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Resum

L’objectiu principal de la Física Estadística és entendre el comportament col·lectiu
de sistemes formats per moltes partícules en termes d’una descripció microscòpica
basada en la interacció entre aquestes. En bona part degut a l’èxit d’aquesta dis-
ciplina en establir una connexió entre el comportament a nivell micro i macro, els
fenòmens col·lectius en sistemes socials s’estan començant a estudiar cada cop
més a partir de models microscòpics d’agents en interacció. En problemes de
dinàmica social, els agents es consideren com nodes integrants d’una xarxa que
canvien el seu estat (opció social) en funció d’unes regles d’interacció amb els
seus veïns de la xarxa. Aquest tipus de problemes inclouen des de dinàmiques
d’opinió i dilemes socials fins a dinàmiques de difusió cultural i competició entre
llengües.

Els estudis de competició entre llengües analitzen les dinàmiques de competèn-
cia lingüística i d’ús d’una llengua degudes a les interaccions socials, i recentment
han estat considerats des de l’òptica de la física estadística i els sistemes com-
plexos. En aquesta tesi i motivats per estudis de competició entre llengües,
estudiem problemes de consens social. Els problemes de consens social són
problemes de caràcter general, estudiats recentment per la física estadística: es
tracta d’establir quan una dinàmica d’interacció entre un conjunt d’agents que
poden escollir entre diverses opcions, dóna lloc a un escenari de consens en una
d’aquestes opcions (domini/extinció d’una llengua), o bé quan s’arriba a un estat
final on diverses opcions socials coexisteixen (coexistència entre llengües).

La competició entre llengües és un exemple particular d’un tipus de problemes
de consens en els quals les opcions són no-excloents, és a dir, un agent pot
compartir les dues opcions en competició a nivell individual (agents bilingües).
Des d’aquest punt de vista, i partint del model d’Abrams-Strogatz per a la
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competició entre dues llengües, estudiem i comparem aquest model de consens
de dos estats amb un model de dos opcions no-excloents, que definim com una
extensió del primer en el qual els agents poden estar en un dels dos estats oposats
(A o B) o en un tercer estat (AB, agents bilingües) que inclou les dues opcions
(Model Bilingüe). Els models es basen en les probabilitats de transició entre els
possibles estats dels agents, que depenen essencialment de les densitats d’agents
en cadascun dels estats (A, B, AB), comptabilitzades a partir dels nodes veïns de
la xarxa. A més, aquests models depenen de dos paràmetres. Per una banda, el
paràmetre de prestigi, que captura la diferència d’estatus entre les dues opcions
(llengües) en competició i que, matemàticament, és un paràmetre de trencament
de simetria. Per altra banda, el paràmetre de volatilitat, que dóna una mesura
de la resistència dels agents a canviar d’opció i que, matemàticament, modela
la forma funcional de les probabilitats de transició entre els possibles estats dels
agents. En aquest context, estem especialment interessats en el paper dinàmic
que desenvolupen l’estat AB i els paràmetres dels models, així com en els efectes
de la xarxa social d’interacció.

En primer lloc, presentem i analitzem en detall un model de dues opcions no-
excloents, el model-AB, que correspon al Model Bilingüe per al cas d’opcions
socialment equivalents (d’igual prestigi) i de volatilitat neutra, és a dir, quan les
probabilitats de transició depenen linealment de les densitats d’agents veïns. Al
mateix temps, aquest model pot ésser interpretat com una extensió del model
del votant (model prototípic de dinàmica fora de l’equilibri amb dos estats ab-
sorbents), cosa que el fa especialment rellevant. Estem interessats en els proces-
sos de creixement de dominis en aquests dos models, i analitzem els mecanismes
d’agregament (coarsening) en xarxes regulars, on demostrem que la dinàmica està
governada per moviment interficial. De fet, mostrem com l’addició de l’estat
AB canvia la dinàmica interficial governada per soroll del model del votant, a
una governada per curvatura. En comparació amb les xarxes regulars, i per tal
de discernir el paper que desenvolupen les interaccions de llarg abast en una
xarxa, estudiem l’efecte de xarxes de petit-món en la dinàmica. Essencialment,
els agents AB juntament amb les interaccions de llarg abast aconsegueixen que
la dinàmica arribi a una situació de consens molt més ràpidament.

A part del fenomen de petit-món, l’estructura mesoescalar o de comunitats és
una de les característiques principals de les xarxes socials reals. Per aquest motiu,
considerem a continuació el paper de l’estructura de comunitats en el model del
votant i el model-AB, així com el tipus de metaestabilitat que s’hi manifesta.
En el model-AB, trobem estats metaestables atrapats (trapped) de llarga durada
en els que la distribució dels estats dels agents a la xarxa es correlaciona amb
l’estructura de comunitats, i dóna lloc a estats metaestables a qualsevol escala
temporal. En aquest context, estudiem les condicions sota les quals no existeix
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una escala de temps característica de la dinàmica d’ordenament cap a un dels dos
estats absorbents. Per tal d’aconseguir-ho, estudiem xarxes aleatòries i xarxes
amb estructura mesoescalar construïdes a partir de subestructures completament
connectades (cliques) enllaçades aleatòriament. També comparem el model-AB
amb un altre model amb dues opcions no-excloents introduït en el context de
dinàmica semiòtica (el Naming Game), en el qual els agents interactuen d’un en un
per tal de negociar convencions, és a dir, associacions entre formes i significats.

Per últim, estudiem el model d’Abrams-Strogatz i el Model Bilingüe en tot l’espai
de paràmetres (prestigi-volatilitat). Ens interessa l’estudi d’aquests problemes de
consens com a transicions ordre-desordre. Es tracta d’establir en quines regions
de l’espai de paràmetres el sistema acaba eventualment homogeneïtzat en una
de les opcions (ordre o consens) o bé si al contrari, s’arriba a una configuració de
coexistència entre les dues opcions (desordre o coexistència). Deduïm descrip-
cions macroscòpiques en xarxes completament connectades, xarxes aleatòries
sense correlacions i xarxes regulars bidimensionals, per tal d’estudiar les transi-
cions ordre-desordre tant analíticament com numèricament. El resultat principal
consisteix en una transició de primer ordre a l’espai de paràmetres: a grans trets,
consens en qualsevol de les dues opcions per a un règim de volatilitat baixa
i coexistència per a un règim de volatilitat alta. A més, cal destacar que els
agents-AB, així com el fet de tenir xarxes d’interacció amb pocs veïns, redueixen
l’escenari de coexistència i introdueixen efectes no trivials del paràmetre de pres-
tigi: l’emergència de zones en l’espai de paràmetres de domini només de l’opció
més prestigiosa.

Aquesta tesi vol contribuir a la comprensió dels mecanismes subjacents en prob-
lemes de consens social en els quals dues opcions poden ser no-excloents, tot
estudiant els fenòmens col·lectius emergents en models d’agents en interacció en
els que les dinàmiques d’ordenament, la naturalesa de la xarxa i la metaestabilitat
són analitzades en detall.
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Preface

A deep understanding of collective phenomena in Statistical Physics is well es-
tablished in terms of microscopic models based on the interaction rules among
the particles in the system. Partly inspired by this success in linking micro
and macro behavior, collective social phenomena are being currently studied in
terms of microscopic models of interacting agents. In problems of social dynam-
ics, agents sit in the nodes of a network and change their state (social option)
according to specified dynamical rules of interaction with their neighbors in the
network. These problems range from opinion dynamics and social dilemmas to
cultural dissemination and language competition.

Language competition studies the dynamics of language use and competence
due to social interactions, and has been recently addressed from the point of
view of statistical physics and complex systems. In this thesis, and motivated by
studies of language competition dynamics, we study problems of social consen-
sus. The consensus problem is a general one of broad interest, recently addressed
by statistical physics: the question is to establish when the dynamics of a set of
interacting agents that can choose among several options leads to a consensus in
one of these options (dominance/extinction of a language), or alternatively, when
a state with several coexisting social options prevails (language coexistence).

In particular, language competition is a prominent example of a class of consen-
sus problems in which options are non-excluding, that is, an agent can share the
two options at play at the individual level (bilingual agents). In this direction,
and building upon the Abrams-Strogatz model for two competing languages,
we study two-state consensus models in comparison with models with two non-
excluding options, which are defined as extensions in which agents can be in
either of two opposite states (A and B) or in a third mixed state of coexisting
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options (AB, bilingual). We are specially interested in the role of the AB-state
and the parameters of the models in the dynamics, together with the effects of
the network structure.

We first present and analyze in detail the AB-model, a model of two non-
excluding and socially equivalent options, which can be interpreted as an ex-
tension of the voter model, a prototype spin-model of nonequilibrium dynamics
with two equivalent absorbing states. We are interested in the processes of do-
main growth in these two models, so we analyze the coarsening mechanisms
in lattices, where dynamics is shown to be dominated by interface motion. In
comparison to these topologies and in order to elucidate the role of long range
interactions in the network, we study the effect of small world networks in
the dynamics. Beyond the small world phenomena, mesoscale or community
structure has been shown to appear as one of the main complex features of
real social networks. In this direction, we also address the role of community
structure in the voter and the AB-model, as well as associated forms of metasta-
bility. In this scenario, we search for conditions under which a characteristic
time scale for ordering dynamics towards either of two absorbing states in a
finite complex network does not exist. For this, we study random networks and
networks with mesoscale structure built up from randomly connected cliques.
The thesis also addresses the comparison of the AB-model with another model
with two non-excluding options introduced in the context of semiotic dynam-
ics (the Naming Game), in which agents interact pairwise in order to negotiate
conventions, i.e., associations between forms and meanings. Finally, we tackle
the consensus problem as reminiscent of order-disorder transitions. Following
this direction, in the last part of the thesis we study the Abrams-Strogatz model
and its extension to account for the AB-state in the full range of parameters of
the models. The aim is to establish regions in the parameter space for which
the system is eventually dominated by one option (order or consensus) or, on
the contrary, when a configuration of global coexistence is reached (disorder or
coexistence). We derive macroscopic descriptions in fully connected networks,
uncorrelated random networks and two-dimensional lattices, in order to study
the order-disorder transitions both analytically and numerically.

This work aims to be a contribution towards the understanding of the mech-
anisms underlying in social consensus problems in which options can be non-
excluding; studying the collective emerging phenomena in models of interacting
agents in which the ordering dynamics, the nature of the network structure and
the metastability in the models are analyzed in detail.
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Chapter 1

Introduction

1.1

Collective phenomena: physics, complexity and so-
cial sciences

Understanding the complex collective behavior of many particle systems in terms
of a microscopic description based on the interaction rules among the particles is
the well established purpose of Statistical Physics. This micro-macro paradigm
[1] is also shared by Social Science studies based on agent interactions. In many
cases, parallel research in both disciplines goes far beyond superficial analogies.
For example, Schelling’s model [2] of residential segregation is mathematically
equivalent to the zero-temperature spin-exchange Kinetic Ising model with va-
cancies. Cross-fertilization between these research fields opens interesting new
topics of research [3, 4].

On the one hand, the concepts, formalism and methods from statistical physics
and complex systems theory, such as emergence of collective phenomena, nonequi-
librium dynamics, coarsening or phase transitions, are becoming a powerful
framework so as to model and understand social systems. These systems are
indeed of high complexity, and social phenomena appear to be of increasing
interest for the physicists community, as indicated by the large and increasing
number of publications on the statistical physics approach to social dynamics
(see the review by Castellano et al. [5]). On the other hand, interactions in com-
plex networks is a relatively recent paradigm in statistical physics and complex
systems [6]. The works at the end of the 1990s by Watts and Strogatz [7], and
Barabási and Albert [8] opened a novel approach to the modeling and under-
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CHAPTER 1. INTRODUCTION

standing of complex networks from the point of view of statistical physics. Since
then, many systems beyond physics are modeled and studied through network
theory, ranging from biology to economy and the social sciences. In particular,
network theory applied to complex social networks makes possible an analysis
of the effect of the network structure on nonequilibrium dynamics proposed in
order to model social behavior∗.

In this way, the micro-macro paradigm in the study of social systems is reinforced,
extended and renewed by statistical physics and complex systems theory. The
microscopic interaction rules include two main ingredients: (i) structure: a set of
interacting agents, which can account for individuals, groups of individuals, or-
ganizations, institutions, etc., which are embedded in a framework of interaction
modeled by a network; and (ii) dynamics: the interaction mechanism between
agents which defines the nonequilibrium dynamics mentioned above. These dy-
namics have been proposed in parallel to the explosion of the complex networks
research field, and deal with problems such as opinion dynamics [9], cooper-
ation [10], culture dissemination [11], epidemics [12], language dynamics [13],
dynamics of financial markets [14], social dilemmas [15] etc. This micro-macro
approach is generally known as Agent-Based Modeling (ABM) in computational
and social sciences [16].

The idea of modeling mathematically social systems has a long history. As
reviewed by Ball [17], a statistical view of social phenomena inspired the raise
and success of statistical physics in the natural sciences. Already in the 17th
century, Hobbes made the first attempt to develop a political theory that does
not assume an a priori shaped society but one arising from few assumptions
and a mechanistic view of the way humans behave. Later, it was the interest in
quantifying aspects of societies such as the death and birth rates or crime what
since the 17th century and specially during the 18th century gave birth to the
early stages of statistics. At the time, Hume was arguing for the access to the first
principles in human nature through empiricism. Already in the 19th century,
Quetelet was among the first who attempted to systematically apply the new
science of probability and statistics to social science, planning what he called a
social physics [18]. He applied the law of large numbers to human demography
which, in a few words, can be described as the way a pure random process gives
rise to deterministic probabilities when the number of events is large enough.
In fact, Comte had used the term social physics before, although he did not
share Quetelet’s enthusiasm for quantification. It was later that Comte coined
the term sociology [19], and he is considered one of the fathers of this discipline.
Other philosophers who in different lines of thought aimed to create a scientific

∗Due to the central role played by network structure on social dynamics, we devote the whole
next Section to present the field of complex networks in detail.
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political theory range from Locke, Bentham and Stuart Mill to Marx. For instance,
Marx used statistical laws by Quetelet to develop the labor theory of value. It
was in this scenario that contemporary 19th century physicists looked at the
social sciences in order to move beyond Newtonian physics towards statistical
mechanics. Maxwell was among the first ones to use statistical laws of society
as analogies in natural sciences, which finally gave rise to the kinetic theory of
gases. Order at the macroscopic level was shown to be possible from microscopic
uncertainty. In the second half of the 20th century, statistical physics research
focused in the study of interacting spin models (triggered by the Ising model),
critical phenomena or pattern formation in extended systems, moving towards
the understanding of collective emergent phenomena.

It is now interesting to notice that at the beginning of the 21st century, the increas-
ing computational power, the new social phenomena related to new technologies
from which real data can be obtained systematically (e-mails, mobile phone calls,
on-line communities, collaborative tagging systems), and an increasing collab-
oration between physicists and social scientists, led a critical mass of physicists
to look at social sciences back again [5]. Building upon the theories, tools and
methods developed by statistical physics, which at the beginning were in part
inspired by studies in social sciences, they face collective phenomena in social
dynamics from this new standing point.

Of course, the development of social sciences embraces a much wider spectrum
of thought than the naturalist point of view we have briefly presented above,
but an exhaustive analysis is out of the scope of this introduction. However, it is
worth mentioning that in social sciences, there does not exist a general agreement
on the questions to be addressed and the methods to apply. In this sense, there is
not a common paradigm among all social scientists. For this reason, social sys-
tems have historically been studied from essentially two different philosophical
points of view [20]: (i) the naturalist, which as we mentioned above has looked
at the concepts, formalism, methods and tools from natural sciences in order
to develop a theory of social science (also referred as empiricism, behaviorism
or positivism); and (ii) the interpretativist (or anti-naturalist), which argues that
natural sciences methods are not appropriate for the analysis of human behav-
ior and for the development of a theory of social science (which contains many
philosophical lines of thought: idealism, structuralism, postmodernism, decon-
struccionism,..). In general, the first one argues for the need to look at natural
sciences methods to profit from the progress these sciences have reached since
the 17th century, and in order to gain prediction on the systems studied. On the
contrary, the second argues that such methods are not appropriate for the study
of human behavior, as they usually tend to oversimplify the meanings associated
to the system of study, and argues for the need to focus on the understanding
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and intelligibility of the system∗. In some way and focusing now on classical
sociology, Durkheim and Weber belong to these two main lines of thought [21].
On the one hand, Durkheim looks at the natural sciences methods, and argues
for social pressure mechanisms and external influences as driving forces of hu-
man action, conceiving society as an objective reality. On the other hand, Weber
is interested in the intention beyond social actions and the associated subjective
meanings.

We think that both approaches should listen to each another if there is some pos-
sibility to trace a path together. In fact, from our point of view, sociophysics†, and
in particular the work we present in this thesis, aims to contribute to the under-
standing of mechanisms of social interaction and their consequences, rather than
to its prediction, which is today in most of the social issues out of the aim (and
out of scope) of the present models: the goal is to move beyond the observation
of correlations, in order to establish cause-effect relations between mechanisms
and its consequences. It is in this sense that we cannot talk about a theory of social
physics, but about the first bricks in the wall towards its modeling and understand-
ing. One of the main reasons concerns the fact that in many social systems there
is a lack of accurate, broad and high frequency data (in comparison to natural
sciences standards) to account for a dynamical fitting of the time evolution of
the systems studied. This is of course related to the large amount of individ-
uals one needs to study in order to have significant data sets, the difficulty (if
not impossibility in many cases) to move beyond observation and make social
experiments, and the time scales involved in the dynamics‡. This hinders today
the path towards such possible theory, as it is difficult to discriminate between
the large amount of models appearing in the last years. However, and specially
regarding the promising sort of social data obtained from the new technologies
(Internet, mobile phones, etc), question-driven data can be extremely helpful in
this direction, that is, data collection with the aim to answer clear questions of
interest defined a priori.

Regarding contemporary studies coming from the social sciences, we find So-
cial Impact Theory [22], which is very close to the statistical physics approach.

∗Qualitative research is the method of inquiry generally applied in this approach to social
sciences. The aim is to gather an in-depth understanding of human behavior and the reasons that
govern such behavior. In comparison to quantitative methods, the qualitative method focuses its
investigation in the why and how of decision making and human action. Hence, smaller but complete
and focused samples are often studied, rather than large samples. However, conclusions derived
from qualitative methods are usually more difficult to be generalized.

†To our knowledge, the International Conference SocioPhysics held in Bielefeld (Germany) in
2002 is the first time in which the concept has been formally employed, referring to the work of
statistical physicists who study problems of social dynamics.

‡For instance, in order to have relevant data to account for language competition dynamics, at
least data regarding several generations are needed.
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Modeled through cellular automata, it considers the social impact on a subject
in terms of the number of agents in the social group, its relative power, and the
distance from the subject, which can be spatial or relative to an abstract space of
individual relationships. Other models from social scientists which would fall
into this line of thought are the works by Granovetter on the role of weak ties
in social networks [23], Schelling on residential segregation [2] and Axelrod on
cultural dissemination [11].

It is in these common interests and approaches where the collaboration between
social and physical sciences is giving rise to new and promising lines of research.
Today, researchers working with Agent-Based Models come from very different
backgrounds (physics, mathematics, engineering, computer science, economics,
sociology or cognitive science) and start to share a common formalism which
is both theoretical and experimental. It is theoretical because the micro-macro
paradigm inherited from complex systems is underlying the conceptual model-
ing; and it is experimental in the sense that computer simulations make it possible
to generate the data needed by scientists in order to study the models proposed,
which can be statistically analyzed [24]. As we mentioned above regarding real
data analysis, the recent explosion of the information and communication tech-
nologies has been crucial, as it has increased enormously the amount of real data
available to study social systems. Although scientists from different disciplines
think and develop models in a different way according to their own background,
agent-based modeling is currently giving a common framework and enhancing
interdisciplinary research in many areas of science.

In this thesis, we are interested in the class of social processes in which agents are
considered adaptive rather than rational, and where the emphasis is in the social
influence they feel from the other agents in the network (see Section 1.2), in the
line of social impact theory [22], instead of their strategies or goals, which would
correspond to other approaches such as game theory [25]. Two of the main
mechanisms of this class of social interactions concern consensus problems∗ (see
Section 1.3) driven by imitation and social pressure, which correspond to the
voter model [27] and the zero-temperature spin-flip kinetic Ising model (T = 0
SFKI) [28], respectively. As we refer to them throughout the thesis, in Section 1.4
we make a detailed review of the main results for these models in different
complex networks. Our work is motivated by scenarios of language competition
[29], which concern the dynamics of language use and competence due to social
interactions (see Section 1.5). Language competition belongs to the general class
of consensus problems in which options are non-excluding, that is, an agent

∗A consensus problem is defined as the dynamics of a set of interacting agents that can choose
among several options, which leads to a consensus in one of these options or, alternatively, to a state
in which several coexisting social options prevail [26].
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can share the two options at play at the individual level (bilingual agents). In
Section 1.6 we present the aim of this thesis in detail, which focuses on a detailed
study of this type of consensus problems, comparing two-state models with
three-state models with two non-excluding options.

1.2

Complex networks

In this Section we present a brief review of the history, basic concepts and models
in the active field of complex networks theory. Networks have become a widely
used framework to analyze complex systems, in which there exists a set of in-
teracting units that can be modeled as nodes (representing the units) connected
through links or edges (representing the interactions among them) and which
display collective emergent phenomena. In this way, complex networks can be
seen as the skeleton of complex systems. We find complex networks in very
different scientific disciplines: biology and biochemistry (ecological networks,
metabolic networks), economics (networks of firms), social sciences (social net-
works), or technological architectures (Internet, power grids). In the social
sciences, networks naturally model individuals (nodes) which have social ties
between them (links); and in this way, they become a key ingredient in order to
model social dynamics.

In the work presented in this thesis, we are interested in the topological effects
of different complex networks on nonequilibrium dynamics which, motivated
by language competition processes, model social consensus problems among
a set of interacting agents. In this way, this Section is a presentation of the
main concepts and model networks we use throughout the thesis, including
Erdös-Rényi random networks [30], Watts-Strogatz small world networks [7] and
Barabási-Albert scale free networks [8], together with networks with mesoscale
structure [31].

The field of complex networks has been growing extremely fast during this last
decade, and an exhaustive analysis is out of the scope of the present study. A
complete review of complex networks has been provided by Albert and Barabási
[6]. Other interesting reviews are the ones by Dorogovtsev and Mendes [32] and
Newman [33]. More recent reviews by Bocaletti et al. [34] and Dorogovtsev et
al. [35] include also results on different dynamics on complex networks.
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Figure 1.1: Left: In the Konigsberg bridge problem, one wants to know
if it is possible to go for a walk in this city, crossing all the seven bridges
which link several parts of the city, once and only once. Right: By mapping
the problem into a graph, Euler showed in 1736 that this was not possible.
This is believed to be the first time in which networks were used to solve a

problem.

1.2.1 Brief History: from networks in social sciences to the sta-
tistical physics approach

Complex networks or graphs∗ have been essentially studied during the 20th
century by both mathematicians and social scientists, with different focus and
purposes. The mathematical approach to graph theory can be traced back to
the 18th century, when Euler published the solution to the famous Konigsberg
bridge problem (Figure 1.1). Initially, mathematicians focused on the properties
of regular (non-random) networks. However, in the 1950s the work by Erdös-
Rényi [30] triggered a detailed study of random networks, reviewed by Bollobás
in [36]. As the thesis is motivated by social dynamics problems, we give now a
special emphasis on the social science roots of the field. Then, we briefly explain
how statistical physics and complex systems theory have come into play in the
last decade.

Social Sciences

One of the most powerful ideas in the social sciences has been the notion that
individuals form a network of social relationships and interactions which at
the same time influences their individual behavior. Borgatti et al. [37] have

∗Graph is the term generally used in mathematics to refer to networks.
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Figure 1.2: The network of runaways constructed by Moreno. The four
colored circles represent cottages in which the girls lived. Each of the
circles within the cottages represents an individual girl, with the 14 girls
who runaway identified by initials (e.g., SR). All non-directed lines between
a pair of individuals represent feelings of mutual attraction; directed lines
represent one-way feelings of attraction; and dashed lines represent mutual

repulsion. From Borgatti et al. [37].

presented an interesting brief review of the historical development of social
network theory during the 20th century. Already in the 1930s, we can find
the network analysis carried out by Moreno [38] to understand a sociological
problem regarding an epidemic of runaways in a School for Girls in New York.
He used a technique called sociometry, to represent graphically the subjective
feelings among the girls in the study, reflecting that the importance of the position
in the network of social relations was a key factor determining their probability
to runaway from the school (see Figure 1.2).

In 1969 Travers and Milgram published their experiment on the small world
phenomena [39], giving rise to the popular idea of six degrees of separation. They
performed an experiment in the USA in which randomly selected individuals
were asked to direct letters to a certain target person. Each of them should
forward his or her letter to a single acquaintance whom they judged to be closer
than themselves to the target, who in turn was asked to perform the same
operation. Analyzing the letters that eventually reached the target (18 out of 96),
they found that on average the length of the resulting acquaintance chains was
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six, giving in this way the first evidence of the small world phenomena, which
has been widely studied in the last years [40]∗. Another important contribution to
the field comes from the theory on the strength of weak ties by Granovetter [23].
The strength of a social tie is defined as the intensity of the relationship; and in
this way, social ties among close friends are strong, while acquaintances between
people who rarely talk to each other are weak. He argued how strong social ties
tend to be redundant, as they are embedded in clusterized parts of the network or
communities. On the contrary, weak ties tend to connect different communities,
i.e., connecting individuals to others which are usually unconnected to the rest of
one’s neighborhood. In this way, he showed the key role played by weak ties as
bridges between communities, through which information and social behavior
can flow along different parts of the network.

During the 1980s, social network analysis becomes an established field within
the social sciences, and since then social scientists have applied social network
theory to a wide spectra of fields, such as sociology, anthropology, management
and consulting, public health, or national security [37]. The works by Wasserman
and Faust [42] and Scott [43] have become standard literature on social network
analysis, and display a complete review of the field for the newcomer.

Physical Sciences

The studies of networks by social scientists were generally focused on specific
problems and considering relatively small networks, from which a fundamental
understanding of the universal properties of social networks was hard to ob-
tain. In the last decade, and since the seminal papers by Watts and Strogatz
[7] and Barabási-Albert [8] on small world and scale free networks respectively,
statistical physicists have come into the research field of complex networks. The
appearance of these simple models to account for some of the basic features
observed in real networks, together with the increasing computational power
and the access to large databases (mainly due to the rise of the new technologies:
Internet, mobile telephones, etc) triggered a revolution in the field of statistical
physics, with the number of contributions to the field constantly increasing until
today. Physicists become interested in the formation, structure and evolution
of complex networks, as well as in the topological effects these may produce
on social interaction problems, such as opinion dynamics, cultural diffusion or

∗Recently, Dodds et al. [41] have performed an on-line experiment in which more than 60, 000
e-mail users attempted to reach 18 different targets in 13 different countries (384 out of 24,163 chains
reached their targets). They have obtained chain lengths of a median between five and seven,
depending on the geographical separation of source and target. In this way, these results support
the claims by Travers and Milgram. Notice the different scale of the experiment compared to the one
in 1969, specially enhanced by the possibility of performing on-line experiments.
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Figure 1.3: Network with community structure extracted from a Belgian
mobile phone network of about 2 million customers. The size of a node is
proportional to the number of individuals in the corresponding commu-
nity. Color on a red−green scale represents the main language used in the
community (red for French and green for Dutch). Notice the intermedi-
ate community of mixed colors between the two main language clusters: a
zoom at higher resolution reveals that it is made of several subcommunities

in which language use is very heterogeneous. From Blondel et al. [46].

language competition [5]. The study of complex networks has obtained the
attention of the general public during these years, and several popular science
books have been published on the topic [44, 45].

Current network analysis in statistical physics: some relevant examples

The analysis of real complex networks in different fields of science such as biology
or technology can be found in [6, 47, 48]. However, due to the social motivation
of the thesis, we concentrate here in some of the works on social networks done
during the last years, in order to illustrate the current studies regarding the
analysis of real social networks.
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Onnela et al. [49] studied a mobile telephone network with more than 4 million
users. They constructed social links between two users when they found a
reciprocal call between two agents, and the strength of the social tie was defined
as the aggregated duration of calls they shared. It is important to stress that
they could confirm Granovetter’s theory of the strength of weak ties: they show
the coupling between the strength of the ties and their structural position in
the network (strong ties are found within communities, while weak ones tend
to connect different clusters), finding that a successive removal of the weak
ties results in a phase transition-like network collapse, while the same removal
process starting by the strong ties has little impact in the overall structure of the
network.

In another paper, Blondel et al. studied a Belgian mobile phone network of 2 mil-
lion customers in which they tested a community detection algorithm based on
modularity optimization [46]. Beyond the algorithm and as shown in Figure 1.3,
the most interesting result for us is the correlation found between community
structure and the language of the customer, which they inferred by the language
in which the user signs the contract: a French and a Dutch large domains are
found, joined together by a much smaller bilingual community∗. Notice that both
studies presented above deal with very large networks, which include up to mil-
lions of nodes. This is a change by several orders of magnitude compared to the
social science studies before the 1990s (for example, the network by Moreno [38]
previously presented in Figure 1.2, or the famous Zachary’s karate club network
[50], with only 34 members), and therefore it provides good statistics in order
to uncover structural properties and features that increase our understanding of
real social networks.

Regarding the connectivity or degree (number of links adjacent to a node) distri-
bution, Amaral et al [51] studied different real social networks (the movie-actor
network [52], the acquaintance network of Mormons [53], and a friendship net-
work in a High School [54]). They observed different types of networks: (i)
scale-free networks, characterized by a node connectivity distribution that de-
cays as a power law; (ii) broad-scale networks, characterized by a connectivity
distribution that has a power law regime followed by a sharp cutoff; and (iii)
single-scale networks, characterized by a connectivity distribution with a fast
decaying tail. They claim that in most complex networks different degree con-
nectivities might be related to the nature of the constraints when adding a new
link. In social systems, this is related to the definition of a social tie used to
construct the network, from a mere acquaintance (an individual can have a
high number of them) to a tight friendship that needs spending time together

∗We come back to these results regarding language use in networks with community structure
in Chapter 4, when we present our results for language competition models in modular networks.
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rather often (the number of close friends of an individual is then limited by time
constraints).

Other studies of real social networks deal with social phenomena such as author
collaboration networks [55], sexual contacts [56] or citation networks [57].

1.2.2 Basic concepts

A network (or graph) is a pair of sets, G = {P,E}, where P is a set of N nodes (or
vertices), and E is a set of links (or edges) in which each link connects a couple
of nodes. Networks can be directed or undirected. In directed networks [58, 59],
the interaction from node i to node j does not necessarily imply an interaction
from j to i. On the contrary, when the interactions are symmetrical, we say that
the network is undirected. Moreover, a network can also be weighted [60, 61].
A weight is defined as a scalar that represents the strength of the interaction
between two nodes. In an unweighted network, instead, all the edges have the
same weight (generally set to 1).

Besides, networks can evolve in time. When we model dynamics on networks
(opinion formation, cultural diffusion, language competition, etc.) there exist es-
sentially three cases depending on the relative time scales between the network
evolution and the dynamics: (i) the characteristic time corresponding to the dy-
namics is much larger than the one corresponding to the network, τdyn � τnet,
which corresponds to an evolving network in which dynamics can be neglected;
(ii) the characteristic time corresponding to the dynamics is much smaller than
the one corresponding to the network, τdyn � τnet, in which the network evolu-
tion can be ignored, and therefore corresponds to the case of a dynamics taking
place in a fixed network; (iii) the characteristic time corresponding to the dynam-
ics is of the same order than the one corresponding to the network, τdyn ∼ τnet,
which corresponds to a coevolution of the dynamics and the network structure
[62, 63]∗. The networks we study in the present thesis are undirected, unweighted
and fixed (we consider τdyn � τnet). This corresponds to the simplest case but,
as a first step, it is important to keep the modeling as simple as possible in order
to capture the basic mechanisms which explain a given phenomenon. Later, one
should start adding new ingredients that increase the complexity of the problem
of study.

In this Section, we define basic concepts that characterize complex networks and
which we use throughout the thesis. Given an undirected, unweighted and fixed
network with N nodes and n links (or edges):

∗A recent review on coevolutionary networks has been provided by Gross and Blasius [64].
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Degree

The number of links adjacent to a node i is defined as the degree of the node, ki.

Degree distribution

The degree distribution P(k), which gives the probability that a randomly selected
node has exactly k links, characterizes a network by giving a measure of its
heterogeneity in terms of the number of connections per node. Some networks
might be degree-homogeneous, with an equal number of connections (regular
lattices), others might have certain degree of heterogeneity in which the average
degree, 〈k〉 = 2n/N, characterizes the network (random networks), while others
can have no typical scale, i.e., P(k) ∼ k−γ (scale-free networks). Among these
last networks, the most interesting case appears in those which have a diverging
second moment of the degree distribution (γ ≤ 3). In this case, if 〈k〉 exists (that
is, for 2 < γ ≤ 3), it is not representative of the network and the topology is
characterized by the importance of hubs.

Degree-degree correlations

Degree-degree correlations are related to the concept that the probability that
a node of degree k is connected to another node of degree k′ might depend on
the value of k or, in other words, the degrees of two adjacent nodes are not
independent. This fact can be described by the conditional probability P(k′ |k),
which represents the probability that a node of degree k is connected to a node
of degree k′ . In uncorrelated networks, P(k′ |k) can be simply estimated as the
probability that any link points to a node of degree k′ , leading to P(k′ |k) =
k′P(k′ )/ 〈k〉, independent of k.

As we will see, random uncorrelated networks (like Erdös-Rényi networks) have
no degree-degree correlations, but many real networks do. The network is said
to exhibit assortative mixing if there exists a positive degree-degree correlation,
and disassortative mixing if it is negative.

Clustering coefficient

The clustering coefficient for a node i, Ci, quantifies the local cliquishness of
its immediate (nearest) neighborhood, defined as Ci = 2Ei

ki(ki−1) , where ki is its
degree and Ei is the number of links between its ki neighbors. It is therefore a
scalar normalized between 0 and 1. In other words, the clustering coefficient
is the number of existing connections between the ki neighbors of i out of the
maximum possible number of connections that could exist between them. The
clustering coefficient of the whole network is naturally defined as the average
of all individual Ci, C ≡ 1

N
∑N

i=1 Ci. An alternative definition is given by the
proportion of triangles attached to the node i from all the possible ones that
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can be built by linking any pair of its neighbors. The concept of clustering
has its roots in the social sciences, where it appeared as the fraction of transitive
triples [42]. In social networks, it can be easily interpreted as a measure of the
probability that the friends of a given agent are at the same time friends of each
other.

Average path length

The distance between two nodes is defined as the number of links along the
shortest path connecting them. An important measure characterizing a network
is the average path length, l, defined as the mean distance among any two
randomly chosen nodes. Regular d-dimensional lattices display an average path
length which scales with system size as l ∼ N1/d. However, complex networks
are characterized by much shorter path lengths which, as we shall see, typically
scale as l ∼ ln(N).

Community

While there is not a common agreed definition of a community [31], an extended
one is the following: a set of nodes is a community if the sum of all degrees within
the set is larger than the sum of all degrees toward the rest of the network. Several
other definitions, possibly more appropriate in some cases, can be found in [42].
In Section 1.2.4 we give an introduction to networks with mesoscale structure,
where we analyze the implications of the existence of communities in complex
networks in detail.

1.2.3 Standard models of complex networks

In this Section, we present a brief introduction to the paradigmatic models for
complex networks that we use on the course of the present thesis: Erdös-Rényi
random networks [30], Watts-Strogatz small world networks [7] and Barabási-
Albert scale free networks [8].

The most important features of real social networks are known to be: (i) short
average path length and (ii) large clustering coefficient [65], (iii) broad degree
distribution [51], (iv) mesoscalar structure [49], and (v) assortativity [66]. As we
shall see, the simple models mentioned above capture some of these properties
and their generating mechanisms, but fail in reproducing others. More sophisti-
cated models are needed to recover all of these properties at the same time, as we
show in the last part of our introduction when introducing models for networks
including mesoscale structure.
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Erdös-Rényi random networks

The first contribution to random networks dates from the 1950s when Erdös
and Rényi published their classical seminal paper [30]. In their model they
define a random network∗ as N labeled nodes connected by n edges, which
are chosen randomly from the N(N − 1)/2 possible edges. An alternative and
equivalent definition of a random network, widely used in the physics literature,
is the binomial model in which starting with N nodes, every pair of them is
connected with probability p. Consequently, the expected total number of edges
is pN(N − 1)/2. In the limit n→ N(N − 1)/2 (corresponding to p→ 1) a complete
graph topology is recovered. A complete graph (or fully connected network) is
defined as a network in which every node is connected to any other node.

One of the most important results regarding random networks is that many
important properties appear quite suddenly. Among many other properties
(appearance of trees, cycles and other subgraphs) it can be shown that at pc = 1/N
(corresponding to 〈k〉 ' 1) the random graph changes its topology abruptly from
a loose collection of small clusters to a system dominated by a single giant
component. In this region the largest cluster clearly separates from the rest of
the clusters, its size S increasing proportionally with the separation from the
critical probability, S ∼ (p− pc). This dependence is analogous to the scaling of S
with the percolation probability in infinite-dimensional percolation [67]†.

With good approximation the degree distribution of a random graph is a binomial
distribution, P(k) = Ck

N−1pk(1 − p)N−1−k, which for large N converges to a Poisson

distribution, P(k) ' e−pN (pN)k

k! ' e−〈k〉 〈k〉
k

k! , where the average degree is 〈k〉 = p(N−1).
A random graph is likely to be sparse, and locally can be seen essentially as a
tree: with large probability, the number of nodes at a distance l from a given node
is approximately kl. Equating then kl with N, it can be obtained that the average
path length scales as lrand '

ln(N)
ln(〈k〉)

‡ . Therefore, random networks display a small
l, growing slowly (logarithmically) with system size. This is in agreement with
what is found in most real networks.

Regarding the clustering coefficient, in a random network the probability that
two neighbors of a a given node are connected (or what is the same, the propor-
tion of triangles among all possible ones) is the probability that there exists a link

∗Notation for this Section: for convenience, we refer to Erdös−Rényi random networks simply
as random networks.

†As mentioned in the brief historical section, a detailed review of random graphs is available in
the classic book of Bollobás [36].

‡Notice that it is in this sense that complex networks are infinite dimensional: for a given node,
the number of neighbors at a distance l, nl, scales faster than a power of l (nl ∼ ld), characteristic of
topologies of finite dimension d.
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between these two nodes, that is: p. Therefore, Crand = p ' 〈k〉N . It is important to
notice that real social networks always have a much larger clustering compared
to the one of a random network. In this way, the result for Crand does not capture
the very large clustering coefficient found in real social networks, which is in
general independent on the system size.

Notice that beyond the Erdös-Rényi model for random networks, one can con-
struct random uncorrelated networks∗ with an arbitrary degree distribution (ex-
ponential, power law, etc.). The degree of the nodes is selected from the distri-
bution, and then their links are randomly paired (configuration model [68, 69]).
As there are no correlations, the conditional probability P(k′ |k) is independent
of k, P(k′ |k) = k′P(k′ )/ 〈k〉. A special case of random uncorrelated networks is
that one of a degree-regular random network. This model, in which all nodes
have exactly the same degree k0, is very practical for analytical calculations: the
degree distribution is a Kronecker delta centered at degree k0, P(k) = δk,k0 .

Watts-Strogatz small world networks

As we mentioned above, real social networks are characterized by a short aver-
age path length (like random networks), but with a large clustering coefficient
compared to random networks. This is known as the small-world character†

and describes structures which are neither completely ordered nor completely
random. The social experiments performed in the 70s that we described in Sec-
tion 1.2.1 by Travers and Milgram [39] already pointed to this central property
of social networks.

Watts and Strogatz came with a very simple one-parameter model which inter-
polates between a regular lattice and a random network, in order to generate
complex networks with small-world character [7], which are known now simply
as Small-World networks (SW). The algorithm is as follows: start with a ring
lattice with N nodes in which every node is connected to its first k0 neighbors
(k0/2 on either side). In order to have a sparse but connected network during the
whole rewiring process, consider N � k0 � 1. Then, randomly rewire each link
of the lattice with probability p such that self-connections and duplicate links are
excluded‡. This process introduces on average pNk0/2 long-range connections

∗Notice that the Erdös-Rényi random network is the prototypical example of random uncorre-
lated networks.

†Notice that some of the literature considers the small world character to be only the existence
of a short average path length [6].

‡Instead of this rewiring process, Newman and Watts [70] introduced a variant in which links
are added between randomly chosen pairs of sites, but no links are removed from the regular lattice.
This model is somewhat easier to analyze than the original Watts-Strogatz model; however, it does
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1.2. COMPLEX NETWORKS

Figure 1.4: The Watts-Strogatz random rewiring procedure, which inter-
polates between a regular ring lattice and a random network keeping the
number of nodes and links constant. N = 20 nodes, with four initial nearest
neighbors. For p = 0 the original ring is unchanged; as p increases the net-
work becomes increasingly disordered until for p = 1 a random network is

recovered. From Watts and Strogatz 1998 [7].

throughout the network∗. In this way, by tuning p one observes a transition
between order (p = 0) and randomness (p = 1) (see Figure 1.4).

On the one hand, for p = 0 the model keeps the initial ring lattice topology, where
the average path length is l(p = 0) ' N/2k0 � 1 and the clustering coefficient
C(p = 0) ' 3/4; thus l scales linearly with the system size, and the clustering
coefficient is large. On the other hand, for p → 1 the model converges to a
random graph for which l(p = 1) ∼ ln(N)/ ln(k0); and C(p = 1) ∼ k0/N; thus
l scales logarithmically with N, and the clustering coefficient decreases with
N. When analyzing the dependence on the rewiring probability p for both, the
average path length and the clustering coefficient, Watts and Strogatz succeeded
in uncovering a broad p-regime for which the small world phenomenon arises [7]:
a short path length together with a high clustering coefficient (see Figure 1.5).

not preserve the degree distribution. For sufficiently small p and large N this model is equivalent to
the Watts-Strogatz model.

∗Notice that from a social network point of view, the model accounts for the fact that an individual
has most of their relationships in their immediate neighborhood (neighbors, colleagues, friends in
groups physically close), while having some friends who are long way away, modeled through long
range connections (old acquaintances, friends abroad).
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Figure 1.5: Characteristic path length l(p) and clustering coefficient C(p)
for the Watts-Strogatz model. The data are normalized by the values l(0)
and C(0) for a regular lattice. Averages over 20 random realizations of the
rewiring process; N = 1000 nodes, and an average degree 〈k〉 = 10. From

Watts and Strogatz 1998 [7].

The rapid drop observed in l(p), corresponds to the onset of the small-world
phenomenon. During this drop C(p) remains almost constant, indicating that
the transition to a small world is almost undetectable at the local level.

An important result concerns the dependence on the system size for the onset of
the small-world behavior. The average path length, l, does not begin to decrease
until p ≥ 2/Nk0, which ensures the existence of at least one shortcut [52]. This
implies that the transition in p depends on the system size. The small-world
phenomenon has been shown to appear when p is larger than p∗ ∼ (1/N)d [71],
where d is the dimension of the original lattice: if p < p∗, l ∼ N1/d (as in regular
lattices), but if p > p∗, l ∼ ln(N) (as in random networks). Trivially, for the original
Watts-Strogatz model one obtains p∗ ∼ (1/N).

Finally, the degree distribution in Watts-Strogatz small world networks is sim-
ilar to that of a random graph: it has a pronounced peak at k = k0 and decays
exponentially for large k. Thus the topology of the network is relatively homo-
geneous, with all nodes having approximately the same number of links [6].

18



1.2. COMPLEX NETWORKS

Barabási-Albert scale free networks

Another important feature of real networks besides the small-world character
concerns the fact that degree distributions deviate significantly from a Poisson
distribution (characteristic of random networks) and many large networks are
scale free, that is, their degree distribution follows a power law for large k∗. As
we have seen, this feature is not recovered in the Watts-Strogatz model; so there
was a need for different approaches.

In this direction, Barabási and Albert proposed a model [8] that not only char-
acterizes the network topology, but also accounts for the question of which
mechanism might be responsible for the emergence of scale free networks. They
propose a model with two ingredients: growth and preferential attachment, with
the following algorithm: (i) Growth: starting with a small number of nodes, m0,
at every time step, a new node is added with m ≤ m0 links that connect the new
node to m different nodes already present in the network (ii) Preferential attach-
ment: when choosing the nodes to which the new node connects, it is assumed
that the probability P that a new node will be connected to node i depends on
the degree ki of node i, such that: P = ki∑

j k j
. After t time steps, the network ob-

tained has N = m0 + t nodes and mt links. As shown in Figure 1.6 (a), numerical
simulations indicate a stationary scale free distribution, P(k) ∼ Ak−γ, with γ ' 3†.
The second moment of the distribution diverges, and therefore there is not a
characteristic scale in the network: in this sense it is scale-free. Moreover, the
scaling exponent is independent of the only parameter in the model, m, which
only affects the coefficient A of the power law distribution, A = 2m2 (see inset of
Figure 1.6 (a)).

Several analytical approaches have studied the dynamical properties of the
Barabási-Albert network (BA-network), confirming the power law degree dis-
tribution: the continuum theory [72], the master-equation approach [73] and the
rate-equation approach [74]. All these approaches are summarized in the review
from Albert and Barabási [6]. An interesting result refers to the fact that the time
evolution of the degree of all nodes follows a power law with an exponent 1/2
(see Figure 1.6 (b)).

∗Contrary to other complex networks, social networks have the restriction that an agent can not
have an arbitrary number of social contacts (the number of contacts depends crucially on how you
define a social tie, from a mere acquaintance to a tight friendship). Therefore, many social networks
display a broad tail followed by a cut-off [51].

†It has been shown that the fact of considering growth and preferential attachment independently
does not lead to this result [8, 72]: this indicates that both mechanisms are needed simultaneously
in order to generate a power law degree distribution.
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Figure 1.6: (a) Degree distribution for the BA-network. N = m0+t = 3×105;
with m0 = m = 1 (circle), m0 = m = 3 (square), m0 = m = 5 (diamond),
m0 = m = 7 (triangle). The slope of the dashed line is γ = 2, 9. Inset:
rescaled distribution with m, P(k)/2m2 for the same parameter values. The
slope of the dashed line is γ = 3. (b) P(k) for m0 = m = 5 and system sizes
N = 105 (circle), N = 1, 5×105 (squares), and N = 2×105 (diamonds). Inset:
time-evolution for the degree of two nodes added at time t1 = 5 and t2 = 95.
Notice the same power law growth with exponent 1/2. From Barabási et al.

1999 [72].

Regarding the average path length, and in contrast to random or small-world
networks (where l ∼ ln N), it has been shown by analytical arguments [77] that
random scale-free networks∗ with an exponent 2 < γ < 3 have a much smaller
path length, scaling as l ∼ ln ln N (ultrasmall networks). For γ = 3, it turns to
scale as l ∼ ln N/ ln ln N †, while for γ > 3 the behavior observed in random
networks is recovered, l ∼ ln N [77]. Moreover, in random scale free networks
the node degrees are uncorrelated while in BA-networks correlations develop
spontaneously between the degrees of connected nodes [79].

∗These networks are constructed with random-graph models with arbitrary degree distribution
(configuration model [69]).

†Although this result, obtained in [78], is for the largest distance between two nodes, their
derivation makes it clear that the average path length also behaves similarly. This holds also for
BA-networks with m ≥ 2; while l ∼ ln N is obtained when m = 1 [77].
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Regarding the clustering coefficient, it has been shown analytically to scale with
the system size as C ∼ (ln N)2/N [80]. This is a slower decay compared to the
random network case, Crand ∼ 〈k〉 /N, but far from the behavior of small-world
networks, where the clustering coefficient is high and independent of N.

1.2.4 Networks with mesoscale structure

We present in this Section a brief introduction to another class of complex net-
works that include another very important feature of complex topologies, and
specially of social networks: its modular or community structure. Complex
social networks are generally structured into cohesive groups within which the
internal links are dense, and which are sparsely interconnected [42]. These
clustered nodes are known as communities and are the structural elements in a
mesoscale level of description. Historically, the notion of community and the
first network formalizations of the concept have been proposed in the social
sciences [81, 82]. As we have seen in Section 1.2.2, a community can be defined
as a set of nodes in which the sum of all degrees within the set is larger than the
sum of all degrees toward the rest of the network. Figure 1.7 illustrates several
examples of networks with community structure.

In the first place, communities are important for the properties we can infer
from their structure [31]: groups of nodes belonging to the same community
probably share common properties and/or play similar roles within the network
(see Figure 1.7(b) and 1.7(c)); the distribution of communities allows for a clas-
sification of nodes, according to their structural position in the modules; and by
identifying them in different levels, a hierarchical structure can be uncovered.

Therefore, when analyzing network topology the detection of communities has
become fundamental in network science. It is a very hard computing problem
and has triggered the efforts of lots of scientists during the last years. Still, due to
its complexity, it is nowadays an active open field of research. Statistical physics
became involved in the problem of detection of communities after the seminal
paper that appeared in 2002, by Girvan and Newman [76]. They proposed a
new algorithm, aiming at the identification of links lying between communities
and their successive removal according to its betweenness∗, a procedure leading
to the isolation of the communities, and thus its detection (see Figure 1.7(c)).
This work triggered the interest of many physicists [83–90], which proposed
models for community detection using spin models, percolation, random walks,
optimization, synchronization, etc. Algorithms which use the modularity quality

∗The betweenness of a link is a centrality measure defined as the number of shortest paths
between pairs of other nodes passing through the link. It expresses the role of the link in processes
where signals are transmitted across the network following the shortest paths.
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Figure 1.7: Top: Community structure of a mobile call network around
a randomly chosen individual. Each link represents mutual calls between
two users, and the tie strengths are defined as the aggregate call duration
in minutes (see color bar). All the nodes shown are at distance less than
six from a selected user, marked by a circle in the center. From Onnela et
al. [49]. Bottom-left: Community structure of the e-mail network of URV
(Universitat Rovira i Virgili). Two individuals (A and B) are connected if
A sends an e-mail to B and B replies, or vice versa. Each color corresponds
to the affiliation of the individual to a specific center within the university.
Only e-mails within the university are shown. From Guimerà et al. [75].
Bottom-right: The largest component of the Santa Fe Institute collaboration
network in which two nodes are connected if they have written a paper
together. The Figure shows the community structure of the network. The
algorithm of Girvan and Newman detects the primary divisions of the
Institute, indicated by different vertex shapes. From Girvan and Newman

[76].
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function proposed by Newman and Girvan [91] are nowadays broadly used.
In the present thesis we study the effect of networks with community structure
on nonequilibrium dynamics rather than analyzing its topological properties.
Therefore, a review of these models is out of the scope of this introduction. In-
deed, it is a huge field of research which in another context would deserve a
whole chapter. The last review on the topic has been recently provided by For-
tunato [31]. Lancichinetti and Fortunato [92] have also provided a comparative
study of the different models and their performances in different benchmarks.
Previous comparative studies can be found in the work by Danon et al. [93].

In the second place, communities are known to have a deep impact on the dy-
namics taking place in the network. For example, for oscillators coupled via
a complex network, synchronization takes place first within highly intercon-
nected local structures, and synchronized domains expand via intercommunity
connections [94–99]. Similarly, information has been shown to spread rapidly
within communities, but slowly across the network, particularly if intercom-
munity links are weak [49]. Communities may also promote the emergence and
survival of cooperation [100], while for a two-spin system following the majority
rule [101], network topologies with communities can be constructed in which no
consensus takes place [102].

For these reasons, in order to foster theoretical studies of collective behavior tak-
ing place on social networks, it is important to have social network models that
show the essential characteristics of real social networks, including its modular
structure∗. In this direction, several models have been proposed [62, 65, 66, 103–
108]. Among them, we present here the one proposed by Toivonen et al. [109],
which we use in the present thesis. This model mimics most of the basic fea-
tures of real social networks: high clustering, short average path length, broad
degree distribution, assortative mixing, and specially the existence of commu-
nity structure. This is a growing network model, with two basic processes: (i)
attachment to random selected nodes; and (ii) attachment to nodes belonging
to the neighborhood of the first selected nodes, which gives rise to an implicit
preferential attachment. The model is introduced in detail in Chapter 4, where
we analyze the effect of networks with community structure on the models of
social consensus studied in the present thesis.

♦ ♦ ♦

∗Notice that the network models previously presented recover some of the properties observed
in real social networks, such as the small world character or scale free distributions. However, as
we have seen, these simple models fail to include different features together, and do not display
mesoscalar structure.

23



CHAPTER 1. INTRODUCTION

In summary, we have defined the basic concepts that characterize complex net-
works, and we have presented the main network models which recover some
of the properties observed in real social networks: small world character, scale
free distributions, community structure. As we have mentioned, we use these
models throughout the thesis in order to analyze the effects of social structure on
consensus dynamics, which are essentially motivated by language competition
processes.

1.3

The consensus problem. Mechanisms and models

The consensus problem is a general one of broad interest, recently addressed
by statistical physics: the question is to establish when the dynamics of a set of
interacting agents that can choose among several options leads to a consensus in
one of these options, or alternatively, when a state with several coexisting social
options prevails [26]. For an equilibrium system the analogy would be with
an order-disorder transition. For nonequilibrium dynamics we rely on ideas of
studies of domain growth and coarsening in the kinetics of phase transitions
[110], where dynamics is dominated by interface motion. In some cases, consen-
sus problems give rise to coexisting social options during finite large times, after
which a whole consensus might be reached. The concept of metastable state in
statistical physics appears then naturally, and metastability becomes a central
issue in the analysis of the dynamics.

In general, in these problems the drive towards consensus is provided by the
tendency of interacting agents to become more alike. This effect is often termed
social influence in the social science literature [111]. Another social mechanism
takes place when agents tend to adopt an option different from the one of their
neighbors. The approach from statistical physics has built upon the study of
ferromagnetic and antiferromagnetic interactions respectively as a first step for
the modeling of such mechanisms, in order to explore the qualitative behavior
of the corresponding social dynamics. Moreover, the presence of individual free
will, independent decision or individual learning, is often modeled by adding
noise to the corresponding consensus dynamics.

In particular, several models have been proposed to account for different mech-
anisms of social interaction in the dynamics of social consensus. The idea is
to capture the essence of different social behaviors by simple interaction rules:
following the idea of universality classes [112], in collective emergent phenom-
ena details might not matter. There are several examples of these mechanisms
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that have given fruitful results in the last years: (i) imitation (voter model [27]),
(ii) social pressure (Spin Flip Kinetic Ising models, SFKI [28]), (iii) homophily
(Axelrod model for cultural dissemination [11]), (iv) majority convinces (Sznajd
model [113]), (v) interactions depending on a threshold (Granovetter model
[114]) or complex contagions [115], (vi) bounded confidence (Deffuant model
[9]), (vii) semiotic dynamics (Naming Game for the emergence of a shared lan-
guage [116]), (viii) interaction through small groups (Galam model [117]), (ix)
cost-benefit optimization in the framework of game theory [25]. Of course many
of these mechanisms might take place at the same time in social interactions. In
this direction, several models combine some of the mechanisms defined above.
For example, individual learning together with imitation [118], or imitation to-
gether with homophily [119]. Castellano el at. [5] have recently reviewed the
main contributions to the study of social collective phenomena by statistical
physics during the last years, which include the mechanisms and models listed
above.

The models for language competition, which motivate the models for social
consensus studied in the present thesis, contain imitation and effective social
pressure mechanisms. For this reason, in the following Section we analyze in
detail the models corresponding to the first two mechanisms listed above: the
voter model [27] (imitation) and the SFKI model [28] (social pressure).

1.4

Paradigmatic two-state models in consensus prob-
lems

In this Section, we present a brief review of the main dynamical results regarding
two paradigmatic nonequilibrium two-state models in statistical physics: the
voter model [27], and the zero-temperature spin-flip kinetic Ising (T = 0 SFKI)
model [28]. As pointed out in Section 1.3, when considering the dynamics of
social systems, these two models become an important starting point, as they
capture two basic mechanisms of social interaction: imitation (voter model) and
social pressure (SFKI∗); see Figure 1.8. In the present thesis, we are interested
in consensus problems motivated by language competition which behave as
these two models for certain values of their parameter space. Therefore, it is
important to have a full picture of the main results concerning these models
and the mechanisms they represent, as we constantly refer to them during the

∗Notation: for convenience, from now on we refer to the zero-temperature spin-flip kinetic Ising
model (T = 0 SFKI) simply as SFKI.
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Figure 1.8: Probabilities of transition for an active node to each of the two
possible states, A (red) or B (black), illustrating the two basic mechanisms
of social interaction: imitation (voter model) and social pressure (SFKI
model). Notice that when an agent is surrounded by a majority in one op-
tion (B in the Figure), in the voter model there is still a non-zero probability
to change to the minority option (in the Figure, by imitation of the node in
the minority option, A), while in the SFKI the future state of the agent is

fully determined by the state of the majority.

presentation of our work, and we build up key arguments from the knowledge
of the behavior of these models in different topologies.

As we have shown in Section 1.2, there has been an increasing interest on complex
networks, specially on how they originate and on how to characterize them. But
the most important question for the purposes of the present thesis is in which
way network structure might affect nonequilibrium dynamics models; some of
them already studied in regular lattices in the past. In this context, the voter
model and the SFKI model have been extensively studied in complex networks
during the last years, with new results appearing during the course of the present
thesis.

In this Section, we first introduce the concepts of coarsening processes, and
absorbing, metastable and trapped states. Then, we define each of the models
and present the main findings in regular lattices, together with a brief review of
the results obtained in the paradigmatic complex networks: complete graphs,
Erdös-Rényi random networks [30], Watts-Strogatz small world networks [7]
and Barabási-Albert scale free networks [8].
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1.4.1 Coarsening processes. Absorbing, metastable and trapped
states

The voter model and the SFKI model have two equivalent absorbing states cor-
responding to complete consensus in one or the other option∗. Absorbing states
are characteristic of nonequilibrium dynamics and are defined as configurations
from which the system cannot escape, i.e., the dynamics completely stops. An
initially disordered system can eventually reach one of these absorbing states.
In order to characterize the way this might happen, it is fundamental to study
the formation and growth of coherent domains in each of the possible states
of the system. These growth processes, characteristic in collective emergent
phenomena, are known in statistical physics as coarsening. A relevant quantity
in coarsening processes is the average domain size, ξ(t), whose time evolution
gives a characteristic growth law.

In a consensus problem, the existence of coarsening gives information about the
path to consensus of the system: how fast domains in each of the two compet-
ing options are formed and grow in time. If the coarsening is not interrupted,
the system eventually reaches one of the two equivalent absorbing states. In
contrast, when coarsening stops, we can infer that the system does not evolve
further towards ordering. In this case, a metastable state is reached, which we
define as a long-lived state in which the two options are present†. In our con-
text, metastable states are generally dynamical or active: although coarsening has
stopped, agents continue flipping and the system visits a set of configurations
which are macroscopically equivalent in terms of ordering. In the thermody-
namic limit, the system may get stuck forever in such states. However, in finite
size systems, they have a finite survival time and they finally leave such configu-
ration due to finite size fluctuations which eventually lead them to an absorbing
state. An interesting type of metastability occurs in situations in which different
realizations of the dynamics are of different type‡: while some of them follow a
coarsening process until finite size effects drive them to an absorbing state, others
get stuck in topological traps. The existence of different topological structures in
the network acting as traps (for instance, communities, hierarchical levels) leads
to different metastable states with different degrees of ordering in the system.
We call this special type of metastable states trapped metastable states. When in a
finite system the dynamics gets stuck for an infinite lifetime in such configura-

∗Notice that in the literature, consensus is considered as equivalent to reach an absorbing state
with complete order, i.e., a configuration in which only one state is present in the system.

†In this way, reaching a metastable state can be interpreted as equivalent to a scenario of coexis-
tence during a finite long time.

‡Notice that, in general, metastable states are characterized by the fact that all realizations of the
dynamics are of the same class (qualitatively similar). See the voter model in Section 1.4.2.
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tions, we call these states simply trapped states. These can be frozen, if there is no
change in the system (that is, if they are absorbing); or active.

The voter model and the SFKI model are of special interest in this thesis, as
they define two well known coarsening processes to which we refer throughout
the thesis. SFKI dynamics leads to the formation of ordered domains and their
coarsening as a consequence of the existence of surface tension and the drive
provided by energy minimization [110]: curvature driven interface dynamics. In
the voter dynamics, instead, no surface tension exists and the tendency towards
order is the effect of the annihilation of freely diffusing interfaces between do-
mains [120]: interfacial noise dynamics. Comparative studies of the consequences
of these two mechanisms in different interaction networks have been reported
in [121]. In consensus problems, and in particular in the models studied in this
thesis, the appearance of scenarios of coexistence (which, when they take place
for finite time, correspond to metastable states) is of special interest. In this way,
in this Section we pay a special attention to how the different type of coarsening
determines the nature of the metastable and trapped states appearing for each
of the models in different topologies.

1.4.2 The voter model

The voter model is a prototype spin-model of nonequilibrium dynamics with
two equivalent absorbing states (Z2-symmetry). The voter dynamics was first
introduced by Clifford and Sudbury [122] as a model for the competition between
species, and named voter model by Holley and Liggett [27]. It has become one
of the most studied interacting particle systems motivated for studies in fields
such as heterogeneous catalysis [123], species competition [124, 125] or opinion
formation [5, 26].

The dynamics of the model is defined as follows∗: given N nodes in a network,
each of the sites holds one of two possible states: si = +1 or si = −1. At each
time step, a site in the network is randomly chosen, and adopts the state of a
randomly chosen neighbor (asynchronous update). In this way, from the point
of view of interaction mechanisms, the voter model is one of random imitation
of a state of a neighbor. Therefore, the probability that a node in state si flips can
be written as:

∗An applet for the voter model in regular lattices and complex networks (ER, SW and BA
networks) can be found at the IFISC website [126], where it is possible to visualize simulations in
real time. In this way, an intuitive understanding of the dynamics is easily achieved.
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P(si → −si) =
1
2

(
1 −

si

ki

∑
j∈υi

s j

)
(1.1)

where ki is the degree of node i, i.e., the number of its nearest neighbors, and υi
is the neighborhood of node i, i.e., the set of nearest neighboring nodes of node
i.

Conservation laws play an important role in the characterization and classifica-
tion of different nonequilibrium processes of ordering dynamics. A special type
of conservation law is the one referring to an ensemble average. In the voter
model, we find such a law: the conservation of the average global magnetization,
〈m〉∗ [127–129], where m ≡ 1

N
∑N

i=1 si. Notice that the existence of an ensemble
conservation law does not imply an elementary step conservation such as the
one imposed in the Ising model with Kawasaki dynamics [110]. The conserva-
tion of 〈m〉 implies that the probability to reach each of the two absorbing states
is exactly given by the initial density of nodes in each state (or what is the same,
by the initial magnetization, m0).

However, in networks with an arbitrary distribution of the degree of the nodes,
and for the usual node-update dynamics defined above, the average magnetiza-
tion is not conserved, while an average magnetization weighted by the degree
of the node, 〈m′〉, is conserved [129]. This magnetization is defined as:

m′ ≡
∑N

i=1 kisi∑N
i=1 ki

(1.2)

Another possible update rule is link-update dynamics, defined as randomly
choosing a pair of nearest-neighbors, i.e., a link, and randomly assigning to
both the same opinion when they are in an opposite state (+1 or −1 with equal
probability), and leaving them unchanged otherwise. In this case, the average
magnetization is still conserved† [129].

For these reasons, the magnetization is not a useful order parameter to study
the ordering dynamics of the voter model. Instead, it is commonly used in the
physics literature as an order parameter the density of interfaces:

∗The 〈...〉 indicates average over different realizations of the dynamics with different random
initial conditions conserving the same initial magnetization, m0.

†Notice that choosing a link (instead of a node) update process, already gives implicitly weights
to the degree of the nodes.
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ρ ≡
1∑N

i=1 ki

(∑
〈i j〉

1 − sis j

2

)
(1.3)

where
〈
i j
〉

reads for summing over neighboring nodes. That is, ρ is the fraction
of links connecting neighbors with opposite state. Notice that when the system
reaches one of the two absorbing states, ρ = 0; as all nodes are in the same state.
The average interface density,

〈
ρ
〉

is the order parameter we use throughout the
thesis when analyzing the ordering dynamics of the models studied in finite
systems.

Regular lattices

The voter model was first studied in lattices, where d = 2 is a critical dimension
[120]. Full order is reached in the thermodynamic limit (N → ∞) for dimension
d ≤ 2: in one dimension, an ordered state is reached with ρ ∗ decaying as ρ ∼ t−1/2;
while in two dimensions the coarsening process takes place with ρ ∼ (ln t)−1.
The average domain size, ξ, relates to the interface density in the following way:
ξ(t) ∼ 1/ρ(t)†. Therefore, from the dependence of ρ(t) with time, it follows that
the coarsening growth laws for the average domain size in regular lattices are:
ξ(t) ∼ t1/2 in d = 1, and ξ(t) ∼ (ln t) in d = 2.

In finite systems, the coarsening is the same as in the thermodynamic limit, but
in the last stage of the dynamics the system does order by finite size fluctuations.
The time to reach the absorbing state scales as τ ∼ N2 (d = 1) [130] and τ ∼ N ln(N)
(d = 2) [123]. In Figure 1.9 we can observe the characteristic interfacial dynamics
of the voter model in a two-dimensional lattice, in which the coarsening ordering
dynamics takes place by interfacial noise, i.e., by an annihilation of freely diffusing
interfaces between domains [120]. For d > 2 instead, the density of interfaces
behaves as ρ ∼ a − bt−d/2 [131] (with a, b ∈ < and d the dimension of the lattice),

∗The same coarsening laws for ρ(t) in the thermodynamic limit (no fluctuations) are valid for the
average interface density

〈
ρ(t)

〉
in finite systems, where the time evolution for ρ in a single realization

deviates from the N→∞ case due to the existence of fluctuations.
†Argument: given a d-dimensional lattice of N = Ld sites (L is the one-dimensional length of the

lattice) in which a coarsening process takes place, growing domains form and grow in size with a
characteristic one-dimensional length ξ (thus domains are of size ξd). In such a lattice, interfaces
define hypersurfaces of dimension d − 1 which are the outlines of the growing domains (walls in
d = 1, perimeters in d = 2, closed surfaces in d = 3, etc.). Therefore, assuming there exist n growing
domains, we can infer that ρ can be written as ρ ∼ nξd−1/Ld; where nξd−1 is the number of interfaces,
and the total number of links scales with the system size, Ld. As the number of domains is n ' Ld/ξd,
from the previous expression it is straightforward to obtain that ξ ∼ 1/ρ.
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Figure 1.9: Illustration of the domain growth in the d = 2 voter model
(N = 2562). Top: Snapshots at times t = 4, 16, 64, 256 during the evolution
of a bubble of initial radius r0 = 180 (thin circle). Bottom: same from

symmetric random initial conditions. From Dornic et al. 2001 [120].

reaching a long-lived metastable state with continuously flipping nodes: order
is never reached in the thermodynamic limit. Notice that in finite systems, the
system gets trapped in a metastable state which does order due to finite size
fluctuations (Figure 1.10), with a time to reach an absorbing state that scales
with the system size as τ ∼ N. The degree of order in metastable states can
also be quantified by the two-spin correlation function between spins i and j,
Ci j ≡

〈
SiS j

〉
: for d > 2, Ci j decays with the spatial separation between spins

r = |i − j|, as C(r) r2−d [132]: therefore, distant spins become uncorrelated.

Qualitatively, the same general phenomenon occurs in complex networks of
interaction of effective large dimensionality where a finite system gets trapped
in long-lived metastable states.

Fully connected networks

Here we present the results for the voter model in a fully connected network
(or complete graph). In the thermodynamic limit, the time evolution for the
magnetization is trivially found to be:
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Figure 1.10: Typical metastable state in the voter model in a finite size
system that reaches the absorbing state due to a finite size fluctuation. The
size of the domain, ξ, can be inferred from the plateau height, as it scales

as ξ ∼ 1/ρ∗.

dm
dt

= 0 (1.4)

indicating that any initial condition for the magnetization, m0, is a marginal
stable solution of the dynamics∗. As mentioned, the magnetization is not an
appropriate order parameter to study the time evolution of the system. The time
evolution for ρ instead, obtained from a link mean field analysis of the interfaces,
reads [133]:

dρ
dt

= 2ρ
(
1 −

ρ

2σ+(1 − σ+)

)
(1.5)

where σ+ is the initial density of nodes in state +1. The system reaches asymptot-
ically a disordered state which depends on the initial condition, with ρ getting

∗The same conservation law for m(t) in the thermodynamic limit (no fluctuations) is valid for
〈m(t)〉 in finite systems, where the time evolution of the magnetization in a single realization deviates
from the N→∞ case due to the existence of fluctuations.
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stuck at a plateau ρ∗ = 2σ+(1− σ+). In a finite system instead, a single realization
ρ(t) fluctuates grossly until a finite size fluctuation drives it to a complete order.
However, the time evolution of the average interface density is:

〈
ρ(t)

〉
= 2σ+(1 − σ+)e−2t/τ(N) (1.6)

giving an exponential decay depending on system size. This is related to the fact
that the survival time, i.e., the probability that a simulation reaches consensus at
time t, decays as S(t) ∼ e−t/τ(N) [133]. The time to reach an absorbing state, τ, is
found to scale with the system size as τ(N) ∼ N [131]. Notice that the plateau ρ∗

is recovered in the thermodynamic limit, as τ diverges with system size.

Random uncorrelated networks

Vázquez and Eguíluz [133] studied the dynamics of the voter model in ran-
dom networks without degree correlations in great detail, deriving a complete
analytical description. The time evolution of ρ is found to be,

dρ
dt

=
2ρ
µ

[
(µ − 1)

(
1 −

ρ

2σ+(1 − σ+)

)
− 1

]
(1.7)

where µ ≡ 1
N

∑N
k=1 Pkk is the average degree (Pk being the probability to find a

node with degree k). It is straightforward to derive from this equation the exact
value of the plateau that depends only onµ, but it is independent of the particular
topology (i.e., independent of the specific degree distribution; see Figure 1.11):
ρ∗ = 2ζ(µ)σ+(1 − σ+), with

ζ(µ) =
µ − 2
µ − 1

(1.8)

Notice that the plateau becomes smaller for decreasing average degree, and the
complete graph case is recovered in the limit µ→∞. Moreover, in finite systems
the time evolution of the interface density is found to be [133]:

〈
ρ(t)

〉
=

(µ − 2)
(µ − 1)

2σ+(1 − σ+)e−2t/τ(N) (1.9)
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Figure 1.11: Average interface density
〈
ρ(t)

〉
in different topologies with

N = 104 and µ = 8. From left to right: BA, EN (exponential network)
and ER networks. The plateau is independent of the degree distribution
and equal to the mean field prediction, ρ∗ = 3/7 (solid line). Numerical
simulations depart from the plateau due to finite size effects. From Vázquez

et al. 2009 [134]

The time for a metastable state to reach an absorbing state, τ, is also derived
exactly, with a prefactor depending on the first µ, and second µ2 ≡

1
N

∑N
k=1 Pkk2,

moments of the degree distribution:

τ =
(µ − 1)µ2N
(µ − 2)µ2

(1.10)

In summary, a random uncorrelated network topology does not change the
qualitative picture compared to the complete graph case: ordering is not reached
in the thermodynamic limit, and in finite systems, τ still depends linearly on the
system size. However, the average degree affects quantitatively the height of
the plateau and the prefactors for the time to reach consensus (these depend
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also on the second moment, µ2). These results were applied successfully to
degree-regular, Erdös-Rényi and Exponential networks [133].

Other complex networks

The voter model in Barabási-Albert scale free networks [8] presents essentially
the same behavior described above for random networks (see Figure 1.11), but
with a time to reach consensus that deviates from the linear scaling: τ ∼ N/log(N)
[133, 135]. Numerically, the scaling found is τ ∼ Nγ, with γ ∼ 0.88 ± 0.01 [129]
(also found in [121])∗.

The model has also been studied in Watts-Strogatz small world networks [7],
built up by rewiring with probability p each of the links of a one-dimensional
regular lattice with k neighbors. It has been shown that, contrary to what happens
in a one-dimensional lattice, the presence of long-range connections inhibit the
ordering process taking place in the network in the thermodynamic limit, and
a metastable state with coexisting options is also found [136]. There exist two
different time scales. When the average size of a growing domain, which has
a size ξ ∼ 1/ρ, is much smaller than the characteristic length between two
shortcuts, l∗ = 1/(kp) [137], the coarsening process is practically ρ ∼ t−1/2; the
system behaving still as in a one-dimensional lattice. When ξ ∼ l∗, the long range
interactions start to play a role, and the coarsening stops: ρ reaches a plateau
[136] and in the thermodynamic limit the absorbing state is never reached. This
is different in finite size systems: once more, finite size effects eventually drive
the system to an absorbing state, and the time to reach it scales also as τ ∼ N (see
the time evolution for

〈
ρ(t)

〉
in Figure 1.12 for a SW network with p = 0.05).

Suchecki et al. [138] studied in great detail the effect of different characteristics
of heterogeneous networks on the plateau heights of the metastable states and
the survival times. They included in their discussion random networks, together
with the small world and the scale free phenomena. They found that when there
is no ordering in the dynamics, the average survival time of metastable states
in finite networks decreases with network disorder (measured by the parameter
of rewiring†), and degree heterogeneity (single scale VS scale free network), as
fluctuations appear to be more efficient with the existence of hubs. Moreover, the

∗However, τ scales linearly with system size when the updating rule respects the conservation
law of the average magnetization, that is, when link-update is considered [129]. Therefore, this
scaling identifies a universal or generic property of the voter model dynamics associated with the
conservation law of the magnetization.

†Network disorder refers to high rewiring in the network, which is measured by a parameter
p analogous to the one defined in the Watts-Strogatz model for small world networks [7], in which
rewiring starts from a ring lattice.
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Figure 1.12: Time evolution for the average interface density (labeled nA

in the Figure). Values are averaged over 1000 runs. Time is measured in
Monte Carlo steps per site. Empty symbols are for the one-dimensional
case (p = 0). Filled symbols are for rewiring probability p = 0.05. From
left to right: N = 200 (circles), N = 400 (squares), N = 800 (diamonds),
N = 1600 (triangles up) and N = 3200 (triangles left). From Castellano et al.

2003 [136].

size of an ordered domain is found to be sensitive to the network disorder and
the average degree, decreasing with both; however, it is not found to depend on
network size or on the heterogeneity of the degree distribution.

The results presented come to support the claim that whether the voter dynamics
orders the system depends on the effective dimensionality of the interaction
network [138]: in any complex network, which in general has an effective infinite
dimension∗ (obviously larger than the critical dimension of the model, d = 2),
the dynamics gets trapped in metastable states, which in finite systems finally
reach the absorbing state by finite size fluctuations.

In this thesis we concentrate in the study of static networks, that is, networks
which are fixed in time, and we analyze the effect of the topology on the dy-
namics. In particular, the study of the voter model in networks with community

∗Suchecki et al. [138] have shown that a scale-free topology with an effective dimension equal
to one [139] does indeed coarsen as a one-dimensional regular lattice.
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structure is part of the present thesis and is analyzed in Chapter 4, where we
address the question of metastability in detail. We note however that the voter
model has also been studied in coevolving networks by Vázquez et al. [140], pre-
dicting a fragmentation transition as a consequence of the competition between
the voter and the rewiring dynamics. The networks we study are undirected,
but the voter model has also been recently addressed in random directed net-
works [141], studying analytically the conservation laws for the model when
performing both node and link updates.

1.4.3 The zero-temperature spin-flip kinetic Ising (SFKI) model

The zero-temperature spin-flip kinetic Ising model (SFKI; also known as Glauber
dynamics [28] at zero temperature) is another prototype spin-model with two
equivalent absorbing states (Z2-symmetry). The Glauber dynamics at finite
temperature reaches asymptotically the state dictated by thermodynamic equi-
librium (there are no absorbing states), which is well known also for some
complex networks (random networks with arbitrary degree distribution [142],
small world networks [143, 144]). Because the general interest in the present
thesis does not reside in the phase transition occurring at finite temperature
but on the coarsening processes taking place below the critical temperature, we
present in this Section the T = 0 case, which, due to the lack of fluctuations,
presents two equivalent absorbing states, just like the voter model. Moreover,
the zero temperature SFKI does not necessarily relax to the state of minimum
energy (its natural equilibrium; the absorbing state) but can get stuck in many
different trapped states (which can be frozen or active) and gives an additional
richness for the study of metastability.

The dynamics of the SFKI model is defined as follows∗: given N nodes in a
network, each of the sites holds one of two possible states: si = 1 or si = −1.
At each time step, a site in the network is randomly chosen, and minimizes its
energy according to the Ising Hamiltonian:

H = −
∑
〈i j〉

Ji jsis j, (1.11)

∗An applet for for the SFKI in a two dimensional lattice can be found at the IFISC website [145],
where it is possible to visualize simulations in real time and get easily an intuitive understanding of
the dynamics.
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where the sum is performed over all possible pairs of nodes. Ji j = 1 if node i and
j are connected and Ji j = 0 otherwise. At each time step, a randomly chosen node
i, which is in the state si. is flipped with the following transition probabilities:

P(si → −si) = 1⇐⇒ σ−si > 1/2 (1.12)
P(si → −si) = 0⇐⇒ σ−si < 1/2 (1.13)

P(si → −si) = 1/2⇐⇒ σ−si = 1/2 (1.14)

where, σ−si is the density of nodes in the neighborhood of node i which are in
state −si. In this way, from the point of view of interaction mechanisms, the SFKI
model is one of majority pressure∗. It is straightforward from these transition
probabilities that the SFKI is equivalent to the voter model in one-dimensional
lattices with two neighbors: in this special case, the mechanisms of imitation
and social pressure become indistinguishable.

Regular lattices

In regular lattices, the SFKI model presents a coarsening process† independent
of the dimensionality [110]: ρ ∼ t−1/2. Therefore, ξ(t) ∼ t1/2, where ξ(t) is the
characteristic length of a growing domain. The domain structure is universal in
the sense that it is independent of the random initial conditions, as long as ξ(t) is
large compared to any length scale characterizing the initial conditions. As we
mentioned, in one-dimensional lattices the coarsening law is exactly equivalent
to the voter model. In dimensions d > 2, the energy minimization drives the
ordering process, leading to a coarsening process by curvature reduction as a
consequence of the existence of surface tension (see Figure 1.13).

The relaxation of homogeneous Ising ferromagnets on finite regular lattices with
SFKI dynamics has been carefully studied by Spirin et al. [148], where the
existence of metastable and trapped states gives a very rich behavior that is
analyzed in detail. Contrary to the voter model, in the SFKI there exist trapped
states: in the thermodynamic limit and in finite systems these behave in the
same way, in the sense that finite size fluctuations do not order the system when
it gets stuck in such state.

∗A different majority rule based in group interaction is considered in [101, 146].
†The same coarsening laws for ρ(t) in the thermodynamic limit (no fluctuations) are valid for the

average interface density
〈
ρ(t)

〉
in finite systems, where the time evolution for ρ in a single realization

deviates from the N→∞ case due to the existence of fluctuations.
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Figure 1.13: Coarsening in the SFKI model on a N = 10242 square lattice
with periodic boundary conditions at times (a) 200, (b) 1000, (c) 5000, and
(d) 2.5 · 104. Domains are regions of either state +1 (gray/white) or −1
(black). (i) Curvature driven dynamics can be specially observed in the
+1 domains which fade away (highlighted in gray). (ii) A spanning +1
domain that eventually coarsens into a vertical stripe, is highlighted in

white. From Barros et al. 2009 [147].

In d = 1 a fully ordered state is always reached, while in higher dimensions
the system may get stuck in a frozen state with coexisting domains of opposite
magnetization. In d = 2 this occurs with a probability around 1/3 for large
systems: applying results from percolation theory [67], Barros et al. have ana-
lytically shown that this happens with probability 0.3390 for periodic boundary
conditions [147]. The trapped states in d = 2 consist of vertical or horizon-
tal stripes whose widths are all larger or equal to 2, which eventually become
frozen straight stripes (see Figure 1.13). These arise because in zero-temperature
Glauber dynamics a straight boundary between domains is stable; a change of
state of any node along the boundary would raise the energy of the system.
However, a stripe of width 1 is unstable because it can be cut in two at no energy
cost by flipping one of the nodes in the stripe∗.

In d > 2 the probability of reaching the ground state vanishes rapidly as the sys-
tem size grows and the system ends up wandering forever within an isoenergy

∗Long-lived diagonal stripes are also possible, but in finite systems they finally reach the ab-
sorbing state. For simulations leading to consensus, they give rise to two time scales; one for the
simulations that reach directly the ground state, and another characterizing the lifetime of such
diagonal-stripe trapped metastable states [148].
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Figure 1.14: Typical trapped state on a N = 323 cubic regular lattice with
periodic boundary conditions. Nodes in one of the states are indicated by
small blocks. The dark shaded nodes can flip freely and are part of blinker

states. From Spirin et al. 2001 [149].

set of metastable states∗. Another striking feature is that many metastable states
in three dimensions form connected isoenergy sets, while metastable states are
all isolated in two dimensions. Thus a three-dimensional system can end up
wandering forever on one of these connected sets, with blinkers active at the
boundaries (see Figure 1.14).

As a general feature, notice that at T = 0 metastable states become trapped states,
which have an infinite lifetime, that can prevent the equilibrium ground state
from being reached. This is the basic reason why dynamics at T = 0 is different
from that of small positive temperature.

Fully connected networks

In a complete graph and in the thermodynamic limit, the time evolution of ρ can
be obtained analytically from the analysis of the corresponding master equation
[121]†:

∗In cubic lattices of linear dimension L = 10 and L = 20, the probability to reach an absorbing
state has been found to be only 0.04 and 0.003 respectively. For larger lattices, the ground state has
not been reached in any of the simulations [148].

†In all the results concerning this paper [121], when σ−si = 1/2, P(si → −si) = 1 (while generally
this probability is set to 1/2). This is to facilitate the analytical derivation of a master equation for the
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ρ(t) = 2[1 − (1 − σ+)e−t](1 − σ+)e−t (1.15)

In simulations in finite size systems, the interface density for surviving runs is
found to decay exponentially and then reaches a plateau, but the height of the
plateau depends on N and goes to zero as N→∞. Therefore, the SFKI model is
effective in reaching an ordered state on a complete graph.

Complex networks

The effect of different complex networks has also been analyzed by Castellano
et al. [121]. In finite ER networks [30], numerical simulations have shown
that while for large 〈k〉 the decay of the survival time S(t) (the probability that
a simulation reaches consensus at time t) is exponential, for smaller values of
〈k〉 a plateau appears, indicating that not all realizations of the dynamics end
up in an ordered state. In such runs, the system remains trapped forever in
configurations with part of the nodes with si = 1 and the rest with si = −1
(Figure 1.15)∗. The magnetization in these trapped states is always very close
to zero and the number of domains present is always equal to two. Moreover,
for large times, the interface density in surviving runs indicates that a very high
fraction of the links connects sites with different states. Therefore, the system
remains stuck in configurations with two highly intertwined domains of roughly
the same size. Such configurations are not frozen, but active trapped states with
some nodes flipping, while keeping the energy constant. The qualitative picture
is then the same holding on regular lattices for d ≥ 3: the system wanders forever
in an isoenergy set of states.

The SFKI model in BA scale free networks [8] has also been studied [121, 152].
The global behavior is qualitatively the same that for ER networks: a fraction
of the simulations gets trapped in disordered active stationary states with two
domains in opposite states where nodes keep flipping but the energy does not
decrease further †.

model in a complete graph. Different zero temperature Glauber dynamics can be defined depending
on the rate at which moves leaving energy unchanged are accepted. Provided this rate is nonzero,
the behavior of the model is expected to be qualitatively the same, its precise value affecting only a
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Figure 1.15: Survival probability (labeled as ρ in the Figure) for SFKI
dynamics on an Erdös-Rényi random network with N = 1000 for dif-
ferent values of the average degree 〈k〉 of nodes. From right to left:

〈k〉 = 7, 10, 20, 200, 1000. From Castellano et al. 2005 [121].

The SFKI dynamics has been studied by Boyer and Miramontes [154] on SW
networks, obtained from one and two-dimensional regular lattices by adding∗

links between randomly selected nodes with a probability p. It is found that
ordering is hindered by the presence of long range interactions leading to a
pinned state with a finite size of ordered domains.

On the one hand, in SW networks built up from an initial one-dimensional
lattice, there exists the characteristic coarsening stage ξ(t) ∼ t1/2, but domain size
saturates to a finite value. As in the voter model, this domain length scales with
p, for the range of values corresponding to a SW network, as ξ(t → ∞) ∼ 1/p.

rescaling of the temporal scales. When such rate is zero the dynamics is said to be constrained and
the behavior may be very different [150].

∗A frozen trapped state for Glauber dynamics on a random graph has been found analytically
in [151] , where it is shown that, in the limit N→∞, the dynamics fails to reach the ordered state for
any 〈k〉 > 0.

†It is interesting to notice that mean field approaches to the study of these networks with arbitrary
power law degree distribution, P(k) ∼ k−γ, which predicted a transition at γ = 5/2 between ordering
and metastability [153], failed to reproduce the corresponding numerical results, as shown in [152].
In their paper, there is a call for analytical approaches, beyond the mean-field one, able to capture
the observed phenomenology in BA networks.

∗In contrast to the common rewiring process defined in Watts & Strogatz algorithm [7].
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Figure 1.16: Active trapped states in a one-dimensional SW network: the
interfaces In become localized, performing a random walk within the inter-
vals marked in the Figure, delimited by nodes in the same state connected

by a shortcut. From Boyer and Miramontes 2003 [154].

Moreover, it is observed that nodes having a shortcut tend to be connected
to nodes in the same state, blocking in this way the motion of interfaces and
thus the possibility of further growth of the domains (Figure 1.16). In this way,
1/p represents the characteristic domain size, i.e., the average distance between
such kind of nodes. It is straightforward to show that the crossover from the
coarsening stage to these active trapped states∗, where ordering stops, happens
at τ ∼ (1/p)2. On the other hand, in SW networks built up from an initial two-
dimensional lattices, active trapped states are also found. Here, the finite domain
size can be interpreted as the result of competing effects between surface tension
(the mechanism driving the coarsening process) and the energy barriers created
by nodes in the same state which are connected by a shortcut. The characteristic
domain size is found to scale as ξ(t→∞) ∼ p−0.64.

A similar work by Herrero [155] considers a SW network built from a two
dimensional lattice with a rewiring algorithm instead, which has the advantage
of keeping the degree distribution constant. In this work, the same qualitative
behavior is observed, with just minor quantitative differences in the scaling of
the characteristic domain size with the rewiring parameter: ξ(t → ∞) ∼ p−0.73.
The larger exponent is due to the fact that, compared to the case of addition of

∗Notice that in contrast to the voter model, where the metastable states have a finite lifetime, in
the SFKI they are trapped states, that is, they are infinite long-lived.
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new links, the rewiring process decreases the correlations between nodes in the
lattice giving place to smaller domain sizes.

In this thesis, we study consensus models with a curvature driven interface dy-
namics. Therefore, the review presented for the SFKI model is of special rele-
vance to us, as it provides a background from which to argue and compare our
own results.

♦ ♦ ♦

In summary, we have presented and compared the coarsening processes, and
the metastable and trapped states appearing in the voter model and the SFKI
model. In two dimensions, we have illustrated the two different mechanisms of
domain growth and their different interface dynamics: interfacial noise dynamics
(voter model) and curvature driven interface dynamics (SFKI); corresponding to
mechanisms of random imitation and majority social pressure respectively.

In finite size systems, the different type of coarsening processes generates a
different nature for the long-lived states appearing for large dimensional lattices
and complex networks: while in the voter model these are metastable states,
i.e., long-lived but reaching an absorbing state of full ordering due to finite size
fluctuations; in the SFKI model their lifetime is infinite∗, as the system cannot
escape from the trapped configurations which can be active or frozen depending
on the topology.

1.5

Language competition

In this Section, we introduce the research field of language competition, which
motivates the present thesis, and we make a brief overview of the current statis-
tical physics approach to the subject. Language competition (or language shift)
studies the dynamics of language use and competence due to social interactions.
It belongs to the general class of processes that can be modeled by the interaction
of heterogeneous agents, as examples of collective phenomena in problems of
social consensus.

∗Except for the diagonal metastable states in two dimensional lattices, which as mentioned are
a special case of trapped metastable states with a finite lifetime.
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Language competition occurs today worldwide. Different languages coexist
within many societies and the fate of a high number of them in the future is
worrying: most of the 6000 languages spoken today are in danger, with around
50% of them facing extinction in the current century [156]. Even more striking
is the distribution of speakers, since 4% of the languages are spoken by 96%
of the world population, while around 25% have fewer than 1000 speakers.
New pidgins and creoles are also emerging, but their number is relatively small
compared with the language loss rate [157]. Language shift has caught the
attention of numerous linguists interested in language contact and evolution
[158–161], and it has also been subject of study of UNESCO [162], who created
an Ad Hoc Expert Group on Endangered Languages so as to identify them. In
order to characterize a language as endangered, there are several crucial aspects
to take into account. Among them, (i) the total fraction of speakers within the
population speaking the language, (ii) the point at which children no longer learn
the language as their mother tongue (vertical transmission), as well as (iii) the
increase of the average age of speakers (in an endangered language, eventually
only older generations speak the language) [163]. In this scenario, and beyond
Weinreich ’s Languages in Contact [164], numerous sociolinguistic studies have
been published in order to: (1) reveal the level of endangerment of specific
languages [165]; (2) find a common pattern that might relate language choice to
ethnicity, community identity or the like [166]; (3) identify and study the factors
that may determine the survival or disappearance of an endangered language
as well as the mechanisms that could be implemented so as to revitalize it [167];
and (4) claim the role played by social networks in the dynamics of language
competition, which has given rise to the monographic issue [168].

The need to provide a formal analysis in the field of sociolinguistics is getting
an increasing attention [169]. Indeed, in recent years, language competition has
also been addressed from a statistical physics and complex systems approach,
in which the aim is to move beyond the observation of correlations in order
to isolate mechanisms of social interaction and to establish cause-effect relations
between these mechanisms and their consequences. In this direction, the Abrams
and Strogatz model [13] for the dynamics of endangered languages has triggered
a coherent effort to understand the mechanisms of language dynamics outside
the traditional linguistic research. Their study considers a two-state society, that
is, one in which there are speakers of either a language A or a language B, and
accounts for data of extinction of endangered languages such as Quechua (in
competition with Spanish), Scottish Gaelic and Welsh (both in competition with
English). Although linguistics has introduced the notion of language (or dialect)
continuum, which blurs the distinction between language and dialect and studies
linguistic varieties from a variationist point of view [170, 171], the definition of
a language in this model is restricted to the assumption that two languages
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are clearly delimited and in this way there is no linguistic continuum. This is
because the aim is to study language shift, rather than language variation and
change∗. The model is based on probabilities to switch languages determined
by the fraction of speakers of the opposite language, and by two parameters
that we call prestige (s) and volatility (a)†. Indeed, the prestige of a language
has been considered as one of the main factors affecting language competition
since Labov’s Sociolinguistic Patterns [170]. It measures the status associated
to a language due to individual and social advantages related to the use of
that language, being higher according to its presence in education, religion,
administration and the media. Besides, the volatility parameter determines the
functional form of the switching probabilities. It characterizes a property of the
social dynamics associated to the propensity of an agent to change its current
language. It is interesting to notice that these two parameters correspond, in a
way, to two of the main factors that have usually been identified as determinant
in the vitality of a language by UNESCO [162]. These are (i) the governmental
and institutional language attitudes and policies, including official status and
use, and (ii) the community members attitudes toward their own language;
which would relate to the prestige and the volatility parameter, respectively.

Abrams and Strogatz seminal work, as well as others along the same line
[172, 173], belongs to the general class of studies of population dynamics based
on nonlinear ordinary differential equations for the populations of speakers of
two languages. Several modifications and extensions of the Abrams-Strogatz
model have investigated deeper the problem of language competition: (i) in-
troducing geographical dependencies in terms of a reaction-diffusion equation,
which allow the survival of the two languages, with speakers of different lan-
guages mostly located in different geographical areas [174]; (ii) implementing
Lotka-Volterra type modifications to the original model which can lead to a sce-
nario of coexistence of the two languages in the same geographical area [175].
In addition, other models study the competition between many languages in
order to reproduce the distribution of language sizes in the world in terms of
the number of speakers [176, 177]. For a review of most of these models, see
[178, 179].

Our first contribution to extend the seminal work of Abrams-Strogatz consists of
developing agent-based models in order to study the behavior of the model in
regular networks [180]. Beyond this preliminary study, we become interested in
considering the effect of bilingual agents in the model, which have been claimed

∗Notice that a a given community exhibits a wide range of possible linguistic systems that may
differ phonologically, grammatically or lexically and which oscillate between two extreme varieties.
These are the ones considered as language A and language B.

†In the original paper [13], Abrams and Strogatz use the concept status (parameter s), and they
do not give a specific name to the parameter a.
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to play a relevant role in the evolution of multilingual societies [173, 181]. Indeed,
a specific feature of language competition is that agents can share two of the
social options that are chosen by the agents in the consensus dynamics. These
are the bilingual agents, that is, agents that use both languages A and B. Inspired
in the proposals by Minett and Wang [182, 183], in this work we study an
extension of the Abrams and Strogatz model for the dynamics of two languages
in competition [13] in which bilingualism is taken into account: the Bilinguals
model∗. We are interested in comparing both models, and in analyzing the
effects of considering bilingualism in the dynamics of language use†. Following
Milroy [184], we expect that also social structure might be an important factor
in language competition, and therefore, we are interested in the study of these
models in social networks of interaction. The role given by Milroy to social
networks for the maintenance and survival of languages was revolutionary in
sociolinguistics [185]. At the time, other phenomena such as institutional, socio-
political or economical factors occupied the most prominent place in the study
of language shift. However, in general only small networks and case studies
have been addressed in the traditional linguistics literature [186, 187]. It is in this
direction that models coming from statistical physics and complex systems aim
to contribute, implementing more systematic and statistically relevant studies of
the role of complex social networks, and studying the general mechanisms and
collective phenomena emerging in the dynamics of language competition.

Finally, other different problems of language dynamics in which statistical physics
can play a relevant role are those regarding language evolution (or how the struc-
ture of language evolves) and language cognition (language learning processes).
These include evolution of universal grammar [188, 189], utterance selection
models [190], and social impact theory applied to language change [191]. Among
these, semiotic dynamics, considered in the context of language games such as the
Naming Game [116, 192], is another relevant example of the consensus problem‡.
In the Naming Game, a shared lexicon among agents emerges from peer inter-
action. It has been studied in regular lattices [193] and in complex networks
[194–196], and the special case of competition between only two words [197] has

∗Notice that the model we study (Bilinguals model) was essentially proposed by Minett and
Wang in a working paper in 2005, based on their own remarks in [182]. However, during the devel-
opment of this thesis, they implemented a more complicated model for bilingualism, in which they
consider horizontal (social influence) and vertical transmission (inter-generational transmission).
Compared to the Bilinguals model, which has two parameters (prestige and volatility) their final
published version [183] leads to a model with seven parameters, which, although more detailed,
makes it more difficult for the understanding of the mechanisms involved in language competition
dynamics.

†A full description of the Abrams and Strogatz model and the Bilinguals model is addressed in
Chapter 2. Notice that we model language use rather than competence.

‡A full description of the Naming Game is addressed in Chapter 5.
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similarities with the AB-model [198], a particular case of the Bilinguals model
mentioned above. We are also interested in comparing these two models, as they
describe two general mechanisms of social interaction with two non-excluding
options.

In summary, this work aims to contribute to the understanding of the mech-
anisms underlying processes of social interaction at work in the dynamics of
language competition, as well as their consequences for language survival or
extinction and for the viability of language coexistence.

1.6

Ordering dynamics: from two-state models to mod-
els with two non-excluding options

The minimal models of consensus dynamics consider that agents can choose
only among two possible options. Several models, which correspond to different
social interaction mechanisms (see Section 1.3 for details), belong to this class of
two-state models, like the voter model (imitation) and the SFKI (social pressure)
presented in Section 1.4. As presented in the previous Section, in the context
of language contact problems, the first model considering two languages in
competition is the Abrams-Strogatz model [13], which also belongs to this class of
two-state models. The microscopic version [180] of this model for two equivalent
languages and marginal volatility (presented in detail in Chapter 2) is equivalent
to the voter model [27]. In this way, it recovers a mechanism of imitation of the
language of a randomly selected neighbor.

Regarding models with a higher number of options at play, we find kinetics of
multi-option models like Potts or clock models which were addressed long ago
[199, 200]. Also the voter model [27] can be trivially generalized to a multi-
option model. More recently, the multi-state model proposed by Axelrod [11]
on cultural dynamics has been studied in some detail [201–203]. This is a multi-
option model but, in general, its nonequilibrium dynamics does not minimize
a potential leading to a thermodynamic equilibrium state like in traditional
statistical physics [204]. In particular, the kinetics of the simplest three-options
models [205–207] can be studied in more detail.

We are here interested in the class of three-state models with two opposite
states (spin ±1, state A or B) and a third intermediate state (spin 0, state AB).
Motivated by studies of language competition as mentioned in the previous
Section, we consider an extension of the the Abrams and Strogatz model [13]
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inspired in the proposal by Minett and Wang [182, 183], in which bilingual agents
are considered: the Bilinguals model. In this model, which is presented in detail
in Chapter 2, the possible state of the agents is speaking either of these languages
(A or B) or a third non-equivalent bilingual state (AB). In the context of consensus
problems, this introduces a special ingredient in the sense that the options are
not excluding: there is a possible state of the agents (bilinguals or AB agents) in
which the two options at play coexist at the individual level. In a more general
framework, the problem addressed here is that of competition or emergence of
social norms [208] in the case where two norms can coexist at the individual level.
In other words: we are concerned with the general problem of ordering dynamics
with two non-excluding options∗. In this way, language competition problems
motivate our research from a hot topic in social sciences (see Section 1.5), but
throughout the thesis we address the more general framework of models with
two non-excluding options, as we believe our work might be of a broader interest
from the perspective of general consensus problems. In our conclusions, we
come back to the particular implications of our results for situations of language
contact among two languages in competition.

In this thesis, we address the problem of three-state models with two non-
excluding options in the following directions:

In the first block of results (Chapters 3 and 4) and as a first step within this
general framework, we study in detail the AB-model, which corresponds to the
Bilinguals model in the case of two socially equivalent options (equal prestige)
and neutral volatility. At the same time, this model reduces to the voter model
when AB agents are not considered [198]†. As we presented in Section 1.4.2,
the voter model is a prototype spin-model of nonequilibrium dynamics with
two equivalent absorbing states, so in this way, understanding the extension of
the voter model represented by the AB-model is a question of broad interest
in the field of general spin-models of interaction, as shown by several recent
publications [210–212]‡. To this end, we study and compare the AB and the
voter models in network topologies of increasing complexity (see Section 1.2),
from fully connected networks and regular lattices to small world networks
and networks with community structure, studying the effects of the network

∗Notice that beyond language use, problems regarding the adoption of new competing technolo-
gies [209] or the practice of leisure time activities or hobbies are examples of non-excluding options.
Instead, other social features such as religion, political ideas, or opinions are generally excluding.

†Notice that the AB-model is different from the three-state voter model, in which all the options
are equivalent. In the AB-model (see Section 2.3 for details), there are two opposite equivalent states
(A and B) and a third non-equivalent state of coexisting options (AB).

‡Other studies associated to perturbations of the voter model dynamics have also been addressed,
including memory effects [210], inertia to change the current state of the agents [213], or a two-
parameter family of models which includes the voter model [214].
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topology on the collective phenomena emerging from the interactions among
the agents. We analyze possible mechanisms which lead to a stable coexistence
between the two options, metastable states and the role played by the AB-agents
(bilinguals) in the dynamics.

Firstly, in regular lattices we are interested in the formation and growth of A
or B spatial domains, the interface dynamics of the models and the times to
reach consensus. A main result is that allowing for the third state (AB-state,
bilinguals) modifies the nature of the interface dynamics: agents in the AB-state
define thin interfaces around single-option domains and coarsening processes
change from voter-like dynamics to curvature driven dynamics. This result is
shown to have further implications in the behavior of the AB-model in complex
networks. This change of behavior in the interface dynamics is also shown for
a class of perturbations of the voter dynamics in which there is a reinforcement
of the influence of the local majority surrounding an agent. A regular lattice
structure captures a topology where interactions are local, that is, based on
geographical proximity. However, it has been shown in Section 1.2 that social
networks are far from being regular, and they are not totally random either [52].
In this direction, we study the voter model and the AB-model in Watts-Strogatz
small world networks [7], addressing the effect of long range social interactions
among the agents in the dynamics (publication in Ref. [198]).

Secondly, regarding the main characteristics of real complex social networks, we
are specially interested in the dynamical effects of their mesoscalar or community
structure. Indeed, a particular feature of networks of social interaction is that they
are structured into cohesive groups within which the internal links are dense,
and which are sparsely interconnected [43] (communities), and an increased
knowledge of this structure has sparked the creation of new network models (see
Section 1.2.4). In particular, we study the dynamics of the voter and the AB-model
in the network model with mesoscalar structure presented by Toivonen et al.
[109]. In the AB-model and for this class of networks with community structure,
we find broad lifetime distributions with an absence of a characteristic time until
consensus is reached, which seems to be associated with trapped metastable
states caused by community structure (publication in Ref. [215]). In order to
understand this striking result, we present a minimal model for community
structure based on connected cliques. For the AB-model, we derive sufficient
conditions for the existence of lifetime distributions without a characteristic time,
which are shown to be related to a structural heterogeneity at the mesoscale level.
Such network architecture produces trapped metastable states that survive at any
time scale (publication in Ref. [216]).

In the second block of results (Chapter 5), we compare the AB-model with an-
other three-state model with two non-excluding options, proposed in the context
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of semiotic dynamics: the Naming Game restricted to two conventions [197]∗.
We are interested in extending the AB-model in analogy to the Naming Game
through a parameter which can be interpreted as a measure of inertia or rein-
forcement of the status of being in the AB-state. In this wider framework, we
study and compare both models in the mean field limit including the study of
order-disorder transitions (consensus-coexistence). While there exists a tran-
sition in the Naming Game restricted to two conventions, this is shown to be
absent in the AB-model. Moreover, we also compare the interface dynamics
in regular lattices for the original models, where both present curvature driven
interface dynamics (publication in Ref. [217]).

Finally, in the last block of results (Chapter 6) and coming back to the general
models on language competition, we aim to analyze the Abrams-Strogatz and
the Bilinguals models beyond the symmetrical case of socially equivalent op-
tions and neutral volatility (linear dependence on the state densities of agents)
on which we have concentrated until this point. In this way, we move a step
further in our study and comparison between two-state models and models with
two non-excluding options, studying these models analytically and numerically
in the whole volatility-prestige parameter space (a,s). We are mainly inter-
ested in the order-disorder transitions (consensus-coexistence) occurring in fully
connected networks, complex random networks and two dimensional regular
lattices. To this end, we derive a macroscopic description of the dynamics of the
models. Beyond the mean field analysis in fully connected networks, in complex
random networks we use a pair approximation method, in which correlations to
second neighbors in the network can be neglected. In two-dimensional lattices
instead, we derive partial differential equations for the magnetization field that
depend on space and time. A stability analysis reveals that the introduction of
the AB-agents generally reduces the scenario of coexistence. In the case of asym-
metrical options, the coexistence is more unlikely to happen in poorly-connected
than in fully connected networks, and consensus is enhanced as the connectivity
decreases. This dominance effect is even stronger in two-dimensional regu-
lar lattices, where domain coarsening tends to drive the system to consensus
(publication in Ref. [218]).

In summary, beyond the two-state models inspired in ferromagnetic interactions
for social dynamics recently studied in statistical physics [5] and motivated by
language competition problems, we study consensus problems in which the
options at play can be non-excluding. This thesis presents a detailed analysis
of two-state models in comparison to models with two non-excluding options,

∗For a detailed description of the Naming Game and its particular case of restriction to two
conventions, see Chapter 5.
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addressing the role of a third AB-state of coexisting options at the individual
level, together with the effects of the underlying network structure.

1.7

Outline

The outline of the thesis is the following:

Chapter 2 presents the microscopic models studied: the Abrams-Strogatz model
and the Bilinguals model; together with the voter model and the AB-model.
It includes a qualitative description of the models by using a two-dimensional
Applet, showing the broad phenomenology of the dynamics throughout the pa-
rameter space. We also include a brief explanation on the nature of the numerical
simulations and the general concepts we use throughout the thesis. In Chapter 3,
we present the results obtained in the analysis of numerical simulations of the
voter model and the AB-model in fully connected networks, two-dimensional
lattices and small world networks; while Chapter 4 addresses the role of net-
works with mesoscale structure in the same models. In Chapter 5, we compare
two consensus models with two non-excluding options: the AB-model and the
Naming Game restricted to two conventions. In Chapter 6, we study the Abrams-
Strogatz model and the Bilinguals model by analytical and numerical methods
in fully connected and complex random networks, as well as in regular lattices.
Finally, in Chapter 7 we expose our conclusions, together with an outlook and
final remarks.

We also include in Appendix B a copy of our paper on the viability and resilience
of two languages in competition using the Abrams-Strogatz model (publication
in Ref. [219]). It is included as an appendix because this study is a more technical
one, lying in the field of control theory and far from the collective emergent
phenomena which define our general focus in the thesis.
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Chapter 2

The models

In this Chapter we present the models we study throughout the main body of
the thesis: the Abrams-Strogatz model and the Bilinguals model; together with
the voter model and the AB-model, which correspond to a particular setting in
the parameter space of the former models, respectively. The other model studied
in this work, the Naming-Game [192], is introduced in Chapter 5.

2.1

The Abrams-Strogatz model

In this Section we present the microscopic version (publication in Ref. [180]) of
the Abrams-Strogatz model [13] (from now on, AS-model), a two-state model
proposed for the competition between two languages. In this model, an agent i
sits in a node within a network of N individuals and has ki neighbors. Neighbors
are here understood as agents sitting in nodes directly connected by a link. The
agent can be in the following states: A, agent using language A (monolingual
A); or B, agent using language B (monolingual B)∗.

The state of an agent evolves according to the following rules: starting from a
given initial condition, at each iteration we choose one agent i at random and we
compute the local densities for each of the states in the neighborhood of node
i, σi,l (l=A, B). The agent changes its state according to the following transition
probabilities:

∗Notice that we consider use of a language rather than competence. In this way, learning processes
are out of reach of the present model. Effectively, the situation is such as if all agents were competent
in both languages.
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Figure 2.1: Volatility parameter, a: neutral case (a = 1, solid line), high
volatility regime (a < 1, dashed line) and low volatility regime (a > 1,

dotted line).

pi,A→B = (1 − s)(σi,B)a , pi,B→A = s(σi,A)a (2.1)

Equations (2.1) give the probabilities for an agent i to change from state A to
B, or vice-versa. They depend on the local densities (σi,A, σi,B) and on two free
parameters: the prestige of language A, 0 6 s 6 1 (the one of language B is 1 − s);
and the volatility parameter, a > 0. On the one hand, prestige is modeled as a
scalar which aggregates the multiple factors affecting the prestige of a language.
In this way, s gives a measure of the different status between the two languages,
that is, which is the language that gives an agent more possibilities in the social
and personal spheres. Mathematically, it is a symmetry breaking parameter.
The case of socially equivalent languages corresponds to s = 0.5. On the other
hand, the volatility parameter gives shape to the functional form of the transition
probabilities (see Figure 2.1). The case a=1 is the neutral situation, where the
transition probabilities depend linearly on the local densities. A high volatility
regime exists for a < 1, with a probability of changing language state above
the neutral case, and therefore agents change its state rather frequently. A low
volatility regime exists for a > 1 with a probability of changing language state
below the neutral case, and thus agents have a larger resistance to change its
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state. In this way, the volatility parameter gives a measure of the propensity (or
resistance) of the agents to change their language use.

In the thermodynamic limit, the model can be described by a differential equation
for the total population density of agents ΣA (ΣB = 1 − ΣA):

dΣA/dt = ΣA(1 − ΣA)[s(ΣA)a−1
− (1 − s)(1 − ΣA)a−1] (2.2)

This population dynamics approach was the initial proposal by Abrams-Strogatz∗

in [13].

When a , 1, Equation (2.2) has three fixed points: Σ(1)
A = 1 and Σ(2)

A = 0, which
correspond to consensus in the state A or B respectively; and Σ(3)

A = [( s
1−s )

1
a−1 +1]−1.

For a > 1, the two first fixed points are stable, and the third one is not, leading
to stable consensus. For a < 1 instead, the stability changes via a transcritical
bifurcation, and consensus becomes unstable giving rise to stable coexistence of
the two states.

In the neutral case a = 1, Equation (2.2) becomes the logistic-Verhulst equation
[180]:

dΣA/dt = (2s − 1)ΣA(1 − ΣA) (2.3)

In this case, there exist just two fixed points: Σ(1)
A = 1 and Σ(2)

A = 0. For s > 0.5
(1) is stable and (2) unstable; while for s < 0.5 it happens the opposite. For the
case s = 0.5, we obtain a null system with a degenerate line of fixed points, and
therefore, any initial condition is a fixed point of the dynamics (this corresponds
to the voter model; see Section 2.3).

2.2

The Bilinguals model

We present here the Bilinguals model (from now on, Bilg-model), inspired in
the modifications of the AS-model proposed by Minett and Wang [182, 183] (see

∗Abrams and Strogatz found an exponent a=1.31 when fitting to real data from the competition
between Quechua-Spanish, Scottish Gaelic-English and Welsh-English. They considered only this
case. Moreover, they also inferred the corresponding value of s in each of the linguistic situations.
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Section 1.5), which takes into account the presence of a third possible state: the
bilingual agents.

In this model, the agents can also be in a third possible state, AB, bilingual agent
using both languages, A and B; and there are three local densities to compute
for each node i: σi,l (l = A,B,AB). The agent changes its state according to the
following transition probabilities:

pi,A→AB = (1 − s)(σi,B)a , pi,B→AB = s(σi,A)a (2.4)
pi,AB→B = (1 − s)(1 − σi,A)a , pi,AB→A = s(1 − σi,B)a (2.5)

which depend on the same two parameters of the AS-model: prestige (s) and
volatility (a). Equations (2.4) give the probabilities for changing from a mono-
lingual state, A or B, to the bilingual state AB, while equations (2.5) give the
probabilities for an agent to move from the AB-state towards the A or B states.
Notice that the latter depend on the local density of agents using the language
to be adopted, including bilinguals (1 − σi,l = σi, j + σi,AB, l, j = A,B; l , j). It is
important to stress that a change from state A to state B or vice-versa, always
implies an intermediate step through the AB-state.

In the mean field limit, the model can as well be described by differential equa-
tions for the total population densities of agents ΣA,ΣB (ΣAB = 1 − ΣA − ΣB),

dΣA/dt = s(1 − ΣA − ΣB)(1 − ΣB)a
− (1 − s)ΣA(ΣB)a (2.6)

dΣB/dt = (1 − s)(1 − ΣA − ΣB)(1 − ΣA)a
− s(ΣA)aΣB (2.7)

Equations (2.6)-(2.7) have three fixed points: (ΣA,ΣB,ΣAB) = (1, 0, 0), (0, 1, 0),
which correspond to consensus in the state A or B respectively; and (Σ∗A,Σ

∗

B,Σ
∗

AB),
with Σ∗l , 0 (l = A,B,AB). There are no closed expressions for Σ∗l (l = A,B,AB)
but numerical analysis is needed. A detailed stability analysis of this model is
given in Chapter 6. A main result is that for a > 0.63, the two first fixed points
are stable, and the third one is not, leading to stable consensus. For a < 0.63
instead, the stability is reversed, consensus becomes unstable and a stable state
of coexistence of the three states becomes possible.

♦ ♦ ♦

The models presented above can account for the more general framework of a
consensus problem (see Section 1.3), where there exists a competition between
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two social norms or options. In this way, the AB-state represents the case when
two options can coexist at the individual level (an agent using two languages in
the case of language competition), the prestige parameter can be considered as a
bias or preference towards one of the two options, and the volatility parameter
can be interpreted as the inertia of the agent to change its current social option.

2.3

The voter model and the AB-model

In Chapters 3, 4 and 5, we concentrate in analyzing in detail the AS-model and the
Bilg-model for the case of two socially equivalent norms or options (languages),
s = 0.5, and neutral volatility, a = 1 [198] (both fall into the class of models with
Z2-symmetry). Therefore, we consider exhaustively this case in this Section.

On the one hand, the transition probabilities of the microscopic AS-model for
the agent i reduce to:

pi,A→B =
1
2
σi,B , pi,B→A =

1
2
σi,A (2.8)

Equations (2.8) give probabilities for an agent to change between the two states,
which are proportional to the local density of agents in the opposite option.
Except for a time scale coming from the prefactor 1/2, the AS-model becomes
the voter model, which we have already extensively presented in the Introduc-
tion (see Section 1.4.2). Notice that the voter model rules are equivalent to the
adoption by the agents of the option of a randomly chosen neighbor.

In the mean field approximation, the voter model reduces to the equation:

dΣA/dt = 0, (2.9)

predicting that any given initial density of agents in state A would persist for-
ever∗.

On the other hand, the Bilg-model becomes:

∗As we have shown in the Introduction (Section 1.4.2), notice that in terms of the magnetization,
m ≡ ΣA − ΣB, Equation 2.9 can be written as dm/dt = 0.
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pi,A→AB =
1
2
σi,B , pi,B→AB =

1
2
σi,A (2.10)

pi,AB→B =
1
2

(1 − σi,A) , pi,AB→A =
1
2

(1 − σi,B) (2.11)

Equations (2.10) give the probabilities for an agent i to move away from a single-
option state, A or B, to the AB-state. They are proportional to the density of agents
in the opposed single-option state in the neighborhood of i. On the other hand,
equations (2.11) give the probabilities for an agent to move from the AB-state
towards the A or B states. They are proportional to the local density of agents
with the option to be adopted, including those in the AB-state (1−σi,l = σi, j +σi,AB,
l, j=A,B; l , j). It is important to remind that a change from state A to state B
or vice-versa, always implies an intermediate step through the AB-state. The
dynamical rules (2.10) and (2.11) are fully symmetric under the exchange of A
and B, so that states A and B are equivalent with no preference for any of the
two options. Reaching consensus in either of these two states is a symmetry
breaking process. These dynamical rules, which define a modification of the
two-state voter model to account for a third mixed AB-state, reflect the special
character of this state as one of coexisting options. We refer to the model defined
by (2.10) and (2.11) as the AB-model [198].

In a fully connected network and in the limit of infinite population size, the
AB-model can be described by coupled mean field differential equations for the
total population densities ΣA,ΣB (ΣAB = 1 − ΣA − ΣB):

dΣA/dt = 1/2[1 − ΣA + (ΣB)2
− 2ΣB] (2.12)

dΣB/dt = 1/2[1 − ΣB + (ΣA)2
− 2ΣA] (2.13)

The analysis of these equations shows the existence of three fixed points: two
of them stable and equivalent, corresponding to consensus in the state A or
B: (ΣA,ΣB,ΣAB) = (1, 0, 0), (0, 1, 0); and another one unstable (saddle point),
with non-vanishing values for the global densities of agents in the three states:
(ΣA,ΣB,ΣAB) = ((3 −

√
5)/2, (3 −

√
5)/2,

√
5 − 2). Figure 2.2 shows the phase

portrait of the system, i.e., the trajectories of the system in the (ΣA,ΣB) space. We
can observe the location of the fixed points of the system and the two basins of
attraction corresponding to the stable fixed points, which are separated by the
line ΣA=ΣB, the stable manifold of the saddle.
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EXPLORATION OF THE VOLATILITY-PRESTIGE PARAMETER SPACE

Figure 2.2: Phase portrait: trajectories in the (ΣA,ΣB) space for the AB-
model. Each arrow shows the direction of change of the system departing
from each corresponding state, allowing trajectories and fixed points to be
inferred. Stable fixed points are marked by filled circles; unstable ones are
marked by unfilled circles. The points such that ΣA + ΣB > 1 are not shown

(black area), as they are not physical; remember that ΣA + ΣB + ΣAB=1.

2.4

Phenomenology of the models: qualitative explo-
ration of the volatility-prestige parameter space

In this Section, we aim to present a qualitative description of the agent based
models (ABMs) for the Abrams-Strogatz and Bilinguals dynamics, showing the
broad phenomenology of the models throughout the parameter space (a,s). Ob-
servations made here, are addressed from a formal and theoretical point of view
in the following Chapters.

We have implemented these two models in a two-dimensional lattice by design-
ing a Java Applet [220] in which one can tune the parameters of the models
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Figure 2.3: Snapshots showing the formation of domains in the voter
model (Left) and the AB-model (Right) starting from an initial random
distribution of states of the agents. Neutral volatility (a = 1) and socially
equivalent options (s = 0.5). N = 642 agents; t = 200. Notice that in the AB-
model, AB-agents do not form domains, but they place themselves at the
interfaces between single-option domains. Red: option A; black: option B;

white: AB-agents.

Figure 2.4: Snapshots showing the formation of domains in the AS-model
(Left) and the Bilg-model (Right). Low volatility (a = 3) and socially
equivalent options (s = 0.5). N = 642 agents; t = 350. Notice that the
boundaries are flatter, due to the increase of curvature driving. Red: option

A; black: option B; white: AB-agents.
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(prestige s, and volatility a), set different initial conditions, and see the simula-
tions in real time∗. An interactive exploration of the parameter space (a,s) can be
performed using the Applet. The following qualitative exploration of the phe-
nomenology of the models in different parameter settings gives insights on the
emergent complex behavior of these models, including issues of domain growth,
interface dynamics, consensus-coexistence scenarios, and the role of AB-agents.

• Neutral volatility (a = 1)

In the case of socially equivalent options (s = 0.5), the models correspond to
the voter model and the AB-model. We observe in both cases a formation
and growth of single-option domains (see Figure 2.3)†. Notice that the
AB-agents never form domains, but instead, they place themselves at the
boundaries between single-option ones. Finally, one of the two options
takes over the system. Due to the equivalent prestige, this happens for
each of the options with equal probability.

The general role of prestige is made clear when s , 0.5: the more prestigious
option dominates, causing the extinction of the other. One can also observe
that changing the value of s in real time when an option is in its way to
extinction can lead to its recovery.

• Low volatility regime (a > 1)

When volatility is low, i.e., agents have larger inertia to change its current
option, both models display a similar domain growth (see Figure 2.4). Do-
mains evolve smoothly and slowly (curvature-driven like), and the times
for extinction increase. For socially asymmetric options, low volatility de-
lays the effect of prestige difference so that the less prestigious option can
persist for longer times. In comparison to the AS-model, it is interest-
ing to notice that AB-agents slow down further the extinction of the less
prestigious option (see Figure 2.5).

• High volatility regime (a < 1)

In the case in which volatility is high, and for socially equivalent options
(s = 0.5), domains cease to form and agents in different states are mixed
throughout the population: this scenario leads to a long lived dynamical
coexistence of the two options in both models, with the two options having

∗The applet can be found at: http : //i f isc.uib.es/eng/lines/complex/APPLET_LANGDYN.html.
†The growth of these domains and their interface dynamics are addressed in Chapter 3, where

it is shown that domains grow by interfacial noise in the voter model, while in the AB-model they
are driven by curvature reduction. These two mechanisms can be observed intuitively in the applet
through simulations in real time.
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Figure 2.5: Snapshots of the AS-model (Left) and the Bilg-model
(Right). High volatility (a = 3) and socially non-equivalent options
(s = 0.6). N = 642 agents; t = 225. Notice that in the AS-model, the
less prestigious option is just about to get extincted (around 1% of the
population), while in the Bilg-model the minority option represents
still more than 10% of the population. Red: option A; black: option

B; white: AB-agents.

the same fraction of the total population, together with the survival of a
large number of AB-agents in the Bilg-model∗ (see Figure 2.6).

The situation is different when options with different prestige are consid-
ered in a situation of high volatility (s , 0.5; see Figure 2.7). For a relatively
small difference in prestige between the two options (s = 0.6), AB-agents in
the Bilg-model cause a fast extinction of the less prestigious option, while
in the absence of AB-agents (AS-model) both options coexist for long times
(although the majority is in the more prestigious option, around 70% of
the population). When the prestige difference becomes larger (s ≥ 0.7), the
less prestigious option dies out in both models rather fast (but still it takes
more time when there are no AB-agents (AS-model)).

In summary, numerical simulations of the AS-model and the Bilg-model show
that depending on the volatility of individuals and the relative difference on
prestige between both options, the population can either remain indefinitely in
a coexistence state with a finite fraction of agents in each of the two options, or it
can reach a dominance/extinction† state in which one of the two options takes over

∗The high frequency of changes in the option of the agents leads to a system in which both
options are effectively shared by all the agents.

†Notice that the concept of consensus we have introduced in Section 1.3, broadly used in the
literature, corresponds indeed to a scenario of dominance/extinction.
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Figure 2.6: Snapshots showing the coexistence regime in the AS-model
(Left) and the Bilg-model (Right). Low volatility (a = 0.1) and socially
equivalent options (s = 0.5). N = 642 agents; t = 200. Notice that agents do
not form linguistic domains, but they are completely mixed. Red: option

A; black: option B; white: AB-agents.

Figure 2.7: Snapshots of the AS-model (Left) and the Bilg-model (Right).
Low volatility (a = 0.1) and socially non-equivalent options (s = 0.6).
N = 642 agents; t = 40. Notice that in the Bilg-model, the less prestigious
option is just about to disappear, while in the AS-model coexistence is still
possible. However, in the AS-model this option becomes only the one of

the minority. Red: option A; black: option B; white: AB-agents.
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the whole population. Our results make clear that prestige is very important,
but volatility results to be a very important social parameter as well. For exam-
ple, comparing Figure 2.5 and Figure 2.7 one can observe that when an option
disappears, this happens much faster in the high volatility regime (a < 1) than
in the low volatility regime (a > 1). Generally speaking, high volatility appears
to enhance the coexistence of options of similar prestige. However, when an
option is situated in a low prestige position, low volatility of the agents gives
larger times before its disappearance. In this last case, the delay in the path to ex-
tinction of the less prestigious option is reinforced by the presence of AB-agents
(Bilg-model).

♦ ♦ ♦

In the following Chapters, we go beyond the simple mean field description of
the models and the qualitative exploration of their phenomenology we have
presented here. We analyze in detail the microscopic dynamics in which dis-
crete and finite size effects, as well as the topology of the network of interaction
are taken into account. We consider from fully connected networks and regu-
lar lattices, to random, small world networks and networks with community
structure.

Regarding two dimensional lattices and beyond the qualitative simulations
shown in this Section, in Chapter 3 we study the dynamics of the AB-model
in comparison to the voter model by performing an exhaustive numerical anal-
ysis. Moreover, in Chapter 6 we derive a macroscopic description based on a
continuum field approximation, which makes possible an analytical study of
the AS-model and the Bilg-model in the full range of values of the prestige and
volatility parameters.

2.5

Analysis of the models. General concepts

In the last part of this Chapter, we present the general concepts used in this work
in order to analyze the models presented above: the nature of the numerical
simulations, the order parameters used to characterize the ordering dynamics,
and the distributions of lifetimes. Other particular concepts and methods needed
in specific Chapters will be introduced when necessary.
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The main methodological tool we use is the numerical simulation of the models.
In the simulations, we use random asynchronous node update: at each iteration
or time step a single node is randomly chosen and updated according to the
transition probabilities (2.1) and (2.4-2.5) in the case of the AS-model and the
Bilg-model; and (2.8) and (2.10-2.11) in the case of the voter∗ and the AB-model.

We normalize time so that in every unit of time each node has been updated on
average once. Therefore, a unit of time includes N iterations. In most of our
simulations we start from random initial conditions: in the Bilg-model or the
AB-model, random distribution in the network of 1/3 of the population in state
A, 1/3 in state B and 1/3 in state AB (in the AS-model or the voter model, 1/2 of
the population in state A and 1/2 in state B).

For a quantitative description of the ordering dynamics towards consensus in
the A or B state we use as an order parameter the ensemble average interface
density

〈
ρ
〉
. This is defined as the density of links joining nodes in the network

which are in different states [120, 129, 136]. The ensemble average, indicated as
〈..〉, denotes average over realizations of the stochastic dynamics starting from
different random initial conditions. For our random initial conditions in the
Bilg-model or the AB-model,

〈
ρ(t = 0)

〉
= 2/3: a given node has probability 2/3

of being connected to a node in a different state (
〈
ρ(t = 0)

〉
= 1/2 in the AS-model

or the voter model). During the time evolution, the decrease of ρ from its initial
value describes the ordering dynamics by a coarsening process with growth of
spatial domains in which agents are in the same state. The minimum value ρ = 0
corresponds to an absorbing state where all the agents have reached consensus
in the same state.

Finally, the lifetime of a run is defined as the number of time steps it takes for a
given ordering dynamics to reach either of the absorbing states. For a detailed
analysis of the lifetimes in a given model, we generally analyze the fraction of alive
runs, that is, the fraction of simulations which still have not reached an absorbing
state at time t, P(t) ≡ 1 −

∫ t

0 p(t′)dt′, where p(t) is the probability distribution of
lifetimes. Naturally, the average time to reach consensus is defined as τ ≡∫
∞

0 tp(t)dt, and we study its dependence on the parameters of the network of
interaction, specially its scaling with system size.

∗To be precise, the original voter model dynamics is recovered by neglecting the prefactor 1/2 in
Equation (2.8); see Section 2.3.
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Chapter 3

The AB-model (I): from regu-
lar lattices to small world net-
works

In this Chapter, and within the general framework of dynamics with two non-
excluding options described in the Introduction (Section 1.6), we study in detail
the AB-model, a three-state model which reduces to the voter model when AB
agents are not taken into account. We aim to explore possible mechanisms for
the stabilization of a coexistence between the two options, possible metastable
sates, and the role of AB agents and the interaction network in these processes.
To this end, we analyze the growth mechanisms of A or B spatial domains, the
dynamics at the interfaces, and the scaling laws for the times to reach consensus
(dominance/extinction). This is studied in fully connected networks, in regular
lattices and in small world networks of interaction, where we study the effect of
long range interactions in the dynamics (publication in Ref. [198]).

Generally speaking, we find that allowing for the AB-state (bilinguals) modifies
the nature and dynamics of interfaces: agents in the AB-state define thin inter-
faces and coarsening processes change from voter-like dynamics to curvature
driven dynamics. This change of coarsening mechanism is also shown to origi-
nate for a class of perturbations of the voter model that we present at the end of
the Chapter.
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Figure 3.1: Time evolution of the average interface density
〈
ρ
〉

for the AB-
model in a fully connected network for different system sizes. Random
initial conditions. From left to right: N = 100 (�), 200 (+), 500 (4), 1000 (∗),
2000 (�), 5000 (.), 10000 (◦). Averages are calculated over 10000 realizations.
Inset: dependence of the average time to reach an absorbing state τ with

the system size: τ ∼ ln(N).

3.1

Fully connected networks

As a first step, we consider the dynamics of the AB-model in a fully connected
network of N individuals, i.e., a network where all agents interact with one
another. In this way, we go beyond population dynamics described by ODEs,
and we account for the finite size effects of the resulting stochastic dynamics.

Figure 3.1 shows the time evolution of the average interface density (see Sec-
tion 2.5) in fully connected networks for different system sizes starting from
random initial conditions. Consensus in the A or B option is always reached,
with equal probability. The average interface density reaches first a plateau, and
then approaches exponentially the absorbing state due to finite size fluctuations:〈
ρ(t)

〉
∼ e−kt (the exponent k of the exponential decay is a constant independent

of system size). In the inset of this Figure, the average time to reach an absorbing
state, τ, is shown to scale logarithmically with the system size as τ ∼ ln(N).
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In the limit of infinite system size, the dynamics is exactly described by the ODEs
(2.12)-(2.13). When starting from random initial conditions, the system lies on
top of the stable manifold of the saddle point corresponding to coexistence
of the three phases (Figure 2.2). Therefore, the system moves until reaching
the saddle fixed point and stays there; the stable consensus solution is never
reached. When we consider finite size fully connected networks instead, the
system moves towards the saddle and fluctuates around this fixed point (stage
corresponding to the plateau in Figure 3.1). At a certain point, a finite size
fluctuation is large enough to drive the system far enough towards one of the
two basins of attraction of the two stable fixed points, so that the system reaches
consensus in the A or B option exponentially (stage corresponding to the decay
of

〈
ρ(t)

〉
in Figure 3.1).

In comparison, the results for the voter model in fully connected networks when
starting from random initial conditions are the following (see Section 1.4.2): for a
single realization, ρ(t) fluctuates grossly until a finite size fluctuation drives it to
the absorbing state. The time evolution of the average interface density, though,
is

〈
ρ(t)

〉
∼ e−2t/N; giving an exponential decay depending on system size. This is

related to the fact that the probability that a simulation reaches consensus at time
t, S(t), decays as S(t) ∼ e−t/N [133]. In addition, the time to reach an absorbing
state, τ, scales with the system size as τ ∼ N [131], giving rise to a much slower
path to consensus compared to the AB-model (τ ∼ ln(N)).

Moreover, the ensemble average magnetization is conserved in the voter model
in networks with an homogeneous degree distribution [127]∗. Therefore, the
fraction of runs which lead to consensus in the A option are proportional to the
fraction of initial agents in the state A. This is not the case in the AB-model, where
the average magnetization, defined as 〈m(t)〉 ≡ 〈ΣA(t) − ΣB(t)〉, is not conserved:

d 〈m〉
dt

=
1
2
〈ΣAB〉 〈m〉 (3.1)

〈ΣAB〉 > 0,∀t so that sign( d〈m〉
t ) = sign(〈m〉): if there is a bias in the initial condi-

tions towards one of the two options, this option will be the one who will take
over the system.

∗As reported in the Introduction (Section 1.4.2), in heterogeneous networks only an ensemble
average magnetization weighted by the degree of the node is conserved [129].
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CHAPTER 3. THE AB-MODEL (I)

Figure 3.2: Time evolution of the total densities of agents in the three states,
Σi (i= A, B, AB), and the interface density, ρ for the AB-model in a two-
dimensional regular lattice. One realization in a population of N = 400
agents is shown. From top to bottom: ΣA (dashed line), ΣB (dotted line), ρ

(solid line), ΣAB (dot-dashed line).

3.2

Two-dimensional lattices

In order to take into account local effects, we consider next the dynamics of the
AB-model in a two-dimensional regular lattice with four neighbors per node
[198]. In Figure 3.2 we show, for a typical realization, the time evolution of the
total densities of agents in state A, ΣA, in state B, ΣB, and in state AB, ΣAB; and
the density of interfaces, ρ. State A takes over the system, while the opposite
option B disappears. Consensus in either of the two equivalent states A or B is
always reached (with equal probability to reach consensus in state A or B). We
observe an early very fast decay of the interface density and of the total density
of agents in the state AB, ΣAB, followed by a slower decay corresponding to
the coarsening dynamical stage. This stage lasts until a finite size fluctuation
causes the dominance of one of the states A or B, and the density of AB agents
disappears together with the density of agents in the state opposite to the one
that becomes dominant.
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3.2. TWO-DIMENSIONAL LATTICES

Figure 3.3: Time evolution of the average interface density
〈
ρ
〉

for the
AB-model in a two-dimensional regular lattice for different system sizes.
Empty symbols: from left to right: N = 102 (�), 202 (.), 302 (�), 1002

(4), 3002 (◦). The average global density of AB agents, 〈ΣAB〉, for N = 3002

agents is also shown (•). Averages are calculated over 100-1000 realizations
depending on the system size. Dashed line for reference:

〈
ρ
〉
∼ t−0.45.

In Figure 3.3 we show the time evolution of the average interface density and of
the average total density of AB agents, averaged over different realizations. For
the relaxation towards one of the absorbing states (dominance of either A or B)
both the average interface density and the average density of AB agents decay
following a power law with the same exponent,

〈
ρ
〉
∼ 〈ΣAB〉 ∼ t−γ, γ ' 0.45. This

indicates that the evolution of the average density of the AB agents is correlated
with the interface dynamics. Several systems sizes are shown in order to see the
effect of finite size fluctuations. During the coarsening stage described by the
power law behavior, A and B spatial domains are formed and grow in size. From
the dependence of

〈
ρ
〉

with time∗, it follows that the typical size of a domain, ξ,
grows as ξ ∼ tγ, γ ' 0.45. Eventually a finite size fluctuation occurs (as the one
shown in Figure 3.2) so that the whole system is taken to an absorbing state in
which there is consensus in either the A or B option.

∗Notice that the average domain size ξ relates to the interface density in the following way:
ξ(t) ∼ 1/ρ(t). Argument in Section 1.4.2 (regular lattices).
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Figure 3.4: AB-model in a regular lattice of N = 502 individuals. Top: Ran-
dom initial conditions: snapshots of a typical simulation of the dynamics;
t = 0, 8, 80, 800 from left to right. Bottom: Disintegration of an initial AB-
domain; t = 0, 1, 5, 10 from left to right. Red: option A, black: option B,

white: AB-state.
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Figure 3.5: The time evolution of the interface densityρ for the AB-model in
a two-dimensional regular lattice is shown for 100 realizations. We observe
two types of realizations: most of them decay by a finite size fluctuation
to an absorbing state after the stage of coarsening (solid lines); however,
around 1/3 of them get stuck in trapped metastable states, identified by an
essentially constant value of ρ, until they eventually decay (dotted lines).

As we have seen already in Section 2.4, during the coarsening process spatial do-
mains of AB agents are never formed. Rather, during an early fast dynamics AB
agents place themselves in the boundaries between A and B growing domains.
This explains the finding that the density of AB agents follows the same power
law than the average density of interfaces. We can observe in Figure 3.4-Top
snapshots of the time evolution of a typical realization of the dynamics: the
fast decay of the amount of AB agents, the formation of A and B domains, and
the presence of AB agents only at the interfaces between them. We have also
checked the intrinsic instability of an AB spatial domain: an initial AB domain
disintegrates very fast into smaller A and B domains, with AB agents just placed
at the interfaces, as shown in the set of snapshots in Figure 3.4-Bottom.

Our result for the growth law of the characteristic length of A or B domains is
compatible with the well known exponent 0.5 associated with domain growth
driven by mean curvature and surface tension reduction observed in SFKI mod-
els [110]∗. However, systematic deviations from 0.5 are observed when mea-

∗See Section 1.4.3 for a detailed description of the SFKI model.
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Figure 3.6: Snapshots of simulations which get trapped in stripe-like
metastable states. N = 502 agents. Legend: Red: state A, blue: state B,
white: state AB. Left panel: AB-model in a two dimensional regular lattice;
4 neighbors per site. Right panel: ε-model (ε = 1.0). Two dimensional

regular lattice; 8 neighbors per site.

suring the coarsening exponent γ. These deviations are at least partially due
to the fact that on closer inspection there are two type of qualitatively different
realizations, which we show in Figure 3.5: while many of them have a coars-
ening stage followed by a finite size fluctuation which drives the system to an
absorbing state, a finite fraction of the realizations (1/3 of them, for large enough
systems) gets stuck in long-lived trapped metastable states. These metastable
states are reminiscent of the ones found [221] in the analysis of a two states
majority rule dynamics based on group interaction [101]∗. They correspond to
stripe-like configurations for an A or B domain. The boundaries of these stripe-
shaped domains are close to flat interfaces but with interfacial noise present
(Figure 3.6-Left). Although long-lived, these configurations continue to evolve
and in this sense they are different from the stripe-like trapped frozen states
with completely flat boundaries found in a zero temperature SFKI model [148]†.
When a realization falls in such trapped metastable states, coarsening stops (the
average interface density fluctuates around a fixed value), until eventually a
finite size fluctuation makes the two walls collide and takes the system to one of
the absorbing states (see Figure 3.5).

If the realizations that fall into long-lived metastable states are removed when
computing the average interface density, the power law exponent for the decay
of

〈
ρ
〉

increases, approaching the value γ = 0.5 characteristic of curvature driven

∗Similar stripes have been found in models considering individual learning together with imi-
tation [118].

†Notice that in SFKI at T , 0 and below the critical temperature, these trapped states become
metastable, and they finally reach an absorbing state due to thermal fluctuations.
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Figure 3.7: Time evolution of the fraction of alive runs, P(t), for the AB-
model in a two-dimensional regular lattice for different system sizes. From
left to right: N = 202 (.), 302 (∗), 402 (�), 602 (4), 802 (◦), 1002 (�). Averages
are calculated over 5000-20000 realizations depending on the system size.

The exponential tail corresponds to the stripe-like metastable states.

coarsening. Other deviations from the exponent γ = 0.5 can be due to non
trivial logarithmic corrections. In 1 and 3-dimensional lattices, we also find an
exponent close to 0.5, which substantiates the claim that curvature reduction is
the dominant mechanism at work for the coarsening process in the AB-model.

The existence of two type of realizations gives rise to two different characteristic
times. Starting from random initial conditions we consider the distribution of
survival times, p(t), i.e., the distribution for the times to reach an absorbing
state. From numerical simulations, it has been proven that this distribution
displays an exponential tail corresponding to the realizations that involve a
trapped metastable state. The characteristic time to reach consensus can be
calculated from,

τ ≡
∫
∞

0 tp(t) dt =
∫ T

0 tp1(t) dt +
∫
∞

T tp2(t) dt

where p1(t) corresponds to the first type of realizations, p2(t) to the second type,
and T is the time where there remain only stripe-like metastable states (1/3 of the
realizations, as mentioned above) corresponding to the stage where p(t) becomes
exponential.
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Figure 3.8: Time evolution of the fraction of alive runs, P(t), for the AB-
model in a two-dimensional regular lattice for different system sizes. Aver-
ages are calculated over 5000-20000 realizations depending on the system
size. Left: the time has been rescaled by N, in order to observe the scaling
for the first type of realizations that approach the absorbing state after the
coarsening stage. From bottom to top: 402 (�), 602 (4), 802 (◦), 1002 (�).
Inset: dependence on the system size of the characteristic time to reach
an absorbing state τ1 for these first type of realizations: τ1 ∼ N. Right:
the time has been rescaled by N1.8, in order to observe the scaling for the
second type of realizations that get stuck in stripe-like metastable states.
From right to left: 402 (�), 602 (4), 802 (◦), 1002 (�). Inset: dependence on
the system size of the characteristic time to reach an absorbing state τ2 for

these second type of realizations: τ2 ∼ N1.8.

For the first type of realizations, the ones that do not get trapped in long lived
metastable states, the characteristic time to reach an absorbing state can be es-
timated to scale as τ1 ∼ N since the coarsening is described by

〈
ρ
〉
∼ t−γ, with

γ ' 0.5, and at the time of reaching consensus
〈
ρ
〉
∼ (1/N)1/d (d is the dimension-

ality of the lattice). This has been confirmed by numerical simulations which
consider only such kind of realizations. For the second type, p2(t) ∼ e−α(N)t, where
α(N) is a constant depending on system size N. It is straightforward to show
that for large enough systems, the second term scales as τ2 ∼ 1/α(N). Therefore,
to obtain the dependence of τ2 with system size, we are just interested in the
exponent α(N). In order to reduce the fluctuations observed in the tail for the
distribution p(t), we analyze instead the fraction of alive runs, i.e., the fraction
of simulations which have not reached consensus yet: P(t) ≡ 1 −

∫ t

0 p(t′)dt′ (see
Section 2.5). As p2(t) is exponential, we can obtain α(N) from the fraction of
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Figure 3.9: Time evolution of the average interface density
〈
ρ
〉

for the voter
model in a two-dimensional regular lattice for different system sizes. From
left to right: N = 202 (�), 302 (4), 502 (◦), 702 (�), 1002 (.). Inset: dependence
of the characteristic time to reach an absorbing state τwith the system size:

τ ∼ N1.08; compatible with the theoretical τ ∼ N ln(N).

alive runs: the tails of P(t) also decay as P(t) ∼ e−α(N)t. We show in Figure 3.7
the fraction of alive runs for different system sizes. The first fast decay corre-
sponds to the first type of simulations, while the exponential tail describes the
approach to the absorbing state for simulations which get trapped in metastable
states. Analyzing the exponential tails for different system sizes, i.e., plotting
1/α(N), we obtain τ2 ∼ Nα, with α ' 1.8. The scalings regarding the two types
of realizations are shown in Figure 3.8.

When taking into account all realizations, the global characteristic time to reach
an absorbing state for large system sizes is dominated by the persistence of the
trapped metastable states, so that τ ∼ Nα, with α ' 1.8.

The AB-model analyzed here is a modification of the two-state voter model∗.
Regarding the times to reach consensus in this model, in Figure 3.9 we can
observe that for a finite system the characteristic time to reach an absorbing state
scales as τ ∼ N ln N [123, 180]. Moreover, and as we have shown in Section 1.4.2,
for the voter model coarsening in a d = 2 square lattice occurs by a different

∗See Section 1.4.2 for a detailed description of the voter model.
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Figure 3.10: Comparison of the interface dynamics (I). Initial conditions
with a single-option domain surrounded by a domain in the opposite
option. Regular lattice of N = 502 individuals; t=0, 40, 200, 1000 from
left to right. Top: AB-model. Curvature driven interface dynamics: the
closed domain shrinks due to surface tension. Bottom: voter model. Noisy
interface dynamics: the closed domain diffuses throughout the lattice. Red:

option A, black: option B, white: AB-state.
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Figure 3.11: Comparison of the interface dynamics (II). Random initial
conditions: snapshots of a typical simulation of the dynamics in a regular
lattice of N = 502 individuals; t=0, 8, 80, 800 from left to right. Top: AB-
model. Coarsening leading to the formation of single-option domains that
evolve by curvature reduction. Bottom: voter model. Slower coarsening
leading to non-localized domains evolving by interfacial noise. Red: option

A, black: option B, white: AB-state.
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mechanism, interfacial noise, such that
〈
ρ
〉
∼ (ln t)−1 [120, 131]. Therefore,

the introduction of the AB-state is identified as a mechanism to modify the
interface dynamics from interfacial noise to curvature driven dynamics. In spite
of the small number of AB agents that survive in the dynamical process, they
cause a nontrivial modification of the dynamics. Indeed, in our simulations
we observe the formation of well defined interfaces between A and B domains,
populated by AB agents, that evolve by a curvature driven mechanism. The
different nature of the coarsening process is illustrated comparing Figure 3.10-
Top (AB-model) and Figure 3.10-Bottom (voter model), for initial conditions
with a closed single-option domain surrounded by a domain in the opposite
option; and Figure 3.11-Top (AB-model) and Figure 3.11-Bottom (voter model)
for random initial conditions.

On the qualitative side, the inclusion of the AB agents gives rise to a much
faster coarsening process, 〈ξ〉 ∼ t1/2 (AB-model) VS 〈ξ〉 ∼ ln t (voter model); but
due to the existence of metastable states, on the average it also favors a longer
dynamical transient in which domains of the two competing options coexist.
When comparing the times to reach consensus for both models, this results in
τAB
τvoter
∼

N0.8

ln(N) , implying larger lifetimes on average in the AB-model before reaching
an absorbing state for large fixed N.

3.3

Small world networks

Up to now, we have considered finite size effects and a regular spatial distribution
of the agents. However, and as we have shown in the Introduction (Section 1.2),
social networks display complex features like the small world effect: short aver-
age path length and high clustering [52]. This is a consequence of the existence in
the network of long range social interactions. To study the effect of such interac-
tions in consensus problems with two non-excluding options, we next consider
the dynamics of the AB-model on a small world network [198] constructed fol-
lowing the algorithm of Watts & Strogatz (Section 1.2.3; [7]): starting from a two
dimensional regular lattice with four neighbors per node, we rewire with prob-
ability p each of the links at random, getting in this way for intermediate values
of p a partially disordered network with long range interactions throughout it.

In Figure 3.12 we show the evolution of the average interface density for different
values of p. As we found in the regular lattice, we also observe here a dynamical
stage of coarsening with a power law decrease of

〈
ρ
〉

followed by a fast decay
to the A or B absorbing states caused by a finite size fluctuation. During the
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Figure 3.12: Time evolution of the average interface density
〈
ρ
〉

for the
AB-model in small world networks with different values of the rewiring
parameter p. From left to right: p=1.0 (×), 0.1 (4), 0.05 (�), 0.01 (�), 0.0 (◦).
For comparison, the case p = 0 for a regular network and the case p = 1
corresponding to a random network are also shown. The inset shows the
dependence of the characteristic time to reach an absorbing state τ with
the rewiring parameter p. The dashed line corresponds to the power law
fit τ ∼ p−0.76. Population of N = 1002 agents. Averages taken over 500

realizations.

dynamical stage of coarsening, the A and B communities have similar size, while
the total density of AB agents is much smaller. In the range of intermediate values
of p properly corresponding to a small world network, increasing the rewiring
parameter p has two main effects: i) the coarsening process is notably slower;
ii) the characteristic time to reach an absorbing state τ, which can be computed
here as the time when

〈
ρ
〉

sinks below a given small value, drops following a
power law (inset of Figure 3.12): τ ∼ p−0.76, so that the absorbing state is reached
much faster as the network becomes disordered.

To understand the role of the AB-state in the ordering dynamics in a small
world network, the results of Figure 3.12 should be compared with the ones in
Figure 3.13 for the two-state voter model in the same small world network∗. In

∗Notice that the small world network considered in [136] is obtained by a rewiring process of a
d = 1 regular lattice (see Figure 1.12 in the Introduction).
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Figure 3.13: Time evolution of the average interface density
〈
ρ
〉

for the
voter model in a small world network with different values of p. From
up to bottom, p=1.0 (�), 0.1 (�), 0.05 (∗), 0.01 (◦), 0.0 (4). Population of

N = 1002 agents. Averages taken over 900 realizations.

contrast with the AB-model, moderate values of p stop the coarsening process of
the voter model leading to metastable states† characterized by a plateau regime
for the average interface density [136, 138]. The plateau height is larger for
increasing p, indicating that the domains become smaller. However, the lifetime
of these states is not very sensitive to the value of p, with the characteristic time
to reach an absorbing state being just slightly smaller than the one obtained in
a regular lattice (p = 0). This is a different effect than the strong dependence on
p found for the characteristic time to reach an absorbing state when AB agents
are included in the dynamics. Comparing the results of Figures 3.12 and 3.13
for a fixed intermediate value of p, we observe that including AB agents in
the dynamics on a small world network of interactions allows the coarsening
process to take place, and it also produces an earlier decay to the absorbing state.
To illustrate qualitatively the different effect of the long range interactions on
the two models, we show in Figure 3.14 snapshots of the two dynamics in a
small world network with p = 0.1. A comparison with the results in a regular

†In the AB-model, a metastable state is also reached, but only after the coarsening stage. As we
show at the end of this Section, τ ∼ ln N; and therefore, this can only be observed for very large
system sizes. For comparison, let us remind that in SFKI at zero temperature these configurations
become active trapped states (see Introduction 1.4.3).
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Figure 3.14: Initial conditions with a single-option domain surrounded
by a domain in the opposite state: Small world network with p = 0.1
projected in two dimensions of N = 502 individuals; t=0, 20, 60, 140 from
left to right. Top: AB-model: a domain shrinks much faster due to the long
range interactions that connect it to the rest of the network, which fragment
the initial domain accelerating the approach to consensus. Bottom: voter
model: long range connections do not make a qualitative different behavior
than the one observed in a regular lattice (Figure 3.10). Red: option A, black:

option B, white: AB-state.
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Figure 3.15: Time evolution of the average interface density,
〈
ρ
〉
, for

different values of the population size, N, in a small world network with
p = 0.1. N = 102 (�), 202 (.), 302 (◦), 702 (×), 1002 (∗), 2002 (�); from left
to right. Averaged over 1000 realizations in 10 different networks. Inset:
dependence of the characteristic time to reach an absorbing state τwith the

system size: τ ∼ ln N.

lattice (Figure 3.10) shows that a curvature driven dynamics (AB-model) is very
sensitive to long range links, while noisy interface dynamics (voter model) is
barely affected by them.

System size dependence for a fixed value of the rewiring parameter p is ana-
lyzed in Figure 3.15. We observe that the initial stage of the coarsening process
is grossly independent of system size, but the characteristic time to reach an
absorbing state scales with the system size N as τ ∼ ln(N). This results to be the
same scaling law obtained in fully connected networks (see Figure 3.1), while
for the voter model τ ∼ N [136]. Therefore, the faster decay to the absorbing
state caused by the presence of AB agents in a large system interacting through
a small world network is measured by the ratio τAB

τvoter
|SW ∼

ln(N)
N . We note that this

faster decay is qualitatively the opposite result than the one found in a regular
lattice where τAB ∼ N1.8 > τvoter ∼ N ln(N). In the case of a regular lattice, on the
average, AB agents slow down the decay towards the absorbing state due to the
dominance of the metastable states described in the previous Section.
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THE ε -MODEL

3.4

From random imitation to majority rule dynamics:
the ε -model

In the previous Sections, we have shown how the extension of the voter model
dynamics by the introduction of a third AB-state of coexisting options at the
individual level (AB-model), leads to a radical change in the interface dynamics.
A natural question that these results pose is if the crossover from interfacial
noise dynamics of the voter model to curvature driven dynamics is generic for
any structural modification of the voter model. In order to interpolate from
the voter model dynamics towards the majority model represented by the zero-
temperature SFKI model, where the dynamics is curvature driven, we have
considered the coarsening process in a two-dimensional lattice in which agents
can choose between two excluding options (states A and B) and the dynamic rules
are as defined in Chapter 2 but with the transition probabilities (see Figure 3.16)
[198]:

pi,A→B = σi,B − ε sin(2πσi,B), pi,B→A = σi,A − ε sin(2πσi,A), ε ≤
1

2π
(3.2)

In the following, we call this modification of the voter model the ε-model. The
parameter εmeasures the strength of the term that perturbs the interaction rules
of the voter model (ε = 0). This perturbation of the voter model implies that
the probability of changing option is no longer a linear function of the density
of neighboring agents in the option to be adopted. With the perturbation term
chosen here, there is a nonlinear reinforcing (of order ε) of the effect of the local
majority: the probability to make the change A → B is larger [smaller] than σB
when σB > 1/2 [σB < 1/2]. In particular, we note that for ε , 0, the conservation
law of the ensemble average magnetization [127, 129], a characteristic symmetry
of the voter model, is no longer fulfilled. For later comparison we recall that in
the zero-temperature SFKI model the local majority determines, with probability
one, the change of option: pA→B = 1 [0] if σB > 1/2 [σB < 1/2].

Notice that the AS-model (Figure 2.1) defines another modification of the lin-
ear transition probabilities of the voter model∗, in which the volatility of the
agents accounts for a different interaction mechanism: the reinforcing (a > 1) or
relaxation (a < 1) of the inertia to change the current state of the agent†.

∗Other nonlinear modifications of the voter model dynamical rules have been extensively studied
in [222].

†The AS-model is studied in detail in Chapter 6.
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Figure 3.16: Transition probabilities (Equation (3.2)) for the ε-model for
different values of ε. When ε > 1/(2π) the transition probability for such a
given ε is defined as follows: pi,A→B as given by Equation (3.2) for values of σ
such that 0 ≤ pi,A→B ≤ 1; pi,A→B = 0[1] for values of σ such that Equation (3.2)
gives pi,A→B < 0[> 1]. The limit ε → ∞, corresponds to the step-function
transition probability of the SFKI model at zero temperature. ε= 0.01 (solid

line), 0.2 (dashed), 1.0 (dotted), 10.0 (dot-dashed).

Our results for the exponent γ in a power law fitting
〈
ρ
〉
∼ t−γ for the ε-model

are shown in Figure 3.17 for different values of ε. In these simulations we have
considered a two-dimensional lattice with eight neighbors per node so that more
values are allowed for the perturbation term in Equation (3.2). For very small
values of ε we observe an exponent γ ' 0.1 compatible with the logarithmic
decay (

〈
ρ
〉
∼ (ln t)−1) of the voter model, as obtained in [180]. However, for small

but significant values of ε there is a crossover to a value γ ' 0.5 associated with
curvature driven coarsening. With probability around 1/3 (for large enough
systems), trapped metastable states analogous to the ones found in the AB-
model (Figure 3.6-Right) are also found for values of ε for which γ ' 0.5. The
fraction of realizations close to 1/3 corresponds to the probability to reach a
frozen configuration in the SFKI at zero temperature [147, 148]. The distribution
of survival times of these metastable states also displays an exponential tail
analogous to the one found in Figure 3.7 for the AB-model. These realizations
have been removed to calculate the values of γ in Figure 3.17.
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Figure 3.17: Characteristic coarsening exponent γ (
〈
ρ
〉
∼ t−γ) for the ε-

model as a function of the perturbation parameter ε. N = 4002 agents.
Averages taken over 75 realizations. Inset: time evolution of the average
interface density. From left to right: N = 202 (4), 502 (�), 1002 (∗), 2002

(◦), 4002 (�) agents. Averages taken over 100 realizations. Given a value
of ε (ε = 0.01 in the inset), a power law for the average interface density
decay is found for large enough system sizes. Dashed line for reference:〈

ρ
〉
∼ t−0.5.

We conclude that a small perturbation on the linear transition probabilities of
the voter model dynamics, such that there is a nonlinear reinforcing of the
effect of the local majority, leads to a new interface dynamics equivalent to
the one found for the AB-model by including a third state where options are
non-excluding. This illustrates the fact that the voter model dynamics is very
sensitive to perturbations of its dynamical rules.

3.5

Concluding remarks

In this Chapter, we have analyzed an extension of the voter model, the AB-model,
addressing the effects of introducing a third state of non-excluding options at
the individual level (AB-state). For this, we have studied the model in different
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networks, fully connected networks, two-dimensional lattices and small world
networks.

The mean field analysis shows that in the thermodynamic limit a global con-
sensus state (A or B) is reached in the AB-model with probability one, except
for initial conditions lying on the stable manifold (ΣA = ΣB) of the saddle fixed
point corresponding to unstable coexistence of the three states. However, when
considering a fully connected network to account for the finite size effects, fluc-
tuations drive the system out from the unstable fixed point and consensus is
always reached, with an average time to consensus that scales with the system
size as τ ∼ ln(N).

We have analyzed exhaustively the AB-model dynamics in two-dimensional
lattices. A domain of agents in the AB-state is not stable and the density of
AB agents becomes very small after an initial fast transient, with AB agents
placing themselves in the interfaces between single-option domains. In spite of
these facts, the AB agents produce an essential modification of the processes of
coarsening and domain growth, changing the interfacial noise dynamics of the
voter model into a curvature driven interface dynamics characteristic of two-state
models with updating rules based on local majorities like SFKI dynamics [110]. In
this way, the typical growth of the size of single-option domains, ξ, changes from
ξ(t) ∼ ln(t) to ξ(t) ∼ tα, with α ' 0.5. This change in the coarsening mechanism
is also found for small perturbations of the random imitation dynamics of the
voter model that modify the linear dependence of the transition probabilities
on the local densities (ε-model). This result indicates that the effect might be
generic for small structural modifications of the voter model dynamical rules.
We have also shown that in a two dimensional regular lattice, the system reaches
stripe-like trapped metastable states with a probability around 1/3 in both the
AB-model and the ε-model, as observed in the majority rule dynamics based on
group interaction [101]. The average time to consensus for the AB-model has
been shown to scale with the system size as τ ∼ N1.8. This dependence with
system size is dominated by the presence of the metastable states mentioned
above. Compared to the τ ∼ N ln(N) for the voter model, the AB agents produce
a faster coarsening, but also longer times for extinction due to the presence of
these metastable states.

The effect of the topology of interactions such as the role of long range connec-
tions throughout the network, has been addressed considering a small world
network. While for the original two-state voter model the small world topol-
ogy results in long lived metastable states in which coarsening has become to
a halt [136, 138], the AB agents restore the processes of coarsening and domain
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growth∗. Additionally, they speed-up the decay to the absorbing state by a finite
size fluctuation: while in the voter model the times to consensus are essentially
not affected by the parameter of rewiring p, in the AB-model we obtain τ ∼ p−0.76,
indicating a strong dependence of the times to consensus on the parameter of
rewiring. Moreover, we obtain a characteristic time to reach an absorbing state
that scales with system size as τ ∼ ln N, to be compared with the result τ ∼ N for
the voter model: the decay to the absorbing state is much faster in small world
networks when AB agents are present. Notice that the effect of the AB agents on
the times to consensus depends on the network of interaction: τ increases in two-
dimensional lattices due to the existence of trapped metastable states, while it is
shown to decrease in small world networks due to the fragmentation of domains
and its faster shrinking produced by the presence of long range interactions in
the network.

∗Notice that in the AB-model, a metastable state is also eventually reached but only after the
coarsening stage. As τ ∼ ln N, this can only be observed for very large system sizes.
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Chapter 4

The AB-model (II): networks with
mesoscale structure

A key characteristic of nonequilibrium dynamics of interacting many body sys-
tems is the relaxation time. Typically, finite systems starting from generic initial
conditions far from equilibrium reach a final stationary state or attractor in a
characteristic time. For simple nonequilibrium lattice models [128] the dynam-
ics often leads to an absorbing state. In some cases the system might get stuck
in a metastable state, which generally also has a well defined expected lifetime.
Frozen trapped configurations that persist indefinitely in the absence of fluc-
tuations are also possible [148]. An intriguing situation occurs when such a
characteristic time cannot be defined. In the first part of this Chapter, we show
that this is the case for the AB-model in networks with community structure (see
Section 1.2.4), in which the system reaches different trapped metastable states
with very different lifetimes, leading to a broad distribution of consensus times
(publication in Ref. [215]). Trapped metastable states are associated to different
topological substructures in the network where the dynamics gets stuck for long
but finite times in finite systems (see Section 1.4.1). The class of networks studied
[109] accounts for many of the features observed in real social networks, incorpo-
rating nontrivial community structure which introduces structural correlations.
The results for the AB-model are compared to the voter model dynamics in the
same class of networks.

The question of general conditions under which a broad distribution of lifetimes
is obtained merits a detailed and systematic study. In the second part of this
Chapter and motivated by the results obtained for the AB-model in the class of
networks mentioned above, we address this question by investigating the role
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of the mesoscale structure of the network and its topological traps in nonequi-
librium ordering dynamics with two non-excluding options. We focus on the
question of which features of the network topology, such as relatively isolated
groups of nodes, the presence of communities, their interconnectivity, or their
size distribution, give rise to trapped metastable states. To this end, we study the
dynamics of the AB-model in a controlled setting by constructing simple test case
networks in which community boundaries are clear (publication in Ref. [216]).

4.1

Anomalous lifetime distributions and topological traps
in ordering dynamics

In order to study the effects of networks with mesoscale structure in consen-
sus dynamics with two non-excluding options, in this Section we analyze and
compare the voter model and the AB-model in a class of social networks with
community structure. With this aim, we explore the time evolution of the average
interface density, the nature of the metastable states appearing in the dynamics,
and the lifetime distributions in a large sample of networks.

4.1.1 The network model: a class of social networks

Several models have been designed to capture some of the characteristics of
social networks, based on mechanisms such as geographical proximity [104],
social similarity [103, 107], and local search [105, 106, 109] (see also Section 1.2.4).
A combination of random attachment with local search for new contacts has

Figure 4.1: Growth process of the network. The new vertex v links to one
or more randomly chosen initial contacts (here i, j) and possibly to some of

their neighbors (here k, l).
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Figure 4.2: Left: A partial view of the network centered on a randomized
selected node. Right: Average number 〈n(s)〉 of k-clique-communities of
size s for k = 4 (�) and k = 5 (©), in networks of size N = 10 000, averaged

over 400 realizations.

proved fruitful in generating well-known features of social networks, such as
assortativity, broad degree distributions, and community structure [109] (see
also [65]). In this way, the community structure leads naturally to high values of
the clustering coefficient.

The algorithm to generate this class of networks [109] consists of two growth
processes: 1) random attachment, and 2) implicit preferential attachment result-
ing from following links from the randomly chosen initial contacts. The local
nature of the second process gives rise to high clustering, assortativity, broad de-
gree distribution and community structure. Starting from any small connected
seed network of N0 vertices, new nodes are added as follows (see Figure 4.1):
i) Pick ninit ≥ 1 random nodes as initial contacts. ii) Pick nsec ≥ 0 neighbors
of each initial contact as secondary contacts. iii) Connect the new node to the
initial and secondary contacts. In this Chapter, we use the standard parameters
[109]: the number of initial contacts is selected according to the probabilities
p(ninit = 1) = 0.95, p(ninit = 2) = 0.05; and the number of secondary contacts
from each initial contact, nsec, is chosen from a uniform probability distribution
between 0 and 3. The initial seed contains N0 = 10 nodes.

The degree distributions of the resulting networks are found to decay slower than
exponential [109]. Using the k-clique algorithm [86] for detecting communities∗,
a broad distribution of community sizes is found in the model (Figure 4.2).

∗In fact, the algorithm searches for k-clique communities. A k-clique community is defined as a
union of all k-cliques (complete subgraphs of size k) that can be reached from each other through a
series of adjacent k-cliques (where adjacency means sharing k − 1 nodes).
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For reference, we use randomized versions of the same networks, where the de-
gree sequence is kept intact but edges are randomly rewired under the restriction
that the network must stay connected [223]. This eliminates degree correlations,
and as a consequence, community structure and clustering. The randomized
networks are therefore locally treelike.

4.1.2 Trapped metastable states and lifetime distributions

We have considered the transition probabilities (2.8) for the voter model∗, and
(2.10)-(2.11) for the AB-model in the class of networks described above. We
followed the evolution over time of the interface density and of the fraction
of runs that had not yet reached consensus at any particular time, P(t) (see
Section 2.5). When results for the original and randomized networks differ, we
can conclude that structural characteristics other than the degree distribution are
responsible for the differences.

Interface density

The average interface density 〈ρ〉 on the class of networks considered here,
and on their randomized counterparts is shown in Figure 4.3. For the voter
model (Figure 4.3(a)), the structure of the network does not alter the qualitative
behavior. In both classes of networks we observe plateau values of 〈ρ〉 associated
with metastable states. Still, the plateau value for networks with community
structure is lower than for the randomized networks, indicating that the typical
size of spatial domains where agents are in the same state is larger. We also
observe in both cases that finite size fluctuations drive the system to an absorbing
state. The characteristic time to reach consensus (mean lifetime of the metastable
state) depends on network size but it does not depend sensitively on network
structure. The inset in Figure 4.3(a) shows that the time to reach consensus
depends linearly on network size for networks with communities and their
randomized counterparts†. These results support the earlier finding made on
networks without mesoscale structure that effective dimensionality dominates
voter model behavior [138].

∗To be precise, we have considered the original voter model dynamics, neglecting the prefactor
1/2 in Equation (2.8).

†The slight deviation from linear scaling is due to the violation of the magnetization conserva-
tion law when using node update dynamics on networks with nodes of very different degree (see
Section 1.4.2; [129]).
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Figure 4.3: Time evolution of the average interface density in networks with
community structure (solid symbols) and randomized networks (empty
symbols) with the same degree distributions. (a) Voter model. Network
sizes increase from left to right: N = 100, 400, 2500, 10000. Averages
are taken over 100 different realizations of the model network, with 10
runs in each. Inset: the time to reach consensus scales with network size as
τ ∼ Nγ, γ ≈ 0.96 for the randomized and γ ≈ 0.98 for the original networks.
(b) AB-model. Network sizes increase from left to right: N = 100, 400, 2500,
10000, 40000. Averages taken over 400 − 5000 realizations (depending on

system size) of the model network, and with 10 runs in each.
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Figure 4.3(b) shows the average interface density for the AB-model. We observe
significant differences between the original and the randomized version net-
works: a plateau value of 〈ρ〉 is observed for randomized networks, while a first
dynamical stage of coarsening where spatial domains grow in size is found for
large networks with community structure. The plateau observed in randomized
networks indicates that a metastable state of the class found in the voter model
for both types of networks is rapidly reached∗. Moreover, in the randomized net-
works there is a fast decay of 〈ρ〉 towards an absorbing state with a characteristic
time to reach consensus almost independent of system size. On the contrary, for
the networks with a community structure we observe two dynamical stages in
the time evolution of 〈ρ〉. After an initial power law associated with coarsening
there appears a second power law tail in the approach to the absorbing state.
This last power law decay indicates that the mean lifetime to reach consensus for
the AB-model does not characterize the dynamics on these networks and that
metastable states exist at all time scales, as we discuss below. Additionally, the
difference with the randomized networks in several orders of magnitude for the
extinction times, which increases with system size, shows that the network with
communities slows down the dynamics significantly. All together, these results
manifest a sensitivity of the AB-model to the mesoscale network structure which
is not found for the voter model.

Fraction of alive runs

The lifetime of a run is defined as the number of time steps it takes to reach either of
the absorbing states. Figure 4.4 shows the fraction of alive runs, that is, the fraction
of simulations which still have not reached an absorbing state at time t, P(t) = 1−∫ t

0 p(t′)dt′, where p(t) is the probability distribution of lifetimes† (see Section 2.5).
For the voter model, the fraction of alive runs decreases exponentially in both
the original and randomized networks (Figure 4.4-inset), giving a characteristic
time for the dynamics. This is in agreement with previous results for the voter
model in high dimensional complex networks [138]. A rather different result
is shown for the AB-model (Figure 4.4), where we find a power law behavior
P(t) ∼ t−α, α ≈ 1.3, so that a mean lifetime of the realizations of the AB-model
does not give a characteristic time scale‡. At any time there are alive realizations
which have not reached the absorbing state. Different parameterizations of the

∗This behavior is similar to the one previously found in a random network obtained with the
Watts-Strogatz algorithm (p = 1.0); see Figure 3.12.

†In our numerical analysis, we use P(t) instead of p(t) in order to reduce the fluctuations in the
tails of the distribution.

‡This is because for exponents 1 < α < 2, the mean lifetime is well defined, but the second
moment of the probability distribution of lifetimes, p(t) ∼ t−(α+1), diverges.
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Figure 4.4: Fraction of alive runs in time for networks with communities
(solid symbols) and randomized networks (empty symbols). AB-model
(double logarithmic plot); system sizes N = 100, 400, 2500, 10000 from
left to right, with averages taken over different realizations of the network
(400 − 5000 depending on system size), with 10 runs in each. Inset: voter
model (semilogarithmic plot). System sizes N = 2500, 10000. Averages are
taken over 100 different realizations of the networks, with 10 runs in each.

network model (not shown) produce the same qualitative phenomenon: we have
modified the number of secondary contacts from each initial contact, nsec, using
uniform probability distributions between 0 and 1, 2, 4, obtaining also a power
law for the distribution of alive runs with an exponent smaller than 2, which
indicates the robustness of this result. This behavior is different from the usual
exponential decay of the tails of P(t) observed for the AB-model, either in regular,
small world and random networks (see Sections 3.2-3.3; [198]), or Barabási-Albert
scale-free networks (not shown), and reflects the existence of metastable states
at all time scales. This fact indicates that the anomalous lifetime distribution is
linked to the structure of the network at a mesoscale level. Such structure seems
to give rise to trapped metastable states at all time scales. To substantiate this
claim, we next look at some detailed dynamics.

Discussion

Further understanding of the dynamical process can be obtained by considering
the measure called overlap of a link, O(i, j) [49]. This characteristic of a link
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between two nodes (i and j) tells us essentially which fraction of their neighbors
is shared by the nodes. Within a community, nodes tend to share many neighbors,
and thus overlap is high, while edges between communities have low or zero
overlap. Considering dynamics of competing options on a network, the overlap
can be used to identify spatially homogeneous domains in the network: if the
average overlap 〈O〉 of the links in the interface between domains is low, we
may assume that the domain boundaries follow the community boundaries. On
the other hand, if the overlap at the interfaces is high, it indicates that nodes
within communities are in different states. For the voter model dynamics, the
average overlap of interface links drops to about 80 percent of the average value
〈O〉 = 0.27 of the whole network, while in the AB-model it drops to under 70
percent. This indicates that in both models the interfaces between domains lie
preferably in low overlap links, so that domains of the same option follow the
community structure, but in the AB-model these domains are correlated with
the communities closer.

The difference between the two dynamics is better understood by looking at
snapshots of the dynamics (Figure 4.5) which show the characteristic behavior
for each of the models starting from random initial conditions. In the voter model
(left), the homogeneous domains of nodes with the same option appear to fol-
low the community structure, but a particular community (topological region)
may change the option adopted by the community rather quickly (t = 50, 60, 70).
At variance with this behavior, in the AB-model (right) spatial domains grow
and homogenize steadily in a community without much fluctuation. For this
dynamics, communities that have adopted a given option, and which are poorly
linked to the rest of the network, take a long time to be invaded by a differ-
ent option, acting therefore as topological traps. As an example, we show two
trapped metastable states at t = 430 and t = 1000, where the interface stayed
relatively stable for a prolonged period∗ (about 100 and 1000 time steps, respec-
tively). These different behaviors reflect in the community structure the two
different interfacial dynamics discussed in Section 3.2: interfacial noise driven
dynamics for the voter model, and curvature driven dynamics for the AB-model
with agents in the AB-state at the interfaces.

Different realizations of the algorithm to construct the network produce different
detailed structures of the network. The power-law for the fraction of alive runs
in Figure 4.4 is a statistical effect of the average over such realizations. The time
evolution of the average interface density on single realizations of the network,

∗Notice that a qualitatively similar picture has been obtained by Blondel et al. [46] when
analyzing real data from customers of a Belgian mobile phone network (see Figure 1.3). They also
find correlations between community structure and the language of the customers.
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Figure 4.5: Snapshots of the dynamics, with nodes in state A in black, B
in gray, and AB in white circled in black. Simulations start from random
initial conditions. Left: voter model. Right: AB-model; where we show
typical configurations of trapped metastable states (t = 430 and t = 1000).
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Figure 4.6: (a) Time evolution for the AB-model of the average interface
density on different realizations of the network with 2500 agents; 20000 runs
on each (empty symbols). The extreme cases were selected as examples of
networks where trapped metastable states (see text) are found often (©); and
found rarely (4). For comparison, the average over 500 networks (10 runs
on each) is also shown (�). Inset: time evolution for the voter model of the
average interface density for four realizations of the network model with
2500 agents; 5000 runs on each network. (b) Time evolution of the interface
density in single realizations of the AB-model on a network with 2500
agents. A class of realizations decay to the absorbing state after a coarsening
stage (solid black lines), while others fall in long-lived trapped metastable
states. The latter display several plateaus, indicating hierarchical levels of
ordering before reaching the absorbing state, or cascading between several

trapped metastable states.
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〈ρ〉, is shown for the AB-model in Figure 4.6(a). After the coarsening stage, we
observe different behaviors in the second stage of the decay of 〈ρ〉 depending
on the specific realization of the network: from broad tails to exponential-like
decays, with an intermediate behavior. On the contrary, and in agreement
with our previous discussion, the voter model dynamics (Figure 4.6(a), inset)
is not sensitive to the details of the network structure. For the AB-model some
realizations of the network topology produce particularly long lived metastable
states, while in others, corresponding to exponential-like decay of 〈ρ〉, they
are observed rarely∗. Plots of the interface density of individual runs on a
given network show a class of realizations with different plateaus (ordering
levels) where the system gets trapped for a long time (Figure 4.6(b)). These
trapped metastable states, analogous to those displayed in Figure 4.5-Right,
correspond to the structure in the network. The variety of traps and associated
different lifetimes seems to be the mechanism that causes an anomalous power
law distribution for the lifetimes.

♦ ♦ ♦

The main result obtained in this Section concerns the power law distribution for
the times to reach consensus in the AB-model, such that its mean lifetime does not
give a characteristic time scale for the ordering dynamics. This has been found to
be due to the existence of trapped metastable states at any time scale, appearing
when the noisy interface dynamics of the voter model becomes curvature driven
due to the introduction of the AB-state in the dynamics (AB-model).

Within this context, simpler configurations of community structure should be
considered in order to gain a deeper understanding of the microscopic mecha-
nisms underlying the dynamical effects observed for the AB-model. Therefore,
in the following Section we study sufficient conditions for the existence of broad
consensus time distributions in networks with mesoscale structure.

∗We note that although the details of each network realization matter for the occurrence of
trapped metastable states, the community size distribution detected by the k-clique-percolation
method [86] is the same for all the network realizations that we have considered. The available
statistical methods seem not to be sufficient to discern between the network topologies producing
many or few trapped metastable states.
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Figure 4.7: Fraction of alive runs at time t, P(t), for Erdős-Rényi networks
with different average degrees: 〈k〉= 10 (�), 〈k〉= 5 (4). Solid symbols,
network size N = 103; open symbols, N = 105. Averaged over 100 network

realizations, 100 runs in each (1000 in each for N = 103).

4.2

Sufficient conditions for broad lifetime distributions
in complex networks

In order to gain further understanding on the broad lifetime distributions ob-
tained in the previous Section, in the remainder we focus on the study of the
AB-model dynamics in networks with a predesigned mesoscale structure. As
a preliminary study, we consider random networks where we already identify
substructures causing broad distributions of lifetimes in random networks with
low average degree. To explain the observations therein, we introduce the con-
cept of dynamical robustness measured by the survival time (i.e., a characteristic
relaxation time) of relatively isolated groups of nodes in a state different from
the one in the final absorbing state. Then, we study the effect of the presence of
communities starting from an underlying random network and communities of
equal size, to consider later an exponential distribution for the sizes of different
communities.
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Figure 4.8: Time evolution of the fraction fm of nodes in the state (A or B)
that becomes the minority and finally dies out. We show several individual
runs. (a) ER network: 〈k〉 = 5, N = 105; (b) ER network: 〈k〉 = 10, N = 105.

4.2.1 Random networks

Erdős-Rényi Networks

We first consider the Erdős-Rényi (ER) random network topology (see Sec-
tion 1.2.3; [30]), in which each of the possible links between the N nodes is
present with probability p (link density). Notice that the network can equiv-
alently be characterized by the average degree 〈k〉= p(N − 1). We find that in
Erdős-Rényi networks the fraction of alive runs P(t) depends unexpectedly on
link density (Figure 4.7), so that, for high link densities up to a fully connected
network, P(t) is clearly exponential, but for low link densities it turns out to be
broader, indicating the existence of metastable states. The cases of 〈k〉 = 10 and
〈k〉 = 5 are selected to illustrate this difference.

The metastable states are visualized by displaying the fraction fm of nodes in
the minority state∗ in individual runs (Figure 4.8(a)). Figure 4.8(b) shows that
metastable states do not arise for 〈k〉 = 10. The observed metastable states
concern only a very small fraction of nodes and further analysis reveals that they

∗In fact, notice that the real minority state is the AB-state. However, for convenience we use the
term minority state to refer to the single-option state (A or B) with less agents in the system and which
finally dies out.
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Figure 4.9: (a) Schematic illustration of branches in the different ER net-
works studied. The root nodes are indicated by open circles. (b) The
fraction of alive runs P(t) for ER networks with 〈k〉 = 5 and N = 105, and
their two-cores. (c) ER networks with 〈k〉= 2 and N = 2 × 103, and their
two-cores. Averages over 100 network realizations, 100 runs in each (5000

network realizations for two-core of 〈k〉= 2).

are associated primarily with “branches”. We use the term branch to indicate
maximal treelike substructures that are connected to the rest of the network
through a node that has degree k > 2, which we call the root node of the branch
(see Figure 4.9(a) for illustration). Therefore, the metastable states found here are
trapped metastable states associated with branches. Branches can be removed
from the network (except for the root node) by successively removing nodes
of degree k = 1 until all the remaining nodes have degree k ≥ 2, that is, by
taking the two-core of the network [224]. We call diameter of the branch, the
maximal network distance from the root node to any other node in the branch.
Figure 4.9(a) displays schematically the difference between the ER networks with
〈k〉 = 5 and 10 with respect to the presence of branches. In the ER networks with
〈k〉 = 10 , typically only branches with diameter one are present, while branches
with diameter 2 or 3 arise frequently in ER networks with 〈k〉 = 5, often with
claw-like bifurcations.
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Taking the two-core of ER networks with 〈k〉 = 5 and running the AB-model in the
resulting networks confirms the role of branches in producing a deviation from
an exponential distribution in P(t), see Figure 4.9(b). The trapped metastable
states disappear and an exponential lifetime distribution is recovered. In very
sparse ER networks, illustrated by the case 〈k〉= 2 in Figure 4.9(c), a slight
deviation not explained by branches remains that could be attributed to the
largely chainlike structure of the networks∗. However, the branches are clearly
responsible for the longest-lived trapped metastable states.

Dynamical robustness and survival times

In order to characterize the behavior of relatively isolated groups of nodes that
remain in the minority state after most of the network has homogenized in either
state A or B, we introduce the concept of dynamical robustness against invasion
for a given topological structure. It concerns a group of nodes, G, subject to
dynamics of competing options. It measures the resistance of G against the
outside pressure applied to G by its neighbors, G′ (Figure 4.10). We initialize
the nodes in G to state B, and fix the nodes in G′ permanently to state A. The
dynamical robustness of G is then characterized by a survival time, τ, defined
as the characteristic time it takes for G to homogenize to state A. The dynamical
robustness of G becomes larger with increasing survival time.

Figure 4.10: Characterization of the dynamical robustness against invasion
for a given topological structure G. We show a schematic view for two

example cases: (a) branch excluding the root node; (b) clique.

As an example, consider the dynamical robustness of branches with diameters
2 and 3, one of them containing a bifurcation (Figure 4.11). The time it takes
for each of these topologies to homogenize to the consensus state appears to

∗Notice also that it has been argued that modularity may arise from fluctuations in sparse ER
networks [225].
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Figure 4.11: Fraction of alive runs P(t) for a chain (a branch with no bi-
furcations) with diameter 2 (open circles), a branch with diameter 2 with a
single bifurcation (diamonds), and a chain with diameter 3 (solid circles),
initialized such that the nodes denoted by open squares are permanently
set to one state, and the remaining nodes are initially set to the opposing

state (as in Figure 4.10(a)). We performed 10 000 runs in each topology.

be distributed exponentially, P(t) ∼ e−t/τ but with a different characteristic time
τ, corresponding to different time scales. For a branch with a given diameter,
bifurcations increase the survival time. It is noteworthy that, compared to the
times it takes for an ER network with no branches to reach consensus (Figure
4.9(b)), the time that a single branch may remain with the minority option is very
long.

Each branch of different diameter, and with a different number of bifurcations,
produces an exponential lifetime distribution with a different characteristic time
τ. The combination of various time scales leads to the observed broader than
exponential lifetime distribution in ER networks with low-link-density .

4.2.2 The role of communities

Networks with equally sized cliques

In this Section, we discuss the effect of communities on lifetimes of the system,
using simple test networks with equally sized communities. To keep things as
clear as possible, we use cliques, i.e., fully connected subgraphs, as communities.
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Figure 4.12: Generation of networks with equally sized cliques: (a) EDH
and (b) ERH. To obtain an ERH network of size N, we begin with an

underlying ER network with N/s nodes, where s is the clique size.

We denote by kc,out the clique out-degree, that is, the number of links connecting
each clique to outside nodes (note that the term out-degree here does not refer to
directed edges). For a node in a clique of size s, we denote the number of links
to the other nodes within the clique by kn,in = s − 1, and the average number of
links to nodes outside the clique by

〈
kn,out

〉
= kc,out/s ∗.

We use two different methods for connecting the cliques. In the first construction,
kc,out is equal for all cliques. We label these networks EDH, for Equal out-
Degree and Homogeneously sized cliques. The kc,out link ends are assigned
to randomly selected nodes in each clique, and then randomly paired, under
the condition that two link ends from the same clique are not allowed to be
connected (Figure 4.12(a)). In the second construction, we begin with an ER
network, with high link-density to avoid branches with diameter larger than
one, and replace its nodes with equally sized cliques (Figure 4.12(b)). Each of
the ends of the links of the underlying Erdős-Rényi network, which connect
two cliques, are again assigned to a randomly selected node in each clique. We
label these networks ERH, as they are based on an underlying ER network, and
consist of Homogeneously sized cliques. In ERH networks, kc,out is distributed
according to the Poisson distribution of the underlying ER network.

We have run the AB-model dynamics in different realizations of the EDH and
ERH networks with

〈
kc,out

〉
= 10 and various clique sizes s, always starting from

random initial conditions. Let us first obtain a detailed view of the time evolution
of the dynamics by monitoring the fraction of agents in each state within each
clique. Note that, because the AB agents do not tend to form AB domains (see
Section 3.2; [198]), the densities fA and fB of A and B agents within each clique
are practically complementary ( fB ≈ 1 − fA). Figure 4.13 displays fA within
each clique for a run in an ERH network, where each row corresponds to one

∗Notice that we use subindices n and c standing for node and clique, respectively.
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Figure 4.13: Time evolution of the fraction of A agents in each clique, fA,
labeled with IDs from 1 to 100. Gray scale: from white (all A agents) to
black (no A agents). Single run in an ERH network with clique size s = 10,

N = 1000, and
〈
kc,out

〉
= 10. The resolution is 10 time steps.

clique. The randomly initialized cliques very rapidly homogenize to either state
A (white) or B (black). The plot shows that cliques remain homogenized to either
state A or B during most of the run, and that they do not often flip from one
state to the other (this is also true for the EDH networks, not shown). Notice
that this was already qualitatively observed in the class of social networks with
communities analyzed in the previous Section (see Figure 4.5-Right). Two of the
clusters remained in the minority state B for long after the rest of the network was
homogenized to the opposing state, indicating a trapped metastable state. These
appeared frequently in the ERH networks, in contrast to the EDH networks.

Two typical runs that got stuck in trapped metastable states in the ERH network
topologies are presented in Figure 4.14, employing two measures: the number
nm of agents in the minority state (Figure 4.14(a)), and the interface density
ρ (Figure 4.14(b)). Run (2) corresponds to the detailed view in Figure 4.13.
We observe that nm decreases in steps of size s, indicative of cliques that are
homogenized to the minority state, which are consenting to the majority state
one by one. The number of minority agents rarely increases in the ERH networks.
A closer inspection of the topology of the network shows that the cliques that
remain longest in the minority state have a relatively small number of out-links,
although not necessarily only one (in runs (1) and (2) displayed in Figure 4.14,
kc,out = 4 and 6, respectively).
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Figure 4.14: Time evolution of (a) the number nm of agents in the minor-
ity state, and (b) interface density ρ, for two typical runs that developed
trapped metastable states in an ERH network, s = 10,

〈
kc,out

〉
= 10, N = 1000.

In order to shed more light on how cliques with various out-degrees resist chang-
ing their state, we study them in a controlled setting. According to our definition
of dynamical robustness, we initialize all agents within the clique to the state B,
and the links leading out of the clique are connected to nodes permanently in
state A (as shown in Figure 4.10(b)). As cliques remain mostly homogenized to
one state during the evolution of the dynamics, the resulting lifetime distribu-
tions are also relevant for understanding the resistance of communities against
changing their state within the network. Figure 4.15(a) displays the observed
fraction of alive runs for cliques of various sizes s and out-degrees kc,out. The dis-
tributions are roughly exponential, P(t) ∼ e−t/τ, and it turns out that their survival
times τ show a clear trend with the ratio r = kn,in/

〈
kn,out

〉
= s(s − 1)/kc,out, which

appears to be an appropriate topological measure of the dynamical robustness
for cliques. Figure 4.15(b) displays the relation τ(r), determined for cliques of
fixed size with varying clique out-degree. The time scales associated with the
invasion of cliques, and therefore their dynamical robustness, grow rapidly with
r.

Finally, let us observe the fraction of alive runs P(t) in networks with equally
sized cliques. In EDH networks with clique sizes s = 6, 8, 9, and 10, and clique
out-degree kc,out = 10, P(t) has an exponential tail (Figure 4.16(a)), indicating
that the presence of communities alone is not sufficient for a broad distribution
to appear. In these networks, all cliques have equal dynamical robustness. In
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Figure 4.15: Dynamical robustness of cliques (as in Figure 4.10(b), see
text). (a) The fraction of alive runs P(t) ∼ e−t/τ shows a trend with
r = s(s − 1)/kc,out. Various ratios r are represented by two pairs of (s, kc,out).

From left to right: r = 2: (6,15) and (3,3); r = 3: (6,10) and (4,4); r = 5: (6,6)
and (5,4); r = 7: (8,8) and (7,6); r = 10: (6,3) and (10,9). Averages calculated
over 10 000 runs in each topology. (b) Dependence τ(r). Clique sizes s = 6
(�), s = 10 (∗), and s = 13 (◦), and kc,out ranging from 1 to 15, 20, or 30

respectively, leading to the displayed r values.

contrast, in the ERH networks the resulting fractions of alive runs P(t) are clearly
broader than exponential, as depicted in Figure 4.16(b) for clique sizes s = 3, 6,
and 10, and average clique out-degree

〈
kc,out

〉
= 10. The variance in dynamical

robustness caused by the different clique out-degrees seems to play an important
role.

We probe the effect of the most isolated node groups in the ERH networks by
eliminating the least well connected cliques, i.e., those that are connected to the
network by a single link. This is done by taking the two-core of the underlying ER
network before replacing its nodes with cliques. We call these networks PERH
for “pruned” ERH. Figure 4.16(c) displays P(t) for ERH and PERH networks
with s = 10 and

〈
kc,out

〉
= 10. It is seen that pruning the network results in P(t)

decaying slightly faster, but remaining broader than exponential. This gives
further confirmation that the trapped metastable states with various time scales
produced by cliques with different out-degrees are responsible for the broader
than exponential lifetimes in the ERH networks.

The fraction of alive runs P(t) in the ERH networks shown in Figure 4.16(b)
has broad tails that appear power-law like. Moreover, they appear to broaden
with increasing clique size. When approximating these tails by power laws,
the exponents are far larger than those observed in the class of networks with
community structure studied in the previous Section (4.1), in which the range of
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Figure 4.16: Fraction of alive runs in EDH, ERH, and PERH networks with
N ≈ 103 and

〈
kc,out

〉
= 10. (a) EDH with clique sizes s = 6, 8, 9, and 10.

(b) ERH networks with clique sizes s = 3, 6, and 10. (c) ERH with s = 10
together with the corresponding PERH network. All cases averaged over
100 network realizations (except 103 for ERH s = 6), with 100 runs in each.

exponents was such that the variance of the lifetimes was not defined. Hence
the distributions observed here are fundamentally different from the findings in
Section 4.1. In order to obtain broader lifetime distributions, we apparently need
a broader distribution in the dynamical robustness of communities, which in the
case of cliques can be achieved by increasing variance in r. As it is more practical
to obtain large variance in r by varying s than kc,out, we take this approach in the
following Section.

Networks with a broad size distribution of clique sizes

In this Section, we study a network consisting of cliques with equal out-degree
kc,out and with an exponential clique size distribution, shifted to obtain a mini-
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Figure 4.17: Two typical runs that developed trapped metastable states in
EDE networks with kc,out = 3, µ = 1.2, smin = 3, and Nc = 270, leading to
N ≈ 103. Time evolution of (a) the fraction and (b) the number of agents in
the state that becomes the minority, and (c) the number of cliques in which

more than 90 percent of the agents are in the minority state.

mum clique size, smin. We construct networks from Nc cliques whose sizes s are
obtained as s = bxc+smin, where b c refers to rounding downwards and x is drawn
from the exponential distribution p(x) = 1

µ e−x/µ, leading to p(s) ∼ e−(s−smin)/µ for in-
teger values of s starting from smin. As with the EDH networks, the kc,out out-links
of each clique are randomly assigned to its nodes, and link ends are randomly
paired, except that no two link ends from the same clique are connected. We
label these networks as EDE, for Equal out-Degree and Exponential clique size
distribution.

We have shown above that the factor τ(r) of the exponential lifetime distribution
of a clique being “invaded”, grows very rapidly with r, which in turn grows
approximately as r ∼ s2. Therefore, the communities in EDE networks display a
large variance in dynamical robustness. Again, cliques remain homogenized to
either of the states A or B most of the time (not shown), but it turns out that some
of the smaller cliques frequently adopt the state of a larger clique homogenized to
the minority state. Figure 4.17(a) displays the fraction fm of nodes in the minority
state in a few typical runs that developed trapped metastable states in the EDE
networks. A close-up of the same runs (Figure 4.17(b)) shows that the number
nm of minority nodes fluctuates above a baseline of roughly 11 − 13 nodes. This
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Figure 4.18: Fraction of alive runs P(t) in EDE networks with various
factors µ of the clique size distribution p(s) ∼ e−(s−smin)/µ with smin = 3.
From left to right: µ = 1.0, 1.2, 1.5, 2.0 and Nc = 280, 270, 260, 225, leading
to N ≈ 1 000. Clique out-degree kc,out = 3. Results are averaged over
1 000 network realizations (2 000 for µ = 1.0) with 10 runs in each. The
fitted lines are power laws P(t) ∼ t−η with exponents from left to right:

η = 1.51, 1.3, 0.92.

seems to indicate a relatively large clique homogenized to the minority state
that is “converting” its smaller (and hence less dynamically robust) neighboring
cliques to the minority state, thereby producing around itself a buffer of cliques
in the minority state. This assumption is confirmed by closer inspection of the
networks, as well as by Figure 4.17(c), which shows the number Nc,m of clusters
in which more than 90 % of the agents are in the minority state. Most of the
time there is only one cluster in the minority state (corresponding to the baseline
in Figure 4.17(b)), while it is frequently joined by other, mostly smaller clusters,
judging by the combination of nm and Nc,m. The buffering effect is an additional
ingredient causing trapped metastable states with various time scales, on top of
the dynamical robustness that depends on r.

The EDE networks are shown to give rise to very broad lifetime distributions,
shown in Figure 4.18 for smin = 3, µ = 1.0...2.0, kc,out = 3, and N ≈ 1 000. Approxi-
mating the tails of the fraction of alive runs by a power law, P(t) ∼ t−η, the best
fits to the cases with µ = 1.0 and µ = 1.2 have exponents η = 1.51 and η = 1.3,
respectively. Values 1 < η < 2 imply that the variance of the lifetime probability
density distribution p(t) is not defined (the second moment of p(t) diverges).
In this way, we recover the result found in the previous Section (4.1), where a
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characteristic lifetime could not be defined because of the existence of trapped
metastable states at any time scale. The best fit to the case with µ = 1.5 has
an exponent smaller than unity, η = 0.92, indicating that a mean lifetime is not
defined either. We note that for each network realization, the community sizes
are sampled from a distribution, and the observed broad lifetime distribution is
a result of averaging over several runs in many network realizations.

4.3

Concluding remarks

In the first part of this Chapter (Section 4.1), we have considered the voter and the
AB-model in a class of social networks, studying metastable states and the role of
community structure in these consensus processes. The voter model dynamics,
driven by interfacial noise, is not particularly sensitive to the mesoscale structure
of the network: we find that all realizations of the dynamics are of the same class,
leading to a type of dynamical metastable states shared by other complex net-
works of high dimensionality without degree correlations. On the contrary, for
the AB-model dynamics, driven by curvature, we find different classes of realiza-
tions leading to a power law distribution for the times to reach consensus. This is
explained in terms of trapped metastable states associated with the structure of
the network. They seem to be a consequence of the curvature interface dynamics
in which mechanisms of local majority favor consensus in a given option in each
of the communities. Our result implies that a mean lifetime for these states does
not give a characteristic time scale of the ordering dynamics. We note that a
mean lifetime does not exist either for the zero-temperature kinetic Ising model
dynamics on regular [149] or complex networks [152], due to realizations that
lead to trapped states (infinite lifetime in finite systems). However, the novelty
of our finding is that in the AB-model we observe realizations with any lifetime.
For the AB-model in a regular two-dimensional lattice, metastable states with
stripe-like configuration have been found, but in that case the distribution of
lifetimes is exponential P(t) ∼ e−αt and the mean lifetime is representative of the
dynamics (see Section 3.2; [198]). The power-law distribution for the lifetimes
originates here in the multiplicity of different traps that reflects the mesoscale
structure of the networks.

In the second part of this Chapter (Section 4.2), we set out to determine minimal
network features that would produce broad lifetime distributions for the order-
ing dynamics described by the AB-model. We have introduced the concept of
dynamical robustness against invasion in relation to the dynamics of competing
options, in order to describe the resistance against outside influence of topolog-
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ical substructures that involve relative isolation from the rest of the network.
Dynamical robustness is characterized by the survival time of the substructure,
i.e., the characteristic time needed for this set of nodes before changing its option
towards the one of the surrounding majority. In all of the topologies in which a
broader than exponential distribution for the relaxation time of the whole sys-
tem arises, we have identified substructures that individually have exponential
lifetime distributions, implying a well defined survival time for such topologies.
The broad distribution appears because of the heterogeneity of these substruc-
tures: the network has a variety of different substructures with different survival
times; that is, with different dynamical robustness.

In an Erdős-Rényi network, branches were seen to produce exponential lifetime
distributions when isolated from the rest of the network. Their dynamical ro-
bustness has been proven to be affected by the diameter as well as the number
and location of bifurcations. Lifetime distributions also appear to be exponential
for isolated cliques, and the ratio r = kn,in/

〈
kn,out

〉
has proven an appropriate

topological measure to characterize the dynamical robustness of a clique.

In the case of networks with mesoscale structure built up from randomly con-
nected cliques, it has been shown that simply the presence of communities is not
a sufficient condition to produce a broader than exponential lifetime distribu-
tion. This was demonstrated by networks consisting of cliques with equal size
and same out-degree (EDH, for Equal out-Degree and Homogeneously sized
cliques), and hence equal dynamical robustness, where the lifetime distribution
for the whole network has proven to be exponential. Although the interactions
between the cliques in a network may cause clique lifetimes to deviate from
those that arise in isolation, the broader than exponential lifetime distributions
observed for ERH (for Erdős-Rényi underlying network and Homogeneously
sized cliques) and EDE (for Equal out-Degree and Exponential clique size distri-
bution) may in part be explained by the different dynamical robustness against
invasion of the cliques forming the network, leading to a combination of ex-
ponential processes with various time scales. The most interesting feature is
obtained for EDE networks where we have recovered the main results in Sec-
tion 4.1, i.e. very broad P(t) with a best power law fit such that the second
moment of the lifetime distribution is not defined, and therefore there does not
exist a characteristic time scale for the dynamics. The results in this Chapter
might be generic for a class of models where the dynamics at the interfaces is
curvature driven, such as SFKI models.

In summary, complementing studies on the effects of heterogeneous interacting
agents (a research line of growing interest [226]), we have seen that heterogeneity
at the mesoscale level of the network of interaction results in non-trivial effects
in the dynamics of ordering processes. A large variability in the dynamical
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robustness of different topological substructures (communities) appears to be a
sufficient mechanism for the absence of a characteristic time for the dynamics.
This mechanism causes the existence of trapped metastable states that survive
at any time scale.
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Chapter 5

Comparing models with two non-
excluding options

In Chapters 3 and 4 we have studied in detail the AB-model in different net-
works of interaction. In this Chapter, we are interested in another model with
two non-excluding options, which has its roots in semiotic dynamics: the Nam-
ing Game [116] . This model describes a population of agents playing pairwise
interactions in order to negotiate conventions, i.e., associations between forms
and meanings, and elucidates the mechanisms leading to the emergence of a
global consensus among them. For the sake of simplicity the model does not
take into account the possibility of homonymy, so that all meanings are inde-
pendent and one can work with only one of them, without loss of generality. An
example of such a game is that of a population that has to reach the consensus
on the name (i.e. the form) to assign to an object (i.e. the meaning) exploiting
only local interactions. However, it is clear that the model, originally inspired to
artificial intelligence experiments [116], is appropriate to address general situa-
tions in which negotiation rules a decision process on a set of conventions (i.e.
opinion dynamics, etc.). The Naming Game has been studied in fully connected
networks [116, 192, 227], regular lattices [193], small world networks [194] and
complex networks [195, 196], and it constitutes also the fundamental brick of
more complex models in computational cognitive sciences [228]. The final state
of the system is always consensus, but coexistence scenarios can be reached
introducing a simple confidence/trust parameter [197].

In this Chapter, we analyze and compare the AB-model and the Naming Game
restricted to two conventions, that is, the particular case in which only two
options compete within the population [197]. We show that even though these
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two models are equivalent at the mean field level, their microscopic differences
have nontrivial effects. To point them out, we first generalize the AB-model
introducing a confidence/trust parameter analogous to the one studied in [197]
for the Naming Game. From the point of view of the AB-model, this parameter
can be interpreted as a measure of the resistance of the agents to abandon an
acquired language, and reconnects to the concept of inertia already introduced
in extensions of the voter model [210, 213]. We show that the transition to
an asymptotically stable disordered state observed in the Naming Game [197]
is absent in the AB-model, and we investigate the microscopic origin of this
difference. Then we focus on the interface dynamics in one and two-dimensional
lattices for the original models, pointing out that beyond a qualitative analogy
of the behaviors observed in the two models, the AB-model rules determine a
slower dynamics (publication in Ref. [217]).

5.1

The Naming Game vs the AB-model: generalized
models

We present here the two models considered in this Chapter: the generalized
Naming Game restricted to two conventions [192, 197] and the AB-model (see
Section 2.3), extended in such a way that confidence/inertia is considered. In
both models, we consider a set of N interacting agents embedded in a network.
At each time step, and starting from a given initial condition, we select randomly
an agent and we update its state according to the dynamical rules corresponding
to each model.

In the Naming Game, an agent is endowed with an internal inventory in which
it can store an a priori unlimited number of conventions. Initially, all inventories
are empty. At each time step, a pair of neighboring agents is chosen randomly,
one playing as “speaker”, the other as “hearer”, and negotiate according to the
following rules:

• the speaker selects randomly one of its conventions and conveys it to the
hearer (if the inventory is empty, a new convention is invented by the
speaker);

• if the hearer’s inventory contains such a convention, the two agents up-
date their inventories so as to keep only the convention involved in the
interaction, that is, they delete all their conventions but the one that has
just been transmitted by the speaker (success);
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Before game Convention Outcome P(outcome)
Sp Hr (Sp→ Hr) Sp Hr
A A A A A 1.0
A B A A AB 1.0
A AB A A A β

A AB 1.0 − β
AB A A (p=0.5) A A β

AB A 1.0 − β
B (p=0.5) AB AB 1.0

AB AB A (p=0.5) A A β
AB AB 1.0 − β

B (p=0.5) B B β
AB AB 1.0 − β

Table 5.1: Typical interactions in the 2c-Naming Game. Agents are identi-
fied by the conventions contained in their inventories, i.e. an agent can be
A, B or AB. The speaker (Sp) conveys a convention to the hearer (Hr). In
case it stores both A and B (i.e. it is an AB agent), one of them is randomly
selected (with probability p = 0.5). After the game, the agents modify their
inventories according to the rules described in the text. The post-success
rearrangement takes place with a probability depending on β, P(outcome)
(the original Naming Game rules correspond to the case β = 1). Notice that

the model is symmetric under the exchange of A and B.

• otherwise, the hearer adds the convention to those already stored in its
inventory (failure).

Here we are interested in the particular case in which a population deals with
only two competing conventions (say A or B) [197]. We therefore assign to each
agent one of the two conventions at the beginning of the process, preventing in
this way further invention (that can happen only when the speaker’s inventory
is empty). Moreover, we adopt the generalized Naming Game scheme [197],
in which a confidence/trust parameter, β, determines the update rule following
a success: with probability β the usual dynamics takes place, while with the
complementary probability 1 − β nothing happens. The original model is thus
recovered for β = 1. For brevity we refer to this setting (generalized Naming
Game restricted to two conventions) as the 2c-Naming Game. In this simplified
case (for which typical interactions are shown in Table 5.1), it is easy to see that
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the transition probabilities for the agent i are the following [197]:

pi,A→AB = ni,B +
1
2

ni,AB, pi,B→AB = ni,A +
1
2

ni,AB (5.1)

pi,AB→A =
3β
2

ni,A + βni,AB, pi,AB→B =
3β
2

ni,B + βni,AB (5.2)

where ni,l
∗ (l=A, B, AB) are the fraction of neighboring agents storing in their

inventory the conventions A, B or both A and B, respectively.

In this Chapter, we extend the original AB-model (see Section 2.3) in analogy to
the extension proposed for the Naming Game above. The transition probabilities
are the following:

pi,A→AB =
1
2

ni,B, pi,B→AB =
1
2

ni,A (5.3)

pi,AB→A =
1
2
β(1 − ni,B), pi,AB→B =

1
2
β(1 − ni,A) (5.4)

An agent abandons an option or language according to the dynamics of the AB-
model (changes from AB to A or B) with a probability β, while with a probability
1 − β nothing happens. In the context of language competition, the parameter
β can be interpreted as a measure of the resistance or inertia to stop using
a language, and at the same time, as a reinforcement of the status of being
bilingual, which was not taken into account in the original model (recovered by
setting β = 1)†. From the point of view of statistical physics, the parameter β in
the modified AB-model recalls the concept of inertia defined in recent extensions
of the voter model. In this context, assuming for instance that inertia depends
on the persistence time of a voter’s current opinion leads to a parameter region
where an increasing inertia causes a faster consensus [213], while adding memory
effects in the form of noise reduction determines the emergence of surface tension
[210].

In both models, a unit of time is also defined as N iterations, so that at every
unit of time each agent has been updated on average once. In order to describe
the dynamics of the system, we also use as an order parameter the interface
density, ρ, defined as the fraction of links connecting nodes in different states
(see Section 2.5).

∗For convenience, we use this notation in this Chapter.
†Notice that small β corresponds to large inertia and vice-versa.
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5.2

Macroscopic description

In the previous Section, we have presented the microscopic description of the 2c-
Naming Game and the AB-model, that is, the set of local interactions among the
agents. In order to have a macroscopic description of the dynamical evolution
of the system as a whole, we derive the mean-field equations for the fraction of
agents in each state. For the 2c-Naming Game [197]:

dnA

dt
= −nAnB + βn2

AB +
3β − 1

2
nAnAB (5.5)

dnB

dt
= −nAnB + βn2

AB +
3β − 1

2
nBnAB (5.6)

and nAB = 1−nA−nB; where nl (l=A, B, AB) are the total fraction of agents storing
in their inventory the conventions A, B or both A and B, respectively.

The stability analysis shows that there exist three fixed points [197]: (1) nA =
1,nB = 0,nAB = 0; (2) nA = 0,nB = 1,nAB = 0 and (3) nA = b(β),nB = b(β),nAB =

1 − 2b(β), with b(β) =
1+5β−

√
1+10β+17β2

4β (and b(0)=0). An order-disorder transition
occurs for a critical value βc = 1/3. For βc > 1/3 consensus is stable. For βc < 1/3
a change of stability gives place to a stationary coexistence of nA = nB and a
finite density of AB agents nAB, fluctuating around the average values b(β) and
1 − 2b(β). In the Naming Game with invention, in fact, the one observed at
βc = 1/3 is the first of a series of transitions yielding the asymptotic survival of a
diverging (in the thermodynamic limit) number of conventions as β→ 0 [197].

For the AB-model:

dnA

dt
=

1
2

(−nAnB + βn2
AB + βnAnAB) (5.7)

dnB

dt
=

1
2

(−nAnB + βn2
AB + βnBnAB) (5.8)

and nAB = 1 − nA − nB.

These equations have three fixed points: (1) nA = 1,nB = 0,nAB = 0; (2) nA =
0,nB = 1,nAB = 0 and (3) nA = f (β),nB = f (β),nAB = 1 − 2 f (β) with f (β) =
3β−
√
β(β+4)

2(2β−1) . Their stability is addressed in the next Section.

Notice that in both models, at β = 0 the third fixed point becomes a stable
absorbing state in which the system reaches consensus in the AB-state.
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Figure 5.1: AB-model: time evolution of the average interface density, 〈ρ〉,
in a fully connected network of N = 10000 agents for different values of β.
From left to right: β = 1.0, 0.2, 0.05, 0.01, 0.002, 0.0005, 0.0001, 0.0. Averages
over 1000 runs. Inset: Scaling of the average time to reach consensus with
β for N = 10000: τ ∼ β−1. Averages over 200-800 runs depending on the

value of β.

Surprisingly, the two original models (β = 1) are equivalent in the mean-field
approximation. There is just a different time scale coming from the prefactor
1/2 in the AB-model (Equations (5.7) and (5.8)). The mean-field approximation
is exact in the thermodynamic limit, and valid for large systems in fully con-
nected networks. However, the two models differ at their local interactions (see
Equations (5.1-5.4) for β = 1). To explore the effects of these differences at the
microscopic level, in Section 5.3 we investigate, in a fully connected network, the
role of the parameter β as described in Equations (5.5-5.8), while in Section 5.4 we
focus on the interface motion in regular lattices for the original models (β = 1).

5.3

Order-disorder transition

Here we consider the extension of the AB-model presented above in a fully
connected network, with the aim to explore a possible order-disorder transition
in β similar to the one found in the 2c-Naming Game. In Figure 5.1 we show
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the time evolution of the average interface density, 〈ρ〉, for different values of
the parameter β. For large values of β, 〈ρ〉 reaches a plateau followed by a
finite size fluctuation that drives the system to an absorbing state. However, for
β . 0.01 we observe a non-monotonic∗ time evolution for 〈ρ〉: after 〈ρ〉 reaches
the plateau, it increases again, reaching a maximum value after which a finite
size fluctuation drives the system to consensus. In finite systems and for β = 0,
the system reaches a constant value of 〈ρ〉, a frozen state corresponding to almost
consensus in the AB-state, except for a small fraction of agents (less than 1% on
average for N = 10000). This fraction decreases as N increases, and complete
consensus in the AB-state is reached in the thermodynamic limit (see stability
analysis in the previous Section). For β = 0, pAB→A = pAB→B = 0, so the only
possible evolution is that A and B agents move towards the AB-state. At the last
stage of the dynamics, when nA and nB approach to zero, as soon as one of the
two single-option densities, ni, vanishes, n j remains constant (i, j = A,B, i , j)
because p j→AB ∼ ni, giving rise to the small fraction of agents in the state j
present in the frozen state. The average time to reach consensus scales with beta
as τ ∼ β−1 (Inset in Figure 5.1), as observed for the 2c-Naming Game for β > βc
(τ ∼ (β − βc)−1) [197]†.

Contrary to the order-disorder transition described in Section 5.2 obtained in
the 2c-Naming Game, there is no order-disorder transition in the AB-model: at
β = 0, the system reaches trivially a frozen state (dominance of the AB-state,
with complete consensus in the thermodynamic limit); while for β > 0 the final
absorbing state is, as usual, consensus in the A or B option. Even though the two
original models are equivalent in the mean-field approximation (case β = 1), we
observe two different behaviors when the parameter β is taken into account. This
can be shown formally by looking at the time evolution of the magnetization,
m ≡ nA −nB. For the 2c-Naming Game and the AB-model, we have respectively:

dm
dt

=
3β − 1

2
nABm (5.9)

dm
dt

=
1
2
βnABm (5.10)

In Equation (5.9), we can observe the origin of the order-disorder transition
described in Section 5.2 for the 2c-Naming Game. The time derivative of the
magnetization, dm

dt , vanishes at the critical point βc = 1/3. For βc > 1/3, sign( dm
dt ) =

sign(m), and therefore |m| → 1: the system is driven to an absorbing state of

∗A non-monotonic time evolution for 〈ρ〉of different nature has also been observed in the Axelrod
Model [201, 229].

†Notice that since the two models are equivalent in the mean field for β = 1, the time to reach
consensus scales with the system size in both models as τ ∼ ln N, indicating that τ increases slowly
with N (see Figure 3.1 for the AB-model and [227] for the Naming Game).
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Figure 5.2: AB-model: time evolution for a typical realization of the density
of agents in state A, nA (dotted red), in state B, nB (dotted black), and in
state AB, nAB (dashed); and of the interface density, ρ (solid line). In the
plateau, nA ∼ nB ' 0.1, while the majority of agents are in the AB-state.

Fully connected network, β = 0.01 and N = 10000 agents.

consensus in the A or B option. For βc < 1/3, sign( dm
dt ) = −sign(m) and |m| →

0, giving rise to the stationary coexistence of the three phases, with nA = nB
and a finite density of AB agents. For the AB-model, instead, we can see in
Equation (5.10) that for β > 0, sign( dm

dt ) = sign(m) so that consensus in the A or B
option is always reached. The time derivative of the magnetization, dm

dt , vanishes
at β = 0, where the dynamics gets stuck in an absorbing state corresponding
to consensus in the AB-state in the thermodynamic limit. Therefore, the order-
disorder transition observed in the 2c-Naming Game does not exist.

The reason for the different behavior shown above has to be found in the differ-
ences that the original models have at the microscopic level, which give rise to
different mean field equations for β , 1 when this parameter is introduced in the
AB→ A and AB→ B transition probabilities (Equations (5.2) for the 2c-Naming
Game and (5.4) for the AB-model). The fact that in the AB-model, A and B agents
do not feel the influence of AB agents is the key point which explains the absence
of a transition for this model. For the case β = 1, in the 2c-Naming Game the
second term in Equation (5.1) (influence of AB agents on the A or B agents) and
the first term in Equation (5.2) (influence of the A or B agents on the AB agents)
combine in such a way that the mean-field equations are equivalent to the ones in
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the AB-model. However, when β < 1 the combination of these terms originates
the order-disorder transition from an absorbing final state towards a dynamical
stationary state of coexistence, as found in [197].

To understand the non-monotonic time evolution of the average interface density
〈ρ〉 shown in Figure 5.1 for β . 0.01, we show in Figure 5.2 the time evolution
of ρ and the densities of agents in each state, nA, nB and nAB, for a typical
realization of the dynamics and a given small β. Because of the inertia of the AB
agents to move away from their state (small β), at the beginning we observe an
increase of nAB together with the corresponding decrease of nA, nB and ρ. Then,
ρ and the three densities reach a plateau. Most of the agents are in the AB-state,
while a competition between options A and B takes place, with nA ' nB < nAB.
This configuration lasts longer as we increase the system size. At a certain point,
however, a system size fluctuation drives the density of one of the two states (A in
the Figure) to zero, while the other (B in the Figure) starts gaining ground. Since
there are less and less agents in the state becoming extinct, and agents having
one option do feel only the presence of agents in the opposite state, agents in
the dominant state become more and more stable, until, when the other state
disappears, they become totally stable. During this process, the interface density
increases as nAB decreases. The peak of ρ corresponds to the point where nAB = ni
(being i the state which takes over the whole system, B in the Figure). When one
of the states has vanished (A in the Figure), the AB agents slowly move towards
the remaining state (B in the Figure) and the system reaches consensus.

5.4

Interface dynamics: 1-d and 2-d lattices

In this Section, we study and compare the interface dynamics in regular lattices
with periodic boundary conditions for the two original models (β = 1). The
2c-Naming Game has been shown to exhibit a diffusive interface motion in a
one-dimensional lattice, with a diffusion coefficient D = 401/1816 ' 0.221 [193].
We therefore focus on the AB-model and, to analyze the interface dynamics in
a one-dimensional lattice with N agents, we consider a single interface between
two linear clusters of agents. In each of the clusters, all the agents are in the
same state. We consider a cluster of agents in the state A on the left and another
cluster of agents in the state B on the right. We call Cm an interface of m agents
in state C (for clarity, here C labels an AB agent). Due to the dynamical rules,
the only two possible interface widths are C0, corresponding to a two directly
connected clusters · · AAABBB · ·, or C1, corresponding to an interface of width
one, · ·AAACBBB · ·. It is straightforward to compute the probability p0,1 = 1/2N
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Figure 5.3: AB-model: evolution of the position of an interface in a one-
dimensional regular lattice. Top: time evolution of the distribution P(x, t).
Bottom: time evolution of the mean square displacement 〈x2(t)〉 = 2Dexpt.
The value Dexp = 0.06205 obtained from the fitting is in perfect agreement

with the theoretical prediction D = 1/16 = 0.0625.

that a C0 interface becomes a C1 in a single time step. Otherwise, it stays in C0. In
the same way, p1,0 = 1/2N. We are now interested in determining the stationary
probabilities of the Markov chain defined by the transition matrix:

M =

(
1 − 1

2N
1

2N
1

2N 1 − 1
2N

)
(5.11)

in which the basis is {C0,C1}. The stationary probability vector, P = {P0,P1}

is computed by imposing P(t + 1) − P(t) = 0, i.e., (MT
− I)P = 0. We obtain

P0 = 1/2,P1 = 1/2. Since the interface has a bounded width, we assume that
it can be modeled as a point-like object localized at position x = (xl + xr)/2,
where xl is the position of the rightmost site of cluster A, and xr the position
of the leftmost site of cluster B. An interaction Cm → Cm′ corresponds to a set
of possible movements for the central position x. We denote by W(x → x ± δ)
the transition probability that an interface centered in x moves to to the position
x ± δ. The only possible transitions are: W(x→ x ± 1

2 ) = 1
4N P0 + 1

4N P1. Using the
results obtained for the stationary probability vector we get W(x→ x ± 1

2 ) = 1
4N .

We are now able to write the master equation for the probability P(x, t) to find
the interface in position x at time t. In the limit of continuous time and space:
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P(x, t + 1) ≈ P(x, t) + δt
∂P(x, t)
∂t

, (5.12)

P(x + δx, t) ≈ P(x, t) + δx
∂P(x, t)
∂x

+ (5.13)

+
1
2

(δx)2 ∂
2P(x, t)
∂x2

In this limit, the master equation reads:

∂P(x, t)
∂t

=
D
N
∂2P(x, t)
∂x2 (5.14)

where the diffusion coefficient is D = 1/16 = 0.0625 (in the appropriate di-
mensional units (δx)2/δt). These analytical results are confirmed by numerical
simulations. In Figure 5.3 we show the time evolution of P(x, t), which displays
a clear diffusive behavior. The mean-square distance follows a diffusion law
〈x2
〉 = 2Dexpt, where Dexp = 0.06205 is the diffusion coefficient obtained numeri-

cally.

Therefore, the AB-model and the 2c-Naming Game display the same diffusive
interface motion in one-dimensional lattices, but they differ in about one order of
magnitude in the diffusion coefficient, indicating that in the AB-model interfaces
diffuse much slower. It can also be shown that the growth of the typical size of
the clusters, ξ, is ξ(t) ∼ tα, with α ' 0.5, leading to the well known coarsening
process found also in SFKI models [110].

Regarding two-dimensional lattices, it has been shown that starting from random
initially distributed options among the agents, both models present a coarsening
ξ(t) ∼ tα, α ' 0.5, corresponding to a curvature driven interface dynamics (see
Section 3.2 and [198] for the AB-model; see [193] for the Naming Game) with AB
agents placing themselves at the interfaces between single-option domains. In
Figure 5.4 we show snapshots comparing the two dynamics, starting from initial
conditions where we have half of the lattice in state A, and the other half in state
B. Given that the interface dynamics is curvature driven, flat boundaries are
very stable. In both models these stripe-like configurations give rise to trapped
metastable states, already found in Section 3.2 for the AB-model: dynamical
evolution of interfaces close to flat boundaries but with interfacial noise present.
These configurations evolve by diffusion of the two walls (average interface
density fluctuating around a fixed value) until they meet and the system is
driven to an absorbing state. In the AB-model, also when starting from options
randomly distributed through the lattice, 1/3 of the realizations end up in such
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Figure 5.4: Stripe-like trapped metastable states: initial conditions with
one half of the lattice in state A, and the other half in state B. N = 642.
Top: AB-model: t=0, 100, 200, from left to right. Bottom: 2c-Naming Game:
t=0, 50, 100, from left to right. Snapshots are selected taking into account
the different time scale coming from the prefactor 1/2 in the mean field

Equations (5.7) and (5.8). Color code: black (A), red (B), white (AB).

stripe-like metastable states (see Section 3.2; [198]). We checked that the same
turns out to be true also for the 2c-Naming Game. In the usual Naming Game
with invention, instead, stripes are better avoided since in that case the state
with only two options at play is usually reached when one cluster is already
considerably larger than the other.

We show in Figure 5.5 the distribution of survival times for the two models,
i.e., the time needed for a stripe-like configuration to reach an absorbing state.
Both distributions display an exponential tail, p(t) ∼ e−t/τi with a characteristic
time τi, where i is a label accounting for the AB-model (AB) or the Naming
Game (NG). The characteristic time for the AB-model is however larger than
the one for the 2c-Naming Game (τAB > τNG), confirming that the AB-model
interface dynamics slows down the diffusion of configurations such as stripes
in two dimensional lattices, or walls in one dimensional lattices. Notice that
in both cases, the differences found are beyond the trivial different time scale
corresponding to the prefactor 1/2 in the mean field equations for the AB-model
(Equations (5.7) and (5.8)).
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Figure 5.5: Probability distribution for the time to reach consensus, starting
from stripe-like configurations. Two-dimensional regular lattice, N = 642.
Black: 2c-Naming Game, τNG ' 1.2 · 104; red: AB-model, τAB ' 6.3 · 104.

Averages are over 5000 runs.

5.5

Concluding remarks

We have analyzed and compared the 2c-Naming Game and the AB-model, origi-
nally defined in the context of language emergence and competition, respectively.
We have shown that although these two models are equivalent in mean-field,
their microscopic differences give rise to different behaviors. In particular, we
have focused on (1) the extension of the models by introducing the parameter β,
describing the inertia of the agents to abandon an acquired option, and (2) the
interface dynamics in one and two-dimensional lattices.

As for the extension of the models incorporating the parameter β, even though
the original models are equivalent in the mean field approximation for β = 1,
an important difference concerns the existence of an order-disorder transition.
While the 2c-Naming Game features an order-disorder transition between con-
sensus and stationary coexistence of the three phases present in the system, in the
AB-model such a transition does not exist. Instead, the model features a trivial
frozen state for β = 0 (dominance of the AB-state, with complete consensus in the
thermodynamic limit), and the usual consensus in the A or B state, for 0 < β ≤ 1.
In this perspective, it is interesting to note that a different order-disorder transi-
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tion between consensus and coexistence has also been found in a two-parameter
family of models which interpolates between the voter model and the Naming
Game [214]. Moreover, and contrary to the original AB-model (β = 1), where
the AB agents are systematically the minority state in the system, it is worth to
note that for β small enough, AB agents become the majority during the transient
stage before one of the options takes advantage and the system finally reaches
an absorbing state. In addition, when a single-option dies out (also in the case
of small β) this option still remains in the system through the AB agents, which
disappear much later.

As for the interface dynamics, we have shown in one-dimensional lattices that
the AB-model has a diffusive interface motion analogous to the one already
found in the 2c-Naming Game, but with a diffusion coefficient nearly one order
of magnitude smaller. In two-dimensional lattices, we have studied the time
evolution of stripe-like configurations, which correspond to trapped metastable
states in both models but have a larger lifetime in the AB-model. Both results
indicate that in comparison to the 2c-Naming Game, the AB-model interface
dynamics slows down the diffusion of these configurations (walls in d = 1 and
stripes in d = 2).
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Chapter 6

Macroscopic descriptions and
order-disorder transitions

In the previous Chapters, our study has focused on theoretical and numerical
analyses of the consensus models for the case of symmetrical prestige (s = 0.5)
and neutral volatility (a = 1). For these parameter values, the microscopic
Abrams-Strogatz model coincides with the voter model, while the Bilinguals
model reduces to the AB-model (see Chapter 2). The emphasis has been in
describing the effects of the third AB-state in the consensus dynamics with two
non-excluding options as compared with the reference case provided by the voter
model. This includes the characterization of the different processes of domain
growth (Chapter 3; [198]), and the role of the network topology, like small world
networks (Chapter 3; [198]) and networks with mesoscopic community structure
(Chapter 4; [215, 216]). The AB-model has also been studied in comparison to
other models with two non-excluding options like the Naming Game (Chapter 5;
[217]).

However, we have not yet considered the study of the AS-model and the Bilg-
model in the volatility-prestige parameter space. Beyond the qualitative de-
scription of the phenomenology of these models presented in Section 2.4, in this
Chapter we present a detailed analysis of the role of these parameters in the
general dynamical properties of the models. Notice that for the voter model,
macroscopic field theory descriptions [212, 230] as well as macroscopic and an-
alytical solutions in different complex networks [133] have been reported, but
there is still a lack of useful macroscopic descriptions of these models for arbitrary
values of the prestige and volatility parameters. The general aim of this Chapter
is then to study the behavior of these models for a wide range of these param-
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eters values, and to derive appropriate macroscopic descriptions (mean field,
pair approximation and field description; depending on the network structure)
that account for the observed order-disorder transitions (consensus-coexistence)
in the volatility-prestige parameter space. In particular, we analyze how the
introduction of an intermediate AB-state affects the scenario of coexistence, by
comparing the regions of consensus and coexistence of the AS-model and the
Bilg-model in the parameter space. In addition, we study how these regions are
modified, within the same models, when the dynamics takes place on networks
with different topologies: fully connected networks, complex random networks
and two-dimensional lattices (publication in Ref. [218]).

6.1

Abrams-Strogatz model

We study in this Section the AS-model, the two-state model introduced in Chap-
ter 2 which was originally developed to account for the competition between
two languages [13] (see Section 2.1 for a detailed description).

In order to perform an analytical and numerical study of the evolution of the
system, and in an analogy to spin models, in this Chapter we consider A and B
agents as spin particles in states s = −1 (spin down) and s = +1 (spin up) respec-
tively. Therefore, the state of the system in a given time can be characterized by
two macroscopic quantities: the global magnetization, m ≡ 1

N
∑N

i=1 si, where si
with i = 1, ..,N is the state of agent i in a population of size N; and the interface
density, ρ ≡ 1

2Nl

∑
<i j>(1 − sis j)/2, where Nl is the number of links in the network

and the sum is over all pairs of neighbors. It corresponds to the density of
neighboring nodes in an opposite state (see also Section 2.5). The magnetization
measures the balance in the fractions of A and B agents (m = 0 corresponding to
the perfectly balanced case), whereas ρ measures the degree of disorder in the
system. The case |m| = 1 and ρ = 0 corresponds to the totally ordered situation,
with all agents in the same state, while |m| < 1 and ρ > 0 indicates that the system
is disordered, that is, composed by both types of agents.

Our aim in this Section is to obtain differential equations for the time evolution
of the average values of m and ρ, as these equations are useful in the study of
the properties of the system from an analytical point of view. In particular we
concentrate in their stability analysis, in order to explain the observed order-
disorder transitions (consensus-coexistence) in the volatility-prestige parameter
space. We start by deriving these equations in the case of a fully connected
network, that corresponds to the simplified assumption of a “well mixed” popu-
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lation, widely used in population dynamics. We then obtain the equations when
the topology of interactions between the agents is a complex random network.
We shall see that the results depend on the particular properties of the network
under consideration, reflected in the moments of the degree distribution.

6.1.1 Fully connected networks

We consider a fully connected network, that is, a network composed by N nodes
in which each node has a connection to any other node. In a time step δt = 1/N, a
node i with state s (s = ±1) is randomly chosen. Then, according to the transition
probabilities (2.1) introduced in Chapter 2, i switches its sate with probability

P(s→ −s) =
1
2

(1 − sv) (σ−s)
a , (6.1)

where σ−s is the density of neighbors of i with state −s, that in a fully connected
network is equal to the global density of −s nodes. Given that the total number
of agents is conserved we have that σ− + σ+ = 1. For convenience, we define
the bias v ≡ 1 − 2S (−1 < v < 1) as a measure of the preference for one of the
two states (where S is the prestige parameter∗), with v > 0 (v < 0) favoring the
s = 1 (s = −1) state. In the case that the switch occurs, the density σs is reduced
by 1/N, for which the magnetization m = σ+ − σ− changes by −2s/N. Then, the
average change in the magnetization can be written as†

dm(t)
dt

=
1

1/N

[
σ−P(− → +)

2
N
− σ+P(+→ −)

2
N

]
. (6.2)

Using Eq. (6.1) and expressing the global densities σ± in terms of the magnetiza-
tion, σ± = (1 ±m)/2, we arrive to

dm(t)
dt

= 2−(a+1)(1 −m2)
[
(1 + v)(1 + m)a−1

− (1 − v)(1 −m)a−1
]
. (6.3)

Equation (6.3) describes the evolution of a very large system (N � 1) at the
macroscopic level, neglecting finite size fluctuations. This equation for the mag-
netization is enough to describe the system, given that the interface density ρ
can be indirectly obtained through the relation

ρ(t) = 2 σ+(t) σ−(t) =

[
1 −m2(t)

]
2

. (6.4)

∗For convenience, in this Chapter the prestige parameter is labeled as S to avoid confusion with
the spin state s.

†Notice that in Section 2.1 we have introduced an ordinary differential equation for the total
density of agents in state A (Eq. (2.2)), but for symmetry arguments, we use throughout this Chapter
the magnetization instead.
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Figure 6.1: Coexistence and consensus regions of the Abrams-Strogatz
model in a fully connected network. For values of the volatility parameter
a > 1, the stable solutions are those of consensus, i.e., all agents in state
A (ms = −1) or all in state B (ms = 1), whereas for a < 1 both options
coexist, with a relative fraction of agents that depends on a and the relative
prestige, measured by the bias v. In the extreme case v = −1 (v = 1), only
transitions towards A (B) are allowed, and thus only one consensus state is

stable, independent on a.

Stability

Equation (6.3) has three stationary solutions

m− = −1, m∗ =
(1 − v)

1
a−1 − (1 + v)

1
a−1

(1 − v)
1

a−1 + (1 + v)
1

a−1

and m+ = 1. (6.5)

The stability of each of the solutions depends on the values of the parameters a
and v. A simple stability analysis can be done by considering a small perturbation
ε around a stationary solution ms. For ms = m±, we replace m in Eq. (6.3) by
m = ±1 ∓ ε (with ε > 0), and expand to first order in ε to obtain

dε
dt

= 2−a
[
(1 ∓ v)εa−1

− 2a−1(1 ± v)
]
ε. (6.6)

When a < 1, εa−1
→ ∞ as ε → 0, thus both solutions m± are unstable, whereas

for a > 1, εa−1
→ 0 as ε→ 0, thus m± are stable. In the line a = 1, m+ is unstable

(stable) for v < 0 (v > 0), and vice-versa for m−. The same analysis for the
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Figure 6.2: Stationary solution m∗(a, v) for the Abrams-Strogatz model
(vertical axis) as a function of the two parameters of the model, a and v
(horizontal-plane). See Expression (6.5). Notice how m∗ approaches the
values of the two trivial stationary solutions, m− = −1 and m+ = +1 when
a → 1: for v > 0, lima→1± (m∗) = ∓1. The opposite holds for v < 0. The
non-trivial stationary solution, m∗, is effectively not defined at a = 1, and in
this case the system has only two stationary states, m− and m+. The Figure
illustrates the change of stability of m∗ at ac = 1. Notice that the voter model

corresponds to (a = 1,v = 0).

intermediate solution m∗ leads to

dε
dt

= 2−(a+1)(a − 1)
(
1 −m∗2

) [
(1 + v)(1 + m∗)a−2 + (1 − v)(1 −m∗)a−2

]
ε.

(6.7)

Then, m∗ is unstable (stable) for a > 1 (a < 1). In Figure 6.1, we show the regions
of stability and instability of the stationary solutions on the (a, v) plane obtained
from the above analysis. We observe a region of coexistence (m∗ stable) and one
of bistable consensus (m+ and m− stable).

The non-trivial stationary solution, m∗, is shown in Figure 6.2 as a function of
the parameters a and v. For the coexistence regime (a < 1), the absolute value
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of the stable stationary magnetization |m∗| increases with both, |v| and a. When
v , 0 the coexistence solution includes a majority of agents in the state with
higher prestige, and the rest of the agents in the one with lower prestige. On
the contrary, for the consensus regime (a > 1) |m∗| decreases with a and increases
with |v|.

In order to account for possible finite size effects neglected in Eq. (6.3) we have
run numerical simulations in a fully connected network. We first notice that
the solutions m = ±1 correspond to the totally ordered absorbing configurations,
that is, once the system reaches those configurations it never escapes from them.
This is because, from the transition probabilities Eq. (6.1), a node never flips
when it has the same state as all its neighbors. Thus, to study the stability
of these solutions we have followed a standard approach [128] that consists of
adding a defect (seed) to the initial absorbing state and let the system evolve
(spreading experiment). If, in average, the defect spreads over the entire system,
then the absorbing state is unstable; otherwise, if the defect quickly dies out,
the absorbing state is stable. For instance, to study the stability of m = −1, we
started from a configuration composed by N−1 down spins and 1 up spin (seed),
that corresponds to a magnetization m = −1 + 2/N & −1, and we let the system
evolve until an absorbing configuration is reached. Whether m = −1 is stable or
not depends on the values of v and a. If m = −1 is unstable, then the seed creates
many up spins and spreads over the system. If m = −1 is stable, then the initial
perturbation dies out, and the system ends in the m = −1 absorbing state. The
theory of criticality predicts that the survival probability P(t), i.e, the fraction
of simulations which still have not reached an absorbing state at time t (see
Section 2.5), follows a power-law at the critical point [128], where the stability
of the absorbing solution changes. Figure 6.3 shows that for a fixed value of the
bias v = 0, P(t) decreases exponentially fast to zero for values of a > 1, while
it reaches a constant value for a < 1. For ac ' 1.0, P(t) decays as P(t) ∼ t−δ,
with δ ' 0.95, indicating the transition line from an unstable to a stable solution
m = −1 as a is increased, in agreement with the previous stability analysis.

Following the same procedure, we also run spreading experiments to check the
stability transition for different values of the bias. For v = −0.02 and v = −0.2,
and a system of size N = 105, we find the transitions at a ' 1.007 and a ' 1.052,
respectively. These values are slightly different from the analytical value ac = 1.0,
but we have checked that as N is increased, the values become closer to 1.0, in
agreement with the stability analysis on infinite large systems.

An alternative and more visual way of studying stability in the mean field limit, is
by writing Eq. (6.3) in the form of a time-dependent Ginzburg-Landau equation

dm(t)
dt

= −
∂Va,v(m)
∂m

, (6.8)
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Figure 6.3: Probability P(t) that the system is still alive at time t, when
it starts from a configuration composed by an up spin in a sea of 105

− 1
down spins, endowed with the Abrams-Strogatz dynamics with equiva-
lent options (bias v = 0), on a fully connected network. Different curves
correspond to the values a = 0.90, 0.99, 1.00, 1.01, 1.10 and 2.0 (from top
to bottom). At ac ' 1.0, P(t) follows a power law decay with exponent

δ ' 0.95, indicated by the dashed line.

with potential

Va,v(m) ≡ 2−a
{
−vm −

1
2

(a − 1)m2 +
v
6

[2 − (a − 1)(a − 2)] m3

+
1

24
(a − 1) [6 − (a − 2)(a − 3)] m4 +

v
10

(a − 1)(a − 2)m5

+
1

36
(a − 1)(a − 2)(a − 3)m6

}
. (6.9)

Va,v is obtained by Taylor expanding the term in square brackets of Eq. (6.3) up
to third order in m, and integrating once over m. We assume that higher order
terms in the expansion are irrelevant, and the dynamics is well described by an
m6-potential.

Within this framework, the state of the system, represented by a point m(t)
in the magnetization one-dimensional space −1 ≤ m ≤ 1, moves “down the
potential hill”, trying to reach a local minimum. Therefore, a minimum of Va,v at
some point ms represents a stable stationary solution, given that if the system is
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Figure 6.4: Ginzburg-Landau potential from Eq. (6.9) for the Abrams-
Strogatz model with bias v = −0.1 and values of volatility a = 0.8, 1.0
and 2.0 (from top to bottom). Arrows show the direction of the system’s
magnetization towards the stationary solution (solid circles). For a = 0.8 the
minimum is around m ' −0.5, indicating that the system relaxes towards
a partially ordered stationary state, while for a = 1.0 and 2.0, it reaches the

complete ordered state m = −1.

moved apart from ms and then released, it immediately goes back to ms, whereas
a maximum of Va,v represents an unstable stationary solution. As Figure 6.4
shows, for a < 1 and all values of v, the single-well potential has a minimum at
|ms| < 1 indicating that the system reaches a partially ordered stable state (in the
Figure, ms ' −0.5 for a = 0.8 and v = −0.1, with fractions 0.75 and 0.25 of down
and up spins, respectively, and an interface density ρ ' 0.375). For a > 1, the
double-well potential has a minimum at m = ±1, thus depending on the initial
magnetization, the system is driven to one of the stationary solutions m = ±1,
corresponding to the totally ordered configurations in which ρ = 0.

This description works well in infinite large systems, where there are no finite
size fluctuations. But in finite systems, the absorbing solutions m = ±1 are the
only “truly stationary states”, given that fluctuations ultimate take the system
to one of those states. Even for the case a < 1, where the minimum is at |ms| < 1,
the magnetization fluctuates around ms for a very long time until after a large
fluctuation it reaches an absorbing state |m| = 1.
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The biased voter model (case a = 1)

For a = 1 the AS-model becomes equivalent to the voter model with bias (the
original voter model is trivially recovered fixing v = 0). Notice once more that
a switching probability proportional to the local density of neighbors in the
opposite state is statistically equivalent to adopt the state of a randomly chosen
neighbor. In this limit of neutral volatility, a = 1, Eq. (6.3) becomes

dm
dt

=
v
2

(1 −m2), (6.10)

whose solution is

m(t) =
(1 + m0)evt

− (1 −m0)
(1 + m0)evt + (1 −m0)

, (6.11)

with m0 = m(t = 0). For random initial conditions, m0 = 0. Thus

m(t) = tanh(vt/2), (6.12)

and
ρ(t) =

1
2

[
1 − tanh2(vt/2)

]
. (6.13)

In Figure 6.5, we observe that the analytical solutions from Eqs. (6.12) and (6.13)
agree very well with the results from numerical simulations of the model for
large enough systems. They also reproduce the Monte Carlo results found in
[180]. This is so, because finite-size fluctuations effects are negligible compare to
bias effects, even for a small bias.

When the bias is exactly zero (voter model), one recovers the known result
that in an infinite large network dm/dt = 0, thus m and ρ are conserved (see
Section 1.4.2). However, in a finite network fluctuations always lead the system
to one of the absorbing states [180]. To find how the system relaxes to the final
state, one needs to calculate the evolution of the second moment 〈m2

〉 of the
magnetization, related to the fluctuations in m, where the symbol 〈...〉 represents
an average over many realizations. This leads to a decay of the average interface
density of the form (see Section 1.4.2; [133])

〈ρ(t)〉 =
1
2

[
1 − 〈m2(t)〉

]
= 〈ρ(0)〉 e−2t/N. (6.14)

In terms of the potential description of Eq. (6.8), we observe that when v , 0, Va,v
has only one minimum (see Figure 6.4), thus the system has a preference for one
of the absorbing states only, whereas if v = 0, then Va,v = 0, and the magnetization
is conserved (m(t) = m(0) = constant). In finite systems, even though the average
magnetization over many realizations is conserved, the system still orders in
individual realizations by finite size fluctuations.

139



CHAPTER 6. MACROSCOPIC DESCRIPTIONS

Figure 6.5: Abrams-Strogatz model on a fully connected network of N =
1000 nodes with volatility a = 1. Top: Average magnetization m vs time
for values of the bias v = 0.8, 0.4, 0.2, 0.0,−0.2,−0.4 and −0.8 (from top to
bottom). Bottom: Average interface density ρ vs time for v = 0.0, 0.2, 0.4
and 0.8 (top to bottom). Open symbols are the results from numerical
simulations, while solid lines in the upper and lower panels correspond
to the solutions from Eqs. (6.12) and (6.13) respectively. Averages are over
100 independent realizations starting from a configuration with a random

distribution of spins (m(0) = 0).

6.1.2 Complex networks

We consider next a network of N nodes with a given degree distribution Pk,
representing the fraction of agents connected to k neighbors, such that

∑
k Pk = 1.

In order to develop a mathematical approach that is analytically tractable, we
assume that the network has no degree correlations, as it happens for instance in
Erdös-Renyi networks [30]. It turns out that dynamical correlations between the
states of second nearest-neighbors are negligible in voter models on uncorrelated
networks [133, 231]. Therefore, taking into account only correlations between
first nearest-neighbors allows us to use an approach, called pair approximation,
that leads to analytical results in good agreement with simulations. In this
Section, we use this approximation to build equations for the magnetization and
the average interface density.

In a time step δt = 1/N, a node i with degree k and state s is chosen with
probability Pk σs. Here we assume that the density of nodes in state s within the
subgroup of nodes with degree k is independent on k and equal to the global
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density σs. Then, according to the transition probabilities (2.1) introduced in
Chapter 2, i switches its sate with probability

P(s→ −s) =
1
2

(1 − sv) (n−s/k)a , (6.15)

where we denote by n−s the number of neighbors of i in the opposite state
−s (0 ≤ n−s ≤ k) and the bias v is defined as in the previous Section. If the
switch occurs, the density σs is reduced by 1/N, for which the magnetization
m = σ+ − σ− changes by −2s/N, while the density ρ changes by 2(k − 2n−s)/µN,
where µ ≡

∑
k kPk is the average degree of the network. Thus, in analogy to

Section 6.1.1, but now plugging the transition probabilities from Eq. (6.15) into
Eq. (6.2), we write the average change in the magnetization as

dm(t)
dt

=
∑

k

Pkσ−
1/N

k∑
n+=0

B(n+, k)
(1 + v)

2

(n+

k

)a 2
N

−

∑
k

Pkσ+

1/N

k∑
n−=0

B(n−, k)
(1 − v)

2

(n−
k

)a 2
N
, (6.16)

and similarly, the change in the interface density as

dρ(t)
dt

=
∑

k

Pkσ−
1/N

k∑
n+=0

B(n+, k)
(1 + v)

2

(n+

k

)a 2(k − 2n+)
µN

+
∑

k

Pkσ+

1/N

k∑
n−=0

B(n−, k)
(1 − v)

2

(n−
k

)a 2(k − 2n−)
µN

. (6.17)

We denote by B(ns, k), the probability that a node of degree k and state −s has ns
neighbors in the opposite state s. Defining the a-th moment of B(ns, k) as

〈na
s〉k ≡

k∑
ns=0

B(ns, k)na
s ,

we arrive to the equations

dm(t)
dt

=
∑

k

Pk

2 ka

[
(1 + v)(1 −m)〈na

+〉k − (1 − v)(1 + m)〈na
−〉k

]
, (6.18)

dρ(t)
dt

=
∑

k

Pk

2µ ka

{
(1 + v)(1 −m)

[
k〈na

+〉k − 2〈n(1+a)
+ 〉k

]
+ (1 − v)(1 + m)

[
k〈na
−〉k − 2〈n(1+a)

−
〉k

] }
. (6.19)
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The biased voter model (case a = 1)

In order to develop an intuition about the temporal evolution of m and ρ from
Eqs. (6.18) and (6.19), we first analyze the simplest and non-trivial case a = 1,
that corresponds to the voter model on complex networks. A rather complete
analysis of the time evolution and consensus times of this model on uncorrelated
networks, for the symmetric case v = 0, can be found in [133]. Following a similar
approach, here we study the general situation in which the bias v takes any value.
To obtain closed expressions for m and ρ, we consider that the system is “well
mixed”, in the sense that the different types of links are uniformly distributed
over the network. Therefore, we assume that the probability that a link picked at
random is of type +− is equal to the global density of +− links ρ. Then, B(n−s, k)
becomes the binomial distribution with

P(−s|s) = ρ/2σs (6.20)

as the single event probability that a first nearest-neighbor of a node with state
s has state −s. Here, we use the fact that in uncorrelated networks dynamical
correlations between the states of second nearest-neighbors vanish (pair approx-
imation). P(−s|s) is calculated as the ratio between the total number of links
ρµN/2 from nodes in state s to nodes in state −s, and the total number of links
Nσsµ coming out from nodes in state s. Taking a = 1 in Eqs. (6.18) and (6.19),
and replacing the first and second moments of B(n−s, k) by

〈n−s〉 = P(−s|s)k,
〈n2
−s〉 = P(−s|s)k + P(−s|s)2k(k − 1),

leads to the following two coupled closed equations for m and ρ

dm(t)
dt

= vρ (6.21)

dρ(t)
dt

=
ρ

µ

{
µ − 2 −

2(µ − 1)(1 + v m)ρ
(1 −m2)

}
. (6.22)

For v = 0, the above expressions agree with the ones of the symmetric voter
model [133]. For the asymmetric case v , 0, we have checked numerically that
the only stationary solutions are (m = 1, ρ = 0) for v > 0 and (m = −1, ρ = 0) for
v < 0, that correspond to the fully ordered states, as we were expecting. Even
though an exact analytical solution of Eqs. (6.21) and (6.22) is hard to obtain, we
can still find a solution in the long time limit, assuming that ρ decays to zero as

ρ = A e−t/2τ(v), for t� 1, (6.23)
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where A is a constant given by the initial state and τ(v) is another constant that
depends on v, and quantifies the rate of decay towards the solutions m = 1 or
m = −1. To calculate the value of τ, we first replace the ansatz from Eq. (6.23)
into Eq. (6.21), and solve for m with the boundary conditions m(ρ = 0) = 1 and
−1, for v > 0 and v < 0, respectively. We obtain

m =

{
1 − 2vτρ if v > 0;
−1 − 2vτρ if v < 0. (6.24)

Then, to first order in ρ we find

(1 −m2) =

{
4vτρ if v > 0;
−4vτρ if v < 0. (6.25)

Replacing the above expressions for m and (1 −m2) into Eq. (6.22), and keeping
only the leading order terms, we arrive to the following expression for τ

τ(v) =


µ−1−v
2v(µ−2) if v > 0;
1−µ−v
2v(µ−2) if v < 0.

(6.26)

Finally, the magnetization for long times behaves as

m =

 1 − (µ−1−v)A
µ−2 exp

[
−

v(µ−2)
µ−1−v t

]
if v > 0;

−1 +
(µ−1+v)A
µ−2 exp

[ v(µ−2)
µ−1+v t

]
if v < 0,

(6.27)

whereas the interface density decays as

ρ = A exp
[
−
|v|(µ − 2)
µ − 1 − |v|

t
]
. (6.28)

Using the expression for τ(v) from Eq. (6.26) in Eq. (6.25), and taking the limit
v → 0, we find that ρ(t) =

(µ−2)
2(µ−1)

[
1 −m(t)2

]
, in agreement with previous results

of the voter model on uncorrelated networks [133]. By taking µ = N − 1 � 1 in
Eqs. (6.27) and (6.28), we recover the expressions for m and ρ on fully connected
networks (Eqs. (6.12) and (6.13), respectively), in the long time limit. This result
means that the evolution of m and ρ in the biased voter model on uncorrelated
networks in the long time limit is very similar to the mean-field case, with the
time rescaled by the constant τ that depends on the topology of the network,
expressed by the average connectivity µ. From the above equations we observe
that the system reaches the absorbing state ρ = 0 in a time of order τ. For
the special case v = 0, τ diverges, thus Eqs. (6.27) and (6.28) predict that both
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m and ρ stay constant over time. However, as mentioned in Section 6.1.1,
finite-size fluctuations drive the system to the absorbing state (ρ = 0, |m| = 1).
Taking fluctuations into account, one finds that the approach to the final state is
described by the decay of the average density ρ (Section 1.4.2; [133])

〈ρ(t)〉 =
(µ − 2)
2(µ − 1)

e−2t/T, (6.29)

where T ≡ (µ−1)µ2N
(µ−2)µ2

, depends on the system size N, and the first and second
moments of the network, µ and µ2 respectively.

Stability analysis

As in fully connected networks, we assume that Eq. (6.18) for the magnetization
has three stationary solutions. Indeed, we have numerically verified that for
different types of networks there is, apart from the trivial solutions m = 1,−1, an
extra non-trivial stationary solution m = m∗. Due to the rather complicated form
of Eq. (6.18), we try to study the stability of the solutions in an approximate way,
in order to find a qualitative picture of the stability diagram in the (a, v) plane.
For the general case in which a and v take any values, we assume, as in the voter
model case, that B(n−s, k) is a binomial probability distribution with single event
probabilities given by Eq. (6.20). Then, the explicit form for the a-th moment of
B(n, k) is

〈na
s〉 =

k∑
ns=0

naCk
ns

( ρ

2σ−s

)ns
(
1 −

ρ

2σ−s

)k−ns

. (6.30)

We also assume that, as it happens for the voter model case a = 1 [see Eq. (6.25)],
ρ and m are related by ρ(t) ' q

2

[
1 −m2(t)

]
, where q is a constant that depends

on a and v. We note that this relation satisfies the fully-ordered-state condition
ρ = 0 when |m| = 1. We shall see that the exact functional form of q = q(a, v)
is irrelevant for the stability results, as long as q > 0. To simplify calculations
even more, we consider that the network is a degree-regular random graph with
degree distribution Pk = δk,µ, that is, all nodes have exactly µ neighbors chosen
at random (see Section 1.2.3). Then, replacing the above expression for the
moments into Eq. (6.18), and substituting ρ by the approximate value q

2

[
1 −m2

]
,

we arrive to the following closed equation for m

dm
dt

=
(1 −m2)

2µa

µ∑
n=0

Cµn na
(q

2

)n {
(1 + v)(1 + m)n−1 [

1 − q(1 + m)
]µ−n

− (1 − v)(1 −m)n−1 [
1 − q(1 −m)

]µ−n
}
, (6.31)
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where mute indices n− and n+ were replaced by the index n. To check the stability
of m = 1, we take m = 1 − ε in Eq. (6.31), and expand it to first order in ε. We
obtain after some algebra

dε
dt

=
µ−a

2

(
〈n〉q + 〈na

〉q

)
[V1(a) − v] ε, (6.32)

where the symbols 〈 〉q represent the moments of a Binomial distribution with
probability q, and the bias functionV1(a) is defined as

V1(a) =
〈n〉q − 〈na

〉q

〈n〉q + 〈na〉q
. (6.33)

Then, for a fixed value of a the solution m = 1 is stable (unstable), when v is
larger (smaller) than V1(a). The shape of the function V1(a) can be guessed
using that for a larger (smaller) than 1, the moment 〈na

〉 is larger (smaller) than
〈n〉. Then V1(a) goes to (〈n〉 − 1)/(〈n〉 + 1) . 1 and −1 as a approaches to 0 and
∞, respectively. Also V1(a) = 0, for a = 1. With a similar stability analysis we
obtained that m = −1 is stable (unstable) for the points (a, v) below (above) the
transition lineV−1(a) = −V1(a), while m = m∗ is stable in the region where both
m = −1 and m = 1 are unstable. In Figure 6.6 we show a picture that summarizes
the stability regions defined by the transition linesV1(a) andV−1(a). These lines
were obtained by integrating numerically the two coupled Eqs. (6.18) and (6.19),
with the moments defined in Eq. (6.30), and finding the points (a, v) where the
stationary solutions m = 1,−1 became unstable. We considered two degree-
regular random graphs with degrees µ = 3 (solid lines V3

1(a) and V3
−1(a)) and

µ = 10 (dashed-linesV10
1 (a) andV10

−1(a)), thus we took Pk = δk,µ in the equations.
For clarity, only the stable solutions are labeled in the picture. We observe
that as the degree of the network increases, the coexistence region expands and
approaches to the corresponding region a < 1 on fully connected networks.

In order to give numerical evidence, from Monte Carlo simulations, of the dif-
ferent phases and transition lines predicted in Figure 6.6, we run spreading
experiments as explained in Section 6.1.1, for a degree-regular random graph
(DRRG) with degree µ = 3 and N = 105 nodes, and test the stability of the ho-
mogeneous solutions m = ±1. We first set the bias in v = 0 and, by varying a, we
obtained a transition at ac ' 1.0 from consensus to coexistence, as a is decreased:
in the consensus region the survival probability P(t) decays exponentially fast to
zero, indicating that m = 1 is stable, while in the coexistence region P(t) reaches
a constant value larger than zero, showing that m = 1 is unstable (not shown).
This transition is the same as the one in fully connected networks (FCN); see
Figure 6.3. We then repeat the experiment with v = −0.2, whose results are sum-
marized in Figure 6.7, where we show P(t) for different values of a. Increasing
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Figure 6.6: Stability diagram for the Abrams-Strogatz model in a degree-
regular random graph, obtained by numerical integration of Eqs. (6.18),
(6.19), using Eq. (6.30). The solution m = 1 is stable above the lineV1, while
the solution m = −1 is stable below the line V−1. Solid and dashed lines
correspond to graphs with degrees µ = 3 and µ = 10 respectively. In the
coexistence region, where the stable solution is m∗, the system is composed
by both type of agents, while in the consensus region, agents in either
one or the other option prevail, depending on the initial conditions. We
observe that the region of coexistence is reduced, compared to the model
on fully connected networks (Figure 6.1), due to the emergence of two
monostable-consensus regions, where always the same option dominates.

a from 0, which corresponds to the coexistence regime (m = ±1 are unstable
solutions, and m∗ is stable), we show in Figure 6.7(a) how in a DRRG m = −1
changes from unstable to stable at a value 0.25 < a < 0.3, as P(t) starts to decay
to zero. This corresponds to crossing the line V3

−1 in the horizontal direction
(see Figure 6.6), and entering the monostable-consensus region where there exist
only two solutions, m = −1 stable, and m = +1 unstable (m∗ becomes equal to
−1 along the transition line V3

−1). In Figure 6.7(b), we observe how in a DRRG
m = +1 becomes stable at a value 1.80 < a < 1.85. This corresponds to crossing
the line V3

1 (see Figure 6.6) and entering to the consensus region, where both
m = ±1 are stable. Notice that for a = 1.80, P(t) first curves up and then it quickly
decays to zero at a time t ' 4000. This means that a finite fraction of realizations
starting from a system with a single down spin took, in average, a mean time
t ' 4000 to end up in a configuration with all down spins, showing that m = −1
is a stable solution. This supports our claim that in the monostable-consensus
region there exist only two solutions, m = −1 stable, and m = +1 unstable. These
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Figure 6.7: Spreading experiments: probability P(t) that the system is
still alive at time t in the Abrams-Strogatz model with bias v = −0, 2 and
various values of volatility a, showing the stability of the solutions m =
1,−1. Dashed curves decay quickly to zero, indicating that the solution is
stable, while solid curves represent unstable solutions. (a) Degree-regular
random graph (DRRG, µ = 3). Stability of the solution m = −1: a = 0.25
(solid curve), a = 0.30 (dashed curve). (b) Degree-regular random graph
(DRRG, µ = 3). Stability of the solution m = +1: a = 1.80 (solid curve),
a = 1.85 (dashed curve). (c) Fully connected network (FCN). Stability of
the solutions m = ±1: a = 0.93 (solid curve), a = 1.07 (dashed curve).
All curves correspond to an average over 105 independent realizations on

networks with N = 105 nodes.

results confirm the existence of a quite broad monostable-consensus region in
DRRG (0.30 . a . 1.85 for v = −0.2 and µ = 3), in agreement with the stability
diagram obtained in Figure 6.6, while this region seems to be absent in FCN. In-
deed, Figure 6.7(c) shows how this unstable-stable transition happens in a FCN
at a value 0.93 < a < 1.07, in agreement with the transition line ac ' 1.0 in FCN.
Here, both m = ±1 gain stability at the same point, and the system enters to the
consensus region (see Figure 6.1).

In summary, we find that, compared to the fully connected case, the region
of coexistence is shrunk for v , 0, as there appear two regions where only
one solution is stable. These regions also reduce part of the consensus region,
where both solutions m = ±1 are stable. The effect of the bias is shown to be more
important in DRRGs with low connectivity µ and, as a general result, coexistence
becomes harder to achieve in sparse networks.
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6.2

Bilinguals model

We study in this Section the Bilg-model, the extension of the AS-model to ac-
count for bilingual agents introduced in Chapter 2 (see Section 2.2 for a detailed
description). As in the AS-model, it is convenient to consider A and B agents,
as particles with opposite spins −1 and 1 respectively. AB agents are considered
as spin-0 particles because they share both states at the same time (−1 and 1).
Given that the model is invariant under the interchange of −1 and 1 particles,
the system is better described using the global magnetization m ≡ σ+ − σ− and
the density of AB agents σ0, where σ−,σ0, σ+, are the global densities of nodes
in states −1, 0 and 1, respectively. Another alternative could be the use of the
interface density ρ ≡ 2σ−σ+ + 2σ−σ0 + 2σ+σ0, but numerical simulations show
that ρ and σ0 are proportional∗. We now study the evolution of the system on
fully connected and complex networks, by deriving equations for m and σ0.

6.2.1 Fully connected networks

In the fully connected case, the local densities of neighbors in the different states
agree with the global densities σ−, σ0, σ+. Thus, using the transition probabilities
(2.4)-(2.5) introduced in Chapter 2, the rate equations for σ− and σ+ can be written
as

dσ−
dt

=
(1 − v)

2
σ0(1 − σ+)a

−
(1 + v)

2
σ−σ

a
+, (6.34)

dσ+

dt
=

(1 + v)
2

σ0(1 − σ−)a
−

(1 − v)
2

σ+σ
a
−, (6.35)

where v ≡ 1−2S is the bias. The rate equations for m = σ+−σ− and σ0 = 1−σ+−σ−
can be derived from the above two equations, and by making the substitutions
σs = (1 − σ0 + s m)/2, with s = ±1. We obtain

dm
dt

= 2−(2+a)
{
2σ0 [(1 + v)(1 + σ0 + m)a

− (1 − v)(1 + σ0 −m)a] (6.36)

+ (1 + v)(1 − σ0 −m)(1 − σ0 + m)a
− (1 − v)(1 − σ0 + m)(1 − σ0 −m)a

}
and

dσ0

dt
= 2−(2+a)

{
− 2σ0 [(1 + v)(1 + σ0 + m)a + (1 − v)(1 + σ0 −m)a] (6.37)

+ (1 + v)(1 − σ0 −m)(1 − σ0 + m)a + (1 − v)(1 − σ0 + m)(1 − σ0 −m)a
}
.

∗Notice that this result has already been shown for regular lattices in Section 3.2.
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Equations (6.36) and (6.37) are difficult to integrate analytically, but an insight
on its qualitatively behavior can be obtained by studying the stability of the
stationary solutions with a and v. As in the AS-model, we expect that, for a
given v, an order-disorder transition appears at some value ac of the volatility
parameter, where the stability of the stationary solutions changes. If a is small,
then flipping rates are high, thus we expect the system to remain in an active
disordered state, while for large enough values of a, spins tend to be aligned,
thus the system should ultimately reach full order. In the following, we calculate
the transition point for the symmetric case v = 0, and we find an approximate
solution for the linear case a = 1.

Transition point for v = 0

In the symmetric case v = 0, one can easily verify that the points (m = ±1, σ0 = 0)
in the (m, σ0) plane are two stationary solutions of Eqs. (6.36) and (6.37). But
there is also a third non-trivial stationary solution, that for the symmetric case
v = 0 is (m = 0, σ0 = σ∗0), where σ∗0 satisfies

2σ∗0(1 + σ∗0)a
− (1 − σ∗0)(1+a) = 0. (6.38)

By doing a small perturbation around (0, σ∗0) in the σ0 direction, one finds from
Eq. (6.37) that the point (0, σ∗0) is stable for all values of a. Instead, the stability in
the m direction changes at some value a f c (fc stands for fully connected network).
Replacing m by ε � 1 and σ0 by σ∗0 in Eq. (6.36), one arrives to the following
relation that σ∗0 and a hold when the stability changes

2a f cσ
∗

0(1 + σ∗0)(a f c−1) + (a f c − 1)(1 − σ∗0)a f c = 0. (6.39)

Combining Eqs. (6.38) and (6.39), one arrives to the following closed equation
for a f c

a f c ln
(

1 − a f c

a f c

)
= ln

(
2a f c − 1
1 − a f c

)
, (6.40)

whose solution is a f c ' 0.63. Then, assuming that the transition point does not
depend on v for FCN, as it happens in the AS-model, we find that the (a, v) plane
is divided into two regions. In the region a < a f c, the stable solution is (0, σ∗0),
representing a stable coexistence of the three kinds of agents, while in the region
a > a f c, the stable solutions (±1, 0) indicate the ultimate dominance of one of the
states. By performing spreading experiments we estimated that the transition
point for a network of N = 105 nodes is around 0.62 (see Figure 6.8), and we
observed that this value approaches to the analytical one 0.63 as N increases.
We have also checked numerically the transition point when there is a bias
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Figure 6.8: Spreading experiments: probability P(t) that the system is
still alive at time t in the Bilinguals model on a fully connected network,
obtained from the same spreading experiments and parameters (v = 0,
N = 105) as described in Figure 6.3 for the Abrams-Strogatz model. The
curves correspond to volatilities a = 0.600, 0.618, 0.620, 0.622 and 0.700,
(top to bottom). P(t) decays as t−δ at the transition point 0.620 (close to the

theoretical value a f c ' 0.63), with δ ' 1.76, indicated by the dashed line.

(v , 0), that is, when the two options are not equivalent. In this case, we find
a value around 0.675 for a bias v = −0.2 and N = 105 nodes, what represents
a small deviation from the analytical value. However, this difference is similar
to the one found for the AS-model in Section 6.1.1 with the same system size.
Therefore, we assume that this discrepancy is again due to finite size effects. In
the thermodynamic limit, though, the value a f c ' 0.63 should be independent of
v.

We note that the transition point a f c ' 0.63 is smaller than the value ac ' 1.0 for
the transition in the Abrams-Strogatz model, thus the region for coexistence is
reduced when AB agents are considered.

AB-model: Neutral volatility (a = 1 ) and symmetric options (v = 0)

For a = 1 and v = 0, the Bilg-model reduces to the AB-model. In this case,
Equations (6.36) and (6.37) become

dm
dt

=
1
2
σ0m, (6.41)
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dσ0

dt
=

1
4

(1 −m2
− 4σ0 − σ

2
0). (6.42)

The three stationary solutions are (m, σ0) = (−1, 0); (1, 0) and (0,
√

5 − 2)∗. Given
that the above equations are difficult to integrate analytically, we try an a
approximate solution by assuming that the density of AB agents is propor-
tional to the interface density ρ, something observed in our simulations, and
already found for the AB-model (Section 3.2; [198]). Indeed, AB agents are
found to be at the interface between single-option domains, for all the net-
works studied. Therefore, we write σ0 ' αρ, with ρ = 2σ−σ+ + 2σ0(σ− + σ+) =
1
2

[
(1 − σ0)2

−m2
]
+ 2σ0(1− σ0), from where we obtain that m can be expressed in

terms of σ0 as m2 = (1 − σ0)2 + 4σ0(1 − σ0) − 2σ0/α. Replacing this expression for
m2 into Eq. (6.42), we obtain the following equation for σ0

dσ0

dt
=
σ0

2
(−3 +

1
α

+ σ0). (6.43)

We have checked by numerical simulations that α > 1/3, then the solution of the
above equation in the long time limit is σ0 ∼ e(−3+1/α)t/2. Thus, σ0 and |m| approach
to 0 and 1, respectively, and the system reaches full order exponentially fast†.

6.2.2 Complex networks

We now consider the model on complex networks. Following the same approach
as in Section 6.1.2, it is possible to write down a set of nine coupled differential
equations: three for the densities σ−, σ0 and σ+ of node states, and six for the
densities ρ−−, ρ−0, ρ+0, ρ+−, ρ+0 and ρ++ of different types of links. However, due
to the complexity of these equations, we limit our study here to the investigation
of the stability regions through Monte Carlo simulations. We find that in a
degree-regular random graph with mean degree µ = 3, the stability diagram
is qualitatively similar to the one in Figure 6.6 for the AS-model, where the
coexistence region corresponds to stationary states with a mix of the three types
of agents. However, the coexistence-dominance transition point for v = 0 is
shifted to acn ' 0.3 (cn stands for complex networks). For v = −0.02, a monostable
region appears for 0.2 . a . 0.4, while this region becomes wider for v = −0.2
(0 . a . 1.4). We have also observed that the coexistence region disappears for
|v| ≥ 0.2. Therefore, in the Bilg-model, the region for coexistence also shrinks as

∗Notice that in Section 2.3 we have derived these stationary solutions as a function of the state
global densities.

†An exponential decay to the absorbing state of
〈
ρ(t)

〉
for the AB-model in fully connected

networks has already been numerically observed in Section 3.1, Figure 3.1.
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the connectivity of the network decreases (going from fully connected to complex
networks with low degree). But on top of that, for v = 0 there exists a shift of
the critical value from a f c ' 0.63 (fully connected networks) to acn ' 0.3 (degree-
regular random graphs) which results in a translation of the whole stability
diagram to smaller values of the volatility parameter. In a few words, compared
to the AS-model, the overall effect of the inclusion of the AB agents is that of a
large reduction of the region of coexistence.

6.3

Two-dimensional lattices

Dynamical properties of the AS-model and the Bilg-model in two-dimensional
lattices can be explored for different initial conditions, system sizes, and values
of the prestige and volatility parameters, through a simulation applet available
online (see Section 2.4; [220]). It turns out that the behavior of these mod-
els in square lattices is very different to their behavior in fully connected or
complex networks. On the one hand, the mean distance between two sites in
the lattice grows linearly with the length of the lattice side L, thus a spin only
“feels” the spins that are in its near neighborhood, and therefore the mean-
field approach that works well in fully connected networks gives poor results
in lattices. On the other hand, correlations between second, third and higher
order nearest-neighbors are important in lattices, what causes the formation of
same-spin domains, unlike in random networks where correlations to second
nearest-neighbors are already negligible. Therefore, pair approximation does
not provide a good enough description of the dynamics in lattices either, and
one is forced to implement higher order approximations (triplets, quadruplets,
etc), that lead to a coupled system of many equations, impossible to solve ana-
lytically. Due to the fact that the mean-field and pair approximations, that use
global quantities such as the magnetization and the interface density to describe
the system, do not give good results in lattices, we follow here a different ap-
proach to obtain a macroscopic description. This approach, also developed in
[212] for general nonequilibrium spin models, consists in deriving a macroscopic
equation for the evolution of a continuous space dependent spin field. Within
this approach it is possible to describe coarsening processes, that is, processes
of formation and growth of local domains caused by interface motion (see Sec-
tion 1.4.1). In particular, one can explain whether the system orders or not, or if
the ordering is curvature or noise driven.

We focus here on the AS-model, but this macroscopic description can also be
applied for systems with three states, as the Bilg-model (see [211]). Given that
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neighboring spins tend to be aligned (due to the ferromagnetic nature of the
interactions), together with the fact that correlations between spins reinforce the
alignment between far neighbors, the dynamics is characterized by the formation
of same-spin domains. Starting from a well-mixed system with up and down
spins randomly distributed over the lattice, after a small transient, if we look at
the lattice from far we observe domains growing and shrinking slowly with time,
and we can interpret this dynamics at the coarse-grained level as the evolution
of a continuous spin field φ over space and time. Then, we define φr(t) as the
spin field at site r at time t, which is a continuous representation of the spin at
that site (−1 < φ < 1), also interpreted as the average value of the spin over
many realizations of the dynamics. Thus, we assume that there are Ω spin
particles at each site of the lattice, and we replace φr(t) by the average spin
value φr(t) → 1

Ω

∑Ω
j=1 S j

r, where S j
r is the spin of the j-th particle inside site r

[211]. Within this formulation, the dynamics is the following. In a time step of
length δt = 1/Ω, a site r and a particle from that site are chosen at random. The
probability that the chosen particle has spin s = ±1 is equal to the fraction of ±
spins in that site (1 ± φr)/2. Then the spin flips with probability

P(s→ −s) =
1
2

(1 − sv)
(

1 − sψr

2

)a

, (6.44)

where ψr →
1
4

∑
r′/r φr′ (t) is the average neighboring field of site r, and the sum is

over the 4 first nearest-neighbors sites r′ of site r. If the flip happens, φr changes
by −2s/Ω, thus its average change in time is given by the rate equation

∂φr(t)
∂t

=
[
1 − φr(t)

]
P(− → +) −

[
1 + φr(t)

]
P(+→ −), (6.45)

where the first (second) term corresponds to a − → + (+ → −) flip event. In
order to obtain a closed equation forφ (see Appendix A for details), we substitute
the expression for the transition probabilities Eq. (6.44) into Eq. (6.45), we then
expand aroundψr = 0, and replace the neighboring fieldψr by φr +∆φr, where ∆

is defined as the standard Laplacian operator, ∆φr ≡
1
4

∑
r′/r

(
φr′ − φr

)
= ψr − φr.

Keeping the expansion up to first order in ∆φr, results in the following equation
for the spin field

∂φr(t)
∂t

= 2−a
(
1 − φ2

r

) [
v + (a − 1)φr +

v
2

(a − 1)(a − 2)φ2
r

+
1
6

(a − 1)(a − 2)(a − 3)φ3
r

]
+ 2−aa

[
1 + v(a − 2)φr +

1
2

(a − 1)(a − 4)φ2
r

]
∆φr. (6.46)
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Figure 6.9: Two-dimensional lattice: Ginzburg-Landau potential Eq. (6.50)
for the symmetric case v = 0 of the Abrams-Strogatz model, with volatility
values a = 0.5, 0.8, 1.0, 1.2 and 2.0 (from top to bottom). For a = 0.5 and 0.8,
the system relaxes to an active state with the same fraction of up and down
spins uniformly distributed over space, corresponding to the minimum
of the potential at φ = 0; while for a = 1.2 and 2.0 it reaches full order,

described by the field |φ| = 1.

Equation (6.46) can be written in the form of a time dependent Ginzburg-Landau
equation

∂φr(t)
∂t

= D(φr)∆φr −
∂Va,v(φr)
∂φr

, (6.47)

with diffusion coefficient

D(φr) ≡ 2−aa
[
1 + v(a − 2)φr +

1
2

(a − 1)(a − 4)φ2
r

]
(6.48)

and potential

Va,v(φr) ≡ 2−a
{
−vφr −

1
2

(a − 1)φ2
r +

v
6

[2 − (a − 1)(a − 2)]φ3
r

+
1
24

(a − 1) [6 − (a − 2)(a − 3)]φ4
r +

v
10

(a − 1)(a − 2)φ5
r

+
1
36

(a − 1)(a − 2)(a − 3)φ6
r

}
, (6.49)

which is analogous to the potential for the global magnetization m in the fully
connected network case (Figure 6.4). As we already discussed in section 6.1.1,
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(a) (b) (c) (d)

Figure 6.10: Snapshots of the Abrams-Strogatz model with bias v = 0 on
a two-dimensional lattice. N = 1282. (a) Random initial conditions: each
site is occupied with a spin +1 or −1 with the same probability 1/2. (b)
a = 0.5: the system reaches an active disordered stationary state, with a
global magnetization that fluctuates around zero. (c) a = 1.0: the system
displays coarsening driven by noise, characterized by domains with noisy
boundaries. (d) a = 2.0: there is also coarsening but driven by surface

tension, generating domains with more rounded boundaries.

for the asymmetric case v , 0 the ordering dynamics is strongly determined
by v. When a > 1, Va,v has the shape of a double-well potential with minima
at φ = ±1, and with a well deeper than the other, thus the system is quickly
driven by the bias towards the lowest minimum, reaching full order in a rather
short time. For a < 1 there is a minimum at |φ| < 1, thus the system relaxes to
a partially ordered state of coexistence composed by a well mixed population
with different proportions of agents in the two states (depending on v).

Specially interesting is the analysis of the symmetric case v = 0, for which the
potential is (see Figure 6.9)

Va(φr) = 2−a(a − 1)
{
−
φ2

r

2
+ [6 − (a − 2)(a − 3)]

φ4
r

24
+ (a − 2)(a − 3)

φ6
r

36

}
.

(6.50)

In this bias-free case, when a < 1 the minimum is at φ = 0, thus the average
magnetization in a small region around a given point r is zero, indicating that
the system remains disordered (coexistence). This can be seen in Figure 6.10(b),
where we show a snapshot of the lattice for the model with v = 0 and a = 0.5,
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after it has reached a stationary configuration∗. For a > 1 the potential has
two wells with minima at φ = ±1, but with the same depth, thus there is no
preference for any of the two states, and the system orders in either of the
two states by spontaneous symmetry breaking. Complete ordering for a > 1 is
achieved through domain coarsening driven by surface tension [110]. That is,
as the system evolves, same-spin domains are formed, small domains tend to
shrink and disappear while large domains tend to grow. Figure 6.10(d) shows
a snapshot of the lattice for the evolution of the model with a = 2. We observe
that domains have rounded boundaries given that the dynamics tends to reduce
their curvature, leading to an average domain length that grows with time as
ξ ∼ t1/2 [198, 211]. For the special case a = 1 (voter model; see Chapter 3)
the potential is Va = 0. There is still coarsening but without surface tension,
meaning that domain boundaries are driven by noise, as seen in Figure 6.10(c).
As a consequence of this, the average length of domains grows very slowly with
time, as ξ ∼ ln t [123, 131, 132].

The order-disorder nonequilibrium transition at a = 1 is reminiscent of the well
known Ising model transition, but with the volatility parameter a playing the
role of temperature: high volatility (a < 1) corresponds to the high temperature
paramagnetic phase and low volatility (a > 1) to the low temperature phase.
An important difference is that the transition is here first order, since the low
volatility stable sates φ = ±1 appear discontinuously at a = 1. In addition, while
in the low temperature phase of the Ising model, spins flip in the bulk of ordered
domains by thermal fluctuations, here, spin flips in the low volatility regime
only occur at the interfaces (domain boundaries).

In order to compare the behavior of the AS-model and the Bilg-model in fully
connected and complex networks with their behavior in two-dimensional lat-
tices, we have numerically explored the stability regions in the (a, v) plane for
these models in square lattices. The coexistence-consensus transition in the AS-
model for v = 0 is at ac = 1.0, as in fully connected and complex networks,
whereas the region for coexistence is found to be much more narrow than the
ones observed in complex networks with low degree, like the one depicted in
Figure 6.6 for µ = 3. Using the simulation applet (see Section 2.4; [220]) one
can check that for a given value of v , 0, the disordered stationary state that
characterizes coexistence is harder to maintain in square lattices than in random
networks: in order to have an equivalent situation, a smaller value of a is needed
in the former case.

∗We have already seen in Section 2.4 the different qualitative behavior of the model for a < 1,
a = 1 and a > 1. Here, for the case v = 0 we study the coarsening processes depending on the
volatility parameter a through the analysis of the potential Va.
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Figure 6.11: Inverse of the average interface density 〈ρ〉 vs time, on a log-
linear scale, for the Bilinguals model in a two-dimensional lattice of side
L = 400. From top to bottom: a = 0.30, 0.20, 0.17, 0.16, 0.15 and 0.10.
Averages are done over 103 independent realizations. 〈ρ〉 decays as 1/ ln(t)
at the transition point asl ' 0.16 (in green), corresponding to the behavior

of a Generalized voter transition in two dimensions.

In the Bilg-model, apart from the narrowing of the coexistence region, we also
find that the transition point for v = 0 is shifted to an even smaller value of the
volatility a than in complex networks. To see this, in Figure 6.11 we show the
time evolution of the inverse of the average interface density 〈ρ〉 ∗ for various
values of a, on a square lattice of size N = 4002. We observe that 〈ρ〉 decays to
zero for values of a > 0.16, indicating that the system orders (consensus), while
〈ρ〉 approaches to a constant value larger than zero for a < 0.16, thus the system
remains disordered (coexistence). At the transition point asl ' 0.16 (sl stands for
square lattice) we have that 〈ρ〉 ∼ 1/ ln(t), indicating that the transition belongs to
the Generalized Voter class, a typical transition observed in spin systems with
two symmetric absorbing states [120, 212, 230, 232].

In the Bilg-model, the fact that asl ' 0.16 is smaller than the corresponding
transition points a f c ' 0.63 and acn ' 0.3, together with the narrowing effect
mentioned above, leads to the result that the region for coexistence is largely
reduced in two-dimensional lattices, compared to fully connected and complex
networks.

∗The 〈...〉 indicates average over independent realizations of the dynamics with different random
initial conditions.
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6.4

Concluding remarks

We have discussed the order-disorder transitions that occur in the volatility-bias
parameter space for the Abrams-Strogatz model and its extension to account
for bilingualism: the Bilinguals model. We have analyzed their microscopic
dynamics on fully connected, complex random networks and two-dimensional
lattices and constructed macroscopic descriptions of these dynamics accounting
for the observed transitions. At a general level, we have found that both models
share the same qualitative behavior, showing a transition from coexistence to
consensus of one of the two equivalent states at a critical value of the volatility
parameter ac. The fact that agents are highly volatile (a < ac), i.e, loosely attached
to its current option, leads to the enhancement of the scenario of coexistence. On
the contrary, in a low volatility regime (a > ac), the final state is one of consensus.

A more detailed comparison of both models shows important differences: in
the mean field description for fully connected networks, and for the AS-model,
a scenario of coexistence is obtained for a < 1. This is independent of the
relative prestige between the two options v, but the stationary fraction of agents
in the more prestigious option increases with a higher prestige. However, when
AB agents are introduced (Bilg-model), the scenario of coexistence becomes the
parameter space area corresponding to a < 0.63. That is, the area of coexistence
is reduced: agents with a higher volatility (smaller a) are needed in order to
obtain a coexistence regime.

Network topology and local effects have been addressed through pair approxi-
mations for degree uncorrelated networks. For the AS-model on degree-regular
random networks we find that the decrease of the network connectivity leads to
a reduction, in the parameter space (a, v), of the area of coexistence and the area of
bistable consensus, while monostable-consensus regions emerge, in which only
the state of consensus in the more prestigious option is stable. To gain intuition
on this result, we first notice that in the fully connected network, the area of
coexistence (a < 1) corresponds to a situation in which the majority of the agents
are in the more prestigious option. The fact that all agents are interconnected,
translates to a situation in which agents in the less prestigious option (minority)
are in contact with every other agent in the network. In this situation, high
volatility (agents switching their state easily) is effective in order to achieve a
steady state situation with agents continuously changing their option and mak-
ing coexistence possible. In contrast, when considering a degree-regular random
network, that is, when limiting the number of neighbors in the network, the ex-
istence of a bias (v , 0) opens the possibility for agents in the majority option
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to be placed in domains without contact with the minority option. For a region
of the parameter space where there is coexistence in a fully connected network,
these domains can grow in size in a random network until they occupy the en-
tire system. This gives rise to the monostable region of consensus in the more
prestigious option found in complex networks with low connectivity. Compared
to the fully connected case, a higher volatility is needed in order to overcome
this topological effect, leading to a reduction of the area of coexistence. In two
dimensional regular lattices, the coexistence is shown to be even more difficult to
achieve, probably due to the fact that correlations with second neighbors make
the coarsening process of formation and growth of domains easier. The macro-
scopic field description introduced for two-dimensional lattices accounts for the
different coarsening processes observed for large and small volatility.

The network effects described above for the AS-model are also qualitatively
valid for the Bilg-model. On top of that though, the reduction of the area of
coexistence is more important when considering AB agents. We find a shift
of the critical value with the topology for v = 0: a f c ' 0.63 in fully connected
networks, acn ' 0.3 in complex uncorrelated networks, and asl ' 0.16 in two
dimensional lattices, with the corresponding translation of the whole stability
diagram to smaller values of the volatility parameter.
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Chapter 7

Conclusions

7.1

General conclusions

In the global context of consensus dynamics and motivated by studies of lan-
guage competition, we have studied different microscopic models of social in-
teraction: the Abrams-Strogatz two-state model (AS-model) for the competition
between two languages, and the Bilinguals model (Bilg-model), a three-state
model which is an extension of the AS-model accounting for bilingualism. In
particular, we have analyzed in detail the special cases of socially equivalent
languages (s = 0.5) and neutral volatility (a = 1), which correspond to the proto-
typical voter model and the AB-model respectively. Even though these models
have been presented in the context of language competition, their study belongs
to the more general problem of consensus dynamics in which there exists the
possibility of a third mixed state of coexistence of two options at the individual
level, represented by the AB agents (bilingual individuals in a sociolinguistic con-
text); that is, the general problem of consensus dynamics with two non-excluding
options∗.

The general aim of the thesis has been to analyze the asymptotic behavior and
the nonequilibrium transient dynamics to the absorbing state for these two-state
models (AS-model, voter model), in comparison to the three-state models with
two non-excluding options (Bilg-model, AB-model). We have studied the role
played by the AB agents in the dynamics, the effects of the network structure, and

∗Other examples of these social dynamics beyond language competition processes are the adop-
tion of competing new technologies by a population [209], competing seeds in agriculture, the spread
of hobbies in a society, etc.
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the role of the parameters of the models (prestige and volatility). In each Chapter,
we have already presented in detail the corresponding concluding remarks,
which we also summarize in the following Section 7.2. Here, we wish to stress the
most relevant and general conclusions, which concern (i) the interface dynamics
and coarsening processes of the models, (ii) the order-disorder transitions and
the mechanisms leading to scenarios of consensus or coexistence, and (iii) the
trapped metastable states associated to topological properties of the network
structure and their dynamical effects. In the last part of the conclusions, we also
briefly present the sociolinguistic implications of our work for the dynamics of
language competition.

In the first place (i), we have shown that there exist different mechanisms which
change the noisy interface dynamics characteristic of the voter model towards
curvature driven dynamics. In this way, the typical growth of the size of single-
option domains, ξ, changes from ξ ∼ ln(t) to ξ ∼ tα, with α ' 0.5. These
mechanisms are: (a) the extension of the voter model allowing for the interme-
diate AB-state (AB-model; see Chapter 3), (b) the perturbation on the transition
probabilities of the voter model, which introduces a reinforcement of the influ-
ence of the local majority surrounding an agent (ε-model; see Chapter 3), and (c)
the low volatility regime in the AS-model (and in the Bilg-model), where agents
have a tendency to remain in its current state (see Chapter 6). This change in
the interface dynamics, shown in the study of the models in two-dimensional
regular lattices, has further implications in both the order-disorder transitions
and the metastability observed in the models, as we discuss below.

Secondly (ii), we have explored the whole parameter space in the AS-model, de-
veloping macroscopic analytical descriptions in order to study the order-disorder
(consensus-coexistence) transitions we have found in the model (see Chapter 6).
Due to the complexity of the macroscopic equations in the Bilg-model, we have
obtained results for this model only with Monte Carlo simulations. In fully con-
nected networks, we have shown that the AS-model and the Bilg-model have a
qualitatively alike behavior in the asymptotic states: they reach consensus for
large values of a > ac (low volatility regime), while the system reaches a scenario
of coexistence for small values of a < ac (high volatility regime). Therefore, high
volatility (small a) is shown to generally favor coexistence. This is indepen-
dent of the prestige in the thermodynamic limit. However, these order-disorder
transitions are affected by both, the network structure and the existence of AB
agents.

On the one hand, when considering non-equivalent options (s , 0.5) and in com-
parison to fully connected networks, coexistence has been shown to be reduced
in complex random networks with small average degree. The reason has to be
found in the emergence of a new area in the parameter space of dominance of
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the most prestigious option. This effect is enhanced in two-dimensional lattices,
where second neighbor correlations enhance the tendency towards consensus.
On the other hand, the presence of AB agents reduces further the area of co-
existence because they decrease the effective volatility of the dynamics. In other
words, one needs a higher volatility of the agents (smaller a) to recover the sit-
uation without AB agents. This is illustrated when comparing the voter model
and the AB-model in the parameter space: the voter model (AS-model in the
case of a = 1 and s = 0.5) corresponds to the critical point between consensus
and coexistence (ac = 1), while the AB-model (Bilg-model in the case of a = 1
and s = 0.5) lies on the area of consensus. In fully connected networks, the
volatility needs to be decreased until a f c ' 0.63 in order to recover the critical
point in the Bilg-model. This has important consequences: the area 0.63 < a < 1
corresponds to coexistence in the voter model, while it corresponds to consensus
in the AB-model. Moreover, on top of the network effects described above for
s , 0.5, the critical value for the order-disorder transition in the Bilg-model is
shown to be dependent on the network structure and to shift to smaller values
of a. For s = 0.5, the critical value is shown to be acn ' 0.3 in complex networks,
and asl ' 0.16 in square lattices∗, with the corresponding translation of the whole
stability diagram to smaller values of the volatility parameter.

Notice that the analysis of the parameter space complements the understanding
of the behavior of the AB-model in comparison to the voter model. In particular,
it allows us to reinterpret, from a complementary point of view, the result con-
cerning the change in the interface dynamics (see Chapter 3): the addition of the
AB-state can be interpreted as an effective shift in the parameter space from a
critical point (corresponding to the noisy interface dynamics of the voter model)
to the region of consensus (corresponding to the curvature driven interface dy-
namics of the AB-model).

Therefore, regarding the asymptotic states, volatility generally enhances coexis-
tence while the presence of AB agents hinders it. In the AS-model, the role of the
prestige parameter is entwined with that of the network structure: in complex
random networks and two-dimensional lattices, the existence of a bias in the
relative prestige between the options (non-equivalent states) reduces the sce-
nario of coexistence in favor of new dominance regions for the most prestigious
option. When AB agents are considered (Bilg-model), this effect is amplified and
coexistence is even reduced in the case of socially equivalent options.

In the third place (iii), and beyond the study of asymptotic states (consensus or
coexistence), we have analyzed the nonequilibrium transient dynamics to the
absorbing state in the case of neutral volatility (a = 1) and equivalent options

∗Subindices stand for fn (fully connected), cn (complex networks) and sl (square lattices).
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(s = 0.5). For this, we have studied the AB-model in comparison to the voter
model in networks of increasing complexity: from two-dimensional lattices, to
small world networks and networks with community structure (see Chapter 3
and 4). We have been specially interested in the existence of metastable states,
which correspond to long-lived coexistence states with a finite lifetime in finite
systems. In particular, we have studied in detail trapped metastable states, which
are related to the topology of the network. The general mechanism leading
to trapped metastable states appears to be a combination of curvature driven
interface dynamics (property of the model) and topological traps in the network
(property of the structure of the network). Therefore, trapped metastable states
appear in the AB-model, while they have shown to be absent in the voter model,
which is driven by interfacial noise∗.

In two-dimensional lattices, we have found for the AB-model stripe-like trapped
metastable states, which appear in 1/3 of the realizations (see Chapter 3). These
configurations define a second characteristic time for the dynamics, beyond the
one corresponding to the rest of realizations which reach consensus directly.
The most interesting trapped metastable states though, have been obtained in
networks with mesoscale structure (see Chapter 4). In a class of complex net-
works with community structure, we have obtained trapped metastable states at
any time scale, which lead to broad power law lifetime distributions, such that a
characteristic time for the dynamics is not defined†. These metastable states have
been shown to be related to the dynamics stuck between communities, in which
curvature interface dynamics (local majority) favors consensus in a given option
in each of the communities, with AB agents placed at the interfaces between
them. Next, we have shown through a simple class of networks with commu-
nity structure built up from connected cliques, that the sufficient condition for
these broad lifetime distributions to appear is heterogeneity at the mesoscale
level, that is, a large variability in the dynamical robustness of the communities
(cliques) in the network.

In this way, while AB agents have been shown to facilitate consensus in small
world networks (see Chapter 3), they make possible, at the same time, the exis-
tence of trapped metastable states at any time scale in networks with mesoscale
structure, which results in a long-lived, although segregated, coexistence of the
two options.

Finally, we want to stress that most of the results presented in this thesis can be
general for models which develop curvature driven dynamics, like SFKI models

∗Notice that we refer to trapped metastable states. In the voter model, there exist metastable
states, but they are not trapped (see Section 1.4.1).

†In the voter model instead, trapped metastable states are not found and the lifetime distribution
is shown to be exponential.
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[110]. Indeed, we notice that the order-disorder nonequilibrium transitions we
have obtained in the AS-model and the Bilg-model are reminiscent of the well
known Ising model transition, but with volatility playing the role of temperature:
high volatility (a < ac) corresponds to the high temperature paramagnetic phase
and low volatility (a > ac) to the low temperature phase. However, there are
two important differences: first, the transition is here first order, since the low
volatility stable states appear discontinuously at ac. Second, while in the low
temperature phase of the Ising model, spins flip in the bulk of ordered domains
by thermal fluctuations, here, spin flips in the low volatility regime only occur at
the interfaces (domain boundaries). In this way, all the detailed results presented
for the AB-model, which belongs to the low volatility regime in the Bilg-model,
might be compatible with the SFKI in the low temperature phase.

In summary, in this thesis we have contributed to the understanding of the
mechanisms underlying in consensus problems in which the options at play can
be non-excluding. Motivated by language competition problems, we have ana-
lyzed and compared two-state models in which two options compete among the
agents, with the corresponding extensions where a third AB-state of coexisting
options at the individual level is considered. Taking into account the effects
of different network topologies, we have studied the asymptotic behavior and
order-disorder transitions of the models, together with their ordering dynamics
and coarsening processes in order to characterize the nonequilibrium transient
dynamics to the absorbing states.

Implications for the dynamics of language competition

From the point of view of dynamics of language competition, and within the
assumptions and limitations of our models, our work has several implications
which we briefly comment on here. Several of these implications have already
been presented in publications during the development of this thesis (publica-
tions in Refs. [233–236]).

On the one hand and regarding the parameters of the models, our results support
the common idea that the prestige of a language is very important, as it creates a
preference of the agents towards the most prestigious language∗. Nevertheless,
the volatility of the agents has been shown to be a very crucial social parameter
in language competition as well. Generally speaking, high volatility agents,
i.e., agents which are less attached to the language they are currently using,

∗The situation close to extinction of old Catalan in Alghero in its competition with modern Italian
is a representative example of this situation. Also Quechua in its competition with Spanish in Peru
was in an endangered situation because of a low prestige, but policies in favor of enhancing it seem
to be leading to its recovery in recent times.
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favor language coexistence, while low volatility agents develop scenarios of
dominance of one of the languages in the long run. In social networks though, a
difference in the prestige of the languages originates scenarios of dominance of
the most prestigious language. In this situation, when the parameters are such
that the system belongs to a dominance region, extinction happens much faster
in the high volatility regime than in the low volatility regime. In a few words,
high volatility is then good for the coexistence of languages of similar prestige,
because it leads to scenarios of coexistence; but it speeds up the extinction of
endangered languages (low prestige languages)∗.

On the other hand, bilingual agents in use† (AB agents) generally reduce the sce-
nario of coexistence between two competing languages. This has been obtained
in different networks: fully connected networks, complex random networks and
two-dimensional regular lattices; with an increasing reduction of coexistence
in this same order. In addition, bilingual agents together with long range in-
teractions (small world network) have been shown to accelerate the approach
to absorbing monolingual states; in other words, the extinction of one of the
languages. However, in the range of volatility values close to one‡ (a = 1 corre-
sponds to the AB-model) the results are quite different when considering social
networks with community structure, which has been found to be a crucial fea-
ture of real social networks. In these topologies, bilingual agents make possible
long-lived scenarios of coexistence, in which different communities speak differ-
ent languages (linguistic segregation). We stress that qualitatively our results are
compatible with those obtained by Blondel et al. [46] in the analysis of real data
of the language used by the customers of a Belgian mobile phone network, where
they also find correlations between community structure and the language of the
customers§. In addition, although in the AB-model finally one of the languages
disappears, there does not exist a characteristic time for extinction of a language,
but coexisting languages can be found at any time scale.

We have also studied a modification of the AB-model where the effective status
of being bilingual has been reinforced, as the agents have certain resistance
to abandon the use of an acquired language (see Chapter 5). Contrary to the
original model, AB agents become the majority during most of the competition

∗An example of this situation can be the competition between Galician-Spanish in Galicia, where
there are reasons to think that the low volatility of the Galician speakers prevented Galician from
endangerment in the past [237].

†We remind here that we have studied models of language use rather than competence.
‡Notice that Abrams and Strogatz obtained a value a = 1.31 ± 0.25 when fitting to real data

regarding the competition between Quechua-Spanish, Scottish Gaelic-English and Welsh-English
[13]. To our knowledge, this is the only comparison to real data of the models studied here.

§Notice that their data are for a fixed time. Dynamical real data analysis in this direction would
be very interesting to enhance the knowledge of the evolution of language use in real social networks,
and compare it to the models we have studied.
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process, and the extinction of a language takes place then in two steps. At first,
monolingual speakers of the endangered language disappear, but the language
does not, as it is still spoken in the society by the bilingual agents. Finally,
bilingual agents also disappear, which leads to the ultimate extinction of the
language. This framework models a mechanism which supports the idea that,
in societies with two languages, the disappearance of a monolingual community
using a language as its only way of communication could represent the first step
in the extinction of that language. The other language would finally become the
only spoken one, as the bilingual agents would eventually end up using only
the language spoken by the remaining monolingual community.

Finally, we mention here the work on the viability and resilience of two languages
in competition using the Abrams-Strogatz model (see Appendix B; [219]). Within
the framework of viability theory [238], which provides theoretical concepts and
practical tools in order to maintain a dynamical system inside a given set of a
priori desired states, the maintenance of two competing languages is shown to
be possible by introducing the prestige of a language as a control variable, that
is, assuming that public action can modify the prestige of a language in order to
avoid language extinction.

The studies of language competition from the point of view of statistical physics
and complex systems give a new perspective and formalism to sociolinguistic
problems. These models, although still limited, together with an increasing
collaboration with linguists, might help to face the challenging question of the
mechanisms involved in processes of language contact.
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7.2

Specific conclusions

In this Section, we summarize the particular results and conclusions obtained
in this work, which have already been carefully presented in the concluding
remarks at the end of each Chapter of this thesis.

Chapter 3

In this Chapter, we have studied the AB-model in comparison to the voter model
in fully connected networks, two-dimensional regular lattices and small world
networks. The main results have been the following:

• In the AB-model, the mean field analysis shows that in the thermodynamic
limit a global consensus state (A or B) is reached with probability one,
except for initial conditions lying on the stable manifold (ΣA = ΣB) of the
saddle fixed point corresponding to unstable coexistence of the three states.
In the voter model, instead, any given initial distribution of states of the
agents would persist indefinitely.

• In the AB-model and in finite fully connected networks, the system reaches
the absorbing state by finite size fluctuations, with an average time to reach
consensus scaling with the system size as τ ∼ ln(N). In the voter model
instead, ρ(t) fluctuates grossly until a finite size fluctuation drives it to the
absorbing state. The average time to reach an absorbing state scales with
the system size as τ ∼ N, giving rise to a much slower path to consensus
compared to the AB-model.

In two dimensional lattices, and for the AB-model:

• A domain of agents in the AB-state is not stable and the density of AB
agents becomes very small after an initial fast transient, with AB agents
placing themselves in the interfaces between single-option domains.

• AB agents produce an essential modification of the processes of coarsening
and domain growth, changing the interfacial noise dynamics of the voter
model into a curvature driven interface dynamics: the typical growth of
the size of single-option domains, ξ, changes from ξ ∼ ln(t) to ξ ∼ tα,
with α ' 0.5. This change in the coarsening mechanism is also found
in the ε-model, a modification of the voter model in which there exists a
reinforcement of the influence of the local majority surrounding an agent.
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• The system reaches stripe-like trapped metastable states with a probability
around 1/3 (also in the ε-model). The average time to consensus has been
shown to scale with the system size as τ ∼ N1.8 (to compare with the voter
model, where τ ∼ N ln(N)).

In small world networks, and for the AB-model:

• In comparison to the voter model, where the dynamics reaches a metastable
state, AB agents restore the processes of coarsening and domain growth and
they speed-up the decay to the absorbing state by a finite size fluctuation.
We obtain a characteristic time to reach an absorbing state scaling with the
rewiring parameter as τ ∼ p−0.76.

• The characteristic time to reach an absorbing state scales with system size
as τ ∼ ln N (to be compared with the result τ ∼ N for the voter model).

Chapter 4

In the first part of this Chapter, we have studied the AB-model in comparison to
the voter model in a class of networks with community structure. In the second
part, we have studied sufficient conditions under which a broad distribution of
lifetimes appears, analyzing the AB-model in a controlled setting by constructing
simple test case networks with mesoscopic structure.

In the first part, the main results have been the following:

• The voter model dynamics, driven by interfacial noise, is not particularly
sensitive to the mesoscale structure of the network. We obtain similar type
of dynamical metastable states shared by other complex networks of high
dimensionality without degree correlations.

• In the AB-model instead, we find different classes of realizations leading to
a power law distribution for the times to reach consensus, with exponents
such that a mean lifetime for these states does not give a characteristic
time scale of the ordering dynamics (the fraction of alive runs scaling as
P(t) ∼ t−α, α ≈ 1.3). As a result, we find realizations with any lifetime.
This is explained in terms of trapped metastable states associated with the
community structure of the network.

• The results above seem to be a consequence of a curvature interface dy-
namics, in which mechanisms of local majority favor consensus in a given
option in each of the communities.

169



CHAPTER 7. CONCLUSIONS

In the second part, the main results have been the following (AB-model):

• We define the dynamical robustness of a given topological substructure,
which is characterized by the survival time of the substructure, i.e., the
characteristic time needed for this set of nodes before changing its option
towards the one of the surrounding majority. For isolated cliques, the
ratio r = kn,in/

〈
kn,out

〉
has proven an appropriate topological measure to

characterize their dynamical robustness.

• In EDH networks (for Equal out-Degree and Homogeneously sized cliques),
we have shown that the mere presence of communities is not a sufficient
condition to produce a lifetime distribution broader than exponential.

• In EDE networks (for Equal out-Degree and Exponential clique size dis-
tribution), we have recovered the main results obtained in the first part of
the Chapter: very broad P(t) with a best power law fit such that the second
moment of the distribution is not defined, and therefore, there does not
exist a characteristic time scale for the dynamics.

• A large heterogeneity in the dynamical robustness of different topological
substructures (communities) appears to be a sufficient mechanism for the
absence of a characteristic time for the dynamics. This mechanism causes
the existence of trapped metastable states that survive at any time scale.

Chapter 5

In this Chapter, we have analyzed and compared the AB-model and the Naming
Game restricted to two conventions (2c-Naming Game). The main results have
been the following:

• We have shown that although these two models are equivalent in mean-
field, their microscopic differences give rise to different behaviors.

• In fully connected networks, we have studied the extension of the models
incorporating the parameter β, which is a measure of the inertia of the
agents to abandon one of the options, and at the same time, a reinforcement
of the status of the AB-state. We have shown that, while the 2c-Naming
Game features an order-disorder transition for a critical value of β between
consensus and stationary coexistence of the three phases present in the
system, this is absent in the AB-model.

• Contrary to the original AB-model (β = 1), where the AB agents are sys-
tematically the minority state in the system, for β small enough, AB agents
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become the majority during the transient stage before one of the options
takes advantage and the system eventually reaches an absorbing state.

• In comparison to the 2c-Naming Game, the AB-model interface dynamics
in regular lattices, although qualitatively similar, slows down the diffusion
of metastable configurations such as walls in one dimension and stripe-like
configurations in two dimensions.

Chapter 6

In this Chapter, we have analyzed the microscopic dynamics of the AS-model
and the Bilg-model on fully connected, complex random networks and two-
dimensional square lattices, and constructed macroscopic descriptions of these
dynamics accounting for the observed order-disorder transitions. The main
results have been the following:

In fully connected networks:

• The stability analysis in mean field for the AS-model shows a transition
from coexistence (a < 1) to dominance (a > 1) of one of the two equivalent
states. The critical value ac = 1 is independent of the relative prestige
between the two options. In the region of coexistence though, the fraction
of agents in the more prestigious option increases with a higher prestige.

• In the Bilg-model instead, the scenario of coexistence is reduced to a < 0.63.
That is, agents with a higher level of volatility (smaller a) are needed in
order to obtain a coexistence regime.

• At a general level, the fact that agents are highly volatile (a < ac), i.e, loosely
attached to its current option, leads to the enhancement of the scenario of
coexistence. On the contrary, in a low volatility regime (a > ac), the final
state is one of dominance/extinction.

In degree-regular random networks:

• For the AS-model, we derive a macroscopic description of the dynamics
using a pair approximation. Due to the complexity of the macroscopic
equations in the Bilg-model, we have obtained results for this model only
with Monte Carlo simulations.

• In the AS-model , we find analytically and numerically that the decrease of
the network connectivity leads to a reduction, in the parameter space (a, v),
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of the area of coexistence and the area of bistable dominance, while monos-
table dominance regions emerge, in which only the state of dominance of
the more prestigious option is stable.

• The network effects described above for the AS-model are also qualitatively
valid for the Bilg-model, but the reduction is even more important. In
addition, we find a shift of the critical value for v = 0 to acn ' 0.3, with the
corresponding translation of the whole stability diagram to smaller values
of the volatility parameter.

In two-dimensional regular lattices:

• For the AS-model, we derive a macroscopic equation for the evolution of
a continuous space dependent spin field.

• The macroscopic description accounts for the different coarsening pro-
cesses observed for large (curvature driven) and small volatility (no order-
ing). In the transition, we find the noisy interface dynamics characteristic
of the voter model.

• Compared to degree-regular random networks, the coexistence is shown
to be even more difficult to achieve, probably due to the fact that corre-
lations with second neighbors make the coarsening process of formation
and growth of domains easier.

• The network effects described above for the AS-model are also qualitatively
valid for the Bilg-model, but the reduction is even more important. In
addition, we find a shift of the critical value for v = 0 to acn ' 0.16, with the
corresponding translation of the whole stability diagram to smaller values
of the volatility parameter.

♦ ♦ ♦

Viability and resilience. Appendix B

In this Appendix, we have studied the viability and resilience of two languages
in competition using the Abrams-Strogatz model within a population dynamics
approach. The main results have been the following:
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• The maintenance of two competing languages is shown to be possible
by introducing the prestige of a language as a control variable, that is,
assuming that public action can modify the prestige of a language in order
to avoid language extinction.

• We compute viable policies of action on the prestige variable to keep lan-
guage coexistence within a given constraint set (set of a priori desired
states; in our case, coexistence with no endangered languages). For this,
we compute the viability kernel of the system, i.e. the set of states, given
some possible control actions on the prestige variable, for which the system
can be maintained inside the constraint set.

• The viability kernel shrinks as the volatility parameter increases, due to
the fact that agents become less likely to change their language.

• We define the resilience of the system in the formalism of viability theory:
the system is resilient to a perturbation if, after a perturbation that places
the system outside the viability kernel, there exists an action policy driving
back the system to the viability kernel. In this way, we determine the
action policies that minimize the cost to drive an endangered language to
a scenario of safe coexistence (i.e. to the viability kernel of the system).

• In the case that not only the prestige, but also the volatility of the agents
could be a control parameter, the results in Section 2.4 indicate possible
interesting policies in the case of endangered languages (low prestige) and
low volatility of the agents. Notice that when the volatility of the agents
is low, it gives larger times before the extinction of the low-prestigious
language, and in this way, enough time to try to enhance its prestige.
At the eventual point in which social prestige equivalence is achieved, if
the volatility is increased, a situation of coexistence for both languages
becomes viable and can be maintained indefinitely.
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7.3

Outlook and final remarks

In this last Section, we wish to describe further research lines that can be consid-
ered as next steps in the analysis of the dynamics of the models studied in this
thesis, in order to achieve a better understanding of consensus problems, and in
particular, of language competition processes. The aim is to move beyond some
of the assumptions we have made during our study, which concern essentially
the modeling of both the dynamics of interaction and the network structure.

The main research lines are the following:

• Heterogeneous interacting agents

In the present work, all the agents are homogeneous in the sense that the
parameters of the model are the same for all the agents (although in non-
regular topologies, a source of diversity is implicit through their position
in the network). Non-trivial effects arise when considering diversity in the
parameters of the system [226, 239]. In our models, the idea is to allow the
prestige parameter s and the volatility parameter a to be assigned to each
agent from given distributions, which would tune the diversity introduced;
or to use non-random initial conditions according to the different parameter
values of the agents. We expect new behavior to emerge, in particular
regarding the scenarios of consensus-coexistence, which might be modified
in a non-trivial manner.

• Metastability in the Abrams-Strogatz model and the Bilinguals model

The study of the nonequilibrium transient dynamics to the absorbing state
in networks with community structure has only been studied for the cases
of neutral volatility (a = 1) and equivalent options (s = 0.5), that is, for
the voter and the AB-model. An obvious extension of this study is to
analyze how the appearance of trapped metastable states observed in the
AB-model, which give rise to broad lifetime distributions, is affected when
considering the whole parameter space. The idea is to check the robustness
of the result concerning the absence of a characteristic time scale for the
dynamics (AB-model), which we expect to hold for large values of the
volatility parameter (which correspond to curvature driven coarsening).

• Coevolving networks of interaction

The networks we have considered in this thesis are unweighted, undi-
rected and static. Open lines of research concern the addition of more
complex network structures, in which to consider weights and directed
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interactions. Moreover, social networks of interaction generally evolve in
time. Indeed, coevolving networks, i.e., networks in which the character-
istic time corresponding to the dynamics is of the same order than the one
corresponding to the dynamical evolution of the network, are gaining a
special attention these last years [64]. Considering the Abrams-Strogatz
model and the Bilinguals model in coevolving networks is a promising line
of research.

• Dependence on initial conditions

In this work, we have essentially focused on studying random initial con-
ditions for the distribution of the states of the agents. A systematic study
of the role of initial conditions in consensus dynamics is often lacking, and
could be an interesting line of research to follow regarding the models stud-
ied in this thesis. In fact, the role of initial conditions in the SFKI dynamics
has been recently studied in different complex networks [240]. It has been
shown how, when the nodes in the minority state are placed according to
centrality measures (degree, betweenness, clustering), the minority state
can remarkably take over the system. In this way, while generally random
initial conditions are assumed by default, the initial conditions might be in
some cases as relevant as the network structure to determine the evolution
of the system.

Concerning specifically language competition, the main research lines are:

• Language use as a property of the social interaction

In this work we have considered language use as a state of the agents
(monolingual A, monolingual B, or bilingual AB). One line of research we
are considering concerns the idea of modeling language use as a property
of the social interaction (link), instead of a property of the agents (node).
In this way, links can be of type A or type B, depending on the language (A
or B) used between the two agents connected by a given link. The state of
a given node is then inferred from the distribution of the states of its links.
Instead of assuming a third node-state AB (as we did in the present thesis),
bilingual agents in use with different degrees of bilingualism emerge then
naturally.

In this way, we move towards consensus dynamics based on links, opening
a new class of phenomena to be addressed beyond language competition,
in the direction of social balance theories for the dynamics of friendship
[241].
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• Language competence and language use: towards a “complete” model of
language competition

In this work, we have considered language use rather than competence.
Building upon the consensus dynamics based on links we have presented
above, an interesting line of research concerns the coupling between the
dynamics of language use (in the links) and a dynamics of language com-
petence (in the nodes) in which one considers learning mechanisms. In this
framework, an agent could use only the languages in which it is competent
with.

• Emergence of new languages

A different line of research we are considering concerns the emergence of
new languages in situations of language contact. In the models we have
studied in this thesis, languages are defined a priori and do not evolve. The
idea is then to explore dynamics which would allow for the emergence of a
new language during processes of language contact such as code-switching
or creolization [160].

• Modeling diglossia

An extension of the concept of network of interactions which could model
different contexts of language use could be appropriate to take into ac-
count the phenomenon of diglossia, which is a central one in situations
of language contact. This happens when in a situation of two languages
in contact, the high-prestige language is the one used in formal situations
(institutions, media, education, etc.) while the low-prestige language is
essentially used only in familiar and friendly contexts.

• Data

Due to the theoretical perspective of this work and the general difficulties
in getting accurate real data in social dynamics problems (see Introduction,
Section 1.1), the real data regarding language competition we have referred
to during this thesis is rather limited. In fact, it consists of (i) the population
data gathered by Abrams and Strogatz [13], concerning Quechua (in com-
petition with Spanish), and Scottish Gaelic and Welsh (both in competition
with English); and (ii) the analysis of the language (French-Dutch) of cus-
tomers in a Belgian mobile phone network by Blondel et al. [46]. Although
this last data set allowed us to compare qualitatively some of our results
concerning the effect of networks with communities, we did not find data
to compare with the general qualitative outputs of our models. Of course,
the class of data we are interested in lie beyond the aggregated popula-
tion data (i), and might come from studies in the line of data (ii), where
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the new technologies (mobile phone calls, e-mailing, on-line communities)
can be used to obtain large networks of social interaction, hopefully in-
cluding data regarding language use. The step forward should be moving
from getting snapshots towards dynamical data. This might help us, for
instance, to set the time scale corresponding to a Monte Carlo step in our
models.

As a final remark, we think that beginning with very complicated models that
tend to consider all the factors involved in a social problem, leads easily to
a partial analysis and few understanding of the mechanisms involved in the
dynamics. Instead, following the final remarks and outlook presented above, we
believe that the understanding of mechanisms of social interaction might come
from a deep analysis of simple models like the ones we have presented in this
thesis, which can be explored and understood, to later move bottom up towards
models of increasing complexity which are built upon a solid background.

We expect that, may be through some of the lines presented above, the work
presented in this thesis triggers further research in order to gain an increas-
ing understanding of the mechanisms involved in consensus dynamics, and in
particular, within the open research field of dynamics of language competition.
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Appendix A

Equation for the spin field φr
in the Abrams-Strogatz model

In this Section we derive an equation for the spin fieldφr. We start by substituting
the expression for the transition probabilities Eq. (6.44) into Eq. (6.45) and by
writing it in the more convenient form

∂φ

∂t
=

(1 + v)
2a+1 (1 − φ)(1 + ψ)(1 + ψ)a−1

−
(1 − v)

2a+1 (1 + φ)(1 − ψ)(1 − ψ)a−1,

(A.1)

where φ and ψ are abbreviated forms of φr and ψr respectively. We now replace
the neighboring fieldψ in the terms (1+ψ) and (1−ψ) of Eq. (A.1) byψ ≡ φ+∆φ,
where ∆ is defined as the standard Laplacian operator ∆φr ≡

1
4

∑
r′/r

(
φr′ − φr

)
=

ψr − φr, and we obtain

∂φ

∂t
= 2−(a+1)(1 − φ2)

[
(1 + v)(1 + ψ)a−1

− (1 − v)(1 − ψ)a−1
]

(A.2)

+ 2−(a+1)
[
(1 + v)(1 − φ)(1 + ψ)a−1 + (1 − v)(1 + φ)(1 − ψ)a−1

]
∆φ.

Because our idea is to obtain a Ginzburg-Landau equation with a φ6-potential,
the right hand side of Eq. (A.2) must be proportional to φ5, and therefore we use
the Taylor series expansions around ψ = 0

(1 + ψ)a−1 = 1 + (a − 1)ψ +
1
2

(a − 1)(a − 2)ψ2 +
1
6

(a − 1)(a − 2)(a − 3)ψ3 and

(1 − ψ)a−1 = 1 − (a − 1)ψ +
1
2

(a − 1)(a − 2)ψ2
−

1
6

(a − 1)(a − 2)(a − 3)ψ3
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into Eq. (A.2), to obtain

∂φ

∂t
= 2−a(1 − φ2)

[
v + (a − 1)ψ +

v
2

(a − 1)(a − 2)ψ2 +
1
6

(a − 1)(a − 2)(a − 3)ψ3
]

+ 2−a
{

(1 − vφ)
[
1 +

1
2

(a − 1)(a − 2)ψ2
]

+ (v − φ)
[
(a − 1)ψ +

1
6

(a − 1)(a − 2)(a − 3)ψ3
]}

∆φ. (A.3)

We then replaceψ byφ+∆φ in Eq. (A.3) and expand to first order in ∆φ, assuming
that the field φ is smooth, so that ∆φ � φ. Finally, neglecting φ3 and higher
order terms in the diffusion coefficient that multiplies the Laplacian, we arrive
to the expression for the spin field quoted in Eq. (6.46).
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Viability and Resilience of Lan-
guages in Competition

This Appendix corresponds to the work on viability and resilience of two com-
peting languages, which has led to the publication we attach here (publication
in Ref. [219]).

Abstract

We study the viability and resilience of languages, using a simple dynamical
model of two languages in competition. Assuming that public action can modify
the prestige of a language in order to avoid language extinction, we analyze
two cases: (i) the prestige can only take two values, (ii) it can take any value
but its change at each time step is bounded. In both cases, we determine the
viability kernel, that is, the set of states for which there exists an action policy
maintaining the coexistence of the two languages, and we define such policies.
We also study the resilience of the languages and identify configurations from
where the system can return to the viability kernel (finite resilience), or where
one of the languages is lead to disappear (zero resilience). Within our current
framework, the maintenance of a bilingual society is shown to be possible by
introducing the prestige of a language as a control variable.
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Introduction

The study of language dynamics using computer simulations has become a re-
search field of increasing interest in the scientific community. Models studying
language dynamics range from social impact theory applied to language compe-
tition [191] to genetic approaches for the evolution of universal grammar [189].
We are here interested in the problem of language competition, i.e., the dynamics
of language use among a population of interacting agents speaking different lan-
guages. Around 50% of the 6000 languages spoken today are in danger and will
disappear during the current century according to the recent studies in language
contact [157]. Beyond Weinreich’s Languages in contact [164], several studies in
sociolinguistics have addressed questions regarding the level of endangerment
of specific languages [165] and the challenge to find a common pattern that
might relate language choice to ethnicity, community identity or the like [166].
Lately, the need to provide a quantitative analysis in the field of sociolinguistics
is getting an increasing attention [169]. This fact has triggered an effort in order
to model and understand the mechanisms within scenarios of language compe-
tition: some models study the competition between many languages in order to
reproduce the distribution of language sizes in the world in terms of the number
of speakers [176, 177]; while others focus on the case of language contact between
few languages (for a review see Refs [178, 179]). In particular, Abrams and Stro-
gatz [13] proposed a simple mathematical model of competition between two
languages. The model describes the system by aggregated variables that repre-
sent the fraction of speakers of each language, where a higher local density of
speakers and a higher prestige, the relative status of a language, tend to increase
the density of speakers of a language. The analytical study of the model and
the fitting to real data from the competition between Quechua-Spanish, Scottish
Gaelic-English and Welsh-English, predict that the coexistence of two languages
is unstable, irrespective of the prestige of the languages and their initial density
of speakers in the model, in contrast to the evidence that bilingual societies exist
today. The paper finished with the following remarks:

Contrary to the model’s stark prediction, bilingual societies do,
in fact, exist. [...] The example of Quebec French demonstrates that
language decline can be slowed by strategies such as policy-making,
education and advertising, in essence increasing an endangered lan-
guage’s status. An extension to [the model] that incorporates such
control on s through active feedback does indeed show stabilization
of a bilingual fixed point.
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Several modifications and extensions of this model of language competition
have investigated deeper this problem: (i) developing agent-based models in
order to study the behavior of the model in regular networks [180], in which
the path to a final scenario of extinction of one of the languages is analyzed
in finite size systems; (ii) introducing geographical dependencies in terms of a
reaction-diffusion equation, which allow the survival of the two languages, with
speakers of different languages mostly located in different geographical areas
[172, 174]; (iii) implementing Lotka-Volterra type modifications to the original
model which can lead to a scenario of coexistence of the two languages in
the same geographical area [175]; (iv) introducing bilingualism in the model:
individuals can use both languages [173, 182]. In this last extension [182], and
in the same parameter setting studied by Abrams and Strogatz, introducing
bilingualism keeps the coexistence of both languages unstable. This extension
of the model has been extensively studied and compared to the seminal model
of Abrams and Strogatz for the case of socially equivalent languages and linear
dependence on the density of speakers [198]. The analysis has been done in
agent based models in finite systems where social structure has been taken
into account using complex social networks. The models have been studied in
two-dimensional regular lattices and small-world networks [198], as well as in
networks with community structure [215, 216].

The prestige of a language has been considered as one of the main factors affecting
language competition since Labov’s Sociolinguistic Patterns [170]. It measures the
status associated to a language due to individual and social advantages related
to the use of that language, being higher according to its presence in education,
religion, administration and the media. Minett and Wang [183] defined simple
strategies for modifying the prestige to maintain the coexistence of the two
languages, following the remarks of the seminal work quoted above [13]. Beyond
this initial effort in proposing simple strategies to foster language coexistence,
the aim of this work is to provide a more general approach to determine the
actions on the prestige to maintain the coexistence of both languages.

We adopt a viability theory perspective: viability theory [238] provides theoret-
ical concepts and practical tools, in order to maintain a dynamical system inside
a given set of a priori desired states, called the viability constraint set. This set rep-
resents the “good health” of a system beyond which its safe existence would be
jeopardized; in the context of language maintenance, it characterizes the safe co-
existence of both languages. The goal of viability theory is to determine policies
(viable policies) that always keep the system inside the viability constraint set,
rather than to optimize some criterion. The main concept is the viability kernel:
the set of states, given some possible control actions on the system, for which
the system can be maintained inside the viability constraint set. It provides the
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actual constraints of the system: inside the viability kernel, there is at least one
control policy which maintains the system indefinitely inside the constraint set;
outside the viability kernel, the system will break the constraint set, irrespective
of the policy applied. Moreover, viability theory provides a particularly appro-
priate framework to define rigorously the concept of resilience [242], the capacity
of a system to undergo some exogenous disturbances and to maintain some of
its dynamical properties. Resilience is often defined within the dynamic systems
theory: it can be measured as a function of the time needed to return to equi-
librium after a perturbation [243], or as a function of the distance to bifurcation
points [244], where these are defined as points where the stability of a fixed point
changes. In the viability framework, the desired properties can be defined by
viability constraints, and resilience, which refers to viable states, becomes the
capacity to drive the system inside its viability kernel when a perturbation pulls
it off. It focuses on the ways by which the system can recover from such a pertur-
bation by providing control policies (if any) that will drive back the system to a
safe coexistence scenario with a minimal cost of restoration. Applying viability
theory to the Abrams-Strogatz model, We identify the configurations for which
an indefinite coexistence can be insured, and provide the corresponding action
policies on the prestige. Following Ref [242]’s approach, we study the resilience
of the model by identifying configurations from where the system can return to a
state of coexistence (finite resilience) and other configurations from where one of
the languages faces extinction irrespective of the policy applied (zero resilience).

This paper is organized as follows: first, we introduce the Abrams-Strogatz
model, briefly describing the model and the stability analysis depending on
the parameters; we then study the viability of the languages by defining action
policies that maintain the system within its viability kernel; finally, we compute
the resilience of the two languages using two different criteria. We finally discuss
the results and draw some conclusions.

Language Dynamics: the Abrams-Strogatz Model

To study the competition between languages in a given population, Abrams and
Strogatz proposed a simple model to represent a population with two languages
(A and B) in competition for speakers. Let Σ be the fraction of A-speakers and
1 −Σ the fraction of B-speakers. A B-speaker can become an A-speaker with the
probability PBA(Σ), and the inverse event happens with the probability PAB(Σ).
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Figure B.1: Dependence on the volatility parameter a for the transition
probability to change from state B to state A, PBA. Case of socially equivalent
languages (s = 0.5). Marginal volatility (a = 1, solid line), high volatility
regime (a < 1, dashed line), and low volatility regime (a > 1, dotted line).

In this way, the time evolution for Σ is:

dΣ

dt
= (1 − Σ)PBA(Σ) − ΣPAB(Σ). (B.1)

Speakers change their language according to the attractiveness of the other lan-
guage, which depends on the fraction of speakers and on two parameters: the
prestige of the language, s, and the volatility, a. The probability for B-speakers
to become A-speakers reads:

PBA(Σ) = Σas. (B.2)

The prestige of language A is modeled as a scalar, s ∈ [0, 1] (the prestige of
language B is 1 − s), which aggregates the multiple factors affecting the prestige
of a language. Notice that the case s = 0.5 corresponds to the case of socially
equivalent languages. The functional form of PBA(Σ) is shaped by the parameter
a, which we define as volatility (see Figure B.1). For the case a = 1, we have the
special case of linear transition probabilities (marginal volatility); a high volatility
regime is obtained for a < 1, where the transition probabilities are larger than
linear (agents are likely to change language); while a low volatility regime is
obtained for a > 1 where happens the opposite (agents more rarely change their
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language). Similarly, the probability for A-speakers to become B-speakers is:

PAB(Σ) = (1 − Σ)a(1 − s). (B.3)

Equations B.2 and B.3 incorporate the assumption that if a language has no
speakers or has zero prestige, the probability for a speaker to change for this
extinct language is zero.

Introducing Eqns B.2 and B.3 in Eqn B.1, the Abrams-Strogatz model results in
the following population dynamics

dΣ

dt
= (1 − Σ)Σ[Σa−1s − (1 − Σ)a−1(1 − s)]. (B.4)

We focus now on a brief stability analysis of the model. When a , 1, the stability
analysis shows that there are three fixed points: Σ∗ = 1 and Σ∗ = 0 which
correspond to consensus in the state A or B, respectively; and the other one
corresponds to coexistence:

Σ∗ =

(( s
1 − s

) 1
a−1

+ 1
)−1

. (B.5)

• For a > 1, the two first fixed points are stable, and the third one is unstable,
leading to a scenario of dominance of one of the languages and extinction
of the other.

• For a < 1 instead, the stability of the fixed points changes: consensus
becomes unstable giving rise to the coexistence of the two languages. A
change in the status does not change the stability of the fixed points, but
changes its value; the higher the difference in the relative prestige, the
higher the difference in densities between the two languages in the third
fixed point. Notice that the case s = 0.5 corresponds to the case of so-
cially equivalent languages, and for this case, the transition probabilities
(Eqns B.2 and B.3) become symmetric and the third solution is Σ∗ = 0.5
independently of a.

• For a = 1, and s , 0.5, Eqn B.4 becomes the logistic-Verhulst equation [180]:

dΣ

dt
= (2s − 1)Σ(1 − Σ). (B.6)

In this case, there exist just two fixed points: (i) Σ∗ = 0 and (ii) Σ∗ = 1. For
s < 0.5, (i) is stable and (ii) unstable while for s > 0.5 it happens the opposite.
For the case s = 0.5, we obtain dΣ/dt = 0 with a degeneracy of fixed
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points: any initial condition is a fixed point of the dynamics. This special
case of socially equivalent languages and linear transition probabilities
corresponds to the voter model dynamics, extensively studied in complex
networks [27, 129, 133, 136].

Language Viability

In this work, we are interested in how active policies in favor of an endan-
gered language might lead to a coexistence of the two languages in competition.
Abrams and Strogatz already suggested that [13]:

An extension to Eqn B.4 that incorporates such control on s through
active feedback does indeed show stabilization of a bilingual fixed
point.

We now give evidence of this remark by studying the Abrams-Strogatz model in a
viability theory framework. We consider three values of the volatility parameter:
a = 0.2, 1 and 2. Note that in the case a = 0.2 (in general for a < 1), the fixed
point corresponding to coexistence of the two languages is stable, and thus no
control parameter on s needs to be included to stabilize a bilingual fixed point.
However, when the difference in the prestige of the two languages is very large,
the fixed point might lay outside the constraint set.

Stating the Viability Problem

Viability theory [238] focuses on how to maintain a dynamical system inside a
viability constraint set. The system is composed by state variables, that describe
the system, and by control variables that allow one to act on it. The viability
constraint set defines a state set outside which the system escapes from an a
priori desired setting. A state is called viable if there exists at least one control
function that maintains indefinitely the system inside the viability constraint set;
the set of all these viable states is called the viability kernel. The viability problem
is thus to define a control function that keeps the system viable. On the contrary,
for states located outside the viability kernel, all possible evolutions break the
constraints in finite time. As shown below, the viability kernel is essential in
order to define action policies that maintain viability and the main task in order
to solve a viability problem is thus to determine its viability kernel.
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When defining the viability constraint set in the case of language competition, in
general, in order to characterize a language as endangered, the fraction of people
speaking it is not enough: other crucial aspects include the point at which
children no longer learn the language as their mother tongue; as well as the
increase of the average age of speakers (in an endangered language, eventually
only older generations speak the language) [163]. However, these factors are
out of the scope of the current approach, and we will assume in this work, as
a first approximation, that a fraction of speakers below a critical value becomes
an endangered situation. Building up from this point, in the Abrams-Strogatz
model, we want to determine all the couples of density of speakers and language
prestige which let the coexistence of the two languages. The viability constraint
set is defined by setting minimal and maximal thresholds on the density of
speakers. Below the minimal threshold, Σ, or above the maximal threshold, Σ,
we consider that language A, or B respectively, is endangered, meaning that the
system is not viable. We set Σ = 1 − Σ such that there is no need to consider
explicitly language B: if Σ is outside the constraint set, so does 1 − Σ.

As it is advocated in Ref [13], we introduce prestige s as the control variable.
The enhancement of the prestige of an endangered language can be triggered
by political actions such as the increase of the prestige, wealth and legitimate
power of its speakers within the dominant community, the strong presence of
the language in the educational system, the possibility that the speakers can
write their language down, and the use of electronic technology by its speakers
[157]. The computation of the viability kernel for the Abrams-Strogatz model
will allow us to answer questions like: for a given density of speakers, are there
action policies performed in favor of the endangered language that will keep the
coexistence of the two languages? If the answer is yes, which are convenient
policies? To answer this question, Minett and Wang [183] proposed strategies
in a simple framework (only two control values are considered). The main
advantage of using viability theory is that it provides general tools and methods
to determine the set of initial density of speakers for which it is possible to control
the system such that the coexistence is ensured.

First Case: Two Prestige Values

Following the idea of Minett and Wang [183], we consider first a setting where
the control u is the prestige s of language A, and we restrict the possible values
of the control to only two discrete values u1 and u2. We consider the following
viability problem: Find the action policies (a function defining the action in
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time), such that the dynamical system dΣ

dt
= (1 − Σ)Σ

(
Σa−1s − (1 − Σ)a−1(1 − s)

)
s = u ; u ∈ {u1,u2}

(B.7)

remains in the viability constraint set K:

K = [Σ,Σ]. (B.8)

Our aim is to find the set of values of Σ for which there exists at least one control
function that keeps the states of the system defined by Eqn B.7 always inside the
viability constraint set (Eqn B.8). The set of all the values of Σ satisfying Eqns B.7
and B.8 constitutes the viability kernel associated to the model with such control
settings, and is denoted Viab(1)(K).

Computation of the viability kernel. We will assume that the critical threshold
of the density of speakers is 20% of the size of the whole population. Thus we
set Σ = 0.8 and Σ = 1 − Σ = 0.2, the viability constraint being K = [0.2, 0.8]. We
also suppose that some action can switch the prestige of language A at any time
from u1 = 0.4 to u2 = 0.6. The theoretical boundaries of the viability kernel can
be determined analytically. Table B.1 gives the boundaries of viability kernels
for three values of the volatility a: a = 0.2, 1 and 2. The details and proofs are
given in Appendix B.1.

Table B.1: Boundaries of the viability kernel for the dynamics associated
to system (B.7) and (B.8).
Lower Bound Upper Bound

a = 0.2 0.2 0.8
a = 1 0.2 0.8
a = 2 0.4 0.6

For a ≤ 1, the viability kernel is the whole constraint set. This means that it is
possible to maintain language coexistence between 0.2 ≤ Σ ≤ 0.8, irrespective
of the initial density of speakers A and the initial value of the prestige (given
that the initial state belongs to the constraint set, K). For a > 1, the maintenance
is only possible for initial densities of speakers A between 0.4 and 0.6. When a
state Σ < Viab(1)(K), the system will leave the viability constraint set, irrespective
of the actions applied.

Determining heavy viable trajectories. We are interested now in how frequently
policy actions must be performed. We use the heavy control principle, which
specifies to change the control only when viability is at stake. The principle of
the heavy control algorithm is as follows:
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• consider an initial state Σ located inside the viability kernel and an initial
control u0;

• anticipate the state of the system at the next time step, keeping the same
control;

• if the obtained state is inside the viability kernel, then the control does not
change;

• on the contrary, if it is outside the viability kernel, then change the control.

Viability theory guarantees that this procedure maintains language coexistence.
However, there may be many action policies that ensure coexistence: the only
requirement is that the chosen controls never lead outside the viability kernel.
Figure B.2 displays viability kernels and control policies. For a < 1, there exists
a stable fixed point and the trajectory leads to equilibrium. Starting from any
initial density of A-speakers and prestige, there is no need to apply any control
policy; the equilibrium is naturally reached. For a ≥ 1, there are no stable fixed
points inside the viability constraint set. The control procedure is then applied
at each time step: the control is changed only when it leads to a point located
outside the viability kernel.

Second Case: Prestige Chosen in a Continuous Interval

In this section, instead of taking only two values, we suppose that the prestige
can take any value s ∈ [0, 1] but the action on the prestige is not immediate:
the time variation of the prestige ds

dt is bounded by a constant denoted c. This
bound reflects that changes in prestige take time: to reach a prestige value s1
starting from an initial prestige s0 < s1, the stakeholder will have to anticipate
at least s1−s0

c∆t time steps, where c is the maximum change per unit time ∆t. We
consider the viability problem to define a function u of time, which maintains
the dynamical system:

dΣ

dt
= (1 − Σ)Σ

(
Σa−1s − (1 − Σ)a−1(1 − s)

)
ds
dt

= u
u ∈ [−c,+c] ; c ∈ [0, 1]

(B.9)

inside the viability constraint set K:

K = [Σ,Σ] × [0, 1]. (B.10)
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Figure B.2: Viability kernels and trajectories that maintain the system
viable for a = 0.2, 1 and 2. The viability kernels are represented in blue and
stable attractors (if any) by dots. Arrows represent the field direction and
the controls to choose. For a = 0.2, any control is convenient because they
lead the system to a stable fixed point. For a = 1 and 2, when trajectory
lead to a point located outside the viability kernel, the control value must

be changed in order to ensure coexistence.

The first step is to determine the viability kernel Viab(2)(K), defined by all couples
(Σ, s) that are solution of the system, Eqn B.9, for which there exists at least one
control function keeping the system indefinitely inside the viability constraint
set defined by Eqn B.10.

Computation of the viability kernel. We still assume again that the critical
threshold of the density of speakers is 20% of the size of the whole population.
Therefore, the viability constraint set is K = [0.2, 0.8] × [0, 1]. The theoretical
boundaries of the viability kernel can be computed analytically (Appendix B.2).
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In general, there exists no explicit formula to define the viability kernel bound-
aries and algorithms have been proposed to approximate them. In this paper
and in addition to the theoretical boundaries, we approximate the viability ker-
nel using the algorithm described in Ref [245], that considers the dynamics in
discrete time ∆t. The obtained approximation enables us to use a simpler heavy
control procedure. Figure B.3 shows the analytical and approximated viability
kernels of the system for a = 0.2, 1, and 2. The thick gray lines corresponding to
the fixed points of the dynamics has been obtained using Eqn B.5. We set c = 0.1,
which means that the time variation of the prestige cannot be higher than 10%.
The figure shows how for states with a low A or B-speakers density, the prestige
associated to this language must be strong enough to maintain viability. In situ-
ations where the density of one language is high, smaller values of its associated
prestige also give raise to viable situations. On the contrary, non-viable states
correspond to situations where the density of one language and its associated
prestige are low at the same time. In this case, if the actions in favor of this lan-
guage come too late, its density of speakers will get below the critical threshold
20% while the other will spread through the majority of the population (above
80%). As a increases, the viability kernel shrinks. Indeed, the higher the param-
eter a, the more rarely agents change their language (low volatility regime). The
impact of the change on the prestige is then lower as a increases, which means
that when a language is close to the boundary of the viability kernel, even with
the maximal government action, the effect on the density of speakers will be too
slow to avoid leaving the viability constraint set. On the contrary, as a decreases,
agents are likely to change their language (high volatility regime) and to restore
coexistence. Note that for a = 0.2, the viability kernel is not the whole constraint
set: non-viable states reach a stable fixed point located outside K.

Determining heavy viable trajectories. The control procedure models an action
to enhance the prestige of an endangered language, and we assume that such an
action is costly. Therefore, if among different possible action policies to maintain
language coexistence, doing nothing keeps the system in a viable situation, we
assume that this strategy will be chosen in order to reduce costs. In other words,
we suppose that, if several situations with −c ≤ u ≤ c lead to viable situations,
the best choice is u = 0. The principle of the control algorithm is roughly as
follows:

• consider an initial state (Σ, s) located inside the viability kernel;

• anticipate the trajectory in the next time steps, by considering u = 0;

• if the obtained state is located inside the viability kernel, do not change the
control;
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Figure B.3: Viability kernel for the Abrams-Strogatz model, with c = 0.1
and ∆t = 0.05. The continuous black lines represent the theoretical curves of
the viability kernel, and the area in blue the approximation. The continuous
gray line represents stable fixed points and the dotted gray lines unstable

fixed points.

• otherwise, choose a control that brings the system away from the viability
kernel’s boundary as much as possible.

This control procedure is described in more details in Ref [245]. We use here the
viability kernel approximation boundary instead of the analytical one because it
makes easier to check if the anticipation of the trajectory leads to a point outside
the kernel and to approximate the distance to the viability kernel boundary.
Figure B.4 presents some examples of trajectories for three different values of
a, and the time evolution of the control (c = 0.1), during 750 time steps. For
a < 1, there exist stable fixed points corresponding to coexistence of the two
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languages and the dynamics settles there, keeping u = 0 along the trajectory.
For a ≥ 1 instead, there are no stable fixed points inside the viability kernel,
and the control procedure must be applied at each time step. As long as the
trajectory is far away from the kernel’s boundary, the control is kept to zero
; when it approaches the boundary, the control that brings the system away
from the boundary corresponds to the maximum value of the control with the
appropriate sign, ±c.

Figure B.4: (Left panel) Examples of trajectories (in green) starting from
an initial state x0 for three values of a (a = 0.2, 1 and 2), and (right panel)
evolution of the control, with c = 0.1. The continuous gray line represents

stable fixed points and the dotted gray line unstable fixed points.
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Language Resilience

In the previous section, we studied the viability of the language model, suppos-
ing that one language is endangered when its density of speakers goes below a
critical value. However, being endangered does not necessarily mean that the
language will disappear. In this section, we are interested in how to maintain or
restore coexistence of the two languages when the system is in danger, meaning
that a disturbance pulls it outside the viability constraint set. We deal only with
the second case, where the prestige is chosen on a continuous interval.

As we pointed out in the introduction, resilience is the capacity of a system to
restore its properties of interest, lost after disturbances. In this section, we define
resilience of system Eqns B.9 and B.10 by considering its capacity to return into
its viability kernel when a perturbation pulls it out from it, following Ref [242]
definition of resilience.

Stating the Resilience Problem

We are interested in situations of crisis, which take place when the system leaves
the viability constraint set. We distinguish two types of states located outside
the viability kernel:

• States for which there exists at least one evolution driving back the system
to the viability kernel after leaving the constraint set, are called resilient.
The system is resilient to a perturbation which leads it into a resilient state;

• States for which irrespective of the control policy applied, the system re-
mains outside the viability kernel, are called non-resilient. The system is
not resilient to perturbations leading the system into a non-resilient state.

For states located inside the viability kernel, the resilience is infinite. Refer-
ence [242] also introduces the notion of cost of restoration in its resilience defi-
nition. This cost measures the distance between the evolution of the state of the
system and the property of interest (i.e. being inside the viability kernel). Its def-
inition must fulfill three conditions. First, the cost of an action which keeps the
property of interest indefinitely is zero: maintaining this property may lead to
some action update, but they are not taken into account in the cost computation.
Second, when the property of interest can not be restored, the cost of restoration
is infinite. Third, when the property can be restored, the cost is finite. It is
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often defined by the minimum time the system is outside the viability kernel or
the minimal deficit accumulated along the trajectory. Then, the resilience is the
inverse of the restoration cost of the properties of interest lost after disturbances.
The trajectory starting from (Σ, s) with a minimal cost defines the sequence of
“best” action policies to perform, and thus defines the resilience value. Resilience
values can be approximated numerically using Ref [246]’s algorithm, which is
based on the Ref [245]’s viability kernel approximation algorithm. In the context
of language competition, the use of viability theory provides a measure of the
cost associated to a policy action which will favor an endangered language.

Determining the Resilient and Non-Resilient States

All the states can undergo a disturbance. For instance, immigration: people
speaking language A exile to another country, hence the density of A-speakers
reduces dramatically in the home country, and increases in the destination coun-
try. Another perturbation to the system can be due to an abrupt change in the
prestige of a language because of political actions such as invasion, occupation,
etc. The states resulting from disturbances might bring the system outside the
constraint set, leading to situations where the density of speakers is lower than
the minimal threshold or higher than the maximal threshold. Thus, we consider
now the set of all the possible situations H = [0, 1]× [0, 1], where the first dimen-
sion represent the density of speakers of language A and the second the prestige
of language A, and we study the resilience of the system in H.

First, we determine the set of states of infinite resilience, that are the states
located inside the viability kernel of the system defined by Eqn (B.9) associated
to constraint set defined by Eqn B.10. It corresponds to the dark blue area on
Figure B.5. Then, we look for all the states for which at least one evolution
drives the system back to the viability kernel after spending a finite time in the
critical area H\K (where E\F is the complementary set of the set F in the set
E). These are the resilient states, in colored light blue in Figure B.5. Note that
states located in K\Viab(2)(K) can have a finite resilience: when coming back
towards Viab(2)(K), the trajectory leaves the constraint set and reaches Viab(2)(K)
after spending time in the critical area. The states that, irrespective of the applied
policy, remain outside the viability kernel are in the white zone. For these states,
the desired level of language coexistence is impossible and resilience is zero
(given the assumed value of c, which limits the effect of action).

In Figure B.5, we show the resilient and non-resilient states for a = 0.2, 1, and
2. For a small value of a, all the states are resilient, except Σ = 0 and Σ = 1,
irrespective of the value of s. As we pointed out previously, the fixed point
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Figure B.5: Resilient (blue) and non resilient states (in white) in the model
associated to dynamics Eqn B.9 with constraint set Eqn B.10, for three

values of a: a = 0.2, a = 1, a = 2. Viability kernel is in dark blue.

corresponding to coexistence is stable for a < 1. Therefore, the desired level of
coexistence for the two languages is ensured or can be reached, irrespective of
their initial density of speakers and their prestige, except when a perturbation
leads to a situation where one language is already extinct. For a = 1, nearly
for all the initial density of speakers and prestige, reaching the desired level of
languages coexistence is possible, except if the initial state represents a large
density of speakers of language A associated with high prestige (language B
becomes extinct, irrespective of the action applied) or vice versa. For a > 1, the
set of resilient states becomes smaller as it can be seen in Figure B.5. The larger
the value of a, the smaller the set of resilient states is. Indeed, as mentioned
before for the shrinking of the viability kernel, a high value of a means that
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agents rarely change their language and the effects of increasing or decreasing
the prestige of a language become less effective.

Computing Resilience Values

As we pointed out previously, the resilience value is then defined as the inverse
of its restoration cost. There exist several ways of defining a cost of restoration,
depending on the situations and the point of view. We studied two possibilities
for the cost: on the one hand, we considered that the time needed to restore
viability is the only ingredient under consideration, the cost value is then the
time the system is outside the viability kernel. The cost function C1 that associates
to a state x the minimal cost of restoration among all the trajectories starting from
x is defined by:

C1(x) = minx(.)

(∫ +∞

0 χV(x(t))dt
)

and χV(x(t)) = 1 when x(t) < Viab(2)(K) and 0 otherwise,
(B.11)

where x represents the state (Σ, s), x(t) is the state at time t and x(.) is the trajectory
starting from this state. Hence the cost value is zero when the system is inside the
viability kernel. On the other hand, we considered a more complete cost function
composed of two terms: the first one that accounts for the time the system is not
viable, and the second one, representing the distance to the viability constraint
set. This cost function, denoted C2, thus associates the time of restoration and the
measure of the density of speakers above or below the thresholds of the viability
constraint set:

C2(x) = minx(.)

(∫ +∞

0 χV(x(t))dt + c2χK(x(t))dt
)

and χK(x(t)) = d(x(t),K) when x(t) < K and 0 otherwise,
(B.12)

where d(x(t),K) = max
(
Σ − Σ(t),Σ(t) − Σ

)
measures the distance between the

density Σ(t) at time t and the density thresholds. Equation B.12 takes into
account that the cost of restoration of a state near extinction is more costly than
the one for states located near the boundary of K. Parameter c2 reflects the
relative weight of each cost, fixing the cost of being far from K relatively to the
time spent outside the viability kernel.

Figure B.6 compares resilience values for the Abrams-Strogatz model for differ-
ent values of a, and for the two cost functions defined (with an arbitrary cost
parameter c2 = 20 for the second cost function). The difference of cost between
two iso-cost curves is 4.8, and therefore the difference in resilience is 1

4.8 ≈ 0.2
(the 4.8 value is arbitrary and is linked to the parametrization of the algorithm
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in Ref [246]). The darker the line, the higher the cost value is. In the white area,
cost is infinite, meaning that restoring coexistence of both languages is impossi-
ble. For a = 0.2, the maximal cost of restoration is equal to 4.8 for cost function
C1 defined by Eqn B.11 and 19.2 for the cost C2 defined by Eqn B.12. The cost
associated to the function defined by Eqn B.12 is bigger than the one associated
with Eqn B.11 because it introduces an additional part (the distance to viability)
on the final cost. For a = 1, the maximal cost of restoration is more important
(14.4 for Eqn B.11 and 62.4 for Eqn B.12). For a = 2, the resilient zone is smaller
and the costs of restoration are larger (24 for Eqn B.11 and 67.2 for Eqn B.12).
This means that for higher values of a, where the resilient set is smaller, the cost
of restoration is larger: there are less resilient situations and the action policies
to perform in order to restore viability are the most costly.

Figure B.6: Resilience values of the Abrams-Strogatz model. In dark
blue, the viability kernel; between the level lines (light blue area), the cost
of restoration is finite (one level line corresponds to a cost of 4.8 and the
darker the line, the higher the cost); in the white area, the cost is infinite
and the resilience is zero. (Left panel) Cost function C1 (Eqn B.11); (Right

panel) cost function C2 (Eqn B.12).
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Determining Action Policies to Restore Viability at Minimum
Cost

Computing resilience values is instrumental to define action policies that drive
back the system inside the viability kernel. Here, we use an optimal controller
instead of a heavy controller: we do not look for one action policy that keeps the
system in a resilient state, but we define a sequence of actions that allows the
system to return to the viability kernel at the lowest cost of restoration. It can
be shown (see Ref [246]) that choosing the action that decreases the cost at each
step (or increases the resilience), minimizes the whole cost of restoration. Hence,
theoretically this approach also provides a means to compute resilient policies,
which minimizes the cost of restoration along the trajectory. The procedure is
roughly as follows:

• consider an initial state (Σ, s) for which resilience is finite;

• choose the action policy that decreases the cost at maximum at each time
step, until the trajectory reaches the viability kernel;

• once the state is viable, use the heavy control procedure described previ-
ously to ensure the indefinite maintenance of the system.

Figure B.7 displays some trajectories starting from resilient states for a = 0.2, 1
and 2. Considering the cost C2 of Eqn B.12, the controller produces a trajectory
that avoids situations where the density of speakers is too small or too large,
because these are the most costly. Notice that for a = 0.2, the trajectory first
reaches the equilibrium line outside K, but in order to bring the system inside
the viability kernel, the control function is chosen such that it does not get
stuck on this fixed point. The procedure leads the system to a second fixed
point, located this time inside the viability kernel. Even if the starting point is
located inside K but outside the viability kernel (see for example case a = 1), the
trajectory crosses the viability constraint set before going back to Viab(2)(K), as it
is not possible by definition for these states to directly reach the viability kernel.

Conclusion

In this paper, we provide general means for determining action policies to main-
tain the coexistence of two languages in competition within the Abrams-Strogatz
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Figure B.7: Examples of trajectories (in green) starting from a point x0

during 750 time steps, that allow the system to restore its viability at the
minimal cost of restoration, using cost function Eqn B.12. The continuous
gray line represents stable fixed points and the dotted gray line unstable
fixed points. Note that for an initial state x0 located inside K but out-
side Viab(2)(K), the trajectory crosses the viability constraint set boundaries

before reaching Viab(2)(K).

model [13] by using the framework of viability theory. We compute viable poli-
cies of action on the prestige variable to keep language coexistence within a
given constraint set, computing the viability kernel of the system. We thus give
evidence of the Abrams and Strogatz remark: language coexistence is unstable if
we consider a fixed prestige, but introducing the prestige as a control variable of
the model enables the maintenance of a bilingual society, where both languages
have a density above a critical value. We also define the resilience of the system
in the formalism of viability theory: the system is resilient to a perturbation if,
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after the perturbation, there exists an action policy driving back the system to
its viability kernel. In this way, we determine the action policies that minimize
the cost to drive an endangered language to coexistence (i.e. to the viability
kernel of the system). In the paper, we have analyzed the role played by the two
parameters of the model: the prestige of the language, s, and the volatility, a.
The prestige has been considered as the control variable of the system; we have
shown how the viability kernel shrinks as the volatility parameter increases, due
to the fact that agents become less likely to change their language.

The whole approach illustrates the new definition of resilience proposed in
Ref [242], which enlarges previous definitions of resilience, yet with a precise
mathematical meaning. In particular, we don’t need to define the resilience rel-
atively to the attractors of the dynamics, whereas the presence of such attractors
is generally required in previous mathematical views of resilience [243, 244]. In
the future, it will be interesting to consider the extension of the Abrams-Strogatz
model that includes bilingual speakers [183, 198], and compare the results with
the ones presented in this paper in order to illustrate which is the role of bilin-
gual agents in the dynamics of language competition from the viability theory
perspective.
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B.1

Theoretical bounds of the Abrams-Strogatz model
(I)

In this appendix, we derive the theoretical bounds of the Abrams-Strogatz model
(system Eqn B.7) associated with the viability constraint set Eqn B.8.
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B.1. THEORETICAL BOUNDS OF THE ABRAMS-STROGATZ MODEL (I)

Case 1: a = 1

In this case, we have Viab(1)(K) = K

PROOF.

Equation
{

dΣ
dt = (1 − Σ)Σ(Σa−1s − (1 − Σ)a−1(1 − s))
s = u ; u ∈ {−c,+c} can be rewritten as:

dΣ

dt
= (2u − 1)Σ(1 − Σ). (B.13)

For 0.2 ≤ Σ ≤ 0.8, we have Σ(1 − Σ) > 0. Thus, with u = 0.4, we have dΣ
dt < 0 and

with u = 0.6, we have dΣ
dt > 0.

Then, for all the states Σ ∈ K, there exists at least one control function that
maintains the system inside K, and all the states are viable.

Case 2: a , 1

For Σ ∈ K, dΣ
dt = 0⇔ Σ =

((
u

1−u

) 1
a−1

+ 1
)−1

= Eu, with u = s.

Case 2.1: a < 1

In this case, we have Viab(1)(K) = K.

PROOF.

For 0.2 ≤ Σ ≤ 0.8, ∀u ∈ {0.4, 0.6}, the equilibria are stable (see section Analytical
Study of the Model). In addition, it can be easily shown that, for u ∈ {0.4, 0.6},
Eu ∈ K. Thus, ∀u, the dynamics leads to a stable fixed point Eu ∈ K.

Case 2.1: a > 1

In this case, we have Viab(1)(K) = {Σ ∈ Ksuch that E0.6 ≤ Σ ≤ E0.4}.

PROOF.

• For all the points located inside the viability kernel, there exists one control
that allows the system to stay inside the viability kernel.
For Σ ∈ Viab(1)(K), we have dΣ

dt < 0 for u = 0.4 and dΣ
dt > 0 for u = 0.6.
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• For all the points located outside the viability kernel, there is no control
that allows the system to return to the viability kernel.
For Σ < E0.6, we have dΣ

dt < 0 for u = 0.4 and dΣ
dt < 0 for u = 0.6 (Σ→ 0).

For Σ > E0.4, we have dΣ
dt > 0 for u = 0.4 and dΣ

dt > 0 for u = 0.6 (Σ→ 1).

B.2

Theoretical bounds of the Abrams-Strogatz model
(II)

In this appendix, we derive the theoretical bounds of the Abrams-Strogatz model
(system Eqn B.9) associated with the viability constraint set Eqn B.10.

We remind that the dynamics
(

dΣ
dt ,

ds
dt

)
= F(Σ, s,u) are defined by:

dΣ

dt
= F(Σ, s,u) = (1 − Σ)Σ

(
Σa−1s − (1 − Σ)a−1(1 − s)

)
ds
dt

= u
u ∈ [−0.1, 0.1]

(B.14)

and that K = [Σ,Σ] × [0, 1] is the viability constraint set.

We aim at finding explicit formulas for ViabF(K), the viability kernel under the
dynamics F. We first introduce two functions f1 and f2 and then prove that these
functions enable us to define a set which is ViabF(K).

Definition of f1 and f2

• Let C1 = {(Σ(t), s(t)) , t ∈ [0; +∞ [ } satisfying

dΣ(t)
dt

= −(1 − Σ(t))Σ(t)
(
Σa−1(t)s(t) − (1 − Σ(t))a−1(1 − s(t))

)
ds(t)

dt
= 0.1

Σ1 = 0.8 and s1(0) = s1 =
0.2a−1

0.8a−1 + 0.2a−1

(B.15)

where Σ(t) is the density of A-speakers at time t and s(t) the prestige at time
t.
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We have C1 =
{
(Σ, s) ∈ R2

|Σ = f1(s), s ≥ s1

}
with:

f1(s) = Σ1 +

∫ s

s1

−(1 − f1 (̃s)) f1 (̃s)( f1 (̃s)a−1s̃ − (1 − f1 (̃s))a−1(1 − s̃))d̃s. (B.16)

Note that f ′1(s1) = 0 and that f ′′1 (s) < 0 when f1(s) ∈ [0.2, 0.8] and f ′1(s) = 0.
Consequently, f ′1(s) < 0 when s > s1 and f1(s) ∈ [0.2, 0.8].

• Let C2 = {(Σ(t), s(t)) , t ∈ [0; +∞ [ } satisfying:

dΣ(t)
dt

= −(1 − Σ(t))Σ(t)
(
Σa−1(t)s(t) − (1 − Σ(t))a−1(1 − s(t))

)
ds(t)

dt
= −0.1

Σ2 = 0.2 and s2(0) = s2 =
0.8a−1

0.2a−1 + 0.8a−1

(B.17)

We have C2 =
{
(Σ, s) ∈ R2

|Σ = f2(s), s ≤ s2

}
with:

f2(s) = Σ2 −
1

0.1

∫ s

s2

−(1− f2 (̃s)) f2 (̃s)( f2 (̃s)a−1s̃− (1− f2 (̃s))a−1(1− s̃))d̃s. (B.18)

Note that f ′2(s2) = 0 and that f ′′2 (s) > 0 when f2(s) ∈ [0.2, 0.8] and f ′2(s) = 0.
Consequently, f ′2(s) < 0 when s < s2 and f2(s) ∈ [0.2, 0.8].

Definition of ViabF(K) and proofs

THEOREM.
Let E ⊂ K the subset defined by:{

(Σ, s) ∈ K
∣∣∣∣∣ Σ ≤ f1(s) if s ≥ s1(0)

Σ ≥ f2(s) if s ≤ s2(0)

}
(B.19)

then we have E = ViabF(K).

PROOF PART 1: E is a viability domain: all the points inside E are viable.
We have to prove that for all (Σ, s) ∈ ∂E (where ∂E is the boundary of the
subset E), there exists at least one control u such that F(Σ, s,u) belongs to
the tangent cone of E at the point (Σ, s), denoted TE(Σ, s).

Let (Σ, s) ∈ ∂E,

– if Σ = 0.2, as f ′2(s) < 0 when s < s2 and f2(s) ∈ [0.2, 0.8], necessarily
s ≥ s2. Moreover, s ≤ min(1, f−1

1 (0.2)). If s = s2, F(Σ, s, 0) = 0 ∈ TE(Σ, s),
if s2 < s < min(1, f−1

1 (0.2)), F(Σ, s,u) ∈ TE(Σ, s) for all u ∈ [−0.1, 0.1].
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– if s = 1, or if (Σ, s) ∈ C1, Σ < 0.8, F(Σ, s,−0.1) ∈ TE(Σ, s).

– if Σ = 0.8, as f ′1(s) < 0 when s > s1 and f1(s) ∈ [0.2, 0.8], necessarily
s ≤ s1. Moreover, s ≥ max(1, f−1

2 (0.8)). If s = s1, F(Σ, s, 0) = 0 ∈ TE(Σ, s),
if max(1, f−1

2 (0.8)) < s < s1, F(Σ, s,u) ∈ TE(Σ, s) for all u ∈ [−0.1, 0.1].

– if s = 0, or if (Σ, s) ∈ C2, Σ > 0.2, F(Σ, s,+0.1) ∈ TE(Σ, s).

PROOF PART 2: E is the largest viability domain.

Let’s first introduce some notations:

– Let (Σ, s) ∈ K\E. We can suppose s > f−1
1 (Σ). The argument is the

same if s > f−1
2 (Σ).

– Let (Σ(t), s(t)), t ∈ [0; +∞[ an evolution starting from (Σ, s) and satisfy-
ing equation (B.14).

– Let (Σ∗(t), s∗(t)), t ∈ [0; +∞[ defined by:
dΣ∗(t)

dt
= (1 − Σ∗(T))Σ∗(T)

(
Σ∗a−1(T)s∗(T) − (1 − Σ∗(t))a−1(1 − s∗(t)))

)
ds∗(t)

dt
= −0.1

Σ∗(0) = Σ and s∗(0) = f−1
1 (Σ)

(B.20)

Then, (Σ∗(0), s∗(0)) ∈ C1 and there exists T such that (Σ∗(T), s∗(T)) = (Σ1, s1)
and (Σ∗(t), s∗(t)) ∈ C1,∀t ∈ [0; T].
We have s(0) > s∗(0) and as s∗′ (t) = −0.1 and s′(t) = u ∈ [−0.1, 0.1], ∀t ∈
[0; T], s(t) > s∗(t). Furthermore, Σ(0) = Σ∗(0) and dΣ

dt (0) = F(Σ(0), s(0)) >
F(Σ∗(0), s∗(0)) = dΣ∗

dt (0) so there exists t̂ > 0 such that ΣA(t) > Σ∗A(t) for all
t ∈]0, t̂].

Assume that there exists t̃ ∈]̂t,T] such that ΣA(t) > Σ∗A(t) for all t ∈]̂t, t̃]

and ΣA (̃t) > Σ∗A (̃t). Then dΣA
d (̃t) ≤ dΣ∗

d (̃t) but dΣA
d (̃t) = F(ΣA (̃t), s(̃t)) >

F(Σ∗A (̃t), s∗ (̃t)) = dΣ∗

d (̃t) since ΣA (̃t) = Σ∗A (̃t) and s(̃t) > s∗ (̃t). Hence the contra-
diction, so ∀t ∈ [0,T], ΣA(t) > Σ∗(t).

Consequently, (ΣA(T), s(T)) < K and (ΣA(T), s(T)) < ViabF(K).

210



List of Tables

5.1 Typical interactions in the 2c-Naming Game . . . . . . . . . . . . . 119

B.1 Boundaries of the viability kernel for the dynamics associated to
system (B.7) and (B.8). . . . . . . . . . . . . . . . . . . . . . . . . . 193

211





List of Figures

1.1 Illustration of the Konigsberg bridge problem . . . . . . . . . . . . 7

1.2 The network of runaways constructed by Moreno . . . . . . . . . 8

1.3 Network with community structure extracted from a Belgian mo-
bile phone network of about 2 million customers . . . . . . . . . . 10

1.4 The Watts-Strogatz random rewiring procedure for small world
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Characteristic path length l(p) and clustering coefficient C(p) for
the Watts-Strogatz model . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Degree distributions in the BA-network . . . . . . . . . . . . . . . 20

1.7 Examples of networks with community structure . . . . . . . . . . 22

1.8 Basic mechanisms of social interaction: imitation (voter model)
and social pressure (SFKI model) . . . . . . . . . . . . . . . . . . . 26

1.9 Illustration of the domain growth in the d = 2 voter model . . . . 31

1.10 Typical metastable state in the voter model . . . . . . . . . . . . . 32

1.11 Average interface density
〈
ρ(t)

〉
in different topologies: BA, EN

and ER networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.12 Time evolution for the average interface density. Voter model in
small world network . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.13 Coarsening in the SFKI model on a square lattice . . . . . . . . . . 39

213



LIST OF FIGURES

1.14 Typical trapped state on a cubic regular lattice . . . . . . . . . . . 40

1.15 Survival probability for SFKI dynamics on an Erdös-Rényi ran-
dom network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.16 Active trapped states in a one-dimensional SW network . . . . . . 43

2.1 Volatility parameter, a: neutral case (a = 1), high volatility regime
(a < 1) and low volatility regime (a > 1) . . . . . . . . . . . . . . . 54

2.2 Phase portrait: trajectories in the (ΣA,ΣB) space for the AB-model 59

2.3 Snapshots showing the formation of domains in the voter model
and the AB-model (a = 1, s = 0.5) . . . . . . . . . . . . . . . . . . . 60

2.4 Snapshots showing the formation of domains in the AS-model
and the Bilg-model (a = 3, s = 0.5) . . . . . . . . . . . . . . . . . . . 60

2.5 Snapshots of the AS-model and the Bilg-model (a = 3, s = 0.6) . . 62

2.6 Snapshots showing the coexistence regime in the AS-model and
the Bilg-model (a = 0.1, s = 0.5) . . . . . . . . . . . . . . . . . . . . 63

2.7 Snapshots of the AS-model and the Bilg-model (a = 0.1, s = 0.6) . 63

3.1 Time evolution of the average interface density
〈
ρ
〉

for the AB-
model in a fully connected network . . . . . . . . . . . . . . . . . 68

3.2 Time evolution of the densities of agents, Σi (i= A, B, AB), and the
interface density, ρ for the AB-model in a two-dimensional lattice 70

3.3 Time evolution of the average interface density
〈
ρ
〉

for the AB-
model in a two-dimensional regular lattice . . . . . . . . . . . . . 71

3.4 AB-model in a regular lattice: snapshots of a typical simulation of
the dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Time evolution of the interface density ρ for the AB-model in a
two-dimensional regular lattice . . . . . . . . . . . . . . . . . . . . 73

3.6 Snapshots of simulations which get trapped in stripe-like metastable
states (regular lattice). AB-model and ε-model . . . . . . . . . . . 74

3.7 Time evolution of the fraction of alive runs, P(t), for the AB-model
in a two-dimensional regular lattice . . . . . . . . . . . . . . . . . 75

3.8 Rescalings with system size of the time evolution of the fraction
of alive runs, P(t), for the AB-model in a two-dimensional lattice . 76

214



LIST OF FIGURES

3.9 Time evolution of the average interface density
〈
ρ
〉

for the voter
model in a two-dimensional regular lattice . . . . . . . . . . . . . 77

3.10 Comparison of the interface dynamics (I): snaphots for the AB-
model and the voter model . . . . . . . . . . . . . . . . . . . . . . 78

3.11 Comparison of the interface dynamics (II): snaphots for the AB-
model and the voter model . . . . . . . . . . . . . . . . . . . . . . 79

3.12 Time evolution of the average interface density
〈
ρ
〉

for the AB-
model in small world networks with different values of p . . . . . 81

3.13 Time evolution of the average interface density
〈
ρ
〉

for the voter
model in small world networks with different values of p . . . . . 82

3.14 Snapshots for the AB-model and the voter model in a small world
network with p = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.15 Time evolution of the average interface density,
〈
ρ
〉

for the AB-
model. Small world networks with different system sizes . . . . . 84

3.16 Transition probabilities for the ε-model for different values of ε . 86

3.17 Characteristic coarsening exponent γ (
〈
ρ
〉
∼ t−γ) for the ε-model

as a function of ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Growth process of the class of network with community structure 92

4.2 Partial view of the network centered on a randomized selected
node. Average number of k-clique-communities of size s . . . . . 93

4.3 Average interface density in networks with community structure
and randomized networks. Voter model and AB-model . . . . . 95

4.4 AB-model: fraction of alive runs in time for networks with com-
munities and randomized networks . . . . . . . . . . . . . . . . . 97

4.5 Snapshots of the dynamics for the voter model the AB-model.
Typical configurations of trapped metastable states . . . . . . . . 99

4.6 Time evolution for the AB-model of the average interface density
on different realizations of the network . . . . . . . . . . . . . . . 100

4.7 Fraction of alive runs at time t, P(t), for Erdős-Rényi networks
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