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We investigate the structural and dynamical properties of the transcriptional regulatory network of the

Yeast Saccharomyces cerevisiae and compare it with two ‘‘unbiased’’ ensembles: one obtained by

reshuffling the edges and the other generated by mimicking the transcriptional regulation mechanism

within the cell. Both ensembles reproduce the degree distributions (the first—by construction—exactly

and the second approximately), degree–degree correlations and the k-core structure observed in Yeast.

An exceptionally large dynamically relevant core network found in Yeast in comparison with the second

ensemble points to a strong bias towards a collective organization which is achieved by subtle

modifications in the network’s degree distributions. We use a Boolean model of regulatory dynamics

with various classes of update functions to represent in vivo regulatory interactions. We find that the

Yeast’s core network has a qualitatively different behavior, accommodating on average multiple

attractors unlike typical members of both reference ensembles which converge to a single dominant

attractor. Finally, we investigate the robustness of the networks and find that the stability depends

strongly on the used function class. The robustness measure is squeezed into a narrower band around

the order-chaos boundary when Boolean inputs are required to be nonredundant on each node.

However, the difference between the reference models and the Yeast’s core is marginal, suggesting that

the dynamically stable network elements are located mostly on the peripherals of the regulatory

network. Consistently, the statistically significant three-node motifs in the dynamical core of Yeast turn

out to be different from and less stable than those found in the full transcriptional regulatory network.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Transcriptional regulatory network (TRN) describes the con-
nective structure of the gene–gene interactions that regulate most
physiochemical activities in a cell (Thomas, 1998; Albert and
Barabási, 2002). This is particularly valid for Saccharomyces

cerevisiae (from here on referred to as ‘‘Yeast’’), an eukaryote
which lacks miRNA and RNAi capability. Survival of the cell under
changing external conditions requires both a responsive and a
robust regulatory mechanism (Kauffman, 1993). The two key
ingredients that contribute to the dynamics of regulatory activity
are the network’s topology and the character of the regulatory
interactions (Kauffman et al., 2003). It is natural to attempt to
identify the respective roles of these two components on the
dynamical properties of the system. For this purpose, we consider
here two neutral network ensembles and compare their repre-
sentative members with the Yeast’s transcriptional regulation
network. The first ensemble (E1) is generated by reshuffling the
edges on the Yeast’s TRN. This ensemble is suitable for identifying
ll rights reserved.

c- ıoğlu).
features that fall beyond those implied by the node connectivities.
The second ensemble (E2) was developed in a recent study by
Balcan et al. (2007) and was shown to mimic with high accuracy
the global structural properties of the network of transcriptional
regulatory interactions (Lee et al., 2002; Teixeira et al., 2006)
found in Yeast. By comparing the characteristic features of the
regulatory dynamics on Yeast’s TRN with those of the two
ensembles, we discuss the relevance of in/out-degree statistics
and the functional character of the interactions to the regulatory
dynamics.

Below, we first focus on the structure of the TRN found in Yeast
and those of the typical members of the two ensembles. Next, we
investigate the differences between their dynamics in terms of
their attractor statistics and robustness, both within the frame-
work of a synchronous, Boolean time-evolution model.
2. Structure of Yeast’s TRN

A reasonably complete picture of the architecture of the
TRN in Yeast is now available due to the collective effort of
many experimental groups and the recent development of
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high-throughput techniques (Spellman et al., 1998; Lee et al.,
2002; Teixeira et al., 2006). The structure is radically different
from a random collection of 4252 nodes connected by 12 541
edges, where the quoted numbers are those of the genes and
known regulatory interactions in the Yeastract database (Teixeira
et al., 2006) adopted by Balcan et al. (2007). In particular, the
regulating nodes (transcription factors, or TFs) which constitute
� 3:5% of all genes have a skewed out-degree distribution which
has been suggested to follow a power-law (Guelzim et al., 2002;
Bergmann et al., 2003; Maslov and Sneppen, 2005), and a roughly
exponential in-degree distribution (Maslov and Sneppen, 2005),
although the ranges of both distributions are somewhat narrow to
make a strong case. Nevertheless, the deviation from a randomly
wired network is strong and independent of the database used. A
similar trend is observed in other structural aspects, such as
degree–degree correlations and the k-core organization which
appear to follow from the in- and out-degree distributions (Balcan
et al., 2007). Note that the numbers quoted above continue to
increase as new experimental data pours in. However, for the sake
of a fair comparison with the earlier study we stick to the same
reference data and pay attention that our conclusions are based
on observations (such as normalized distributions) that are likely
to change little with further incoming data.
2.1. Reference ensembles

The ensemble E1 is an ‘‘unbiased’’ set of networks generated
from Yeast’s TRN by shuffling the edges among the nodes while
keeping the in- and out-degrees of each node unaltered. This is
achieved simply by switching the end terminals of two randomly
picked edges ði-jÞ; ðk-lÞ to obtain two new edges ði-lÞ; ðk-jÞ,
where we impose ia jaka l in order to keep the number of self-
regulating genes fixed (see below). In spite of its frequent use in
the literature, one should consider E1 a biologically inappropriate
reference point. There is no good reason to assume that Nature
selected Yeast’s TRN out of a pool of networks with identical
degree distributions. Furthermore, such a reference simply
ignores the question pertaining to the origin of the observed
degree distribution for which several mechanisms have been
proposed (Wagner, 1994; Van Noort et al., 2004; Balcan et al.,
2007). Nevertheless, stastically significant deviations from E1
found in Yeast (features with a high z-score) allowed past studies
to point out a high abundance of stability enhancing local motifs,
such as feed-forward loops. On the other hand, the highest z-score
three-node motif thus found by Prill et al. (2005) can be
reproduced with the right frequency by means of a simple model
which we also consider here to generate a second reference
ensemble E2 as described below.

E2 is generated from a biologically motivated model intro-
duced by Balcan et al. (2007). In this null model, two binary
strings are associated with each Yeast gene: first (S1) representing
the promoter site of the gene that regulates its transcription,
second (S2) representing the DNA sequence (motif) that the gene’s
product binds. The lengths of the two sequences are chosen
randomly from the associated length distributions determined
from the available biological data provided by Harbison et al.
(2004). A gene A is said to regulate gene B if SA

2 � SB
1. No such B

exists unless the product of A is a TF. For more details, we refer the
reader to the original article.

Repeated generation of model networks with the same
number of genes as in Yeast and different random number
generator seeds forms the ensemble E2. Its typical members agree
to very good accuracy with Yeast in terms of the in-, out-, and
total-degree distributions, degree–degree correlation and the
rich-club coefficient distributions. This ensemble further captures
the hierarchical organization of Yeast’s TRN given by its k-core
analysis, as well as the frequencies of most three-node motifs
observed in Yeast (see Section 4.3). Due to its success in
simultaneously reproducing several distributional features of
Yeast’s TRN from a single mechanism and without any reference

to the genetic sequence, E2 appears a meaningful alternative to E1.
It is a null-hypothesis constructed by a bottom-up approach,
providing a microscopic explanation for a number of ‘‘anomalous’’
distributions observed in Yeast’s TRN and taken for granted in
randomized ensembles such as E1. However, as shown below,
even a quantitative agreement on those frequently quoted
features may veil some significant differences between the actual
Yeast and the two ensembles.
3. Dynamics

3.1. Boolean network model

Several methods can be employed for simulating the time
evolution of gene expression within a cell (Norrell et al., 2007).
We here use a Boolean network model first proposed by Kauffman
(1969), where the expression level siðtÞ of the i th gene at time t is
assumed 0 (silent) or 1 (expressed). The interaction between the
regulatory genes and the regulated gene is deterministic and the
time evolution is synchronous, so that

siðtþ1Þ ¼ Fiðsj1
ðtÞ;sj2

ðtÞ; . . . ;sjdi
ðtÞÞ;

where di is the number of edges incoming to the node i (number
of TFs regulating the i th gene), fj1; . . . ; jdi

g are the nodes connected
to i with incoming edges, and Fi is a Boolean function determining
the state of gene i in the presence of possibly multiple regulators.

Boolean dynamics of generic (such as, fixed in-degree, Kauff-
man, 1969, random, Aldana and Cluzel, 2003, power-law, Aldana,
2003) networks have been of considerable interest for some time.
Applications to biological systems include TRN models of
Arabidopsis thaliana by Mendoza et al. (1999), Drosophila melano-

gaster by Albert and Othmer (2003), and the Yeast’s cell-cycle
network studied by Li et al. (2004). Unlike most past work which
focused on part of the TRN associated with a particular function,
we here focus on the global dynamical behavior of Yeast and
Yeast-like regulatory networks. A recent work by Lee and Rieger
(2007) in the same spirit compares Yeast and E. coli on a full-scale.

Determining the time evolution of the network starting from a
given initial state is straightforward once the regulatory functions
fFig are fixed. However, the nature of these interactions in the
actual organism are too complex and far from being well
understood. Therefore, instead of attempting to identify the
functions Fi that best describes the behavior of the Yeast cell,
we investigated the generic dynamical properties of the known
architecture arising from a random choice of fFig picked from a
suitable collection.

It has been suggested that fFigmay be further restricted, based
on the available experimental evidence, to certain subclasses of
Boolean functions (Kauffman, 1993; Kauffman et al., 2003;
Nikolajewa et al., 2007). These are

Simple random functions (RF): Each input is randomly assigned
an output value of 1 with a probability p and 0 otherwise.

Canalizing functions (CF): It has at least one canalizing input,
say sj1 such that Fiðsj1 ¼ z; . . .Þ ¼ s. z and s are called the canalizing
value and the canalized output, respectively (Kauffman, 1993).
For consistency, we set s¼ 1 with probability p and let
Fiðsj1

¼ z; . . .Þ be a simple random function of the remaining
variables.

Nested canalizing functions (NCF): Also called hierarchical
canalizing functions, they were proposed by Kauffman et al.
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Fig. 1. Extraction of DRC. A depiction of the pruning procedure used for extracting

the dynamically relevant core of Yeast. Numbers refer to the stage of the recursive

process at which the nodes/edges are removed. The red edges are the interactions

left in the DRC. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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(2003) based on an earlier analysis due to Harris et al. (2002) and
claimed to more closely mimic actual biological systems. All input
variables of a NCF are canalizing and ordered in rank. The
canalized output is determined by the highest ranking node at its
canalizing value and is chosen to be 1 with probability p.

Special nested canalizing functions (SNCF): Recently, gene
regulation dynamics was observed to be consistent with a more
restricted subclass of NCFs given by the Boolean expressions

~sj1
4ð ~sj2

4ð� � �4ð ~sjdi
-14 ~sjdi

Þ � � �ÞÞ

and

~sj1
4ð ~sj2

4ð� � �4ð ~sjdi
-13 ~sjdi

Þ � � �ÞÞ ð1Þ

where ~sAfs;sg and the probability of occurrence of the
two functions were found to be 0.66 and 0.29, respectively
(Nikolajewa et al., 2007). The function classes above satisfy
SNCF�NCF� CF� RF.

A constraint on these functions is that each input variable
should be relevant, so that they have an experimentally
detectable regulatory signature. Accordingly, for each input sji

of a function Fi with di inputs, there exists at least one input set
fsj1

; . . . ;sjdi
g, such that,

Fiðsj1 ; . . . ;sji
; . . . ;sjdi

ÞaFiðsj1
; . . . ;sji ; . . . ;sjdi

Þ ð2Þ

with s � 1-s. We ensure that the condition in Eq. (2) is satisfied in
all cases.

Let p be the fraction of inputs to Fi that satisfy Eq. (2) for which
the output equals 1 calculated over all genes:

p¼ ð1=NÞ
X

i

dFiðsi1
;...;sidi

Þ;1=2di ð3Þ

with N¼ total number of genes and di;j is the Kronecker delta
function. For the SNCF class, p is not a free parameter but
determined by the in-degree distribution of the network. For the
rest of the function types we have pap in general, because Eq. (2)
filters out some function assignments. In fact, the fraction fn of
the Boolean functions satisfying Eq. (2) with n inputs is well-
known (Harrison, 1965):

f1 ¼ 2=4

f2 ¼ 10=16

f3 ¼ 218=256

f4 ¼ 64 594=65 536 ð4Þ

where the denominators are 22n

: number of Boolean functions
with n inputs. For a fair comparison (except in the discussion on
robustness), we adjusted the parameter p for RF, CF, and NCF, so
that pC0:29, the value one obtains both for Yeast and the two
ensembles with a SNCF assigned to each gene.

We will compare the impact of each function class on the
system’s dynamics when implemented on the dynamically
relevant core network of the TRN described in the next section.

3.2. Dynamically relevant core

The number of the dynamical attractors in a Boolean network
is determined by a dynamically relevant core network (DRC)
involving TFs only. DRC in Yeast is much smaller than the full
transcriptional regulatory network and allows one to perform
time-efficient simulations of the regulatory dynamics.

We define a global DRC for Yeast by recursively pruning all the
nodes with zero in-degree or zero out-degree (see Fig. 1). Most of
the genes in the transcriptional regulatory network of Yeast are
‘‘slave’’ genes that do not take part in the regulation process or do
so merely in a downstream fashion. Their presence may effect the
transient behavior or the size of the dynamical cycles the network
eventually falls into, however, they do not change the number of
distinct steady-states (or attractors, see below) and their
probabilities of occurrence under different function assignments.
These genes can be pruned by recursively eliminating nodes with
zero out-degree.

In a similar fashion there exist a set of genes with zero in-
degree, whose expression levels remain unchanged throughout
the dynamics. Some of these are ‘‘housekeeping’’ genes that are
always expressed to perform routine functions (such as RNA
production) while others are fixed by the environmental condi-
tions. We will consider the regulatory dynamics when the states
of these genes are fixed and prune them as well, assuming that
the averaging over different state assignments to such genes is
properly accounted for by different function assignments on the
remaining network. See the recent work by Lee and Rieger (2007)
for an earlier implementation of this procedure on Yeast, while for
a different reductionist approach see Paul et al. (2006).

The end product (shown in Fig. 2 for Yeast) is a subnetwork
where each node is a TF regulated by other genes in the DRC and/
or by itself. Given that only 3.5% of all the genes in Saccharomyces

cerevisiae are TFs, described pruning process brings a sizeable
reduction in the computation time. We found that Yeast’s
dynamically relevant subnetwork contains 82 TF genes and 254
interactions between them.
3.2.1. Comparison of DRC sizes in Yeast vs reference ensembles

We also obtained the DRC for 1000 networks chosen from each
ensemble. In the case of E2, ensuring that the samples before
pruning have, on average, the same number of nodes and edges as
Yeast’s TRN. The comparison of the three cases is shown in Fig. 3.
The outcome is instructive: The distribution of the DRC size on E2
shows a big contrast with Yeast while the agreement with the
edge-reshuffled ensemble E1 (with exactly the same in- and out-
degrees at each node) is perfect when self-regulating genes are
included and still better than E2 otherwise. (See next section for a
discussion on self-regulating genes.) A similar situation is
observed also for the number of interactions in the DRC. In view
of the quantitative agreement of in- and out- degree-distributions
between Yeast and E2 (Balcan et al., 2007), this result points to a
subtle difference between the two ensembles that translates into
a threefold size difference in the respective DRCs.

There is no doubt that, a complete model of the regulatory
dynamics should include the environmental inputs carried by the
signalling pathways and the post-transcriptional regulatory
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Fig. 2. DRC of Yeast. The dynamically relevant subnetwork of the Yeast’s TRN obtained by the pruning procedure described above.
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interactions (Thomas, 1998; Samal and Jain, 2008). Accordingly, a
complete DRC should include of both TFs and non-TF proteins
(see, e.g. Li et al., 2004). Nevertheless, the ‘‘transcriptional
regulatory’’ DRC defined as above remains an intrinsic property
of the organism, which in the case of Yeast appears to be
significantly out of proportion.
3.3. Number of attractors

The dynamical characterization of a TRN is complete once all
the interactions (the network’s architecture) and the update
functions fFig of all genes are specified. The network state
SðtÞ � fs1ðtÞ;s2ðtÞ; . . . ;sNðtÞg at the discretized time t¼ nDt after
n update cycles can be expressed symbolically as

SðtÞ ¼ FnðSð0ÞÞ: ð5Þ

The time unit Dt is assumed to be large enough to encompass all
protein production related processes. Since the time evolution is
deterministic, the number of possible dynamical trajectories is 2N ,
i.e., the number of distinct initial conditions. 2N is also the size of
the state space, therefore each initial condition eventually ends up
in a cycle which is called the attractor for that initial state. A state
Sk is a member of the attractor if and only if SðtþnDtÞ ¼ SðtÞ ¼ Sk

for some integer n40. Minimal such n is called the length of the
attractor cycle. The attractor is a fixed point if n¼ 1 and a
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limit-cycle otherwise. Note that the attractor lengths (except those
of the fixed points) are modified after the pruning process
describe above, but the number of attractors is not. Therefore
we focus on the statistics of their number below.

We note in passing that, the attractors of a transcriptional
regulation network may be associated with the observable
features of the organism. For example, the expression pattern of
the segment polarity genes in Drosophila melanogaster can be
mapped to the fixed point of the relevant regulatory subnetwork
(Albert and Othmer, 2003). In Arabidopsis thaliana, the attractors
of the regulatory subnetwork responsible from cell differentiation
have been shown to correspond to different phenotypes
(Mendoza et al., 1999).

The number of attractors, Natt , remains invariant as we switch
from the full-size network to the DRC, but estimating its exact
value is difficult due to the vast number of initial conditions that
should be checked. However, by randomly sampling a small
number of initial conditions, another—and possibly more rele-
vant—measure of the number of attractors, ~Natt , can be easily
calculated. ~Natt is obtained by properly weighting the i th attractor
by its basin of attraction oi, the number of initial conditions that
end up in i. This procedure allows one to distinguish between, e.g.
two network realizations (networkþfunction assignments) with
two attractors each, whose relative basin sizes are (0.99, 0.01) in
the first case and (0.5, 0.5) in the second. It is fair to say that the
first network realization has a single dominant attractor, while
the second one has two. The generalization of this argument gives
~Natt ¼ 2S, where S is the standard dynamical entropy of the
network (see, e.g., Krawitz and Shmulevich, 2007):

S¼ -
X

i

pilog2pi; ð6Þ

where pi ¼oi=2N is the probability that a uniformly selected
initial condition is in the basin of attraction of the i th attractor.
Note that ~Natt rNatt . The difference between the two attractor
counts is demonstrated in Fig. 4 over the E2 ensemble.

We estimated the average number of attractors for Yeast’s DRC
and the model DRCs. Since an exact enumeration is out of
question with 282 possible initial states (and unnecessary for
estimating ~Natt), we randomly sampled 1000 initial conditions
and followed their trajectories in time until an attractor was
reached. The attractor was then characterized by the sequence of
states in the cycle (or by the state id for fixed points) and the
1 10 100
Number of Attractors
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Fig. 4. Bare vs. weighted attractor count. The difference between the probability

distribution functions for Natt (full) obtained by plain counting and ~N att (empty)

defined in the text reflects the network’s preference towards an uneven basin-size

distribution. (By Eq. (6), ~N att ¼Natt if attractors have equal basin sizes.) Presented

data are obtained from the E2 ensemble only for reasons discussed in the text.
number of initial conditions that end up in each state were
counted.

~Natt thus found for the networks were further averaged over
1000 different structures, with each structure analyzed using 10
independent Boolean function assignments chosen from each of
the classes above. Mean attractor numbers thus found for the E2
ensemble are 2.3, 2.2, 2.3 and 1.9 when the update functions were
chosen from the classes RF, CF, NCF and SNCF, respectively. We
deliberately omitted the error bars in the values reported above,
because the distribution of the attractor number is highly skewed
and has a fat tail, as shown in Fig. 4. A fair comparison with Yeast
and E1 requires some more work and is presented below.
However, except for a somewhat smaller average attractor count
observed for SNCFs, neither on Yeast nor on the reference
ensembles did we find a significant difference among the attractor
statistics of different function classes.

3.4. Robustness of the dynamics

The survival of a cell relies on the continuously and reliable
production of a vast amount of proteins in proper quantities.
Therefore, the ‘‘equilibrium’’ gene expression profile (encoded
here by an attractor) is expected to possess a certain level of
stability, i.e., robustness to perturbations such as random
fluctuations in expression levels or temporary malfunction of a
gene. On the other hand, a certain level of responsiveness is also
necessary in order to be able to cope with the environmental
changes in longer time scales. This trade-off suggests that living
organisms function in the vicinity of the order-chaos boundary, a
hypothesis originally formulated by Kauffman (1993).

A dynamical system is said to be chaotic if a small perturbation
introduced into one of its two, otherwise identical, copies drives
them away from each other exponentially fast. Adopted to TRN
dynamics, this amounts to monitoring in time the normalized
‘‘Hamming distance’’

hðS; S0Þ ¼ ð1=NÞ
XN

i

½si-s0i�

between the two copies S and S0. The network’s robustness is then
determined by

r¼ lim
h-0þ ;t-1

/dhðtþDtÞ=dhðtÞS; ð7Þ

where the first limit ensures that the measured quantity is a
steady-state property (a function of the attractors only), the
second reflects that r is a linear response function. Dt is chosen to
be a small time interval (one time step in our case) and the
averaging is over possible perturbations (Aldana, 2003). The
network is said to be chaotic if r41 and ordered if ro1 (both in
an average sense, for there may be particular perturbations in
each case that result in the opposite behavior). We will show
below that, RF, CF, NCF and SNCF display significant variability in
robustness on the Yeast and the model networks.
4. Yeast vs model networks

4.1. Attractor statistics

Performing the same analysis on Yeast’s TRN and E1, one finds
that the average number of attractors is orders of magnitude
larger for RF type functions. In fact, most of the initial conditions
end up in different attractors, so that ~Natt is capped by the number
of initial conditions used for averaging. Such disagreement is too
large to be explained by the mismatch in DRC sizes shown in
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Table 1
Average attractor number.

RF CF NCF SNCF

E1 1.9 1.8 1.8 1.7

E2 1.6 1.6 1.6 1.5

E2� 1.7 1.6 1.7 1.6

Yeast 4.8 4.2 4.1 3.4

Average attractor number obtained for each function class on the DRC of the Yeast

and the two reference ensembles. E2� refers to the E2 ensemble networks which

have the same DRC size as Yeast.
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Fig. 3. For an estimate of the network-size dependence of Natt see,
e.g., Drossel (2005) and Balcan and Erzan (2006).

Upon closer inspection, the excessive attractor number turns
out to be due to another structural anomaly in Yeast: the presence
of a large number of self-regulating genes. Sixteen percent of all
genes in the DRC (13 out of 82) are self-regulating (Teixeira et al.,
2006) as opposed to 5% (less than 2 out of an average of 35.6—see
Fig. 3) in E2 model. Note that a self-regulating gene is by
definition a member of the DRC and is preserved under the edge
shuffling process used for generating E1 networks. Each such node
under synchronous Boolean dynamics potentially doubles the
attractor count due to a parity effect. The excess of such nodes in
Yeast’s TRN is well known (see, e.g., Lee and Rieger, 2007),
although it can easily be missed in a structural comparison as in
Balcan et al. (2007) unless specifically looked for. Its dynamical
signature, however, is difficult to overlook. This example serves as
a demonstration for how a comparative study of the dynamics
may lead to the discovery of structural features specific to Yeast.

We next eliminate the self-loops from Yeast and both model
networks, and reconstruct the DRCs. By doing so, we temporarily
depart from a faithful representation of Yeast. On the other hand,
we ensure that further discrepancies we may encounter originate
from structural differences other than the high frequency of self-
regulating genes in Yeast. The self-interactions will be restored in
the next section.

Interestingly, the histograms pð ~NattÞ obtained from Yeast now
differ significantly from those of both reference ensembles. Fig. 5
displays the contrast for RF type functions, while qualitatively the
same picture is obtained also for other function classes. Majority
of E1 and E2 model networks are dominated by a single attractor,
while Yeast’s DRC typically has multiple attractors and a
nonmonotonous pð ~NattÞ. The contrast between the average
attractor numbers is shown in Table 1. The tail of the attractor
number distribution obtained from Yeast is also markedly
different, as shown in the inset of Fig. 5.

It is not possible to understand this dynamical anomaly of
Yeast in terms of the difference in the DRC sizes shown in Fig. 3.
Because, first, the mismatch in ~Natt persists between E1 and Yeast
which have identical DRC sizes. Second, although a smaller
‘‘random’’ network is expected to have a smaller number of
attractors on average (Drossel, 2005; Balcan and Erzan, 2006), we
3 6 12 15
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Fig. 5. Number of attractors: models vs. Yeast. Probability distribution functions for

the number of attractors in Yeast (3) vs. model ensembles with update rules of type

RF after the self-loops are removed. Data obtained from E1 (&) and E2 (B)

ensembles are shown together with those over a subset of the E2 networks whose

DRC sizes are in the same ballpark as that of Yeast’s (W). Inset shows the tails of

the distributions on a log–log scale. Unit size bins were used for the histograms.
observed above that E1 and E2 networks (without self-regulating
nodes) which have approximately a factor of two size difference
come with almost the same number of attractors. We further
confirmed this second observation by repeating our analysis on a
filtered subset of E2 networks (again, without self-loops) whose
number of TFs and the number of interactions in the DRC are
within 5% of Yeast’s. ~Natt is essentially the same as before (also
shown in Fig. 5). Therefore, we conclude that
1.
 Synchronous Boolean dynamics on DRC-type networks has an
attractor statistics with a much weaker size dependence than
random networks.
2.
 Yeast’s TRN has certain structural elements that amount to a
significant modification of its attractor statistics and are not
captured by either of the two model ensembles E1 and E2.

4.2. Robustness

We performed the analysis outlined above on Yeast and also
on E1 and E2 networks with similar DRC sizes (and with self-
interactions untouched) as described earlier. We found that, the
robustness depends significantly on the type of the update
function: the more restrictive the function set, the more robust
is the dynamics (see Fig. 6). Maybe more relevant is the fact that,
under fully random functions (RF) Yeast’s regulatory dynamics is
chaotic for a wide range of p values. In contrast, the nested
canalizing functions ensure that the dynamics is stable, although
it may be functioning close to the order-chaos boundary if one
effectively has pC1=2.

It is worthwhile pointing out that, results in Fig. 6 differ from
the approximate analytical form formulated by Aldana (2003) and
Derrida and Pomeau (1986):

r¼ 2/kSpð1-pÞ; ð8Þ

where /kS is the average in-degree of the network. The
disagreement is due to the condition given in Eq. (2). This
experimentally imposed constraint renders the system relatively
less robust with respect to an unbiased choice of the update
functions, because functions filtered by Eq. (2) are insensitive to at
least one of the input variables. As a result, the range of the
robustness measure r is squeezed into a narrower interval around
the order-chaos boundary r¼ 1, conforming to the edge-of-chaos
hypothesis of Kauffman (1993). Furthermore, as seen in Eq. (4),
the constraint in Eq. (2) is not equally restrictive on all nodes. For
example, a node with k¼ 1 has p1 ¼

1
2 independent of input value

p, whereas for k\5 we have pkCp. Generalizing Eq. (8)
accordingly, we obtain

rðpÞ ¼
X

k

2knðkÞpkðpÞ½1-pkðpÞ�; ð9Þ

where nðkÞ is the fraction of nodes with in-degree k. pkðpÞ on the
RF class is shown in Fig. 7. The CF and NCF classes give
qualitatively similar behavior. The prediction of Eq. (9) on
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Fig. 6. Robustness of Yeast and model networks. Robustness of Yeast vs. model

networks with equal DRCs. Horizontal axis spans 0rpr0:5, since rðpÞ in Eq. (7) is

symmetric with respect to p¼ 0:5. Shaded regions indicate the range within one

standard deviation of E1 (red) and E2 (blue) reference results. Solid curves

represent Yeast. Horizontal dashed line is the border between ordered and chaotic

behavior. Dotted curve corresponds to the theoretical prediction for the RF case

obtained from Eq. (9). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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model networks with the RF-type functions is also plotted in Fig. 6
for comparison.

Finally, lifting the constraint of Eq. (2) recovers the expected
trend in Eq. (8) for Yeast with RF assignments (Tuğrul and Kabakc-
ıoğlu, 2009), while the relative order of robustness among
different function types is preserved (not shown).
4.3. Motifs

Regulatory networks are known to exhibit an abundance of
certain subgraphs (Milo et al., 2002). Prill et al. (2005) list the high
frequency subgraphs for several organisms by comparing the TRN
with an ensemble obtained by reshuffling the edges while keeping
the total degree of each node fixed. They establish a connection
between the network structure and its dynamics through the
stability properties of each motif. In particular, the motifs (b), (f)
and (g) in Table 2 were found relatively abundant (with a high
z-score) in Yeast.

A similar investigation comparing Yeast’s (unpruned) TRN
with the two reference ensembles E1 and E2 was reported earlier
in Supplement 1 of Balcan et al. (2007) and is worth re-examining
here. Interestingly, the relatively high content of the motif (b) in
Table 2 reported by Prill et al. (2005) is found to be reproduced
not only by E1 but also by the E2 ensemble (the relative frequency
of the motif’s occurrence is 96.4% in the unpruned Yeast and E1
networks and 97.0% in E2). Therefore, this feature should be
associated with the basic matching mechanism of the transcrip-
tional regulation process exploited in E2, and its high occurrence
rate in Yeast is guaranteed by the in- and out-degree statistics
(hence the agreement with E1) that is encoded into the
transcription factor binding sequence statistics.

On the other hand, cascaded regulation motif (a) and the feed-
forward loop motif (f) of Table 2 appear respectively � 50% and
� 80% more frequently in the unpruned Yeast network relative to
E2. The excess of these two motifs in Yeast therefore require a
different explanation, such as the stability considerations given by
Prill et al. (2005).

The discrepancy in the attractor statistics (or the lack of it in
respective robustnesses) observed between Yeast and the refer-
ence model DRCs are likely to be related to their motif statistics.
On the other hand, there is no a priori reason that the motif
frequencies on the unpruned network quoted above should also
apply to the DRC. Therefore we performed a similar analysis on
the core networks of Yeast, E1 and E2 using Mfinder, the free
motif-finder software from Alon Lab (Kashtan et al., 2004). The
results are shown in Table 2.

Interestingly, the strong bias towards an excess of dynamically
stable motifs such as (b) and (f) in Yeast does not persist in the
DRC. At the same time, (d) and (e) in Table 2 involving mutually
regulating TF pairs are 60–350% more frequent in Yeast in
comparison to reference DRCs. These two motifs were labelled
as partially stable by (Prill et al., 2005). Our results on network
robustness shown in Fig. 6, where no significant difference can be
seen between Yeast and the reference models under Boolean
dynamics, are consistent with such motif statistics.
5. Summary and discussion

We have investigated the dynamical properties of Yeast’s
transcriptional regulatory network by means of Boolean functions
with parallel (synchronous) update rules and compared them
with two null-models that capture many of the global structural
features found in Yeast. We found that, the core of the Yeast
network (DRC) that determines the steady-state features of the
dynamics is much larger than the unbiased model (E2) whose sole
premise is that the regulation mechanism is based on sequence-
specific binding of transcription factors.

Comparison of the average number of attractors (properly
weighted by the basin size) reveals not only the well-known
abundance of many self-regulating genes, but also further
differences between the Yeast and model networks. In particular,
we find that the architecture of the Yeast DRC typically permits
several attractors, whereas the model networks—even after the
differences in the number of self-regulating TFs and the core
network sizes are eliminated—come typically with a single
attractor. The tail of the attractor number distribution in Yeast
is also noticeably different. An important question is whether
these features survive under a more realistic asynchronous time-
evolution model, although our observations relating to the
network structure remain valid independent of this choice.

A comparison of the network stability under minor perturba-
tions reveals that the Yeast’s dynamical core is not more robust
than either of the two reference models, in (apparent) contrast
with earlier results. This observation is also supported by the
presence of a different set of 3-node motifs that are found in
relatively high proportions in Yeast when the DRC (rather than
the whole regulatory network) is taken into account. The
significantly frequent motifs in the DRC are dynamically less
stable than those found in abundance in the full TRN of Yeast.
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Upon visual inspection, it is not all too unexpected that the
stable motifs (a–c) and (f) are found mostly on the ‘‘peripherals’’
of the network eliminated by the pruning process. However, it is
interesting to observe how topology itself supports the robust-
ness-responsiveness dichotomy in transcriptional regulation
process. Robustness is associated with the peripheral components
that carry the environmental signals downstream, i.e., small
variations are filtered out before they reach the DRC. On the other
hand, DRC itself is relatively more responsive than the embedding
network to changes in the expression levels of its constituent
genes. Favorably so, since such changes are likely to reflect shifts
in operational conditions that are persistent enough to survive the
downstream filtering.
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