form u = R0ei(ωt±kx), we find the
following TW solutions:

R0 =
√

r − (k2
0 − k2)2 (12.5)

ω = bR2
0 + β(k2

0 − k2)2. (12.6)

In the next Section, we present a numerical study of the dynamical regimes
present in the CSHE1. Afterwards, in Section 12.4, we derive a nonlinear phase
equation to describe the long-wavelength instabilities of the TW solutions. This
nonlinear phase equation allows to understand and predict several of the ob-
served dynamical regimes in the CSHE.

12.3 Numerical exploration

In the previous Chapter, we have seen that depending on the intrinsic length-
scale k0 in the CSHE a large qualitative difference in dynamical behavior can be
observed. Small values of k0 lead to coarsening behavior, while for k0 larger than
a critical value Kcross faceting resulting from phase slips was the generic behavior
of the CSHE with real coefficients [25, 26]. Based on this observation, we choose

1An explanation of the numerical integration scheme that we use can be found in Appendix B.

243



CHAPTER 12. TRAVELING WAVE DYNAMICS

here to also study the dynamics of the CSHE with complex coefficients in these
two limiting cases: k0 << Kcross and k0 >> Kcross

2.

12.3.1 Dynamics in the CSHE with a large intrinsic length scale
(k0 small)

b , 0, β = 0

Figure 12.1: Temporal simulation of the CSHE with complex coefficients.
(a)-(d) show a space-time plot of the time evolution of the real part of the
field u, imaginary part of the field u, derivative of the phase (K = φx) and
the amplitude (R), respectively. (e)-(h) show the profiles corresponding to
the last time step of (a)-(d). White/Black correspond to high/low values
of K or R. Parameters: r = 1, b = −0.5 and k0 = 0.2, L = 300, N = 1024

(parameters not mentioned are zero).

We start our numerical exploration in the region where k0 is small such that in the
CSHE with real coefficients coarsening behavior is expected. Furthermore, we
first assume that the imaginary part of the coefficient with the spatial derivatives
β is zero, and scan the dynamical behavior when decreasing the coefficient of the
nonlinear term b. In Figure 12.1, a numerical simulation of the time evolution
in the CSHE with complex coefficients is shown for r = 1, b = −0.5 and k0 = 0.2
(and other parameters zero). As an initial condition random noise is taken (as
is the case in the remainder of this Chapter). One can see in Figure 12.1 that

2We would like to remark that we will not explicitly calculate Kcross here. In principle, the critical
value Kcross where the dominant spatial eigenvalues of the traveling waves go from being complex
(creating oscillatory tails) to purely real (creating monotonic tails) can be carried out by studying the
spatial dynamics.

244



12.3. NUMERICAL EXPLORATION

there eventually exists one source and one sink solution where the two counter-
propagating TWs (real and imaginary part of the field) meet [see Figure 12.1(e)
and (f)]. This corresponds to the connection of two opposite phase gradients
through a front, where a LS in amplitude is associated to this front [see Figure
12.1(g) and (h)]. The distinction between sources and sinks is made according to
whether the nonlinear group velocity of the asymptotic TW points outwards or
inwards, respectively [see Figure 12.1(a) and (b)]. A source is an active coherent
structure sending out waves to both sides, while a sink is sandwiched between
TWs whose group velocity is pointing inwards. It is clear from Figure 12.1 that
initially several LSs exist, which subsequently coarsen. Due to this coarsening
dynamics, LSs are removed from the system in several collisions until only
one sink and source remain which drift slowly, but stably. Similar coarsening
behavior is observed for higher values of b. Such coarsening behavior can be
described by a Cahn-Hilliard type equation, which will be further discussed in
Section 12.4.
The change in dynamical behavior when decreasing b is exemplified in Figure
12.2. When b reaches −1, one observes an initial back-and-forth movement of
the phase gradient fronts (and associated LSs), but after this transient behavior
the LSs (both source and sink) are stabilized [see Figure 12.2(a) and (b)]. When
decreasing b further a regime of spatio-temporal intermittency is found [see
Figure 12.2(c) and (d)]. In this regime, defect chaos coexists with stable TWs.
Patches of stable TWs are separated by various LSs, some of those LSs are created
and destroyed rather fast, while others seem to persist longer displaying similar
back-and-forth movement as seen in the transient of Figure 12.2(a) and (b). Such
spatio-temporal intermittency has been studied in the context of the CGLE in
Refs. [12, 21, 23, 27]. When decreasing b even further, the system exhibits more
and more spatiotemporally disordered regimes.

b , 0, β , 0

Figures 12.3 - 12.5 show the results of numerical simulations, which have still
been done in the long-wavelength regime k0 << Kcross (where fronts are monotic
and thus do not have oscillatory tails), but here we take b = −1 fixed and vary
the coefficient β of the laplacian term. Figure 12.3 shows the typical dynamical
behavior that is observed for β < 0. For all negative values of β coarsening dy-
namics is found. The long time tendency of the system is to remove LSs through
coarsening, until only one source-sink pair is left in the system. Both the source
and sink are then stable and either remain stationary or drift in time.

When choosing β positive and in the range [0, 1], spatio-temporal intermit-
tency occurs. We refer again to Figures 12.2(c)-(f) for typical space-time plots
of this dynamical behavior. From β ≈ 1, TWs are no longer found in numerical
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Figure 12.2: Temporal simulation of the CSHE with complex coefficients.
Space-time plots are shown of the time evolution of the derivative of the
phase (K = φx) [(a),(c),(e)] and the amplitude (R) [(b),(d),(r)], for increasing
values of |b|. White/Black correspond to high/low values of K or R. Param-
eters: r = 1, b = −1 (a,b), −1.5 (c,d), −2 (e,f) and k0 = 0.2, L = 300, N = 1024

(parameters not mentioned are zero).
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Figure 12.3: Temporal simulation of the CSHE with complex coefficients.
Space-time plots are shown of the time evolution of the derivative of the
phase (K = φx) in (a) and the amplitude (R) in (b). White/Black correspond
to high/low values of K or R. Parameters: r = 1, b = −1, β = −2 and k0 =

0.2, L = 300, N = 1024 (parameters not mentioned are zero).

Figure 12.4: Temporal simulation of the CSHE with complex coefficients.
(a)-(d) show a space-time plot of the time evolution of the real part of the
field u, imaginary part of the field u, derivative of the phase (K = φx) and
the amplitude (R), respectively. (e)-(h) show the profiles corresponding to
the last time step of (a)-(d). White/Black correspond to high/low values of
K or R. Parameters: r = 1, b = −1, β = 1 and k0 = 0.2, L = 300, N = 1024

(parameters not mentioned are zero).
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Figure 12.5: Temporal simulation of the CSHE with complex coefficients.
Space-time plots of the time evolution of the derivative of the phase (K = φx)
(a,c) and the amplitude (R) (b,d) are shown. (e)-(h) show the profiles
corresponding to the last time step of (a)-(d). White/Black correspond to
high/low values of K or R. Parameters: r = 1, b = −1, β = 2 (a,b,e,f), 3
(c,d,g,h) and k0 = 0.2, L = 300, N = 1024 (parameters not mentioned are

zero).

simulations. Instead for β = 1, uniformly moving pulses in real and imaginary
part are found to be solutions of the CSHE [see Figure 12.4]. When increasing β
further the behavior changes qualitatively. With random initial conditions, the
system evolves to a spatially periodic state in the phase gradient K = φx and
amplitude R. Such a slowly drifting nonlinear standing wave pattern is shown
in Figure 12.5(a) and (b), although one can observe in panels (e) and (f) that
the periodic state already shows a certain modulation of its amplitude. This
modulation becomes more and more pronounced when increasing β. We can
see e.g. in Figure 12.5(c) and (d) that a increase in β leads to an increase of the
local wavenumber K and the formation of defects. Such perturbations of the
standing wave [panels (a) and (b)] are spontaneously formed, indicating a lin-
ear instability. Spatio-temporal chaos of the periodic wave pattern is observed
panels (c) and (d). The dynamics evolves on faster time scales and no coherent
structures can be observed. Such behavior is also observed in the CGLE [12, 21].
In the case of the CGLE, this spatio-temporal chaos has been described by the
Kuramoto-Sivashinsky (KS) equation [27]. We indeed show in Section 12.4 that
for these parameters a nonlinear phase equation can be derived, which is of the
Kuramoto-Sivashinsky type.
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Figure 12.6: Temporal simulation of the CSHE with complex coefficients.
Space-time plots of the time evolution of the derivative of the phase (K = φx)
(a,c) and the amplitude (R) (b,d) are shown. (e)-(h) show the profiles
corresponding to the last time step of (a)-(d). White/Black correspond to
high/low values of K or R. Parameters: r = 1, b = −0.5 (a,b,e,f), −1 (c,d,g,h)

and k0 = 1, L = 300, N = 1024 (parameters not mentioned are zero).

12.3.2 Dynamics in the CSHE with a finite intrinsic length scale
(k0 = O(1))

In the previous Chapter (see also Refs. [25, 26]), we have shown that in the CSHE
with real coefficients there exists a critical length scale k0 = Kcross after which
faceting resulting from phase slips is generally observed. Due to the existence
of oscillatory tails in the front profiles of the phase gradient K = φk, Eckhaus
instabilities of phase-winding states generate phase slips, leading to the forma-
tion of LSs (or also called facets). The phase-winding states do not coarsen, but
lock to the oscillatory front profile. In this Section, we numerically explore the
dynamical behavior that can arise in the CSHE with complex coefficients for
k0 = 1 such that oscillatory tails exist. As before, we first consider β to be zero
and afterwards allow for both b and β to have non-zero values.

b , 0, β = 0

Taking β = 0 and varying the nonlinear coefficient b, the results for small negative
values of b are shown in Figure 12.6. Starting from random initial conditions,
the system relaxes to drifting LSs after a possible transient behavior. Contrary
to the case of small k0, more than one drifting source and sink solution can be
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Figure 12.7: Temporal simulation of the CSHE with complex coefficients.
Space-time plots are shown of the time evolution of the derivative of the
phase (K = φx) [(a),(c),(e)] and the amplitude (R) [(b),(d),(r)], for increasing
values of b. Panels (c)-(d) represent a zoom of the black box in (a)-(b).
White/Black correspond to high/low values of K or R. Parameters: r = 1,
b = −3 (a)-(d) and −5 (e)-(f) and k0 = 1, L = 300, N = 1024 (parameters not

mentioned are zero).

present in the system as no coarsening dynamics occurs in the system.
Figure 12.7 shows spatio-temporal chaotic regimes that are found when decreas-
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ing the value of b further. Instead of drifting LSs, one observes a stabilization of
a stationary sink solution, while the source behaves very irregularly. Such be-
havior reminds of the source-induced bimodal chaos that is observed in coupled
CGLE [21]. While in the case of coupled CGLE, however, the sink mildly drifts,
this is not the case here in the CSHE. The bimodal chaos observed in coupled
CGLE has been shown not to occur in a single CGLE. While the sink remains
stable and stationary over long periods of time, one can observe in Figure 12.7(a)
and (b) that at certain points in time the sink seems to be suddenly destroyed
and recreated elsewhere in space (b = −3 in this case). Panels (c) and (d) show
a blow-up of such an event [indicated by the black box in Figure 12.7(a) and
(b)]. It becomes evident from this blow-up that from the chaotic source a new
stable sink / chaotic source pair can be born. Once this happens the original sink
solution is destabilized and eventually destroyed by one chaotic source. After
this process, only one stable sink / chaotic source pair is present in the system,
but at a different location as before. This behavior is repeated in time, where
the time between consecutive events seems to be distributed chaotically as well.
To the best of our knowledge, such behavior has not been observed in other
systems. When decreasing b further, multiple stable sink / chaotic source pairs
coexist as illustrated in Figure 12.7(e) and (f) for b = −5.
Finally, we would like to remark that the same qualitative behavior is observed
for positive values of b. For low values of b, single or multiple drifting source-
sink pairs are observed. Increasing b eventually leads to the creation of one
stable sink / chaotic source pair (e.g. for b = 3). For higher values of b, multiple
coexisting stable sink / chaotic source pairs are again found (e.g. for b = 5).

b , 0, β , 0

Figure 12.8 demonstrates the dynamics that is observed when taking into account
the influence of the imaginary part of the laplacian term β. A full characteriza-
tion of the spatio-temporal dynamics in the parameter space (b, β) is beyond the
scope of this work. We limit ourselves to analyzing the dynamical behavior in a
small part of the parameter space. The coefficient b is kept fixed to −1, scanning
β from −5 to 5. The following behavior is observed3:

• For β < −3.4, the whole space is filled with coexisting stationary source-
sink pairs. For the chosen domain width L = 300, either 3 or 4 pairs are
present in the system [see e.g. Figure 12.8(a); β = −5].

3We would like to remark to that the boundaries mentioned in this classification of dynamical
behavior have been numerically determined with an accuracy of ∆β = 0.1.
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• In the region −3.4 < β < −2.5, the same source-sink pairs still coexist, but
are no longer stationary and exhibit a slight "breathing" (time-periodic)
behavior [see e.g. Figure 12.8(b); β = −3].

• When increasing β in the region −2.5 < β < 1.2, the number of source-
sink pairs in the system tends to diminish. Furthermore, on top of the
"breathing" behavior, the sources and sinks start to drift [see e.g. Figure
12.8(c) and (d); β = −2.5 and β = 1]. We remark that around β ≈ −0.1 the
drift speed of the structures becomes very slow.

• For 1.2 < β < 4, both source and sink are stabilized again and remain
stationary [see e.g. Figure 12.8(e); β = 3].

• In the region 4 < β < 4.2, a time-periodic "breathing" behavior is observed,
where the time-periodic oscillations are much more pronounced than in the
previous cases. Moreover, only the source shows time-periodic behavior,
while the sink remains stable [see e.g. Figure 12.8(f); β = 4.1].

• When increasing β such that 4.2 < β < 4.8, the time-periodicity of the
source is lost and replaced by chaotic behavior. The sink solution is still
stationary [see e.g. Figure 12.8(g); β = 4.5].

• Finally, for β > 4.8, the chaotic behavior of the source disappears again,
but continues to show time-periodic coherent structures [see e.g. Figure
12.8(h); β = 5].

In the next Section, we derive a nonlinear phase equation modeling the evolu-
tion of long-wavelength perturbations of the homogeneous amplitude solutions.
This phase equation will prove useful to gain a deeper understanding of the nu-
merically observed dynamics.

12.4 Derivation of a nonlinear phase equation

In terms of the amplitude R and the phase gradient K = ∂xφ, Eq. (12.1) takes the
form
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Figure 12.8: Temporal simulation of the CSHE with complex coefficients.
Space-time plots of the time evolution of the derivative of the phase (K = φx)
and the amplitude (R) are shown. White/Black correspond to high/low
values of K or R. Parameters: r = 1, b = −1, β = −5 (a), −3 (b), −2.5 (c), 1
(d), 3 (e), 4.1 (f), 4.5 (g) and 5 (h), k0 = 1, L = 300, N = 1024 (parameters not

mentioned are zero).
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To examine the evolution of perturbations of the homogeneous state (R2 = R2
0 ≡

r − k4
0, φ = φ0) we write (R = R0 + u, K = v) where u and v are of order O(ε). We

suppose that spatial derivatives are O(ε) while temporal derivatives are O(ε4).
To leading order, we obtain the following equation:

ut = −2R2
0u + 2k2

0R0(βvx + v2) − ζR0vx + higher order terms, (12.9)

and hence R0u ≈ (k2
0β −

1
2ζ)vx + k2

0v2. Substituting this result in the equation for
the phase gradient results in a modified convective Cahn-Hilliard-type equation:

vt = [γv − avxx − κ0v3]xx

+[
D
2

v2 + cv2
x + dv4 + evvxx]x + higher order terms. (12.10)

The coefficients in Eq. (12.10) are given by

γ = −2k2
0(1 + bβ) + bζ (12.11)

κ0 = −2(1 −
k4

0

R2
0

+
1
6

γk2
0

R2
0

) (12.12)

D = 4k2
0(β − b) − 2ζ (12.13)

a = 1 +
(2k2

0β − ζ)2

2R2
0

(12.14)

c = 3β −
b

4R2
0

(2k2
0β − ζ)2

−
2k2

0

R2
0

(2k2
0β − ζ) (12.15)

d = −β −
bk4

0

R2
0

(12.16)

e = 4β(1 −
2k4

0

R2
0

) +
4k2

0ζ

R2
0

. (12.17)

Depending on the magnitude of the coefficients, the phase equation resembles
either the Cahn-Hilliard equation or more the Kuramoto-Sivashinsky equation.
While the Cahn-Hilliard equation is a well-known model equation predicting
coarsening dynamics [28], as we have also discussed in the previous Chapter,
the Kuramoto-Sivashinsky is traditionally used to model turbulence [27].
An interesting limit of the phase gradient equation (12.10) is the one for small
values of k0 (such as e.g. k0 = 0.2 as discussed Section 12.3) and assuming ζ = 0.
In this limit, Eq. (12.10) simplifies to

vt = [−2k2
0(1 + bβ)v − vxx + 2v3]xx + [2k2

0(β − b)v2 + β(3v2
x − v4 + 4vvxx)]x. (12.18)
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Figure 12.9: (a) shows the magnitude of the coefficients γ and D/2 of Eq.
12.18 in function of β for k0 = 0.2, r = 1, b = −1 and ζ = 0. (b) depicts
the locus of the Benjamin-Feir-Eckhaus (BF) instability and the locus of
the points where γ and D/2 have equal magnitude in the parameter plane
(b, β) for k0 = 0.2 and r = 1. Transition points from coarsening behavior to
spatio-temporal intermittency have been determined numerically with an

accuracy ∆β = 0.1 and are plotted with grey dots.

This equation helps us to understand the observed behavior in Section 12.3.1,
where simulations have been shown for k0 = 0.2, r = 1 and β = 0.
For β = 0, Eq. (12.18) becomes:

vt = [−2k2
0v − vxx + 2v3]xx + 4k2

0bvvx, (12.19)

which is the convective Cahn-Hilliard equation. The transition from coarsening
to roughening behavior has been studied in Ref. [29]. For b → 0, Eq. (12.19)
reduces further to the Cahn-Hilliard equation, originally derived to describe
the dynamics of phase separation in systems with a conserved quantity in the
context of binary alloys [28]. However, the model equation arises in many
other areas of physics as well (see Section 11.5.1). For small values of b, we
indeed numerically confirmed such coarsening dynamics in Section 12.3.1 (see
Figure 12.1). For increasing values of b a transition from coarsening dynamics
to chaotic spatiotemporal behavior is expected as for b→∞, Eq. (12.19) reduces
to the Kuramoto-Sivashinsky equation [21, 27]. Figure 12.2 confirms this predic-
tion as it shows a transition towards spatio-temporal chaos when increasing the
value of b.
When β is no longer zero (see Section 12.3.1), the situation becomes more com-
plicated as Eq. (12.18) can no longer be easily seen as either a Cahn-Hilliard
equation or a Kuramoto-Sivashinsky equation because many different terms
come into play. However, focusing on the terms of the convective Cahn-Hilliard
equation, we can still partly understand the numerically observed behavior. In
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Figure 12.9 the magnitude of the leading term γ and the convective term D are
studied. The position where the coefficient γ turns zero and changes its sign
is shown in (b, β)-space. For negative values of γ, it is clear from Eq. (12.18)
that the homogeneous solutions are unstable. The TWs with a finite wavenum-
ber, however, are stable for γ < 0. The change of sign of γ corresponds to the
well-known Benjamin-Feir (BF) instability of TWs (which is the equivalent of
the Eckhaus instability for phase-winding states). For γ > 0 small perturbations
are no longer damped out, but now have a positive growth rate, while for γ < 0
TWs with a finite wavenumber are stable. This BF instability is given by the con-
dition 1 + bβ = 0, similarly as for the CGLE. Furthermore, we have also plotted
where the magnitude of the terms γ and the convective term D/2 are equal. This
condition is given by 1 + b + (b − 1)β = 0 and — although being a hand-waving
argument — it can be argued that this line provides an estimation of where the
transition between Cahn-Hilliard-type dynamics or Kuramoto-Sivashinsky-type
dynamics.
Let us now focus on b = −1, the chosen value in the numerical simulations of
Section 12.3.1. For negative values of β (region I in Figure 12.9), one can see
that γ < 0 and

∣∣∣γ∣∣∣ > |D/2|. This way the leading order system corresponds
to the convective Cahn-Hilliard equation with a small driving term D. As the
convective term is small and the TWs are stable, coarsening dynamics like in the
Cahn-Hilliard equation is expected, as also observed in Figure 12.3.
Next, when β ∈ [0, 1] (region II in Figure 12.9), the TWs are still linearly stable
(γ < 0). However, the magnitude of the convective term D/2 becomes larger
than γ. This way Eq. (12.18) resembles more the Kuramoto-Sivashinsky equa-
tion instead of the Cahn-Hiliard equation. Indeed, around this region coarsening
dynamics is no longer observed, but instead spatio-temporal intermittency sets
in. Such behavior is similar as the one illustrated in Figure 12.2. The spatio-
temporal intermittency is defined by the fact that although there exist laminar,
absorbing stable TW solutions, there also exists a turbulent, active state that con-
sists of localized structures [27]. In order to verify whether our hand-waving
argument that the transition to spatio-temporal intermittency is determined by
the moment where

∣∣∣γ∣∣∣ ≈ |D/2| holds, we have numerically checked the position
of this transition in (b, β)-space. The numerically determined transition points
have been plotted in Figure 12.9 with the grey dots. One can in fact observe a
very good correspondence between the numerics and the line where

∣∣∣γ∣∣∣ ≈ |D/2|.
Finally, in region III (β > 1), the convective term D/2 is larger in magnitude than
γ, such that Eq. (12.18) looks more and more like a Kuramoto-Sivashinsky-type
equation. Moreover, the TWs are destabilized (γ > 0). For β slightly larger
than 1, stable standing wave (SW) patterns in the phase gradient K are found
(not shown). Increasing β further these SW undergo consecutive spatial period
doubling bifurcations, in other words the SW becomes modulated with a certain
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second, third, ... wavenumber. As is known for the Kuramoto-Sivashinsky equa-
tion, such a period-doubling route leads to chaos [30], as is also the case here
(see Figure 12.5). We remark that in the transition from region II (spatiotemporal
intermittency) to region III where SW exist, freezing occurs [27], which stabilizes
the states with a spatially disordered structure. Such a stably drifting disordered
solution can be seen in Figure 12.4 (β = 1).

12.5 Conclusion

In this Chapter, we have numerically explored the dynamical behavior that
can arise in the complex Swift-Hohenberg equation with complex coefficients.
Moreover, a convective Cahn-Hilliard type equation has been derived to describe
the evolution of long-wavelength instabilities in the system and has been used
to understand several of the different kinds of dynamical behavior present in the
complex Swift-Hohenberg equation.
We want to point out that although many of the observed dynamical regimes
can qualitatively be understood by comparing the sign and magnitude of the
different terms of the convective Cahn-Hilliard terms, there are undoubtedly
certain features of the dynamics in the complex Swift-Hohenberg equation that
need inclusion of the novel terms present in Eq. (12.18). Such differences can
perhaps be understood by carrying out a systematic study of the influence of
all different terms in the full nonlinear phase equation (12.18), and directly
comparing numerical simulations of the CSHE with simulations of the phase
equation. Furthermore, a derivation of the phase equation for perturbations
around the traveling waves with finite wavenumber remains to be carried out
and can provide useful information about the Benjamin-Feir instability and other
instabilities that the traveling waves undergo.
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CHAPTER 13

Front interaction enhancement
induced by nonlocal spatial cou-
pling

“Ray McCooney: I leave yee with a riddle! I’m hard yet soft, I’m coloured yet clear, I am fruity and sweet, I
am jelly, what am I?
Customer: Jelly!
Ray McCooney: Muse upon it further, I shall return.
Customer: It’s jelly though isn’t it?
Ray McCooney: Ye-eees! Yee know too much.....too much. ” — Ray McCooney in Little Britain.

We demonstrate that nonlocal coupling strongly influences the dynamics of
fronts connecting two equivalent states. In two prototype models we observe
a large amplification in the interaction strength between two opposite fronts
increasing front velocities several orders of magnitude. By analyzing the
spatial dynamics we prove that beyond quantitative effects, nonlocal terms
can also change the overall qualitative picture by inducing oscillations in the
front profile. This leads to a mechanism for the formation of localized struc-
tures not present for local interactions. Finally, nonlocal coupling can induce
a steep broadening of localized structures, eventually annihilating them.1

1The work presented in this Chapter has been submitted for publication: [1].

261



CHAPTER 13. FRONT INTERACTION ENHANCEMENT INDUCED BY
NONLOCAL SPATIAL COUPLING

13.1 Introduction

Most studies on the emergence of complex behavior in spatially extended sys-
tems consider that spatial coupling is either local or alternatively global (all to all
coupling) [2, 3]. More recently, systems with nonlocal (or intermediate- to long-
range) coupling have received increasing attention, as nonlocal interactions are
known to be relevant in diverse fields, ranging from Josephson junction arrays
[4] and chemical reactions [5, 6], to several problems in Biology and Ecology
[7], such as the neural networks underlying mollusk patterns [8, 9], ocular dom-
inance stripes and hallucination patterns [10], and population dynamics [11].
A nonlocal interaction may emerge from a physical/chemical mechanism that
couples points far apart in space, e.g., a long-range interaction [12], or from the
adiabatic elimination of a slow variable [13, 14]. Novel phenomena emerging
genuinely from nonlocality, such as power-law correlations [13, 15], multiaffine
turbulence [5], and chimera states [16, 17] have been reported. Moreover, recent
works have reported the effects of nonlocality on the dynamics of fronts, patterns
and localized structures (LS), for instance the tilting of snaking bifurcation lines
[18] and changes in the size of LS [19, 20], the effects of two-point nonlocality on
convective instabilities [21], the nonlocal stabilization of vortex beams [22], or
changes in the interaction between solitons [23], and in the velocity of propagat-
ing fronts [24].
Whereas in the previous Chapters 9-12, we have studied spatio-temporal dynam-
ics of LSs in model equations having a Laplacian and a bi-Laplacian operator
coupling different points in space, we will consider a general nonlocal spatial
coupling in this Chapter2. Our main goal in this Chapter is to show the crucial
relevance of nonlocality on the interaction of fronts connecting two equivalent
states in one dimensional systems, as well as on the formation of LS arising
from the interaction of two such fronts [25]. Interaction between two monotonic
fronts is always attractive, so any domain of one state embedded in the other
shrinks and disappears. However, fronts with oscillatory tails can lock at specific
distances leading to stable LS. Here we show that oscillatory tails, and therefore
stable LS can appear as an effect of repulsive nonlocal interactions. Repulsive
(inhibitory) interactions are common, for instance, in neural field theories [9, 10]
and genetic networks [26]. Our result is generic and can be qualitatively un-

2The nonlocal spatial coupling term acting on the field A can be expanded in a Taylor series of
spatial derivatives of A:∫

∞

−∞

θ(x − x′)A(x′)dx′ = δ0A + δ1
∂
∂x

A + δ2
∂2

∂x2 A + δ3
∂3

∂x3 A + δ4
∂4

∂x4
A + . . . (13.1)

When approximating the nonlocal term by chopping of the Taylor series, as e.g. in Chapters 9-10,
this is strictly speaking referred to as a local contribution.
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derstood from the interplay between nonlocality, which couples both sides of
the front, and repulsiveness which induces a small depression at the lower side
and a small hill at the upper part. Altogether this leads to oscillatory tails as
qualitatively obtained from the spatial dynamics.

13.2 The nonlocal real Ginzburg-Landau equation

A prototypical model of a spatially extended system with two equivalent steady
states is the real Ginzburg-Landau equation (GLE) [3, 27]. We consider the 1D
nonlocal real GLE

∂A(x)
∂t

= (µ − s)A(x) +
∂2A(x)
∂x2 − A3(x) + sF(x), (13.2)

being A(x) a real field and µ the gain parameter. The diffusion and the nonlinear
term have been scaled to one without loss of generality. Eq. (13.2) has both a
local (diffusive) and a (linear) nonlocal spatial coupling

F(x) =

∫
∞

−∞

θσ(x − x′)A(x′)dx′, (13.3)

where θσ is the spatial nonlocal interaction function (or kernel) and σ indicates
the spatial extension of the coupling. For the sake of simplicity, we consider
here a Gaussian kernel, θσ(x − x′) = (1/

√
2πσ)e−(x−x′)2/(2σ2), although the results

presented in this work do not depend qualitatively on its precise shape, provided
it is positively defined. Gaussian kernels appear in contexts such as mollusk
pigmentation patterns [28], species competition [29] and Neuroscience [10, 30].
The nonlocal function F(x) includes also a local contribution. This contribution
is compensated for by the term −sA(x), such that in the limit σ→ 0 one recovers
the same results as for the local GLE. In the coming Sections, we will first discuss
the linear temporal stability of the nonlocal GLE and look at its spatial dynamics.
Next, the results from this stability analysis will be used to interpret large changes
in the front interaction due to the nonlocal coupling.

13.2.1 Linear stability

The homogeneous steady state solutions (HSSs) As of Eq. (13.2) are given by

As(µ − A2
s ) = 0. (13.4)

Apart from the trivial zero solution As = 0, two equivalent homogeneous solu-
tions As = ±

√
µ are created in a pitchfork bifurcation atµ = 0. One can notice that
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Figure 13.1: Bifurcation diagram of the homogeneous solutions As of the
nonlocal GLE for (a) s = 0 (local case), (b) s = −1 (nonlocal case). Other
parameters are: µ = 3, σ = 2. Stable solution are shown in a solid line,

unstable ones in a dashed line.

the HSSs are not affected by the nonlocal contribution. However, the nonlocal
coupling plays an important role in the linear stability of the HSSs with respect
to finite wavelength perturbations of the form exp (τt + ikx). The modulational
instability (MI), also referred to as Turing instability, occurs when the growth
rate τ = 0, leading to the following marginal stability curve:

τ = (µ − s) − k2
− 3A2

s + se−k2σ2/2 = 0. (13.5)

In the local case (s = 0), one can easily verify that at µ = 0 the system goes
through a steady state bifurcation, creating the non-zero solutions As = ±

√
µ

[see Figure 13.1(a)]. For s , 0, however, Eq. (13.5) is no longer a straight line in
the (k2, τ)-plane as the exponential term comes into play, and leads to MIs where
the growth rate becomes positive at finite values of the perturbation wavenumber
k. As shown in Figure 13.1(b) a negative nonlocal interaction s = −1 introduces
MIs at µM1 = −0.15 and µM2 = 0.07 where these were absent in the local case.
A negative nonlocal spatial coupling thus has destabilizing effect on the HSSs,
while a positive coupling further stabilizes the HSSs. The evolution of these MI
points is shown in Figure 13.2. For a fixed value of the spatial extension, the MI
point is given as a function of the nonlocal strength s. It is clear that increasing
the (negative) nonlocal strength further destabilizes the solution.
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Figure 13.2: The evolution of the modulational instability points of the
(a) zero homogeneous solutions and (b) of the non-zero homogeneous
solutions as a function of the nonlocal strength s < 0. The solid, long-

dashed and short-dashed lines correspond to σ = 2, 3, 5.

Figure 13.3: The position of the spatial eigenvalues λ of Eq. (13.6) are
shown in the complex plane by the black dots. The hyperbola, given by
Eq. (13.9), in greyscale represents an approximation for the position of the

spatial eigenvalues. µ = 3 and s = 1. (a) σ = 1, (b) σ = 2, (c) σ = 3.

13.2.2 Spatial dynamics

Apart from the temporal stability of the HSSs, characterizing the spatial dynamics3

is another prerequisite to studying LSs in a system. Considering a spatial per-
turbation to the non-zero homogeneous solution of the form A =

√
µ+ε exp(λx),

3One neglects the time derivative and takes the spatial coordinate to be the time-like evolution
variable; this framework is therefore often referred to as "spatial dynamics".
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Figure 13.4: Nonlocal GLE, Eq. (13.2) with µ = 3: (a) Front profiles for
s = 0 (black line) and s = ±1 with σ = 2, labeled in the figure as σsgn(s).
(b) The curve B is the boundary in the (σ, s) space between the presence of

oscillatory or monotonic tails of a front.

one finds

− 2µ − s + λ2 + seλ
2σ2/2 = 0. (13.6)

When including the nonlocal coupling term, the characteristic equation for λ
has an infinite number of solutions, as a consequence of the exponential term.
This is illustrated in Figure 13.3 where (a part of) the eigenvalues are shown by
the dots for different values of the spatial interaction σ = 1, 2, 3 (with µ = 3 and
s = 1). The number of eigenvalues within a fixed distance to the origin heavily
increases with increasing σ.
The eigenvalues come in pairs ±λ and appear to lie on a hyperbolic-like curve.
As the exponential term will rapidly dominate the quadratic term in λ in Eq.
(13.6), we try neglecting the quadratic term, an approximation that will become
increasingly better for larger values of σ:

seλ
2σ2/2 =

2µ + s
s

. (13.7)

This expression can be solved explicitly forλ2, taking into account the periodicity
of the complex exponential function:

λ2 =
2
σ2 (log(

2µ + s
s

) + 2kπi), (13.8)

with k ∈ Z. Writing λ = x + iy, substituting this in the above equation and
splitting the expression into real and imaginary parts then yields the following
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system:

x2
− y2 =

2
σ2 log(

2µ
s

),

xy =
2kπ
σ2 . (13.9)

The first equation represents a hyperbola with eccentricity
√

2 in the complex
plane. The second equation can then be seen as a sort of selection criterium,
which has to be satisfied by a point on the hyperbola to be a spatial eigenvalue of
the system. In Figure 13.3, the numerically calculated eigenvalues of Eq. (13.6)
are shown, together with the hyperbola as given by Eq. (13.9). When σ ≥ 2 it is
clear that the above equation of the hyperbola provides a good approximation
of the location of the spatial eigenvalues.
The shape of the front is determined by the eigenvalue λ1 with real part closest
to zero, as in the spatial dynamics all the other directions are damped faster
when approaching the fixed point (homogeneous solution). Therefore, we now
focus on these dominant eigenvalues. By determining where λ1 goes from being
purely real to complex, one can find the boundary B separating fronts having
monotonic and oscillatory tails. As shown in Figure 13.4(b), for kernel widths
σ at least as large as the front width, the front profile always shows oscillatory
tails for s < 0 and as a consequence LSs can in principle exist. Examples of front
profiles with either monotonic or oscillatory tails are shown in Figure 13.4(a).
For smaller kernel widths an increasingly large nonlocal strength is needed for
LSs to be formed (see line B in Figure 13.4).

13.2.3 Front interaction

Armed with the knowledge of both the temporal and the spatial stability of the
HSSs in the nonlocal GLE, we can now tackle the question of how two fronts con-
necting equivalent states interact in the presence of a nonlocal spatial coupling.
The profile of GLE fronts without nonlocality is known analytically [31], and the
interaction with an opposite front located at a distance d much smaller than the
front width can be calculated perturbatively, yielding the following result for the
relative velocity v(d) [31],

v(d) = ḋ = c e−γd , (13.10)

with c = −24
√

2µ and γ =
√

2µ. The nonlocal effects in front dynamics can be
quantified by looking at the deviations from the interaction given by Eq. (13.10),
stemming solely from a local interaction coupling. Therefore we have studied
the front velocity v(d) for different kernel widths σ keeping all other parameters

267



CHAPTER 13. FRONT INTERACTION ENHANCEMENT INDUCED BY
NONLOCAL SPATIAL COUPLING

Figure 13.5: Front velocity as a function of d. µ = 3, |s| = 1, and σ is taken
to be 0 , 2 and 10, depicted in the figure as σsgn(s).

fixed and taking the system size much larger than σ. The results are plotted in
Figure 13.54. The local case, Eq. (13.10), is the straight line labeled with 0 (as
σ = 0). In the nonlocal case (σ , 0), a large qualitative difference in behavior is
observed depending on the sign of s.

As shown in Figure 13.5, for an attractive (activatory) interaction (s > 0),
the logarithm of the velocity decreases linearly with the distance, such that the
exponential dependence of the velocity with the distance given by Eq. (13.10)
still holds with an effective γwhose value is strongly reduced by the nonlocality.
As a consequence the range of spatial interaction, 1/γ, increases with the kernel
width σ. Even for moderate values of σ, fronts move several orders of magnitude
faster than for the local GLE. Figure 13.6 shows the change of the value of the
effective exponent γ as a function of σ. Moreover, the inset shows that γ, to a very
good extent, follows a linear dependence with the inverse of the kernel width σ,
provided that σ is at least as large as the front width. Therefore, we can conclude
that rescaling γ to γ/σ the effective interaction between two fronts follows a
universal exponential law (except for a small dependence on the strength of
interaction s). It is interesting to notice, however, that the width of the front,
defined by the half width at half the maximum (HWHM) does not show this
scaling with 1/σ cf. Figure 13.4(a). Thus, the effect of the nonlocality does not
amount to a mere rescaling of the spatial coordinate. This can be understood by
noticing that while the general shape of the front is mainly dominated by the
local, diffusive, coupling, in turn the nonlocal coupling modifies substantially
the exponential tails, which are responsible of the long-range interaction that
influences the front velocity.
For s < 0, i.e., for a repulsive (inhibitory) interaction, the exponential law, Eq.

4An explanation of the numerical integration scheme that we use can be found in Appendix B.
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Figure 13.6: γ as a function of σ. Inset: γ as a function of 1/σ. The black
solid, dark grey dashed and light grey dashed curves have µ = 3, and

s = 0.5, 1, and 2, respectively.

Figure 13.7: Stationary widths of stable localized structures for the nonlocal
GLE (µ = 3). Black (grey) line corresponds to σ = 0.5 (σ = 2). Insets show
examples of localized structure profiles for σ = 2. scross,σ, given by line B
in Figure 13.4, indicates the point where the spatial eigenvalues go from

being complex conjugate to purely real.
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(13.10), no longer holds. Nevertheless, the magnitude of the envelope of the front
velocity is still dominated qualitatively by (13.10), as shown in Figure 13.5. In
this case, the velocity becomes zero at regular intervals of the distance d between
two fronts. This qualitative difference is not unexpected as our study of the
spatial eigenvalues of the non-zero HSSs showed that for s < 0 oscillatory tails
appear (see Figure 13.4). Therefore, at the positions of zero velocity the fronts
are locked leading to the formation of LSs. This can be seen in Figure 13.7 where
the stationary widths of stable LSs are shown for the nonlocal GLE with µ = 3.
The black and grey line correspond to σ = 0.5 and σ = 2, respectively. The insets
show examples of LS profiles for σ = 2. One can see that the branches of LSs for a
larger spatial interaction σ = 2 are created immediately for a minimal interaction
strength s, while the LSs with a smaller σ = 0.5 seem to require a larger interaction
strength s to come into existence. This behavior is confirmed by the value scross,σ,
given by line B in Figure 13.4, indicating the point where the spatial eigenvalues
go from being complex conjugate to purely real. These LSs, not present in the
GLE are thus closely related to the creation of a MI of the non-zero HSSs due to
the repulsive nonlocal interaction. The combination of temporal linearly stable
HSSs and oscillatory tails provide all necessary ingredients for LSs to exist.
To describe the interaction of fronts with oscillatory tails Eq. (13.10) must be
modified. An appropriate ansatz is the following:

v = ḋ = c cos[ζ(s, σ)d]e−γ(s,σ)d , (13.11)

where ζ(s, σ) is determined by the complex part of the most underdamped spa-
tial eigenvalue of Eq. (13.6), such that ζ = 0 in the region of monotonic tails.
Eq. (13.11) adequately describes the dependence of the velocity with the dis-
tance indicated in Figure 13.5.

13.2.4 Influence of the nonlocal kernel

For the sake of simplicity, we have considered up to now a Gaussian kernel
to describe the nonlocal spatial interaction. We have verified that the results
presented above do not depend qualitatively on the precise shape of the kernel,
provided it is positively defined.
In this Section, we shortly discuss the effects of a qualitatively different kernel:
the mexican-hat shaped kernel [see Figure 13.8(b)]. Up to a scaling factor, it is
related to the second derivative of the Gaussian function and we will use it in
the following form as our nonlocal kernel:

θ(x) =

√
2
π

(1 −
x2

2σ2 )e
x2

2σ2 , (13.12)
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Figure 13.8: Examples of a (a) Gaussian shaped and a (b) mexican-hat
shaped nonlocal kernel. σ = 1.

Figure 13.9: Boundaries in the (σ, s)-plane separating the regions of mono-
tonic and oscillatory tails when using a mexican-hat shaped kernel.

where σ is again a measure for the spatial interaction width. Unlike the Gaussian
kernel shown in Figure 13.8(a), the mexican-hat shaped kernel does not have the
same sign over the entire spatial domain that is considered. In view of the impor-
tant influence of having either repulsive or attractive interactions as discussed
in the previous Sections, it is all but obvious that the mexican-hat shaped kernel
would show similar results.
One can repeat the stability analysis of Sections 13.2.1-13.2.2 again by replacing

terms of the form exp [x2/(2σ2)] by (1 − λ2σ2) exp [x2/(2σ2)]. Rather than repeat-
ing this analysis entirely, we limit ourselves to looking into the influence of the
mexican-hat shape on the location in the (s, σ)-plane of the boundary separating
the monotonic tails from the oscillatory tails. The result of this analysis is shown
in Figure 13.9. The upper boundary A is calculated by determining the point
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Figure 13.10: Front velocity as a function of the width d for a mexican-hat
shaped kernel. µ = 3, |s| = 1, and σ is taken to be 0, 1, 2 and 3, depicted in

the figure as σsgn(s).

where the dominant spatial eigenvalues go from being complex conjugate to
purely real. One can notice that this boundary is now flipped with respect to the
Gaussian kernel case (see Figure 13.4). As this boundary lies now in the upper
half plane, a transition from monotonic to oscillatory tails now occurs by increas-
ing the positive nonlocal interaction strength s. However, when increasing the
negative interaction strength −s one can now also observe transition from mono-
tonic to oscillatory tails. In this region, it is interesting to see that the dominant
eigenvalue is still real, such that one would in principle expect monotonic tails.
Due to other complex conjugate eigenvalues that acquire a real part very close
— yet still larger — to the dominant eigenvalue oscillatory tails are created at
the lower boundary B5.
In Figure 13.10 the front velocity is shown as a function of the width d for a

mexican-hat shaped kernel with µ = 3 and |s| = 1. When taking σ = 1 and s = −1,
it is clear that a similar exponential law Eq. (13.10) holds. For comparison the
front velocity in the local case σ = 0 is also shown. Increasing the interaction
strength s from −1 to 1, one can see that for values of s such that one crosses
the line A in Figure 13.9 LSs come into existence. Hence, at certain widths d the
front velocity becomes zero. Taking again s = −1, but now increasing the spatial
interaction length σ from 0 to 3, one notices that the exponential law starts to
break down as one approaches the boundary B in Figure 13.9. When crossing
the line B, oscillatory tails are created and corresponding LSs are consequently
created as well.
In summary, for the real GLE one finds an enhancement of the interaction due to
nonlocality independent of the kernel shape, leading to the appearance of oscil-

5The boundary line B is determined by numerical time evolution simulations instead of calcula-
tions of the spatial eigenvalues.
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latory tails and LSs for a repulsive interaction and increase of the front velocity if
the interaction is attractive. In the next Section, we check the generality of these
findings for the Parametrically forced complex Ginzburg Landau Equation (PC-
GLE) whose fronts show oscillatory tails already in the local case and form LSs
[32, 33].

13.3 The nonlocal Parametrically forced complex
Ginzburg Landau Equation

The parametrically forced complex Ginzburg Landau Equation (PCGLE) is the
generic amplitude equation for oscillatory systems parametrically forced at twice
the natural frequency [34]. The nonlocal version of the PCGLE can be written as:

∂A(x)
∂t

= (1 + iα)
∂2A(x)
∂x2 + [(µ + iν) − seiφs ]A(x)

−(1 + iβ)|A(x)|2 A(x) + pA∗(x) + seiφs F(x), (13.13)

where µ measures the distance from the oscillatory instability threshold, ν is the
detuning between the driving and the natural frequencies, p > 0 is the forcing
amplitude, α and β represent the linear and nonlinear dispersion. The term
seiφs F(x) describes the nonlocal response of the material taking the same form as
in the study of the GLE (13.3). Here we consider s > 0 with φs = 0 and φs = π in
correspondence with attractive and repulsive interactions discussed previously.
Again, the linear contribution has been compensated in the term −seiφs A(x).

13.3.1 Linear stability

We start by studying the linear stability of the HSSs As of Eq. (13.13), as we did
for the nonlocal GLE in Section 13.2.1. Writing As = Reiφ allows to separate the
real and imaginary component of this equation. Besides the trivial zero solution
R = 0, a second non-zero solution exists and is given by:

(βR2
− ν) cosφ + (p + R2

− µ) sinφ = 0
(p − R2 + µ) cosφ + (βR2

− ν) sinφ = 0 (13.14)

An expression for R can easily be found by solving the first equation for tanφ
and substituting this in the second equation:

R2 =
µ + βν + ±

√
p2(1 + β2) − (ν − βµ)2

1 + β2 . (13.15)
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Figure 13.11: Bifurcation diagram of the homogeneous solutions As of the
nonlocal PCGLE for (a) s = 0 (local case), (b) s = 1 (nonlocal case). Other
parameters are: α = 0, β = 0, µ = 0, ν = 2, σ = 2, φs = 0. Stable solution are
shown in a black line, unstable ones in a grey line. The real part of As is
depicted by the solid line and the imaginary part of As by the dashed line.

From R and φ, the real and imaginary part of As can be easily calculated. In
Figure 13.11, the homogeneous solutions As are shown for a parameter set such
that two equivalent non-zero solutions are born, like in the GLE (13.2), in a
pitchfork bifurcation at

√
µ2 + ν2. In the remainder of this Section, we will work

with the same parameter set as in Figure 13.11 and only study the effect of the
nonlocal parameters (s, φs, σ).6

In order to gain insight into the influence of the nonlocal coupling term on the
temporal stability of the HSSs As, we study the linear stability of the HSSs with
respect to perturbations a(t) of the form

A(x, t) = As + a(t)eikx. (13.16)

Opposite to the local GLE (13.2), the local version of the PCGLE already has two
MI points destabilizing the HSSs as shown in Figure 13.11(a). When adding the
nonlocal term one can see in Figure 13.11(b) that the MI points shift. A more
detailed analysis of how the MI point shift in function of the nonlocal parameters
(s, φs, σ) is summarized in Figure 13.12. As in the case of the nonlocal GLE, an
increase in the coupling strength s and in the kernel width σ lead to a stronger
shift in the MI points. More interestingly, one now observes a large influence
of the coupling phase φs [see Figure 13.12(c),(f)]. The HSSs are most strongly
destabilized for a coupling phase φs ≈ π, similar as in the case of negative
interaction terms in the GLE (13.2), while the HSSs are stabilized most strongly

6For different parameter sets of the PCGLE, the non-zero solutions can originate e.g. in a subcrit-
ical bifurcation. We refer to Ref. [35] for a complete study of the local PCGLE.

274



13.3. THE NONLOCAL PARAMETRICALLY FORCED COMPLEX
GINZBURG LANDAU EQUATION

Figure 13.12: The evolution of the modulational instability points of the (a)-
(c) zero homogeneous solutions and (d)-(f) of the non-zero homogeneous
solutions. The evolution as a function of the nonlocal strength s is shown in
(a),(d). φs = 0 and σ increases from black to light grey. In (a): σ = 0, 1, 2, 3,
while in (d) σ = 0, 0.5, 1, 2. The evolution of the modulational instability
points as a function of σ forφs = 0 is shown in (b),(e). s increases from black
to light grey: s = 0, 0.5, 1. The evolution of the modulational instability
points as a function of φs is shown in (c),(f). σ increases from black to light

grey: s = 0, 0.5, 1, 2 (c), s = 0, 0.5, 1, 1.2 (f).

for coupling phases around φs = 0. The behavior for intermediate values of φs
is exemplified in Figure 13.12(c),(f).

13.3.2 Spatial dynamics

In Section 13.2.2, we have demonstrated for the nonlocal GLE (13.2) that the
MI points introduced by the nonlocal coupling also had a big influence on the
spatial dynamics of the system. More in particular, oscillatory tails were created
leading to the formation of LSs, not present in the local case. As now the HSSs
in the local version of the PCGLE already contain MI points, it is natural to ask
ourselves whether the shift of the MI points due to nonlocality also have a large
impact on the LSs present in the system.
Figure 13.13 shows the width of the stable LSs locked at the first and second
oscillations as a function of the nonlocal strength s. The insets show the LS
spatial profile. Whereas in the real GLE, LSs existed only for s < 0 (see Figure
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Figure 13.13: Stationary widths of stable LS for α = 1, β = 0, µ = 0, ν = 2
and p = 2.7. σ = 1 (black line) and 2 (grey line). Insets show the transverse

profile of the LS.

13.7), in the PCGLE, LSs also exist for a finite range of positive values of s cos(φs)
(φs = 0). This is shown in Figure 13.13 for σ = 2 where the bifurcation branch
abruptly ends around scross = 0.556. This can be understood by studying the
spatial eigenvalues of the system.
In this case there are two pairs of complex conjugate eigenvalues with small real

part λl and λnl which play a relevant role. Figure 13.14(a) shows the dependence
of the real and imaginary parts of these two eigenvalues for σ = 1.3 and 2 as a
function of s. For small s the spatial dynamics is dominated by λl, the eigenvalue
already present in the local case. Increasing s the real part of this eigenvalue
becomes slightly larger while the real part of λnl clearly decreases. For σ = 2, the
real part of the two eigenvalues crosses at scross = 0.556. Beyond that value the
spatial dynamics is governed by λnl whose corresponding spatial length scale
[Im(λnl)] is an order of magnitude larger than the one corresponding to λl. As a
result, the branch of LS experiences dramatic sharpening in Figure 13.13, as the
LS broaden with an order of magnitude. Figure 13.14(b) shows the locus of the
crossing point in the (σ, s) plane for φs = 0. For large values of σ, the crossing
point moves towards s = 0, while for σ < 1.43 the crossing never takes place and
the spatial dynamics is always dominated by λl.
For φs = π, nonlocality only modifies slightly the preexisting oscillatory tails
of the PCGLE. The branches of LS end for negative values of s cos(φs) close to
the modulational instability point of the background states (that for σ = 2 is at
s cos(φs) ∼ −3). This MI point, that was originated by the nonlocality in the GLE,
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Figure 13.14: (a) Dependence of the absolute value of the real and imag-
inary parts of the two dominant complex quartets of spatial eigenvalues
in the nonlocal PCGLE for σ = 1.3 and σ = 2 as a function of s. Other
parameters as in Figure 13.13. (b) The curve B depicts the locus in the (σ, s)
plane of the points where the absolute values of the real parts of λl and λnl

cross.

is already present in the local form of the PCGLE but is enhanced by the nonlocal
interactions.

13.3.3 Nonlocal effects in two spatial dimensions

To demonstrate the impact of nonlocality on the dynamics of a more broad class
of systems, we turn to the PCGLE in two spatial dimensions. In this case, in
general, the front dynamics is governed by curvature effects and it has been
shown, both experimentally and theoretically, that the evolution of the radius R
of a circular domain wall can be described by [25, 32]:

v = Ṙ = c cos[ζ(φs, s, σ)R]e−γ(φs,s,σ)R
− η1

1
R
− η3

1
R3 . (13.17)

In principle one could expect that the reduction of the exponent γ due to the
nonlocal interactions would also have implications for the 2D structures, but
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Figure 13.15: The stationary widths of several stable two-dimensional
localized structures are depicted for α = 1, β = 0, µ = 0, ν = 2 and p = 2.7
for varying values of the nonlocal strength s and this for σ = 1 (black line)
and 2 (grey line). All results have been obtained with temporal numerical

simulations.
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the dynamics of fronts in 2D is mainly dominated by the curvature, whose
intensity decreases much slower (1/R) than the exponential, no matter what the
value of γ is. We do observe however that the nonlocal coupling affects also
the intensity of the curvature η1. This is demonstrated in Figure 13.15, where
the stationary widths of several stable 2D LSs are depicted for varying values
of the nonlocal strength s and for σ = 1 (black line) and σ = 2 (grey line). All
results have been obtained with temporal numerical simulations. For positive
values of s cos (iφs) we observe the disappearance of LSs much faster than in the
1D case (see Figure 13.13). This is so not because of changes in the front profile
or γ, but in the value of η1, which increases with the strength and range of the
nonlocality, overcoming any locking due to tail interactions. For negative values
of s cos (iφs), η1 decreases and even changes sign, leading to the formation of large
stable droplets due to higher order curvature effects [32]. This phenomenon is
associated to the MI of the background mentioned above and enhanced by the
nonlocality. We conjecture that a similar change of sign of η1 occurs in the 2D
nonlocal GLE for negative values of s. Otherwise, in the local GLE η1 is always
positive and LSs do not exist in two spatial dimensions.

13.4 Conclusion

In conclusion, we have demonstrated the large impact of a linear nonlocal term
on the interaction of fronts connecting two equivalent states. The most striking
result is the possibility of obtaining a novel class of self-organized stable local-
ized structures in systems exhibiting fronts with no tails, like the real Ginzburg-
Landau equation. This is achieved through a nonlocal repulsive interaction that
modifies the profile of the fronts introducing or damping out oscillations. In
addition, we have observed an order of magnitude increase of the front veloc-
ity due to an enhancement of the interaction between two fronts. Finally we
have shown that nonlocal interactions can also smooth out the front oscillations
greatly increasing their wavelength such that the localized states become much
wider and eventually disappear.
The characterization of the effects of nonlocal coupling on the front properties
and dynamics can allow the identification, from both theoretical and experimen-
tal data, of different sources of nonlocality. For instance, domain walls have
long been studied in photorefractive media [36, 37], which have a large nonlocal
response, but its effects on the front dynamics have never been identified. Non-
local interactions are also common in Biology, Chemistry, and other fields, and
they can have a constructive role by enhancing the propagation of information
between distant parts of the system.
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CHAPTER 14

Conclusions to part II

In the second part of this thesis, we have studied emergent structures in spatially-
extended systems. We have focused our attention on non-equilibrium systems
that are internally dissipative and externally driven. Emergent structures are
patterns that appear spontaneously due to the interaction of each part with its
immediate surroundings in space. Such patterns do not exist if the various parts
are simply coexisting. Therefore, the presence and nature of the spatial coupling
between the interacting parts is essential. We have presented an investigation of
the formation and dynamics of spatially localized structures, which are emergent
structures where one state is "embedded" in a background consisting of a differ-
ent state. Such spatially localized structures in systems out of equilibrium are
also referred to as dissipative solitons (DSs). DSs are commonplace and have been
shown to arise in a wide variety of pattern forming systems, such as e.g. chemical
reactions, neural systems, granular media, binary-fluid convection, vegetation
patterns and nonlinear optics. We have studied different types of DSs in several
relevant model equations admitting DS solutions: the Lugiato-Lefever equation,
the Swift-Hohenberg equation and the Ginzburg-Landau equation. Whereas
the Lugiato-Lefever equation has been specifically derived to model the mean
electric field in a nonlinear optical cavity, the Swift-Hohenberg equation and the
Ginzburg-Landau equation are generic amplitude equations that describe the
universal behavior of a system near a bifurcation point.
In the case of photonics, due to recent advances in the fabrication of metamateri-
als and photonic crystal fibers, it is now possible to conceive nonlinear systems
that allow for diffraction and/or dispersion management. In the case of low
diffraction and/or dispersion, higher order spatial/temporal effects have to be
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taken into account as well. In Chapter 9, we have investigated the snaking
behavior of one-dimensional bright and dark DSs in a nonlinear optical cavity
with diffraction and/or dispersion compensation. Such structures are also called
cavity solitons. A stability analysis of a Lugiato-Lefever equation with fourth-
order spatial derivatives has been carried out, which has shown that the higher
order spatial contribution can stabilize the system under certain conditions. The
existence and the snaking bifurcation structure of both bright and dark DSs has
been studied in the presence of a subcritical modulational instability towards
patterns, evaluating the influence of the higher order spatial derivatives. A
stabilization of dark DSs has been demonstrated and a "classical’ homoclinic
snaking structure has been shown to exist for these dark cavity solitons in the
monostable regime, while in the bistable regime a more involved snaking struc-
ture has been observed. The bright cavity solitons are organized in intricate
stacks of isolas. We have cautiously alluded to the possibility that the creation of
stacks of such isolas is attributed to the interplay of two distinct wave numbers
in the system, created at the first modulational instability of the homogeneous
solution. A more careful analysis is needed, however, in order to elucidate the
more complex snaking structure observed for bright DSs and dark DSs.
In Chapter 10, we have studied the nonlinear dynamical behavior of two-
dimensional cavity solitons in the same Lugiato-Lefever equation with higher
order spatial derivatives. Our study has confirmed the possibility to reduce
the size of cavity solitons beyond the diffraction limit by using diffraction com-
pensation techniques. However, we have revealed that higher order spatial
interactions not only hinder this size reduction, but also alter the stability of
cavity solitons in a manifest way, imposing a new limit on their size. We have
unveiled the existence of regions with stationary, oscillating and excitable DSs.
Furthermore, we have shown that the different bifurcation lines originate from
two Takens-Bogdanov codimension-2 points, which is a strong signature for
the presence of a homoclinic bifurcation. This homoclinic bifurcation offers a
route to the excitable behavior of the two-dimensional DSs. Moreover, two other
regimes have been uncovered: one region of tristability and one of conditional
excitability.
In Chapter 11, we have presented an in-depth study of the complex Swift-
Hohenberg equation with real coefficients. The Swift-Hohenberg equation was
shown to admit phase-winding solutions in which the real and imaginary parts
of the order parameter oscillate periodically in space but with a constant phase
difference between them. Such solutions can be unstable to a long-wave instabil-
ity. We have demonstrated that, depending on the parameters of the equation,
the evolution of this instability may or may not conserve phase. In the former
case the system undergoes slow coarsening, while in the latter it undergoes re-
peated phase-slips leading either to a stable phase-winding state or to a faceted
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state consisting of an array of frozen defects connecting phase-winding states
with equal and opposite phase. When the intrinsic wave number in the system
is small, numerical simulations have revealed coarsening dynamics. A theo-
retical analysis of the stability of the zero phase gradient state with respect to
long wavelength perturbations have shown that the observed coarsening is de-
scribed by the Cahn-Hilliard equation for the perturbation phase gradient. For
a larger characteristic wave number in the system, numerical simulations of the
complex Swift-Hohenberg equation have revealed the formation of defects that
shift the wavenumber of the phase-winding state towards increased stability,
behavior that is familiar from existing studies of the Eckhaus instability. We
have quantified the parameter regimes where this type of evolution leads to
stable phase-winding states and where the final state consists of two or more
time-independent defects. The resulting phase defects are reflected as DSs in the
amplitude of the complex field as well. In future work, we will confront these
predictions with direct numerical simulations of the Maxwell-Bloch equations
for lasers or the equations modeling non-degenerate optical parametric oscilla-
tors, as these sets of equations can been reduced to the complex Swift-Hohenberg
equation.
Chapter 12 offers an expansion of the study of the complex Swift-Hohenberg
in Chapter 11 by allowing the coefficients to be complex. This breaks the vari-
ational structure of the model equation and leads to time-dependent solutions.
The phase-winding states are replaced by traveling wave solutions. The nonlin-
ear dynamical behavior of these traveling waves has been explored in param-
eter space uncovering a great complexity. Similar behavior as in the (coupled)
complex Ginzburg-Landau equation has been observed, such as e.g. station-
ary or drifting source-sink pairs, spatio-temporal intermittency, bimodal chaos,
time-periodic coherent structures and turbulence. However, other dynamical
behavior has also been uncovered, which to the best of our knowledge has not
been observed in other systems. An example of such behavior was given by
the presence of a stable stationary sink and a chaotic source, where the sink was
destroyed at certain times to be recreated at another random position. We have
derived a convective Cahn-Hilliard type equation to describe the evolution of
long-wavelength instabilities in the system, allowing to understand a part of the
observed dynamics. In the future, a more systematic study of the influence of
all terms in the Cahn-Hilliard type nonlinear phase equation will be carried out,
and a direct comparison of numerical simulations of the CSHE with simulations
of the phase equation will provide more insight into the dynamical behavior in
the complex Swift-Hohenberg equation.
Finally, in Chapter 13, we have demonstrated that a nonlocal spatial coupling
strongly influences the dynamics of fronts connecting two equivalent states. The
most striking result is the possibility of obtaining a novel class of self-organized
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stable DSs in systems exhibiting fronts with no tails, like the real Ginzburg-
Landau equation. This is achieved through a nonlocal repulsive interaction that
modifies the profile of the fronts introducing or damping out oscillations. In
addition, we have observed an order of magnitude increase of the front velocity
due to an enhancement of the interaction between two fronts. Finally we have
shown that nonlocal interactions can also smooth out the front oscillations in
systems which already have oscillatory tails in their local form. This greatly in-
creases their wavelength such that the DSs become much wider and eventually
disappear. A confrontation between our theoretical predictions and experimen-
tal data would allow us to identify different sources of nonlocality. We refer
e.g. to domain walls in photorefractive media, which have been shown to have
a large nonlocal response, but its effects on the front dynamics remain to be
characterized.
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APPENDIX A

Nonlinear dynamics and bifur-
cation theory: a Toolbox

As throughout the whole thesis, we use concepts from the field of nonlinear
dynamics and bifurcation theory, we provide the reader here with a brief
overview of some standard concepts in the field.

A.1 Dynamics and bifurcations

In the field of dynamics, the aim is to study the qualitative (not the quantitative)
behavior of a system described by several first order differential equations. The
general description of such a system is

ẋ1 = f1(x1, x2, . . . , xn; ~p)
ẋ2 = f2(x1, x2, . . . , xn; ~p)

...
ẋn = fn(x1, x2, . . . , xn; ~p)

(A.1)

or in shorthand notation
~̇x = ~f (~x; ~p) (A.2)

where the dot denotes a time derivative and ~p is a vector containing all the pa-
rameters influencing the system’s behavior. The space made up of the dynamical
variables x1, x2, . . . , xn is called the phase-space. In this phase-space, equation (A.2)
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can be visualized as a vector field indicating the direction in which the system
will evolve in time, just as if it were a velocity vector of a moving particle in
a mechanical system. But the particle must then be imagined as moving in an
extremely viscous fluid. If we let the system evolve in time, it will cover a trajec-
tory in the phase-space which is tangent to this vector field ~̇x.1 A point ~x∗ where
the vector field has zero amplitude ( ~f (~x∗) = ~0) is called a fixed point, because if
the system is prepared in ~x∗, it would reside there forever.2

A fixed point is (asymptotically) stable when it is both attracting and Lyapunov
stable. These stability types are defined a follows [1]:

Attracting A point ~x∗ is attracting if there is a δ > 0 such that

lim
t→∞

~x(t) = ~x∗

whenever
∥∥∥~x(0) − ~x∗

∥∥∥ < δ. In other words, any trajectory that starts within
a distance δ of ~x∗ is guaranteed to converge to ~x∗ eventually.

Lyapunov stable A point ~x∗ is Lyapunov stable if for each ε > 0, there is a
δ > 0 such that

∥∥∥~x(t) − ~x∗
∥∥∥ < ε whenever t ≥ 0 and

∥∥∥~x(0) − ~x∗
∥∥∥ < δ. Thus,

trajectories that start within δ of ~x∗ remain within ε of ~x∗ for all positive
time.

On the other hand, a fixed point ~x∗ is unstable when it is neither attracting nor
Lyapunov stable. Besides stable and unstable fixed points there is one more
important type of fixed points: a saddle. If ~x∗ is a saddle, some initial conditions
in the neighborhood of ~x∗ will actually converge to ~x∗ while slightly different
initial conditions will veer away from it. The set of initial conditions such that
~x(t) → ~x∗ as t → ∞, is called the stable manifold of ~x∗. Likewise, the set of initial
conditions such that ~x(t) → ~x∗ as t → −∞, is called the unstable manifold of ~x∗.
Note that a typical trajectory asymptotically approaches the unstable manifold
as t→∞, and approaches the stable manifold as t→ −∞ [1]. The three different
types of fixed points discussed here are summarized in Fig. A.1.

Fixed points, either attracting or repelling trajectories for t → ∞, are not the
only possible structures governing the dynamics in the phase-space. Another
possibility is a trajectory following a fixed path throughout the phase-space, and
returning to its starting point after a fixed amount of time. In other words, a

1A trajectory which is not tangent to ~̇x = ~f is not a solution of equation (A.2).
2In the absence of possible perturbations such as noise.
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Stable Unstable Saddle

Figure A.1: Illustration of a stable, an unstable and a saddle fixed point
(illustrated with straight line trajectories, for the sake of simplicity)

Stable limit cycle Unstable limit cycle Half-stable limit cycle

Figure A.2: Illustration of a stable, an unstable and a half-stable limit cycle

closed trajectory or periodic solution. A limit cycle is the most common closed
trajectory. It is an isolated closed trajectory in phase-space, where isolated means
that neighboring trajectories are not closed [1]. They spiral either toward or
away from the limit cycle (see Fig. A.2). Scientifically, stable limit cycles are very
important since they model systems that exhibit self-sustained oscillations, e.g.
the beating of a heart, dangerous self-excited vibrations in bridges and airplane
wings, etc. [1].

For different values of ~p, we obtain different vector fields in phase-space. In
most cases, this will only locally change the direction and magnitude, without
qualitatively changing the vector field. But for some special cases, we obtain
radical changes in the topology of the vector field. These qualitative changes
in the dynamics are called bifurcations, and the parameter values at which they
occur are called bifurcation points [1]. An illuminating example is provided by
the buckling of a beam. If the weight placed on top of the beam is small enough,
it is able to remain vertical. Even slight perturbations will not buckle the beam,
since the vertical position is stable. But once the load becomes too heavy, the
vertical position gets unstable and the beam may buckle (see Fig. A.3).

The knowledge of the type and the location of these bifurcations yields a pro-
found understanding of the system’s dynamical behavior and enables us to
manipulate it as we wish. Below, we will describe the most important types of
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m M > m

Figure A.3: Beam buckling. At a certain mass M, the vertical position
becomes unstable and the beam may buckle (figure based on [1])

bifurcations. For the sake of clarity, most of them will be described as bifurca-
tions in a one-dimensional phase-space.3 But first, we need to address the notion
of linear stability.

A.2 Linear stability

The most important property of a fixed point is its stability, because this dictates
how the system will behave whenever it comes close to it. A straightforward
stability analysis is possible if we first linearize the system at hand. Assuming
that ~x∗ is a fixed point ( ~f (~x∗) = ~0), we can write ~u = ~x − ~x∗ for the deviation from
the fixed point. The linearized time evolution of ~u then yields

~̇u = J~u (A.3)

where J is the Jacobian matrix of ~f in equation (A.2), evaluated at the fixed point
~x∗. The general solution of equation (A.3) is4

~u(t) =

n∑
i=1

cieλit~vi (A.4)

where ~vi are the eigenvectors of the Jacobian matrix J, and λi the corresponding
eigenvalues. The (complex) constants ci are uniquely determined by the initial
conditions. Since the characteristic equation only has real coefficients (J is as-
sumed to be real), the eigenvalues can only be real or complex conjugates. When
they are complex, ~u(t) involves linear combinations of e(α±iω)t (write λ1,2 = α± iω).
Such terms represent exponentially decaying oscillations if α = <(λ) < 0 and

3This is no restriction, as will be explained in section A.2.
4This can easily be seen by substituting the solution ~u(t) = eλt~v in equation (A.3), which then

reduces to an eigenvector-eigenvalue problem.
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Type Eigenvalues
Stable node <(λi) < 0,∀ i = 1, . . . ,n

Unstable node <(λi) > 0,∀ i = 1, . . . ,n
Saddle point ∃ i, j :<(λi)<(λ j) < 0

Table A.1: Classification of a fixed point with eigenvalues λ1, . . . , λn (i.e.
different stability types), where<(λ) denotes the real part of the complex

number λ

growing oscillations if α > 0. Hence the corresponding fixed points are stable
and unstable spirals (in a two-dimensional subspace), respectively [1].

So the nature of the eigenvalues (negative or positive real part, zero or nonzero
imaginary part etc.) fully determines the type of fixed point we are faced with
(see Table A.1). Fortunately, we can go a long way with this linearized theory.
The Hartman-Grobman theorem tells us that the stability type of the fixed point
is faithfully captured by the linearization, as long as<(λi) , 0 for i = 1, . . . ,n [1].

Note that equation (A.4) implies that a fixed point can only be stable when the
eigenvalues of the Jacobian all lie in the left half-plane <(λ) < 0. If this were
not the case, the slightest perturbation along the corresponding eigenvector for
which<(λ) < 0 is not satisfied will make the system flow away from the fixed
point. In that case the fixed point is unstable.5

As mentioned before, bifurcations yield a qualitative or topological change of
the phase-space. When a fixed point changes stability, trajectories near the fixed
point will reverse direction. The fixed point has then bifurcated. During this
bifurcation, some eigenvalue(s) cross(es) the imaginary axis so that their real
part becomes positive. When one single eigenvalue goes through zero at this
bifurcation (zero-eigenvalue bifurcations [1]), the center manifold theorem tells us
that all action takes place in a one-dimensional subspace. This center manifold
theorem allows us to reduce the dimension of a given system to n0 near a local
bifurcation, where n0 is the number of eigenvalues with zero real part at the
bifurcation point [2, 3].6

We will now explain zero-eigenvalue bifurcations (s.a. saddle-node, transcritical,
pitchfork) using a one-dimensional system, without any loss of generality.

5If<(λ) = 0, the fixed point is marginally stable. Perturbations will neither grow nor decay, they
will remain invariant.

6All the other eigendirections quickly relax to the bifurcating eigenvector(s) because of their
negative real parts, and are hence irrelevant for the local bifurcation dynamics.
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Figure A.4: Normal form of the saddle node bifurcation ẋ = µ + x2. The
direction of the vector field is drawn on the horizontal axis (figure based

on [1])

A.3 Saddle-Node bifurcation

The first example of a bifurcation type is the saddle-node bifurcation, which is
the basic mechanism by which fixed points are created and destroyed. Consider
the normal (one-dimensional) form for the saddle node bifurcation

ẋ = µ + x2 (A.5)

For µ < 0 we have two fixed points (ẋ = 0 ⇔ x∗1 =
√
−µ and x∗2 = −

√
−µ, x∗1

is unstable and x∗2 is stable, see Fig. A.4). As r increases, the fixed points move
towards each other. At µ = 0 (the bifurcation point) both points coincide and we
end up with a half-stable fixed point. If we further increase µ, the fixed points
disappear into thin air.

So in a saddle-node bifurcation two fixed points (one stable and one unstable
fixed point) move towards each other, collide and mutually annihilate when a
parameter is varied in a certain direction. In the other direction, two fixed points
suddenly appear [1].

When a system is close to a saddle-node bifurcation — just before the fixed points
appear or just after they have collided — a saddle-node remnant or ghost leads
to slow passage through a bottleneck [1]. This can be understood from Fig. A.4,
since ẋ is very small near the origin when we are close to the bifurcation. Hence,
it will take quite some time for the system to get past the origin, which in this
case takes on the role of the saddle-node ghost.
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Figure A.5: Normal form of the transcritical bifurcation ẋ = µx − x2. The
direction of the vector field is drawn on the horizontal axis (figure based

on [1])

A.4 Transcritical bifurcation

The transcritical bifurcation is the standard mechanism for changes in stability
of fixed points. It does not involve any creation or destruction of fixed points.
The normal form for the transcritical bifurcation is

ẋ = µx − x2 (A.6)

For µ < 0 we have an unstable fixed point at x∗1 = µ and a stable fixed point at
x∗2 = 0 (see Fig. A.5). As we increase µ, the unstable fixed point approaches the
origin. At µ = 0 (bifurcation point) both fixed points coincide. When µ > 0 the
origin has become unstable, while x∗1 = µ is now stable. You can say that the two
fixed points "exchanged" their stability. The threshold pump value in Fig. ?? is
an example of a transcritical bifurcation [1].

A.5 Pitchfork bifurcation

The pitchfork bifurcation is — just as the saddle-node bifurcation — a mech-
anism to create or destroy fixed points. It is a characteristic bifurcation for
systems with inversion symmetry. Hence it often occurs in physical problems
that have an intrinsic symmetry. Fixed points then tend to appear and disappear
in symmetrical pairs. The buckling beam in Fig. A.3 is an excellent example of
a pitchfork bifurcation. Once the load is large enough, the vertical position gets
unstable and the beam might buckle to the left or to the right. These are two
new symmetrical fixed points.
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Figure A.6: Normal form of the pitchfork bifurcation ẋ = µx − x3. The
direction of the vector field is drawn on the horizontal axis (figure based

on [1])

There are two different types of pitchfork bifurcations, the supercritical and the
subcritical pitchfork bifurcation.

The normal form for the supercritical pitchfork bifurcation is

ẋ = µx − x3 (A.7)

Note that this equation is invariant under the transformation x → −x. When
µ < 0, the origin is the only fixed point, and it is stable (see Fig. A.6). When µ = 0,
the origin is still stable but not as stable as whenµ < 0. Whenµ > 0, the origin has
become unstable and two new stable fixed points appear symmetrically around
the origin at x∗ = ±

√
µ.

The normal form for the subcritical pitchfork bifurcation is

ẋ = µx + x3 (A.8)

so that the cubic term is no longer stabilizing (pulling x(t) back toward x = 0),
but destabilizing. By changing µ → −µ, ẋ in equation (A.8) becomes exactly
−ẋ from equation (A.7). So by inverting the µ-axis and inverting the stability of
every fixed point of the supercritical case, we obtain the subcritical case.

A.6 Hopf bifurcation

As mentioned in section A.2, a fixed point loses stability when one or more
eigenvalues cross the imaginary axis into the right half-plane <(λ) > 0. In all
the previous bifurcations real eigenvalues passed through λ = 0, thus they were
all zero-eigenvalue bifurcations. But the Hopf bifurcation is quite different. At a
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Figure A.7: Phase portrait of the normal form of the supercritical Hopf
bifurcation, above and below the bifurcation point µ = 0. When µ > 0, the
origin has become unstable and the trajectories flow outward to the new

stable limit cycle with amplitude
√
µ (figure from [1])

Hopf bifurcation two complex conjugate eigenvalues cross the imaginary axis at
the same time. So at the bifurcation the eigenvalues are purely imaginary. This
means that at a Hopf bifurcation, a time-periodic solution appears or disappears
near a steady state [4].

The Hopf bifurcation is only possible in two or more dimensional systems. It has
no one-dimensional counterpart, as opposed to the previous bifurcations which
can all occur in a one-dimensional system.

There are two different types: supercritical and subcritical Hopf bifurcations.

A.6.1 Supercritical Hopf bifurcation

At a supercritical Hopf bifurcation, the fixed point becomes unstable and gets
surrounded by a stable limit cycle. The normal form (in polar coordinates) is

ṙ = µr − r3 (A.9)
θ̇ = ω (A.10)

where the radial equation is identical to the supercritical pitchfork equation (A.7).
The resulting phase portrait is shown in Fig. A.7.

A.6.2 Subcritical Hopf bifurcation

At a subcritical Hopf bifurcation, a fixed point gets unstable after colliding with
an unstable limit cycle. The trajectories close to the fixed point simply flow to a
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Figure A.8: Phase portrait of the normal form of the subcritical Hopf
bifurcation, above and below the bifurcation point µ = 0. The unstable
limit cycle surrounding the origin for µ < 0, shrinks continuously with
increasing µ until it collides with the origin (µ = 0), after which the origin
becomes unstable and the trajectories flow to some distant attractor (µ > 0).
In this case the distant attractor is the large stable limit cycle on the outside,

generated by the extra −r5 term in equation (A.11) (figure from [1])

distant attractor7 after the bifurcation has occurred. The normal form is

ṙ = µr + r3
− r5 (A.11)

θ̇ = ω (A.12)

where the radial equation is almost identical to the subcritical putchfork equa-
tion (A.8). The term −r5 (stabilizing term) is added to play the role of distant
attractor to which the trajectories can evolve after the origin becomes unstable.
The typical phase portrait of a two-dimensional subcritical Hopf bifurcation is
shown in Fig. A.8.
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APPENDIX B

Numerical integration schemes

We provide the reader with a brief overview of the numerical techniques that
have been used in this PhD thesis. In the first Section, we introduce the inte-
gration scheme that is used in the first part of the thesis to integrate stochas-
tic ordinary differential equations. Secondly, we explain a numerical method
to integrate partial differential equations, which are studied throughout the
second part of this thesis.

B.1 Numerical integration of stochastic ordinary dif-
ferential equations

Throughout the first part of this thesis we have backed up our theoretical and
topological predictions with numerical simulations of a general rate-equation
model for semiconductor ring lasers (1.1)-(1.3). This set of ordinary differential
equations models the time evolution of the slowly varying amplitudes of the
counter-propagating waves and the carrier number in a semiconductor ring
laser. In order to study stochastic mode-hopping between different attractors and
excitability in the ring laser (see Chapters 4 and 6), we have included spontaneous
emission noise. This motivates the need to numerically integrate stochastic
ordinary differential equations (ODEs) [1].
Consider several fields Ai(t) with i = 1, 2, . . . , which are a function of time, that
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satisfy coupled stochastic ODEs of the form:

∂Ai

∂t
= G([A]; ξi(t)), (B.1)

where G is a given function of the set of fields [A] = (A1,A2, . . . ,AN). For the
stochastic field ξi(t) usually a white noise approximation is used, i.e. a Gaussian
process of zero mean and delta-correlated in time:

〈ξi(t)ξ j(t′)〉 = δi jδ(t − t′). (B.2)

In most occasions, Eq. (B.1) takes the form of a generalized Langevin equation:

∂Ai

∂t
= Ki([A]) +

∑
j

σi j([A])ξ j(t), (B.3)

with Ki([A]), σi j([A]) given functions, possibly depending explicitly on time and
[A]. The numerical integration of Eq. (B.3) proceeds by developing integral
algorithms [2]. In the most general case, however, it is very difficult to accurately
generate the necessary stochastic variables appearing in the algorithms. This is
the reason why we do not go beyond Euler’s modification of Milshtein’s method:

Ai(t + h) = Ai(t) + h1/2
∑

j

σi j([A(t)])u j(t)

+h[Ki([A(t)]) +
1
2

∑
j,k

σ jk([A(t)])
∂σik([A(t)])
∂A j(t)

uk(t)u j(t)], (B.4)

where ui(t) are a set of independent random variables defined for the time
0, h, 2h, . . . of the recurrence relation, with zero mean and variance one:

〈ui(t)〉 = 0, (B.5)
〈ui(t)u j(t)〉 = δi j, (B.6)
〈ui(t)u j(t′)〉 = 0, (B.7)

with t , t′. An important case in which one can use straightforward general-
izations of the Milshtein and Heun methods is that of diagonal noise, i.e. one in
which the noise term does not couple different field variables:

Ai(t + h) = Ai(t) + h1/2σi(Ai(t))ui(t) + h[Ki(Ai(t)) +
1
2
σi(Ai(t))σ′i (Ai(t))ui(t)2]. (B.8)

In the first part of this thesis, we assume such diagonal noise, which also allows
an easy implementation of the Heun method, which is the one we use throughout
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this work [1]:

ki = hKi([A(t)]) (B.9)
li = h1/2ui(t)σi([A(t)]) (B.10)

Ai(t + h) = Ai(t) +
h
2

[Ki([A(t)]) + Ki([A(t) + l + k])] + (B.11)

h1/2ui(t)
2

[σi(Ai(t)) + σi(Ai(t) + ki + li)] (B.12)

B.2 Numerical integration of partial differential equa-
tions

In this Section, we describe the numerical method used to integrate partial
differential equations (PDEs), studied in the second part of this thesis. The PDEs
that have been considered in this work can be written in the following form:

∂tA(~x, t) = aA(~x, t) + b∇2A(~x, t) + F(A(~x, t)), (B.13)

where ~x = (x, y) and F(A(~x, t)) is a nonlinear function of the field A(~x, t).
The time evolution of A subjected to periodic boundary conditions is obtained by
numerically solving Eq. (B.13) in Fourier space. This method is pseudospectral
and accurate up to second order in time. We start by computing the Fourier
transform of Eq. (B.13), giving the evolution in time of each Fourier mode Ã(~q, t):

∂tÃ(~q, t) = −α~qÃ(~q, t) + F̃(Ã(~q, t)), (B.14)

where α~q = −(a + b~q2). At any time, the amplitude F̃(Ã(~q, t)) is calculated by
taking the inverse Fourier transform of Ã(~q, t), computing the nonlinear term in
real space and then calculating the Fourier transform of this term (using e.g. a
standard FFT subroutine). Eq. (B.14) is integrated numerically in time with a
two-step method. For reasons of convenience, we define the time step to increase
by 2δt at each iteration.
In order to solve the system numerically, the field A needs to be discretized in
space with a sufficiently large spatial resolution. Due to the corresponding small
spatial step size, the range of values

∣∣∣~q∣∣∣ is large such that the linear time scales
α~q can take a wide range of values. This stiffness problem is circumvented by
treating the linear terms exactly by using the formal solution:

∂tÃ(t) = e−α~qt
(
Ã(t0)eα~qt0 +

∫ t

t0

F̃(Ã(s))eα~qsds
)
, (B.15)
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where for simplicity the dependence of ~q on the field A has been omitted in the
notation. From Eq. B.15, the following relation is found:

Ã(t + δt)
e−α~qδt −

Ã(t − δt)
eα~qδt = e−α~qt

∫ t+δt

t−δt
F̃(Ã(s))eα~qsds. (B.16)

The term on the right-hand side is then simplified using a Taylor expansion
around s = t assuming small values of δt:

F̃(Ã(t))
eα~qδt
− e−α~qδt

α~q
+ O(δt3). (B.17)

Substituting this result into the evolution equation (B.16) leads to

Ã(n + 1) = e−2α~qδtÃ(n − 1) +
1 − e−2α~qδt

α~q
F̃(Ã(n)) + O(δt3), (B.18)

where n is used for nδt. This expression is called the slaved leap frog scheme [3].
In order for this scheme to be stable, a corrective algorithm is needed. Following
steps similar to the ones before, the following auxiliary expression can be found:

Ã(n) = e−α~qδtÃ(n − 1) +
1 − e−α~qδt

α~q
F̃(Ã(n − 1)) + O(δt2). (B.19)

Using Eqs. (B.18)-(B.19), we use the numerical method below, also referred to as
the two-step method [4, 5]:

1. Compute F̃(Ã(n − 1)) from Ã(n − 1) by going to real space.

2. Eq. (B.19) is used to obtain an approximation for Ã(n).

3. Using this approximated Ã(n), the nonlinear term F̃(Ã(n)) is calculated.

4. Ã(n + 1) is obtained using Eq. (B.18).

At each iteration Ã(n + 1) is thus obtained from Ã(n − 1) as time advances by
2δt. The total error is of order O(δt3) despite the fact that the intermediate step
is accurate to O(δt2).
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1D one-dimensional
2D two-dimensional
AO alternate oscillations
Ba Bautin
BF Benjamin-Feir
BI bidirectional
BS bound state
C coarsening
CW clockwise
CCW counterclockwise
CGLE complex Ginzburg-Landau equation
CSHE complex Swift-Hohenberg equation
CH Cahn-Hilliard
DS dissipative soliton
E Eckhaus
EC Eckhaus - coarsening
EF Eckhaus - faceting
EEL edge-emitting laser
FC fold of cycles
FPE Fokker-Planck equation
GLE Ginzburg-Landau equation
H Hopf
HSS homogeneous steady state
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IPAS in-phase asymmetric solution
IPSS in-phase symmetric solution
ISI inter-spike-interval
KS Kuramoto-Sivashinsky
LLE Lugatio-Lefever equation
LS localized structure
MI modulational instability
MPEP most probable escape path
MW modulated wave
NLSE nonlinear Schrödinger equation
OPAS out-of-phase asymmetric solution
OPO optical parametric oscillator
OPSS out-of-phase symmetric solution
PCGLE parametrically forced complex Ginzburg-Landau equation
PCF photonic crystel fiber
PDE partial differential equation
PIC photonic integrated circuit
LHM left-handed material
RGLE real Ginzburg-Landau equation
RHM right-handed material
RO relaxation oscillation
RSHE real Swift-Hohenberg equation
RTD residence time distribution
RW rotating wave
SHE Swift-Hohenberg equation
SN saddle-node
SL saddle-loop
SRL semiconductor ring laser
SW standing wave
TB Takens-Bogdanov
TW traveling wave
QW quantum well
U unidirectional
VCSEL vertical-cavity surface-emitting laser
WKB Wentzel-Kramers-Brillouin
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