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ABSTRACT: Savanna ecosystems are widespread and economically
important and harbor considerable biodiversity. Despite extensive
study, the mechanisms regulating savanna tree populations are not
well understood. Recent empirical work suggests that both tree-tree
competition and fire are key factors in semiarid to mesic savannas,
but the potential for competition to structure savannas, particularly
in interaction with fire, has received little theoretical attention. We
develop a minimalistic and analytically tractable stochastic cellular
automaton to study the individual and combined effects of these two
factors on savannas. We find that while competition often substan-
tially depresses tree density, fire generally has little effect but can
drive tree extinction in extreme scenarios. When combined, com-
petition and fire interact nonlinearly with strong negative conse-
quences for tree density. This novel result may help explain observed
variability among apparently similar savannas in their response to
fire. Paradoxically, this interaction could also render the presence of
competition more difficult to detect in empirical studies because fire
can override the characteristic regular spacing driven by competition
and lead instead to clustering.

Keywords: establishment, grass-dependent fire, mean-field approxi-
mation, nonlinear interaction, pair approximation, spatially explicit
model.

Introduction

Savannas are widespread and important ecosystems that
are characterized by a persistent mixture of trees and
grasses and occur across a broad range of climatic, edaphic,
and ecological conditions (Scholes and Archer 1997; San-
karan et al. 2005). Research on savannas has focused in-
tensely on the so-called savanna problem: what is unique
about savannas that allows the continual coexistence of
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trees and grasses where in other biomes one or the other
growth form dominates (Sarmiento 1984)?

Attempts to address the savanna problem theoretically
have tended to range between two extremes. On the one
hand, much research has focused on single-factor expla-
nations, such as how rooting-depth separation mediates
tree-grass competition for water (Walker et al. 1981;
Walker and Noy-Meir 1982) or how fire promotes coex-
istence by constraining tree density (D’Odorico et al. 2006;
Hanan et al. 2008). On the other hand, many studies have
incorporated a wide range of factors thought to be im-
portant, many of which may be site specific (Menaut et
al. 1990; Jeltsch et al. 1996; Higgins et al. 2000; Baxter and
Getz 2005). While it is clear that single-factor explanations
are oversimplified and inadequate (Bond 2008), it is also
apparent that complicated, site-specific models of savanna
dynamics will likely not provide general and robust an-
swers. Instead, studies that focus on a small number of
key factors and their interactions are needed to tease apart
the savanna problem (e.g., Hochberg et al. 1994; Scheiter
and Higgins 2007; Sankaran et al. 2008; Holdo et al. 2009).
This general approach has proved successful in under-
standing a wide range of ecological systems (Grimm et al.
2005).

Recent large-scale analyses of the determinants of tree
cover in African savannas have found that mean annual
precipitation (MAP) is a strong constraint in arid to mesic
savannas (<650 mm MAP), while in semiarid to humid
savannas, fire is often important (Bond et al. 2003; San-
karan et al. 2005, 2008; Bucini and Hanan 2007; Bond
2008). These findings suggest that in semiarid to mesic
savannas, both water limitation and fire may play impor-
tant roles in structuring tree populations and, as we de-
scribe below, may have the potential to interact in coun-
terintuitive ways. We discuss each factor in turn.

Savanna trees often have root systems that extend lat-



erally well beyond their crowns (Belsky 1994; Scholes and
Archer 1997; Schenk and Jackson 2002; Casper et al. 2003).
Coupling this fact with the above-mentioned water limi-
tation suggests that trees might negatively influence their
neighbors via belowground competition for water. In par-
ticular, the asymmetric negative effects of adult trees with
extensive root networks on nearby seedlings and saplings,
which we refer to as “establishment competition,” could
limit tree density (Pellew 1983; Barot et al. 1999; Jeltsch
et al. 2000; Wiegand et al. 2006). Although tree-tree com-
petition has received less research attention than tree-grass
competition, empirical evidence for its effects on tree den-
sity and spatial structure has been accumulating in the
savanna literature, particularly in sites with <650 mm MAP
(table 1).

The study of tree-tree competition is complicated by
observations that local facilitation among trees may some-
times be important (Scanlon et al. 2007). Facilitation can
occur when trees improve local nutrient or water condi-
tions, but this form of facilitation typically operates only
below tree crowns (Belsky et al. 1989, 1993). Longer-
distance facilitation may arise from other causes, such as
dispersal patterns (Barot et al. 1999; Scanlon et al. 2007).
For example, dispersal-mediated local facilitation could
result from either true dispersal limitation (most seeds end
up near the parent tree) or an “island of fertility” effect
(Scholes and Archer 1997). In the latter case, trees attract
seed-dispersing animals such that seeds tend to be de-
posited near trees. Although the role of dispersal limitation
in savannas is not fully resolved, it seems likely that there
will be some tendency for elevated tree seed densities near
trees (Gutiérrez and Fuentes 1979; Tybirk et al. 1994; Barot
et al. 1999; Witkowski and Garner 2000), which would
tend to promote clumped tree distributions and might
interact with local competitive processes.

Fire, which negatively affects immature trees yet to es-
cape the flame zone, has received increasing recognition
for its role in structuring savannas (Higgins et al. 2000;
Peterson and Reich 2001). In addition to large-scale em-
pirical evidence of the importance of fire (Bond et al. 2003;
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Sankaran et al. 2005; Bucini and Hanan 2007; Bond 2008),
recent spatially implicit analytical models have highlighted
its ability to induce multiple stable states in savanna sys-
tems (van Langevelde et al. 2003; D’Odorico et al. 2006;
Hanan et al. 2008). These studies have demonstrated that
a positive feedback cycle can develop whereby increasing
grass biomass leads to more frequent and intense fires,
which in turn negatively affect trees, leading to higher grass
biomass, and so on. Thus, under some conditions, fire
may exert a strong influence on tree density. Furthermore,
fire has been also been observed to promote tree clustering
(Barot et al. 1999; Kennedy and Potgieter 2003), but the
conditions under which this can occur are not fully un-
derstood.

Because tree-tree competition and fire can both target
the same, vulnerable tree life stage, they could exert par-
ticularly strong combined effects on tree density. Fur-
thermore, as these two factors may influence spatial pat-
terning in opposite directions and on different scales, it is
not clear when and over which scales clustering will dom-
inate relative to regular dispersion and vice versa. This is
especially true when local dispersal-mediated facilitation,
which will tend to promote clustering, is also operating.
Despite increasing empirical support for the importance
of competition and fire, most theoretical studies have ig-
nored one (usually competition) or both of them. The
studies incorporating both factors are complex, rule-based
simulation models that simultaneously include many other
processes (Menaut et al. 1990; Jeltsch et al. 1996, 1998,
1999; Baxter and Getz 2005; Meyer et al. 2007). Although
such models can often reproduce observed patterns (e.g.,
Jeltsch et al. 1999), their complexity makes pinpointing
exactly what is driving the pattern formation difficult, even
after extensive analysis. Therefore, the role that establish-
ment competition might play in constraining tree abun-
dance and shaping tree spatial distribution, particularly
when it interacts with fire and dispersal-mediated facili-
tation, remains unclear.

Here, we explore the individual and combined effects
of establishment competition and grass-dependent fire on

Table 1: Empirical examples demonstrating competition among savanna trees

Region/location MAP (mm) Source

Khomas Hochland, Namibia 100-200 Wiegand et al. 2006
Kalahari Gemsbok National Park, South Africa 209-220 Jeltsch et al. 1999

Kalahari, Botswana 300 Skarpe 1991

Central Valley, Chile 356—449 Gutiérrez and Fuentes 1979
Kalahari, South Africa 377 Meyer et al. 2008

Kalahari, South Africa 411 Moustakas et al. 2006, 2008
Mkuzi Game Reserve, South Africa 610 Smith and Goodman 1986
Nylsvley Provincial Nature Reserve, South Africa 630 Smith and Grant 1986
Lamto Research Station, Ivory Coast 1,300 Barot et al. 1999

Note: MAP = mean annual precipitation.
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savanna structure. We develop a minimalistic, spatially ex-
plicit, and stochastic cellular automaton that exploits the
middle ground between highly detailed but difficult-to-
analyze savanna simulation models and analytically trac-
table but spatially implicit aggregated models. A key
strength of our approach is that, by using mean-field and
pair approximations (Matsuda et al. 1992; Ellner 2001),
we can establish analytically the conditions under which
the model’s important qualitative transitions occur.

Material and Methods

The model, which is an extension of the contact process
(Marro and Dickman 1999), is implemented as a contin-
uous-time, discrete-state Markov chain on a square lattice
with periodic boundary conditions. Each lattice site is in
either state 1 (tree) or state 0 (grass). The proportion of
tree-occupied sites on the lattice is denoted p[1], and the
proportion of grass-occupied sites is p[0] = 1 — p[1]. We
assume that each site is 5 m x 5 m and model a lattice
of size of L = 200 sites per side, for a total area of 100
ha.

In the manner of other demographic savanna models,
we assume that the major bottleneck in tree life histories
is the set of transitions from seed to adult (Higgins et al.
2000; Sankaran et al. 2004). To maintain tractability, we
lump these into a single transition (establishment) and
assume, as we are interested in the long-term dynamics
of the tree populations, that this transition is effectively
instantaneous. Given that a seed is dispersed to a grass-
occupied site, establishment depends only on the new
tree’s chances of surviving both competition and fire.

Interaction Neighborhoods

Dispersal (facilitation) and competition (negative facili-
tation) are spatially limited and thus require the definition
of the neighborhoods over which they operate. We use
Moore neighborhoods and define the “near” neighbor-
hood to be the z, = 8 sites immediately surrounding the
focal site and the “far” neighborhood as the z; = 16 sites
surrounding the near neighborhood. The dispersal and
competition neighborhoods are defined below on the basis
of these building blocks.

Death

A site in state 1 transitions to state 0 at a constant rate o,
independent of the status of its neighbors. As is customary
in similar cellular automata models, we set, without loss
of generality, « = 1. This amounts to an implicit rescaling
of time such that time now proceeds in units of average
tree life span (1/a).

Birth/Dispersal

The lateral extension of roots defines the spatial scale over
which trees can exert a competitive influence on their
neighbors. In contrast, although seeds may tend to be
deposited near trees, there is no hard upper limit on dis-
persal distance. We therefore assume that the spatial scale
of dispersal is generally greater than that of competition,
and thus the dispersal neighborhood comprises both the
near and far neighborhoods. Each site within the dispersal
neighborhood of a tree receives seeds at rate 8 =
bl(z, + z;) independent of its occupancy status, where b
is the per tree birth rate. If a seed lands on a tree-occupied
site, nothing happens. If it lands on a grass-occupied site,
it has a chance to establish as an adult tree.

Establishment

A seed that has landed in a grass-occupied site can establish
(instantaneously) in that site if it survives both competi-
tion (with probability P>*") with nearby adult trees and
fire (with probability B**). Thus, the probability of es-
tablishment is B, = P3*B>",

Competition with Adult Trees. The spatial scale of estab-
lishment competition is defined by the competition neigh-
borhood, which we set equal to the near neighborhood
defined above. Given that a seed has landed in a grass-
occupied site, the probability that it establishes decreases
exponentially with the number of competitors, P2*"" =
e, where S is the number of trees in the competition
neighborhood and 6 is a coefficient scaling the intensity
of competition. Note that the total effect of competition,
P3*™, is a function of both neighborhood density (S) and
competition intensity (§). When we refer to the intensity
or strength of competition, we are referring specifically to
the value of the competition parameter 6. In addition to
the above-described establishment competition, there is
also preemptive competition for sites in our model, in the
sense that once a tree occupies a site, it cannot be displaced
by a new tree (Hochberg et al. 1994). Hereafter, when we
refer to competition, we mean establishment competition
and not preemptive site competition. Finally, we note that
Bolker et al. (2000) studied a similar, generic model of
plant competition but did not include the effects of fire.

Fire. The occurrence of fire in savannas depends strongly
on grass biomass, and fires are generally larger than the
100-ha lattice modeled here (van Wilgen et al. 2000). Fur-
thermore, fire influences savanna tree populations pri-
marily by inhibiting the transition from the juvenile (fire-
sensitive) to the adult (fire-resistant) life stages (Peterson
and Reich 2001; Hanan et al. 2008). The precise mecha-



nisms by which fire exerts its effects are complex and not
fully understood (Scholes and Archer 1997). To maintain
tractability, we therefore take a phenomenological ap-
proach and model only the probability of a juvenile tree
ultimately surviving fire. In doing so, we ignore compli-
cations that may be important in some savannas, such as
juvenile trees persistently resprouting after being top-killed
by fire (Boaler and Sciwale 1966; Holdo 2005, 2006; Neke
et al. 2006) and spatial correlations in the effects of fire
(van Wilgen et al. 2000). To our knowledge, such mech-
anisms have been incorporated only in considerably more
detailed savanna models (e.g., Pellew 1983; Menaut et al.
1990; Higgins et al. 2000; Holdo et al. 2009).

We assume that the probability of a killing fire occurring
while an individual is trying to establish is a Michaelis-
Menten (saturating) function of grass biomass, which is
similar to the implementation of fire in Jeltsch et al. (1996).
The per-birth probability of surviving fire is, then,

vk — p[1])

PSurv — 1 _ ,
' G+ k(1 — pl1])

@

where k is a constant that converts grass cover to grass
biomass; v, which we set to 1 for the following analyses,
is the asymptotic (maximum) probability of fire occur-
rence as grass biomass goes to infinity; and ¢ is the grass
biomass at which the probability of fire reaches half its
maximum value. Defining ¢ = o/k, the probability of sur-
viving fire can be written

< o
PSurv — i 2
‘ o+1—p[l @

Given this parameterization, we see that the negative ef-
fects of fire increase with decreasing o.

The model thus described has three free parameters: the
per-tree birth rate b, the competition parameter 6, and the
fire parameter o. In the following, we focus mainly on how
6 and o affect tree density and spatial pattern. A description
of the algorithm used to simulate the model and the source
code can be found in appendix A.

Analytical Approximations

It is possible to find deterministic differential equations
that describe approximately the time evolution of the
above-defined stochastic model. We consider two levels of
description: a mean-field approximation (MFA), where
only the global behavior of tree density is considered, and
a multiscale pair approximation (MSPA; Ellner 2001),
which accounts for the spatial dependence of the mean
density. Detailed derivations of both approximations, fol-
lowing Ellner (2001), are provided in appendix B. Here,
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we present the approximations and highlight the distinc-
tion between them.

Both approximations are based on using the transition
rules of the simulation model to find an equation for the
dynamics of the mean tree density, p[1], in terms of dif-
ferent kinds of site frequencies. The singlet frequency, p[i],
is the global unconditional probability of sites being in
state i. Pair frequencies, p[ij], give the probability that a
randomly selected site is in state i and a randomly selected
neighboring site is in state j. Conditional pair frequencies,
qljli], are the conditional probabilities that a neighboring
site is in state j, given that the focal site is in state i. The
dynamics of the mean density of trees can then be ex-
pressed as (app. B)

dpl1

dt = B(ann[1|0] + quf[llo])e’ﬁln%[l\()]

o

x m(l — p[1]) — p[1], 3

where ¢,[1/0] and ¢,[1|0] are the expected local densities
of tree-occupied sites around a site in state 0 in the near
and far neighborhoods, respectively. Equation (3) is the
starting point for the mathematical modeling of the sys-
tem, with the MFA approximating it and the MSPA ex-
tending it.

In the MFA, we ignore the spatial correlations that build
up in the simulation model by replacing the conditional
local density terms with the unconditional global site oc-
cupancy probability p[1]. This yields a closed equation for
mean tree density,

% = B(z,pll] + zp[1])e >V

o

x m(l — p[1]) — o[1], @)

which is intentionally written to emphasize the differences
with respect to equation (3). Given that we are interested
in the long-time behavior of p[1], we focus in the next
section on the stationary solutions of equation (4).

The MSPA is obtained by first writing the conditional
local densities in terms of singlet and pair frequencies and
then using the rules of the simulation model to write equa-
tions for the pair frequencies in the near (p,[11]) and far
(od11]) neighborhoods. This yields the coupled, closed
system (app. B)
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Figure 1: Individual effects of competition on stationary tree density (p*[1]; A) and near- and far-neighborhood spatial pattern (g B) for the no-
fire (0 = ) case. Points represent the means of 100 samples from a simulation after it had reached its stationary state. Solid and dashed lines are
obtained by numerically integrating the mean-field approximation (MFA) and the multiscale pair approximation (MSPA), respectively. A shows the
strong negative effect of competition on stationary tree density, with even slight competition leading to a substantial reduction in p*[1]. B shows
the corresponding spatial pattern as a function of competition, with increasingly regular dispersion observed in the near neighborhood (g, < 1) and
increasingly clumped distributions in the far neighborhood (g > 1). Both the MFA and the MSPA agree reasonably well with the simulation with
respect to p°[1] (A), but only the MSPA (B) captures the spatial pattern that develops in the simulation.
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where ,[1/0] = (o[1] — p, 1)/ — p[1]) and q,(1]0] =
(p[1] = p11))/QA — p[1]).

Each pair frequency is, when divided by tree density
squared, the normalized pair correlation statistic, g widely
used in spatial statistics (Stoyan and Stoyan 1994; Wiegand
and Moloney 2004). The normalized g statistic equals 1
for a random spatial distribution, with values greater and
less than 1 indicating clustered and regular distributions,
respectively. In continuous space, g is a continuous func-
tion of distance, but in the lattice case treated here, g
proceeds by discrete neighborhoods. Thus, we define the

normalized pair correlation statistic for the near and far
neighborhoods, respectively, as

_ p,[11]
&= o
_ pell1]

As there are no spatial processes in the model acting be-
yond the far neighborhood, the g statistic for neighbor-
hoods three cells away and farther, g, in the MSPA equals
1 (app. B). Thus, with g, g, and g;,, we have a direct link
between variation in model parameters and scale-depen-
dent tree spatial pattern.

Results

For a given set of parameters (b, 6, and o) and a random
initial condition, p[1], p,[11], and p{11] reach the sta-
tionary values p°[1], p;[11], and p[11] after a short transient
period. We obtained a rough estimate of the tree birth rate
b by noting that the empirically observed upper limit of
savanna tree cover across African savannas is approxi-
mately 0.8 at intermediate to high MAP (Sankaran et al.
2005; Bucini and Hanan 2007). At such levels of MAP,
water is no longer limiting, which in our framework trans-
lates into no competition (6 = 0). For this upper limit to
be realized, disturbances must also be absent, implying no
fire (0 = ). The MFA is quantitatively accurate in this
no-competition, no-fire limit (fig. 1A4), and in the time-



rescaled model (o = 1), its stationary solution (app. C)
depends only on &

p’lll = ——. 7)

Setting p*[1] = 0.8 and solving for b yields b = 5.

As we are primarily interested in the abilities of com-
petition and fire to limit tree density and shape tree spatial
pattern, we simulated the above-described model for
b = 5 and various values of the parameters 6 and ¢. In
appendix D, we present an additional set of figures anal-
ogous to those below but for the case b = 8. In general,
the accuracy of our approximations depends on b and will
decrease as b nears the lower threshold for tree persistence
(Ellner 2001). In appendix B, we discuss how and why the
accuracy of the approximations is also affected by the
strength of competition.

In the absence of fire (¢ = ), increasing competition
strength (§) in the simulation causes tree density to ap-
proach a lower limit of p°[1] = 0.1095. Importantly, even
relatively weak competition can have a sizable quantitative
influence on tree density (fig. 1A). Correspondence be-
tween the simulations and both the MFA and the MSPA
is generally good for p°[1] and the spatial-pattern indices
(g, and g), but it begins to break down as competition
strength increases (fig. 1). Strong establishment compe-
tition quickly overcomes the tendency toward clustering
caused by dispersal limitation and leads to increasingly
regular distributions at the near-neighborhood scale
(g, < 1), while the far neighborhood becomes increasingly
clustered (g;> 1; fig. 1B). The MFA and the MSPA differ
only slightly in p°[1] when competition is very strong,
suggesting that for practical purposes, the clear, nonran-
dom spatial pattern that develops does not feed back
strongly on mean tree density.

When there is no competition (6 = 0), fire has only a
slight effect on p°[1] for most of the range of o values (fig.
2). The weak influence of fire when it is infrequent (in-
termediate to large o) contrasts sharply with its effects
when ¢ decreases toward a critical value o, (fig. 2). When
o < g, the strong, negative effect of frequent fire on tree
establishment drives the tree population to extinction
(0’[1] = 0). Because of the close correspondence between
the MFA and the MSPA, we can use the simpler MFA to
further analyze this transition. In appendix C, we obtain
from the MFA the stationary solution for p[1] when both
po[1] and 6 are small:

vy LT (@ =D
e ®

A better, though more complicated, approximation of p°[1]
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Figure 2: Effects of fire on stationary tree density p°[1] with and without
competition. Colors refer to the competition intensity (green, 6 = 0; red,
6 = 0.1; and blue, 6 = 0.5). Points represent the means of 100 samples
from a simulation after it had reached its stationary state. The solid lines
are obtained by numerically integrating the mean-field approximation,
while dashed lines are from equation (8). The arrow along the X-axis
indicates that fire frequency increases as o decreases. Fire tends to have
little effect on p*[1], but as o approaches g, (eq. [9]), the negative effect
of fire strongly depresses p*[1]. When o < o, fire drives the tree popu-
lation extinct. Although competition does not affect ¢, in the determin-
istic approximations, the deviation between equation (9) and the value
of o, estimated from the simulations increases with competition strength.

is also possible for arbitrary p[1] and is shown in appendix
C. From equation (8), p[1] becomes 0 when ¢ takes the
value

1
o =77 )

Note that under the MFA, this transition from tree-grass
coexistence to a grass-only state is independent of 6 and
is driven only, for a fixed value of the birth rate, by o.
This can be seen in figure 2, where for the deterministic
approximations, p’[l] = 0 when ¢ = o, regardless of the
level of competition. However, because of stochastic finite-
size fluctuations ignored by the deterministic approxi-
mations, o, in the simulations is always larger than that
given by equation (9) (Stanley 1971), and this discrepancy
increases with the strength of competition (fig. 2).

As can be seen in figure 2, fire acting independently has
relatively little effect on equilibrium tree abundance until
it becomes quite frequent (i.e., 0 near o), whereas figure
1 shows that competition acting alone has pronounced
effects on p°[1]. Combining fire with competition pro-
duces, as expected, a further decrease in p°[1]. However,
the magnitude of the decrease in p°[1] resulting from the
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addition of fire depends nonlinearly on the strength of
competition (fig. 3). In other words, adding fire to the
competition curve in figure 1A changes the curve’s shape
rather than simply shifting it downward by a constant
amount. This can be seen more clearly by plotting the
difference in stationary tree density, Ap*(l] = p)_..[1] —
0...[1], between the case where competition acts alone
(0 = ») and each case where competition and fire act
together (fig. 3). The Ap*[1] curve represents the additional
reduction of p*[1] when fire and competition are combined
relative to when competition acts alone. From figure 3,
we see that the Ap®[1] curve peaks at small to intermediate
values of 6, meaning that fire will have its greatest effects
when competition intensity is relatively low. In appendix
C, we derive, from equation (8), an analytical approxi-
mation for this difference and use it to show that an in-
terior peak at low to intermediate § is a general feature
of the Ap’[1] curve.

We now focus on using the g statistics derived from the
MSPA to analyze how competition and fire shape spatial
pattern in the model. As we demonstrate below, the qual-
itative transitions in spatial patterning tend to occur when
o is near o. However, in figure 2 we showed that the
analytical approximations and the simulations can differ
substantially in ¢, when competition is operating. This
difference in o, results in a discrepancy between the g
statistics calculated directly from the simulations and those
derived from the MSPA, the magnitude of which increases
with competition strength. To correct for this discrepancy,
we introduce ¢ = o — g, a shifted fire parameter that is
now independent of . and allows direct comparison be-

tween the simulation and MSPA results (Stanley 1971).
All results below are expressed in terms of a.

Figure 4 shows lattice snapshots together with their cor-
responding g statistic values where increasing fire fre-
quency (decreasing ¢) drives a transition from regular
(g, < 1; fig. 4A) to random (g, = 1; fig. 4B) and then to
clumped (g, > 1; fig. 4C) tree dispersion at the near-neigh-
borhood scale. In contrast, tree spatial distributions are
persistently clumped at the far-neighborhood scale (g; >
1) and clumped or approximately random at larger dis-
tances (g;, > 1; fig. 4). To better understand the near-
neighborhood transitions, we hold b constant and focus
on how the interplay between competition and fire shapes
spatial pattern. In figure 5, the g, = 1 lines separate the
(0, 8) plane into regions where local clumping and regular
dispersion occur. Increasingly frequent fire (small o) can
drive a transition from the regular spacing promoted by
competition to clustering, even when competition is very
strong (large §; fig. 5). In appendix C, we obtain an an-
alytical approximation for this pattern transition (g, =
1) line,

0(6) =

a.m(l + bz,5)
bzme® + z, + 6 + 2(z + 6 — me®) — b{z* + z, + m[l + 6(1 + z,)]}’

(10)

where we have defined z = z, + z;and m = z+ 1. Equa-
tion (10) allows one to quickly assess how variation in
model parameters influences near-neighborhood spatial

e  Simulation
Mean field
Grn. o =0.65
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Blue o0 =1.5

0.00 L ———

Figure 3: Nonlinear effects of competition and fire on stationary tree density. Colors refer to the level of fire (green, high fire [0 = 0.65]; red,
medium fire [¢ = 1.0]; blue, low fire [0 = 1.5]), points represent means from simulations, and solid lines are from the mean-field approximation
(MFA). In general, the magnitude of the additional effect of fire on tree density (Ap°[1]) depends on the level of competition. The MFA captures
this qualitative result well and suggests that the maximum effect of a given amount of fire will occur when fire is combined with weak to intermediate

competition.
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Figure 4: Distance-dependent spatial pattern under three different values of the shifted fire parametero (b = 5,6 = 0.75 for all panels). The left
column shows a single snapshot of the central 120 x 120-cell area of a 200 x 200 lattice well after the simulation had reached its stationary state.
Black cells are tree occupied, and white cells are grass occupied. The corresponding plot to the right of each lattice picture shows the mean value
of the g statistic as a function of distance (plus signs), calculated from 100 samples of the lattice taken after the simulation had reached stationary
state. The circles represent the corresponding g statistics calculated from the multiscale pair approximation (MSPA). At distances of three cells and
farther (g;.), the MSPA predicts a random spatial pattern. Tree spatial-pattern transitions from regular (6 = 0.4275, g, < 1; A) to random (0 =
0.0925, g, = 1; B) and then to clustered (6 = 0.0525, g, > 1; C) at the near-neighborhood scale as fire frequency increases. Trees are persistently
clumped at the far-neighborhood scale and random to clumped at larger distances. The MSPA describes the near- and far-neighborhood spatial
patterns well but fails to account for the increasing clustering at the g, scale as fire frequency increases.

E51



E52 The American Naturalist

1.0 r
08+ e  Simulation
- —— Eqn. 10
0.6} an
< b -—~- Pair approx.
0.4 r
v 0.2r —
[ Clustered
0.0 L 1 . 1 L 1 1 L 1 " " 1 L 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Near-neighborhood spatial pattern in the (5,6) plane for
b = 5, showing two distinct tree-spacing regions. The solid line, the
dashed line, and the circles represent different versions (from eq. [10],
the multiscale pair approximation [MSPA], and the simulations, respec-
tively) of the pattern transition line (g, = 1) that separates regions of
clustering (g, > 1) and regular spacing (g, < 1). A numerical search was
used to find the point at which g, = 1 for each value of é in both the
MSPA and the simulations. In the case of the simulations, the mean g,
(circles) was calculated from 100 samples from a simulation that had
reached stationary state, and adaptive spacing of points along the X-axis
was used to reach an appropriate compromise between resolving the
curvature of the pattern transition line and maintaining reasonable com-
putation time. The agreement between the approximations and simu-
lations is quite good, suggesting that the approximations capture the
relevant aspects of spatial-pattern formation.

pattern. This is a key advantage of our approach because
doing so by simulation alone is tedious and computa-
tionally intensive.

Discussion

Direct empirical evidence for tree-tree competition comes
primarily from savannas known to be water limited,
namely, those with <650 mm MAP (table 1). This suggests
that tree-tree competition may limit tree density in such
savannas, with the strength of competition (6) likely in-
creasing with water limitation. Here, we have shown that
short-distance competitive effects of adult trees on juve-
niles, either by themselves or in combination with fire,
can have powerful consequences for both the tree-grass
balance in savannas and the formation of tree spatial pat-
tern. Competition, acting individually, exerts a strong neg-
ative effect on density, and even relatively weak (small 6)
competition can reduce tree density considerably. These
results suggest that competition may be a key process lim-
iting tree cover in arid and semiarid savannas and that it
might still play a role in mesic savannas, where trees are
only somewhat water limited (Sankaran et al. 2005, 2008;

Bucini and Hanan 2007) and weak competition might be
expected.

As competition is a density-dependent process, it cannot
by itself drive tree extinction. Indeed, our simulation re-
sults suggest that tree density approaches a lower limit of
p°[1] = 0.1095 as competition strength becomes large. In
contrast, the MFA and MSPA both predict that stationary
tree density decays to 0 with increasing competition in-
tensity. This discrepancy arises primarily because the MFA
and MSPA summarize local interactions by approximating
the expected number of tree-occupied neighbors around
a grass-occupied site. When trees are sparsely distributed
across the lattice and competition is strong, these average
local densities do not adequately represent the very het-
erogeneous local neighborhood conditions that occur, and
consequently both the MFA and MSPA overestimate the
effects of competition (see app. B for further details). How-
ever, we note that even if the full distribution of neigh-
borhood conditions is incorporated, there could still be
discrepancies between simulations and the MFA and MSPA
because of long-distance correlations that the approxi-
mations do not account for (see fig. 4C). The lower density
limit observed in the simulations is greater than that seen
in the driest savannas (o°[1] < 0.01; Sankaran et al. 2005),
implying that short-distance tree-tree competition alone
cannot explain the full range of densities observed in
water-limited savannas. We have assumed here that b, the
tree reproductive rate, is fixed and that only competition
and fire reduce density from the upper limit set by b. As
fire is rare in very dry savannas because of the low grass
biomass they support, this suggests that, in addition to
competition, b must decrease for the model to be consis-
tent with such low tree densities. Reduced seed set or
increased failure of seeds to germinate at very low MAP
could account for this decrease.

In isolation, fire acts in an all-or-nothing manner in
our model and can affect both the density and the spatial
structure of the tree population. In extreme scenarios, our
results agree with recent studies suggesting that fire is ca-
pable of driving a transition from tree-grass coexistence
to a grass-only state (fig. 2; eq. [9]; D’Odorico et al. 2006;
Hanan et al. 2008). On the other hand, when o is not near
g, our results are also in accord with studies suggesting
that fire might not strongly regulate tree density (fig. 2;
Menaut et al. 1990; Hochberg et al. 1994; Higgins et al.
2007).

We have shown that fire interacts with establishment
competition in a nonlinear way that can strongly constrain
tree density (fig. 3). This occurs in our model because (1)
fire frequency increases with grass cover and (2) compe-
tition depresses tree density, thus increasing grass cover
and the negative effects of fire. Combining competition
with fire therefore leads to more frequent fire, which fur-



ther reduces tree density and increases grass cover. The
result of this interaction is a reduction in tree density larger
than that predicted by the sum of the independent effects
of competition and fire for the same parameter values.

In general, fire will have its greatest effect on tree density
when it is combined with competition of weak to inter-
mediate strength (fig. 3; app. C). This is, to our knowledge,
a novel result in the savanna literature, and it may have
important implications for savanna ecology. For example,
in semiarid and mesic savannas where competition and
fire co-occur, their interaction could be a significant de-
terminant of tree cover even if the individual influence of
each factor would be relatively weak. Recent empirical
studies have noted that the effect of fire on tree cover for
a given mean annual precipitation is highly variable among
savannas (Sankaran et al. 2005; Bucini and Hanan 2007;
Higgins et al. 2007). Our results demonstrate that the in-
teraction between tree-tree competition and fire can gov-
ern the magnitude of fire’s effect on tree density. Taken
together, these observations suggest that competition,
which may vary in intensity, depending on soil moisture,
soil type, tree species identity, and other factors, may be
a missing ingredient in understanding the variable effects
of fire on savanna tree density.

Empirical studies based on point pattern statistics have
found tree distributions in a range of savannas to be reg-
ular, random, or clumped at short distances, generally
clumped at intermediate scales, and clumped to random
at larger scales (Skarpe 1991; Barot et al. 1999; Jeltsch et
al. 1999; Caylor et al. 2003). Our approach allows us to
derive the same type of spatial statistics used in these stud-
ies directly from our model, a key advantage relative to
existing simulation-based analyses. We find that our model
is capable of generating a similar range of patterns, sug-
gesting that a small set of simple processes might account
for much of the variation in spatial pattern among savan-
nas. At the near-neighborhood scale, competition, acting
singly, quickly overcomes the clustering driven by spatially
limited dispersal and leads to regular spacing as compe-
tition strength increases (fig. 1B). At the far-neighborhood
scale, spatial pattern is always at least weakly clustered,
with the degree of clustering increasing with competition
intensity (fig. 1B). Over longer distances, spatial pattern
decays toward randomness, although clustering may per-
sist at relatively large scales if the model is near a critical
threshold for tree persistence (fig. 4C; Hiebeler 2005).

Our analytical approximation of the spatial-pattern
transition line (eq. [10]) is an important result that links
variation in model parameters to qualitative changes in
the near-neighborhood spatial pattern. For fixed compe-
tition intensity, increasing the fire frequency past a critical
level leads to a transition from regular tree spacing to
clustering at the near-neighborhood scale (fig. 5; eq. [10]).
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This means that fire is capable of overcoming the regular
dispersion driven by competition, even when competition
is strong. Because the presence of competition is usually
inferred from regular tree spacing in empirical studies
(Gutiérrez and Fuentes 1979; Scholes and Archer 1997),
competition’s importance in fire-prone savannas may be
largely underestimated.

Fire has been observed to promote tree clustering in
savannas (Barot et al. 1999; Kennedy and Potgieter 2003).
Although several theoretical studies have suggested that
this pattern results from fire affecting isolated trees more
than those protected by nearby trees (Menaut et al. 1990;
Hochberg et al. 1994; Jeltsch et al. 1996), there is as yet
relatively little direct, stem-level empirical evidence dem-
onstrating such a protection effect (but see Holdo 2005).
Our minimalistic treatment of fire, which does not include
a protection effect, also leads to fire-driven tree clustering.
To explain this effect, we focus on a tree-occupied site i.
As the frequency of fire increases, the establishment prob-
ability decreases in both the near and far neighborhoods
of site i, which reduces the density of trees in site ©’s far
neighborhood. Because competition is dependent on local
density, lower tree density in site 7’s far neighborhood
means less competition and improved establishment
chances for seeds dispersed into site 7’s near neighborhood.
The average effect across the lattice is a relative increase
in near-neighborhood density with increasing fire and a
concomitant increase in near-neighborhood clustering. A
similar effect has been noted by Herndndez-Garcia and
Lopez (2004) in a related spatial population model. Our
results therefore suggest that an underlying tendency for
fire to drive clustering may exist independent of a pro-
tection effect. Thus, while protection will clearly act to
strengthen this tendency, it may not be the only means by
which fire can promote tree clustering in savannas.

The persistent clustering at the far-neighborhood scale
in our model is driven largely by dispersal-mediated fa-
cilitation. Ellner (2001) has shown that letting the far-
neighborhood size go to infinity in a related MSPA model
implies that p{11] = p*[1] and therefore that g, =1, a
result that also holds for our model. Thus, in the global
dispersal limit, the far-neighborhood scale clustering ob-
served in figure 4 will disappear. The clustering observed
at intermediate distances in some empirical spatial analyses
(Skarpe 1991; Barot et al. 1999; Jeltsch et al. 1999; Caylor
et al. 2003) is therefore consistent with dispersal-mediated
facilitation. This form of facilitation does not, however,
have strong effects on density in our model. To see this,
consider that the MFA will have exactly the same form if
we hold b constant and define z; = L*> — (z, + 1) and
B = bl(z, + z;) = b/(L> — 1), where L is the number of
sites per side on the lattice. This substitution makes the
per-site birth rate 8 contributed by each adult tree very
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small while making the number of sites over which seeds
are dispersed very large (i.e., the whole lattice). As the
birth term of the MFA is the product of these two com-
ponents, (3(z, + z) = b, its value is unaffected by this
substitution. This suggests that allowing global dispersal
will not have a major effect on p°[1]. However, there might
be some discrepancy between this mean-field result and
numerical simulations at varying dispersal neighborhood
size. We expect that such discrepancies will generally be
small.

In contrast to our focus on competition, Scanlon et al.
(2007) recently argued that observed large-scale power-
law clustering in Kalahari tree distributions could be ex-
plained by a particularly strong form of local facilitation.
While, as we have shown, facilitation is likely important
for certain aspects of spatial-pattern formation, we do not
find their singular focus on facilitation entirely convincing.
First, tree density is a given in their model, not a result
of tree population processes. Second, the reliability of the
power-law pattern on which their inferences are based is
unknown because they did not quantify the accuracy
of their remotely sensed data set via standard ground-
truthing techniques (e.g., Campbell 2006). Finally, empir-
ical studies from other sites within the Kalahari region
have shown clear evidence of tree-tree competition and
the short-distance regular spacing it can promote (table
1).

Our core qualitative results, including the generally neg-
ative effect of competition, the all-or-nothing effect of fire,
and nonlinear interaction between competition and fire,
are not sensitive to the particular functional forms for
competition and fire in our model. For example, many of
the analytical results are based on a linear approximation
of the exponential competition function used in the sim-
ulations and numerical results (see app. C). Although this
substitution has quantitative consequences when 6 is not
near 0, the above-mentioned qualitative results are robust
to it. Similarly, the all-or-nothing effects of fire hold when
a linear, a hyperbolic (Michaelis-Menten), or a sigmoidal
probability of fire curve is assumed (results not shown).
Finally, the presence of a nonlinear interaction between
fire and competition, with a peak in the Ap®[1] curve at
low to intermediate competition intensities, occurs for all
combinations of the different P3*™ and B™" functional
forms mentioned above (results not shown). In contrast,
the shapes of the responses of p°[1] to variation in 6 (fig.
1) and o (fig. 2) do depend on the functional forms of
P and P,

The cost of our focus on tractability is that we have had
to exclude factors that may be important in some savannas.
These omissions suggest a few promising lines of future
research. For example, variability in rainfall over time, and
thus in demographic parameters, is an important feature

of many water-limited savannas (Higgins et al. 2000). In
a companion study, E. Vazquez, C. Lépez, ]. M. Calabrese,
and M. A. Muifioz (unpublished manuscript) are exploring
an extension of our model that incorporates stochastically
varying rainfall. Going still farther, F. S. Bacelar, J. M.
Calabrese, V. Grimm, and E. Hernandez-Garcia (unpub-
lished manuscript) are extending our work by combining
our model with a spatially explicit fire model to examine
how spatial heterogeneity in fire spread affects savanna
tree dynamics and spatial structure.

Our minimalistic and analytically tractable approach has
yielded new insights about the interplay between com-
petitive effects and fire on the density and spatial pattern
of savanna tree populations. Tree-tree establishment com-
petition, particularly in concert with fire, can strongly de-
press tree populations. Although competition’s effect can
be enhanced substantially when it occurs with fire, it is
precisely these conditions that make competition harder
to detect by traditional spatial-pattern analyses. Our results
therefore suggest that the role of competition in structur-
ing savanna tree populations, particularly in situations
where relatively weak competition co-occurs with fire, has
been largely underappreciated.
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APPENDIX A

Simulation Algorithm and Source Code

The two critical events that occur in the model are tree
birth and death. Both types of events happen at constant
rates, and the occurrence of birth and death events are
independent of each other and of neighborhood condi-
tions. In contrast, note that establishment, given that a
birth event has occurred, depends explicitly on neighbor-
hood conditions, as described below. The waiting times
(or, equivalently, interarrival times) between births and
deaths are therefore exponentially distributed and are char-
acterized by the reciprocals of the birth (b) and death («)
rates, respectively. To simulate the model, we employ a
waiting-time algorithm and choose exponentially distrib-
uted random numbers to jump directly from one birth or
death event to the next (Bolker 2008).

To focus first on birth, at any point in time, each of N



currently living trees randomly selects one time to next
birth from the exponential waiting-time distribution for
births. The minimum of the N random draws is the time
to the next birth event. The minimum of N independent
and identically distributed random variables is known as
the first order statistic (Ross 2000). In the case of the
exponential distribution, the distribution of the first order
statistic is also exponential, with parameter AN, where \
is the rate parameter of the original distribution (Ross
2000). Thus, instead of randomly selecting N times to next
birth and then taking the minimum, we use the equivalent
but more efficient method of drawing a single random
variate from the distribution of the first order statistic. An
equivalent procedure is performed to obtain the time to
next death. The minimum of these two times defines both
the time to the next event and whether that event rep-
resents a birth or death. Because the model is a Markov
chain and therefore memory-less (i.e., the age of individual
trees does not matter), the event (birth or death) is ran-
domly assigned to an individual tree, and the appropriate
procedures are implemented. The algorithm can be sum-
marized as follows:

1. Initialize the lattice by randomly assigning N, sites
to state 1, set the value of the time counter to 0, and define
the maximum time for which the simulation will run.
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2. Obtain the time to next event and the identity (birth
or death) of that event as described above.

3. If the event is a death, randomly select a tree-occupied
site (1) and change it to a grass-occupied site (0).

4. If the event is a birth, randomly select a tree-occupied
site, and then randomly select a birth site within the focal
site’s birth neighborhood. If the birth site is already oc-
cupied by a tree, do nothing. If the birth site is grass
occupied, calculate the probability of surviving fire B>,
given current grass cover, using equation (2), and draw a
Bernoulli random variable with probability of success
P, If the new tree survives fire, scan the near (com-
petition) neighborhood of the birth site, and count the
number of adult trees (S). Calculate the probability of
surviving competition as P = e, and draw another
Bernoulli random variable. If the new individual survives
to this point, establishment occurs, and the state of the
birth site is changed from 0 to 1.

5. Add the event time to the time counter.

6. Repeat steps 2—5 until the value of the time counter
exceeds the maximum time.

A Mathematica 6.0 implementation of the model can
be found in the online edition of the American Naturalist.
Code that appears in the American Naturalist has not been
peer-reviewed, nor does the journal provide support.

APPENDIX B

Derivation of Mean-Field and Pair Approximations

Here, we provide derivations of both the mean-field and the multiscale pair approximations to the stochastic cellular-
automaton savanna model described in the main text. We use the moment closure approach for continuous-time
lattice models with multiple interaction scales described by Ellner (2001).

We wish to find a balance equation for p[1] that has the general form

dp(1]

i = total birth rate — total death rate.

(B1)

The rate of transition of a site in state 0 (grass occupied) to a site in state 1 (tree occupied) is governed by the density
of trees in the birth neighborhood of the focal site; the probability of establishment, given the density of trees in the
competition neighborhood of the focal site; and the probability of fire as a function of total grass cover. We consider
these processes in turn. The birth neighborhood spans both near and far interaction neighborhoods. Since we have
assumed that the per-site birth rate is the same in both the near and far portions of the birth neighborhood, the total
contribution of the two neighborhoods to the birth rate of an unoccupied site can be written as

B(z,9.[1/0] + z¢q{1]0]), (B2)
where ¢,[1/0] and q,[1]|0] are, respectively, the near- and far-neighborhood local densities described in “Analytical
Approximations.” The total potential birth rate is obtained by multiplying equation (B2) by the global proportion of
sites in state 0:

B(z,q.[1]0] + zq{1]0D(A — p[1]). (B3)
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Because of the negative effects of nearby adults and fire on a seed’s probability of establishment (P;), the total potential
birth rate must be appropriately discounted. Because we have defined both establishment competition and fire on a
per—birth event basis, the per-birth probability of these events happening in the simulation model translates directly
into the expected proportion of successful births, or

B(z,4,[1]0] + z,q{1|0])R.(1 — p[1]), (B4)

where B, = P3*B™.

The probability of a new seedling surviving competition with already established adult neighbors depends on the
density of adults in its competition neighborhood. Because the competition neighborhood covers only the near neigh-
borhood, the expected local density of competitors is given by g,[1|0]. The probability of surviving competition, which
decays exponentially with the local density, can therefore be written as

PSrY = g Seall 0] (B5)

where z,4,[1/0] is the expected number of competitors and 6 is the competition coefficient. The probability of surviving
fire depends only on the global density of grass (p[0] = 1 — p[1]) and not on spatial position and is therefore simply
equation (2). Combining the above, we can the write the total birth rate as

Blen, 0] + zigl] 0 17— (1 = ol (B6)

As death of adult trees does not depend on local conditions and since we have implicitly rescaled time by setting
o = 1, the total death rate is simply p[1]. Equation (3) is obtained by substituting this death rate and equation (B6)
into equation (B1).

The multiscale pair approximation is obtained from equation (3) by deriving equations for the pair frequencies in
both the near and far neighborhoods and then expressing the local densities in equation (3) in terms of the singlet
and pair frequencies. In doing so, we obtain an approximate system of moment equations that is closed to second
order. Considering that there are two interaction neighborhoods, there are eight possible pair frequencies, which must
obey the following constraints (Ellner 2001):

> wliil = 2 alifl = 1,
p.110] = p,[01],
pe10] = p[01], (B7)

p00] + p,[01] = p[0].

0,[00] + p,[01]

Therefore, only three frequencies are independent, and we retain p[1], p,[11], and p;[11]. Using equation (B7) and
the definition of conditional probability, we can now express the local densities in terms of pair and singlet frequencies:

eal10] — p[l] — p,[11]

q,[1/0] =

>

pl0]  1—pll
_ p4(10] _ p[1] — p11]
q;(1/0] = o0l - 1—o (B8)

We now turn our attention to deriving equations for the pair frequencies in the near (p,[11]) and far (p/{11])
neighborhoods. To focus first on the near neighborhood, a pair of sites in either state 10 or 01 transitions to a 11
pair, depending on the birth contributions from both the near and far neighborhoods surrounding the unoccupied
member of the pair, or



Competition and Fire in Savannas E57

Bl + (z, = Dq,[1]0] + zq,{1]0]]. (B9)

The 1 inside the brackets accounts for the fact that we know there is at least one occupied site in the near neighborhood
(because we are focusing on a 10 near-neighborhood pair), and the term (z, — 1)¢,[1|0] is approximately the expected
number of occupied neighbors in the remaining near-neighborhood sites. It is approximate because it ignores the
information that we know there is at least one neighbor; that is, it assumes that q,[1/01] = ¢,[1/0]. The exact term
would depend on the triplet frequency p,[111], which in turn would depend on higher-order frequencies. As before,
we must consider the reduction in the effective birth rate due to the negative effects of both establishment competition
and fire. Neighborhood competition depends only on the near neighborhood, and thus we must take into account
the knowledge that there is at least one occupied neighbor and the chance that there are others. Again using the pair
approximation, we have

PSu = g ol G Danl 0] (B10)

Because it does not depend on spatial position, the fire term is the same as before. Combining equations (2), (B9),
and (B10), multiplying the resulting expression by the frequency of either 10 or 01 pairs (since these frequencies are
equivalent), and accounting for the fact that there are two possible ways the transition can happen (i.e., from either
a 10 or a 01 pair), the total pair formation rate is

2B[1 + (2, = Dq,[1[0] + zoqe{1]0]]e 1Dt T p,10]. (B11)
o+ 1—p[]
By the same logic, the total pair formation rate for the far neighborhood is
2B[2,q,[1]0] + 1 + (z, — Dg,[1]0]]e *ral" 1 —————p[10], (B12)
o+ 1—p[l]

where we have taken into account that in the far-neighborhood case, we know that one far-neighborhood site is
occupied but do not know the status of the near neighborhood.

The transition from a 11 pair to either a 10 or a 01 pair depends only on the constant death rate, the frequency
of 11 sites, and the fact that there are two ways this can happen. Therefore, in rescaled time (o« = 1), we have 2p,[11]
and 2p,[11] for the near and far neighborhoods, respectively.

Combining equation (B11) and the appropriate pair loss rate, the pair equation for the near neighborhood is

1dp, (11

S = Bl (2, — Da,l1J0] + zq Qole * o)

mpnllol — p,[11], (B13)

and from equation (B12) and the corresponding loss rate, the pair density in the far neighborhood is

1dp{11]

S = Blz,q,[1]0] + 1 + (z, — Dg,10]]e 11— [10] — p,[11]. (B14)

g+ 1—p[l]

Finally, from the relationships in equation (B7), equations (3), (B13), and (B14), together define the coupled system
given in equation (5).

We can continue in the same manner to derive a rate equation for the pair frequency in the neighborhood three
cells away from a focal site (p;[11]). Given that we have defined the dispersal neighborhood to cover the near and
far neighborhoods, anything farther away (i.e., 3+ cells) cannot contribute to the gain term of the appropriate rate
equation. Furthermore, we have no information about the occupancy status of the near and far neighborhoods.
Combining these two facts, we see that the term representing the number of occupied neighbors around an empty
site is the same as the corresponding term of equation (5a) for p[1], or

B(ann[ll()] + quf[1|0])- (B15)
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The remaining steps are analogous to those above for the near and far neighborhoods and lead eventually to a rate
equation for the p,[11] pair frequency:

ldps[ll]

2 dr = B(2,q.[1/0] + zq,[1]0])e >

e mrT LU R ATE (B16)

Given that the same conditions hold for any neighborhood three cells away or farther, it is easy to verify that the
pair frequency equations for these neighborhoods will all have the same form as equation (B16); thus, we may refer
to the pair frequencies in any of these neighborhoods as p,,[11]. Furthermore, the stationary solution of equation
(B16) can numerically be shown to be p;,.[11] = p?[1], and thus the pair correlation statistic for neighborhoods three
cells away and farther is g,, = p,,[11]/p*[1] = 1. In other words, short-range seed dispersal makes sites at a distance
of 3 cells or farther uncorrelated within the MSPA.

It is worth noting that Hiebeler (2005) has devised an alternative method for dealing with longer-distance correlations.
His approach is to repeatedly apply the short-distance pair frequencies (p,[11] and p,[11] in our case) to approximate
longer-distance pair frequencies. We have tried Hiebeler’s method (results not shown) and found that it makes very
little quantitative difference relative to the pure MSPA approach described above. The long-distance correlations
observed in the simulations in figure 4C arise because the model is near a critical threshold (¢ near o; Hiebeler 2005).
When this is the case, Hiebeler (2005) has shown that the method of repeatedly applying short-distance correlations
to estimate longer-distance ones does not work well (see his fig. 5B). This, combined with the fact that Hiebeler’s
method introduces another layer of approximation, prompted us to retain the pure MSPA approach for calculating
&+

Finally, we note that the accuracy of our approximations will decrease as the strength of competition increases. The
disagreement between the numerical simulations and our analytical approximations in the infinite-6 limit can be seen
in figure 1A, where the value of p°[1] calculated from numerical simulations (circles) is approaching a constant value
larger than 0 as 6 increases, while the curves from the MFA and the MSPA decay to 0. The primary source of the
discrepancy is the competition component of the establishment probability P, when 6 goes to infinity. In the numerical
simulations, P; can be larger than 0 for some of the grass-occupied sites even when 6 — o; thus, new trees establish,
and the system reaches a stationary density of trees larger than 0. However, in the mathematical approximation expressed
in equation (3), as long as there are trees, ¢,[1/0] > 0 and P; becomes 0 for all sites (mean-field approach); thus, no
new trees can establish, and p[1] decays to 0.

To see this, consider a configuration with no fire and a few trees dispersed far from each other (low density) in a
square lattice of side L. Given that the number of trees S in the near neighborhood of an empty site is either S =
0 in L*(1 — p[1]) sites (empty regions) or S = 1 in L*p[1] sites (next to a tree), the establishment probability B, =
exp (—8S) as & > o is either B, = 1 or B, = 0, and its average value is (B,) = 1 — p[1], which is close to 1 for small
p[1]. However, in the mathematical approach expressed in equation (3), the establishment probability B, =
exp (—62,4,[10]) considers the average number of occupied sites next to an empty site, which is z,{g,[1|0]) =
z, % 0% (1 —p[l]) + 2, %1 % p[l] = z,p[l], and because p[1] is small but larger than 0, the average establishment
probability in the large-§ limit is B, = exp (—dz,p[1]) = 0.

One can also obtain an upper bound for the tree density if one realizes that, in the 6 = o limit, the establishment
probability is 0 for sites that belong to the near neighborhood of an occupied site. Therefore, the highest possible
density of trees corresponds to a regular configuration where trees occupy every other site in both the horizontal and
vertical directions on the lattice. Thus, the upper bound in tree density in the infinite-6 limit, as well as the maximum
possible error between the simulations and analytical approximations, is 1/4.

APPENDIX C
Analysis of Mean-Field and Pair Approximation Equations
Mean Field

The evolution equation for the density of trees in the mean-field approximation (eq. [4]) can be written as
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dpl1] pedznoll] o

—(p[1] — p*[1]) — p[1]. Cl
r 0+1—p[l](p[] p*[1) — pll] (&)

This equation has two stationary solutions, with only one being stable for a given set of parameter values b, 6, and
0. The trivial solution, p°[1] = 0, corresponds to a situation with no trees, while the second solution, p°[1] > 0, represents
a state of tree-grass coexistence. This positive solution is obtained by solving

boe =11 — p[1]) — o — 1 + p°[1] = 0. (C2)

Since our work focuses mainly on the roles of competition and fire, b is typically fixed, and we vary the values of 6
and 0. A transition from a tree-grass coexistence state (0 < p°[1] < 1) to a treeless state (0°[1] = p°[1] = 0) occurs with
decreasing o (see fig. 2). An analytical approximation for p°[1] can be obtained close to the transition, or critical, point
(i.e., for small p[1]) and for 6 < 1. Dropping terms involving p*[1] and expanding the exponential term to first order
in p[1], the solution of equation (C2) is equation (8).

We can obtain a better approximation for the stationary value of p[1] farther away from the transition point (but
still for 6 << 1) by doing as above but retaining terms involving p°[1]. This results in a quadratic equation in p[1]
whose positive solution is

bo(1 + 6z,) — 1 — J[bo(l + 8z,) — 1]> — 4bodz [(b— 1)o — 1]
p’ll] = .
2bobz,

(C3)

We now focus on the combined effects of competition and fire. To maintain tractability, we base our analysis on
equation (8). The effect of competition alone is obtained by taking the limit of equation (8) as ¢ = %, which is

b—1

= ozt 1) ©4

e*1]

Subtracting equation (8) from equation (C4) and simplifying yields the difference in stationary tree density (Ap*[1])
between the competition-only case (eq. [C4]) and cases where competition is combined with fire (eq. [8]):

1+ béz,

Aol =70 6z,)[bo(l + 6z,) — 1]

(C5)

When 6 = 0, this difference reduces to 1/b(bo — 1), and in the limit where 6 = o, Ap*[1] = 0. To find the maximum
of this curve, we differentiate equation (C5) with respect to 8, resulting in

do'lll 2,1 — b{l + (62, + D2 + b6z, — D]o})

C6
dé b6z, + 1)*[bo(6z, + 1) — 1) (C6)
Setting equation (C6) to 0 and solving for § yields
—0 + Jo(b— Dlo(b—1) — 1]
5. = . (C7)

bz,o

For fixed b, this peak moves to the right (toward larger § values) as o increases, approaching 6, = (b — 2)/bz, as
0> ». As o decreases, the peak moves to the left until it meets the Y-axis (6 = 0) when ¢ equals a critical lower
value. Setting equation (C7) equal to 0 and solving for o, we obtain this critical value of ¢ at which the interior
maximum of the Ap®[1] curve observed in figure 3 disappears:

b—1
0, = b= 2) (C8)
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As o, is generally very close to o, (i.e., very close to the point at which the tree population becomes extinct), this
analysis suggests that the Ap*[1] curve will generally have an interior peak at small to intermediate values of the
competition parameter, as observed in figure 3.

Pair Approximation

As spatial pattern in the model is most variable at the near-neighborhood scale, we focus our analysis of the pair
approximation at this scale. Our goal is to obtain an approximate expression for the pattern transition line o(5), along
which g, = 1 in the (g, §) plane. This line separates the plane into a region where clustering occurs (g, > 1) and a
region where regular dispersion (g, < 1) occurs. We obtain this pattern transition line by considering the system of
equations (5) in a particular stationary state in which the relation p,[11] = p*[1] = constant (g, = 1) holds and by
solving for ¢ as a function of 8. The process used to obtain this expression is involved and requires several approximations
to remain tractable. These steps are detailed below.
To simplify our analysis, we start by performing the following change of variables:

_ pll] = p,M1]
_pll] = pd11]
q:1/0] = BErT (C9)

We then rewrite equations (5b) and (5¢) in terms of these variables. We obtain, in the stationary state,

—14dq,[1]0]

T All + (z, — 1)q,[1]0] + zg{1]|0]]e ®"+ e DaltloNg T1]0] 4 g,[1]0] — C = 0, (C10)
—1dg1|0
T%t“ = A(l + z,q,[1|0] + z.q/[1]0])e > [1]0] + g1]0] — C = 0, (C11)
where we have defined
A= Bo ,
o+ 1—pll]
(1]
C= T (C12)

To analyze the above equations on the g, = 1 line, we note that q,[1|0] = p[l], given that p,[11] = p*[1] for g, = 1.
Then, equation (C10) becomes

All + (z, — Dp1] + zeq[1]0)Je”?! = Deip[] + p[1] — C = 0. (C13)

Figure 5 shows that for large enough 6, the transition from clustering to regular spacing happens for values of ¢ very

close to the critical value o, where p[1] is small. Then, given that q[1]|0] is smaller than p[1], we consider
q(1|0] < 1 and expand equation (C11) to first order in q.1|0] and zeroth order in ¢,[1|0]. We obtain

(A + 1g,1j0] — C = 0. (C14)

For p[l] <« 1,

Bo Bop(1]
o+1 (o+1)?

= a,+ a,p(l],

and C= p[1](1 + p[1]). Then, to first order in p[1], we obtain
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(0 + Dpl1] = [l (C15)

a0~ ey <

Now, replacing the above expression for ¢,[1|0] in equation (C13) and expanding to second order in p[1], we obtain
plll(ea, + {eayl(z, — D1 — 8) + z¥] + ¢ %a, — Lp[1]) = 0. (C16)

Taking advantage of the close correspondence between the stationary-state densities in the mean-field and pair ap-
proximations, we take the solution p*[1] > 0 (eq. [8]) and arrive at the following equation that relates o and 6 on the
g, = 1 line:

e ’ay[l — bo(l + 6z,)] + {e%a,l(z, — DA —8) + zy] + e %a, — [l + (1 — b)o] = 0. (C17)

Substituting the expressions for a,, a,, and y into the above equation leads to a fourth-order polynomial in o. To
simplify the calculations, we use the fact that our analysis is for ¢ close to o, so that ¢ — 0. = ¢ < 1. We then make
the substitution ¢ = ¢ + ¢, in the above-mentioned fourth-order polynomial, expand to first order in g, and solve
for o, yielding equation (10).

APPENDIX D

Additional Results

In this appendix, we provide a set of figures analogous to those in the main text but for the case b = 8. As can be
seen, all major qualitative results still hold, and the quantitative accuracy of the approximations is, in some cases,
better. As the legends for the complementary figures in the main text apply, for the most part, here as well, we note
only what has changed in these figures relative to those in the text.

1.0 2.0
A [ B
0.81 e  Simulation 1.5F
. — Mean field i Far o« o __°
:0.6' . [ .___.___.— ————
o : —-—  Pair approx. B0 1.0 L::-—
[Lo4f : e
A S~
0.2f 0'5:' Near “--e__, .
0.0 -l 1 1 1 1 0.0 -l 1 1 1 n 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Figure D1: Same as figure 1 but for b = 8.
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Figure D2: Same as figure 2 but for b = 8.
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—— Mean field
Grn. 0 =0.35
E Blue 0 =0.5
) Red 0 =1.0
Q

Figure D3: Same as figure 3 but for b = 8. In addition, the colors here refer to different levels of fire (green, high fire [0 = 0.35]; blue, medium
fire [0 = 0.5]; and red, low fire [0 = 1.0]).
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Figure D4: Same as figure 4 but for b = 8 and different values of the scaled fire parameter (4, 6 = 0.7; B, 6 = 0.0475; C, 6 = 0.03).
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Figure D5: Same as figure 5 but for b = 8.
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