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Electro-optic delay devices with double feedback
Romain Modeste Nguimdo, Pere Colet, and Claudio Mirasso

Abstract—We analytically and numerically study the effect
of an additional feedback in the semiconductor laser used to
pump optoelectronic delay devices. We show that this additional
feedback renders the system into chaotic regime for a broader
parameter range and also induces a stronger chaotic behavior.
We study the synchronization of this system as function of the
parameter mismatch and show its capability for encoded message
transmission.

Index Terms—Chaos based communications, Chaos genera-
tion, Synchronization, Opto-electronic feedback

I. INTRODUCTION

Devices with opto-electronic feedback loops show a rich
variety of dynamical behaviors. In particular, they have been
used as chaos generator for chaos-based communications
[1], [2]. Typically the devices used for that aim consist of
an interferometer fed by a CW semiconductor laser plus a
delay loop which modifies the optical length of one of the
interferometer arms. The interplay between nonlinearity and
delay generates a chaotic output carrier in which a message
can be encoded. Recovery of the message is based on the
fact that, under appropriate conditions, similar chaotic system
can synchronize with the emitter [3]. The receiver system
replicates only the chaotic carrier and by comparing the input
of the receiver (the chaotic carrier with message) with the
output (the chaotic carrier) one can extract the message as
originally shown in electrical circuits [4]. In optical systems
there were early proposals for solid state lasers [5] and semi-
conductor lasers [6], [7]. Experimental demonstrations came
at late ’90 using fiber lasers [8] and optoelectronic feedback
devices [1], [2]. The field has grown and an experiment in the
optical network of Athens has paved the road towards practical
applications [9]. Several schemes have been used to induce
chaos in semiconductor lasers including all-optical feedback
or optoelectronic feedback [10].

Optical chaos encrypted communications require wide spec-
trum of the chaotic carrier to efficiently mask the message
from eventual eavesdroppers. This goal can be achieved in
optoelectronic devices by increasing the gain loop parameter
[11], [12]. However, experimental observations have shown
that the gain loop is limited due to the saturation introduced
by the bandwidth of the device components. Since then, it
becomes necessary to investigate an alternative way to produce
a stronger chaos. Moreover, the increase in the number of the
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system parameters can also be fruitful to provide more security
since an eavesdropper has to face up the parameter mismatches
to succeed in building an adequate receiver necessary for the
decryption of the message. A way to reach all these purposes
can consist in evolving an extra feedback loop feeding the
laser. It is worth noting that the feedback in the controlled
source has previously considered in opto-electronic systems
by Udaltsov and al. as a possible way to get around time-
delay cracking [13].

In this paper, we explore the impact of such combination
taking the inspiration from the existing model exhibited in [1].
The work is organized as follows: In section II, we present
two new proposals differing in the way the laser feedback
is performed. Section III is devoted to the theoretical and
numerical results of each model while section IV deals with
the synchronization and the effects of parameter mismatch. In
section V, the viability of the models is numerically tested
by encoding and decoding the message. Section VI highlights
some concluding remarks and outlook.

II. THE SYSTEM

Fig. 1. Schematic setup: a) Emitter for System I; b) Emitter for System II;
c) Full emitter-receiver setup for system I.

We consider two systems for chaos generation whose
schematic setups are shown in Figs. 1 a) (system I) and 1 b)
(system II). Each emitter is composed of:

• A semiconductor laser (SL) delivering a power P = hνI
where h stands for the Planck constant, ν is the photon
emission frequency and I the photon number.

• A Mach-Zehnder (MZ) modulator: The light coming
from the SL is equally split into the two arms of the
MZ and interferes at its output because of the one
arm refractive index variation. Effectively, this arm is
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modulated by the output voltage of an electronic driver.
The applied voltage has two components: a constant
or DC component VB that allows to select the op-
erating point of the modulator; and a radio-frequency
(RF) component V (t) which is used to generate the
chaos. Considering an optical input P , the MZ output
is written as P cos2 [πV (t)/(2VπRF ) + πVB/(2VπDC)]
where VπRF and VπDc stand for the RF half-wave and
the bias electrode half-wave, respectively.

• A fiber delay line used to delay the optical signal in time.
• An amplified diode with sensitivity s to detect the optical

signal and convert it into an electrical signal.
• A RF driver whose output modulates the MZ and closes

the delay loop.
For the modeling purposes, we introduce x(t) =
πV (t)/(2VπRF ) and w =

∫ t

t0
x(t′)dt′. Assuming that

the RF amplifier behaves as a second-order bandpass linear
filter with gain G the system can be described by

x + τ
dx

dt
+

1
θ
w = β1I(t − T ) cos2 [x(t − T ) + φ] , (1)

dw

dt
= x, (2)

where the parameters are the fast cutoff time-scale τ , the slow
cutoff response time θ, the offset phase φ = πVB/(2VπDC

),
delay time T and the normalized electro-optical gain coeffi-
cient β1 = πsGk/2VπRF , where k accounts for overall losses.
The photon number I obeys the laser rate equations [14]:

dI

dt
= (G − γ)I, (3)

dN

dt
= J0 − γeN − GI + F (x), (4)

G = g(N − N0)/(1 + SI), (5)

where N is the carrier number, g is the differential gain
parameter, S is the gain saturation factor, N0 is the carrier
number at transparency, γ is the inverse photon lifetime, γe

is the inverse carrier lifetime. The gain saturation factor given
by (1+SI) is included in [15] to summarize a set of physical
effects that eventually bound the material gain as the number
of intracavity photons increases. We consider that the injected
current has a DC component J0 and a feedback contribution
F (x) which is a function of the RF voltage as follows:
System I: A fraction J1 of the RF driver output is injected
back to the laser, such that

F (x) = J1x(t). (6)

Since x(t) is a dimensionless variable, J1 has the same unit
as J0.
System II: Using 2×2 fiber coupler and an additional photode-
tector, a fraction of the optical light is detected at the output
of MZ and converted into electrical signal. In this process
those frequencies larger than the photodetector bandwidth fc

are filtered out, we model this as a lowpass filter having input
signal J1β1I cos2 [x(t) + φ] which comes from converting the
optical signal into an electric one. The feedback contribution
in this case is then given by

dF

dt
= −2πfc

{
F − J1β1I cos2 [x(t) + φ]

}
. (7)

In the absence of feedback to the pump current, the laser
delivers a constant power and the overall electro-optical gain
β = β1I is thereby constant. However, with the extra-
feedback, the photon number I switches over a regime im-
plicitly depending on the RF voltage.

We note that the presence of the low cutoff integral term
w(t) in Eq. (1) imposes the mean value 〈x(t)〉 to be zero in
order to ensure the convergence of the solution even at infinite
time. This is true for the case of no feedback in the laser as
well as for the two new systems introduced here. For system I
the average of the feedback dependent current injected in the
laser F has a zero average, so that the average of the output
intensity 〈I〉 is the same as the constant laser power without
the feedback, and β1〈I〉 = β. That is not the case for system II.

III. THEORETICAL AND NUMERICAL STUDY

For the numerical study, we take the following parameter
values g = 1.5× 10−8 ps−1, S = 2× 10−7, N0 = 1.2× 108,
γ = 3.3 × 1011 s−1, γe = 5 × 108 s−1 [16]. With these
parameters, the threshold current is Jth = 7.1 × 1016 s−1

(corresponding to a threshold current intensity of 11.8 mA).
Also, we consider τ = 25 ps, θ = 5 µs, β1 = 2.89 × 10−5,
T = 2.5 ns. Others parameters will be stated in the figure
captions.

A. System I

When dx/dt = dw/dt = 0, there is a fixed point solution
(xst, wst, Ist, Nst) where

xst = 0,

wst = θβ1Ist cos2 φ,

Ist =
J0g − γegN0 − γeγ

γ(g + Sγe)
,

Nst =
gN0 + γ + SJ0

g + Sγe
. (8)

Assuming x = xst + δx, w = wst + δw, I = Ist + δI
and N = Nst + δN , and linearizing Eq. (1) around the fixed
point, the stability of this single fixed point is determined by
the following 4×4 matrix

M =


ã11 + a11e

−λT a12 a13e
−λT 0

1 0 0 0
0 0 a33 a34

J1 0 a43 a44


where the coefficients are

a11 = −β1Ist

τ
sin 2φ, ã11 = −1

τ
, a12 = − 1

τθ
,

a13 =
β1 cos2 φ

τ
, a33 = − SγIst

1 + SIst
, a34 =

gIst

1 + SIst
,

a41 = J1, a43 =
−γ

1 + SIst
, a44 = −γe −

gIst

1 + SIst
. (9)

The steady state is stable if the real part of all the eigenvalues λ
are negative. The spectral analysis of delayed systems is more
involved than that of ordinary systems since the term e−λT in
the matrix M leads to a characteristic equation which can have
an infinite number of eigenvalues. Out of all those eigenvalues,
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Fig. 2. Real part of the top N eigenvalues versus offset phase for J1 = 0.0
and J1 = 0.1J0. We have chosen J0 = 1.5Jth which corresponds to 〈β〉 =
β1〈I〉 = 3.08.

Fig. 3. Bifurcation diagram versus offset phase φ for J0 = 1.5Jth: a)
J1 = 0.0 and b) J1 = 0.1J0

typically one computes a finite set of the N eigenvalues with
largest real part. One of the packages that can be used for
this purpose involves the DDE-BIFTOOL algorithm in matlab
[17]. In this method characteristic roots are computed through
successive approximations. We henceforth use this method
to investigate the stability of the steady state given above.
The presence of sin 2φ and cos2 φ in the matrix coefficients
shows that the function is π − periodic. Therefore we can
perform the stability analysis only over the interval [0,π]
without loosing generality. Figure 2 shows the real part of the
top N eigenvalues of M . When the feedback is only applied
to the MZ (J1 = 0) (Fig. 2 a)), there are three stable regions
(around zero, π/2 and π) corresponding to the offset phases
which lead to the predominance of destructive interference.
Adding the feedback to the SL the stationary state for φ = 0
or π is destabilized while the stationary state corresponding
to φ = π/2 remains stable (see Fig. 2 b) for J1 = 0.1J0).

Figure 3 a) shows the bifurcation diagram for J1 = 0
displaying all the maxima and minima of a long time trace
obtained for each value of the offset phase φ. All the results
are obtained integrating over a time of 80 µs which is 16 times
longer than the slowest time scale θ of the model. The time
step used for the numerical integration is 1 ps. The single value
for the amplitude maxima found for phases close to zero, π/2
and π corresponds to the stable steady state described in the
previous paragraph. Multiple values for the amplitude maxima
or minima correspond to multiperiodic or chaotic behaviors.
Figure 3 b) shows the corresponding bifurcation diagram for
J1 = 0.1J0. As predicted by the linear stability analysis, the

Fig. 4. Auto-correlation time versus offset phase φ for J1 = 0.0 (solid line),
J1 = 0.1J0 for system I (dotdashed line) and J1 = 0.1J0 for system II (dot
line). The right panel represents the zoom of the left panel. τx > 60 ns
corresponds to the steady state in our case.

Fig. 5. Bifurcation diagram versus the injection current J0 for offset phases
φ = 0.1 (left panels) and φ = 0.6 (right panels). We have taken J1 = 0.0
(top row) and J1 = 0.1J0 (bottom row)

steady state solutions for off-set phase φ = 0 and φ = π are
now unstable and the system displays a chaotic behaviors.
Furthermore inspecting the values of the offset phases for
which the system is already unstable, we see that typically the
spread of bifurcation diagram is larger and denser indicating
that the system has become more chaotic by applying feedback
in the laser .

Quantitatively speaking, we can efficiently characterize the
chaos by calculating the autocorrelation time defined as:

τx =
∫ ∞

0

Γxx(t′)dt′, (10)

where Γxx stands for the normalized auto-correlation function
defined as

Γxx(t′) =
〈[x(t) − 〈x(t)〉] [x(t + t′) − 〈x(t)〉]〉

[〈x(t) − 〈x(t)〉〉]2
. (11)

Figure 4 displays the correlation time τx as a function of φ.
It can be clearly seen that for most values of φ the system
becomes more chaotic (smaller correlation time) by applying
the feedback in the laser. Also, there are some values of φ
for which the system is in fact less chaotic.
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Fig. 6. Bifurcation diagram versus J1 for J0 = 1.5Jth: a) φ = 0.1 and b)
φ = 0.6

Fig. 7. Auto-correlation time with respect to J1 for J0 = 1.5Jth and
φ = 0.6 considering system I and system II. The inset shows the zoom plot
when τx decreases enough.

Different dynamical regimes can be observed by simply
changing the pump current J0. Figures 5 a) and b) display
the bifurcation diagram as function of J0 when there is no
feedback in the laser for two values of the offset phase.
Depending on the off-set phase some periodic windows
are observed while chaotic behaviors appear typically
beyond J0 & 1.6Jth. When adding the feedback to the
laser (J1 = 0.1J0) the chaotic behavior develops earlier for
J0 & 1.3Jth and is stronger as can be seen in Fig. 5 c) and d).

Figure 6 shows the bifurcation diagram as function of J1

while keeping constant J0 = 1.5Jth for the same offset
phases as before. In Fig. 6 a), it appears some threshold
(J1 ≈ 0.06J0) of J1 for which the system shows chaotic
behavior. For φ = 0.6 (Fig. 6 b)) the system is already
chaotic with no feedback in the laser. The bifurcation diagram
indicates that the dispersion of the maxima of the time trace is
larger increasing J1. A more quantitative characterization can
be done using again the correlation time. Figure 7 shows the
autocorrelation time τx as function of J1 for a fix value of J0

and offset phase φ = 0.6. The decrease in the autocorrelation
time indicates that the system becomes more chaotic as J1

increases up to J1 ≈ 0.12J0. After that the autocorrelation
time slightly increases so that increasing J1 beyond that level
does not provide a more chaotic behavior (see inset).
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Fig. 8. a) Real part of the top N eigenvalues of matrix M and b) bifurcation
diagram versus off-set phase for J0 = 1.5Jth and J1 = 0.1J0

B. System II

The fixed point of this model is given by
(xst, wst, Ist, Nst, Fst) where

xst = 0,

wst = θβ1Is cos2 φ,

Ist =
(J0 + Fs)g − γegN0 − γeγ

γ(g + Sγe)
,

Nst =
gN0 + γ + S(J0 + Fs)

g + Sγe
,

Fst = J1β1Ist cos2 φ. (12)

We should note that for this system the photon number at the
steady state is larger and depends on the offset phase. The
stability of this fixed point can be investigated following an
approach similar to that of subsection III-A. Since now we
have an extra equation (Eq. (7)) we have to deal with the 5×5
matrix

M =


ã11 + a11e

−λT a12 a13e
−λT 0 0

1 0 0 0 0
0 0 a33 a34 0
0 0 a43 a44 0

ηIst sin(2φ) 0 −η cos2 φ 0 −2πfc


where η = 2πfcJ1β1 and the coefficients aij are given by
Eq. (9) with Ist given by Eq. (12). The real part of the
top N eigenvalues of this matrix are plotted in Fig. 8. As
happens for system I the feedback in the laser destabilizes the
steady state around the offset phases 0 and π while a narrow
region of stability for the stationary state remains for an offset
phase around φ = π/2. Figure 8 b) shows the bifurcation
diagram as a function of the offset phase. Comparing this
figure with Fig. 3 a), it can be seen that the system develops
more chaotic regions than system with no feedback in the laser.
Furthermore, Fig. 4 and the zoom (Fig. 4, right panel), clearly
evidence that system II is more chaotic for the whole range
of offset phases than the system without feedback in the laser
and than system I with the same J1.

In Fig. 9 we plot the bifurcation diagram as function of the
injected current J0 for J1 = 0.1J0 and two values for the
offset phase. This figure is to be compared with Figs. 5 a)
and b) for the case without feedback in the laser. For both
values of the offset phase chaos starts to develop for a lower
value of the pump current J0. Fig. 10 shows the bifurcation
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Fig. 9. Bifurcation diagram versus injection current J0 for different offset
phases φ considering J1 = 0.1J0: a) φ = 0.1 and b) φ = 0.6.

Fig. 10. Bifurcation diagram versus J1 for different offset phases φ
considering J0 = 1.5Jth: a) φ = 0.1 and b) φ = 0.6.

diagram as function of the laser feedback strength parameter
J1 for a fixed J0 = 1.5Jth. It can be seen the feedback in
the laser induces chaos for the offset phase φ = 0.1 for which
the system is stable without J1 and this happens even faster
than for system I. An increase in J1, for a fixed value of offset
phase φ = 0.6 leads to a more chaotic behavior as was also the
case for system I. As shown in Fig. 7 an increase in J1 leads
to a rapid decrease of the correlation time. For J1 < 0.03J0

system I shows a correlation time smaller than system II with
the same parameters. As J1 increases the correlation time
decreases faster for system II. Therefore for J1 > 0.03J0

system II is more chaotic (has a smaller correlation time)
than system I. We have also noticed that the correlation for
system II keeps decreasing with J1 in the range of parameters
we have explored (see the inset plot of Fig. 7).

On the other hand it is also possible to evidence the
increase in chaos complexity by plotting the power spectrum
of the optical signal transmitted from the emitter to the
receiver. The optical output intensity of the MZ is given
by β1I(t) cos2 [x(t) + φ]. Figure 11 shows the optical power
spectrum. The peak at frequency zero corresponds to the DC
component of the optical power output. What matters for chaos
codification is the rest of the spectrum beyond the DC peak.
For J1 = 0, when no feedback is applied to the laser, (black
line) the power spectrum is broad but has some clear peaks
signaling that the system is chaotic but the chaos is not fully
developed. In the range of 60 GHz the spectrum spreads over
30 dB. For J1 = 0.1J0 (grey line, red online) the peaks
disappear and the spectrum becomes roughly flat. In this case,

Fig. 11. Optical power spectrum at the output of MZ considering J0 =
1.5Jth and φ = 0.6: J1 = 0 (black line), J1 = 0.1J0 for system II (grey,
red online).

besides the DC peak, 10 dB are enough to sweep over the
60GHz range.

IV. RECEIVER SYSTEM AND EFFECTS OF PARAMETER
MISMATCH

A. Receiver system

For each model, the receiver is built similarly to the emitter.
The only difference is that the receiver is fed back by the light
only coming from the master instead of itself light. The full
emitter-receiver scheme of System I is represented in Fig. 1
c). The feedback in the receiver laser comes from the RF
driver output. System II is built similarly but feedback in the
receiver laser comes from the MZ output. Introducing y(t) =
πVs(t)/(2Vπ), the receiver dynamics is given by

dIs

dt
= (Gs − γs)Is, (13)

dNs

dt
= J0s − γesNs − GsIs + F (y), (14)

y + τs
dy

dt
+

1
θs

∫ t

t0

y(s)ds = β1sIs(t − T )

× cos2 [x(t − Ts) + φs] .
(15)

where the subscript ”s” denotes the slave. The quality of
the synchronization depends on several factors, including
the parameter mismatch between master and receiver, the
presence of noise fluctuations and the degradation due to fiber
propagation effects. The latter has been considered in [18]
where the authors showed that compensating the losses by in-
lining EDFAs every 50 km and using dispersion shifted fiber,
one can minimaze the fiber effects to the very acceptable level.
Also, in ref. [19] similar results were found out using standard
transmission fibers and then compensating the dispersion using
dispersion compensation modules. Here we neglect the effect
of noise fluctuations and therefore we focus on the effect of
parameter mismatch. We first consider that all the receiver
parameters are identical to the master except for the time delay.

Figures 12, show the time trace of the receiver when the
two time delays are different. The receiver synchronizes with
the master shifted in time at ∆T = Ts − T as can be
noticed from Fig. 12 left panel for system I (right panel for
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Fig. 12. Emitter (solid line) and receiver (dashed line) time traces for ∆T =
−0.1 ns considering left panel: system I and right panel: system II. J0 =
1.5Jth,J1 = 0.1J0 and φ = 0.6

system II). Thus mismatches in the delay time produce a
trivial effect. The flying time, delays induced by the electrical
connections, and the response time of the system (which
play exactly the same role as the receivers delay time) just
shift the time traces [20]. However, a slight difference on
others parameters between the emitter and receiver parameters
due to manufacturing mismatches, which are unavoidable,
can degrade the synchronization as addressed in the next
subsection.

B. Effects of parameter mismatch

The quality of the synchronization between master and
receiver can be characterized by the synchronization error
and the cross-correlation. The average synchronization error
is given by

σ =

√
〈ε2

∆p〉
〈x2

p〉
, (16)

where ε∆p = yp′(t) − xp(t). This is an indicator of the
minimum modulation amplitude below which the encoded
message cannot be recovered. The subindexes p and p′ in the
master and slave time traces reflect the fact that the master
and slave systems may operate with different parameter values.
The cross-correlation

Γxy(t′) =

〈[
xp(t) −

〈
xp(t)

〉][
yp′(t + t′) −

〈
yp′(t)

〉]〉√〈
|xp(t) − 〈xp(t)〉|2

〉〈
|yp′(t) − 〈yp′(t)〉|2

〉 ,

(17)
is a qualitative indicator of the topological distortion of slave
trajectory. In the following, we analyze the influence of
mismatch in each parameter individually. It is worth noting
that for ∆T = 0, the correlation is maximum for t′ = 0.

Figure 13 shows the synchronization error (left panels) and
the cross-correlation (right panels) for different mismatches
in the laser parameters. For a mistmach in N0 and γe,
the synchronization error grows basically linearly with the
mismatch, and the cross-correlation function shows a parabolic
shape. Positive and negative mismatches have similar effects.
The degradation of the synchronization with the mismatch is
stronger for system II (+) as compared with system I (◦) or
the system without laser feedback (solid line). The mismatch
in γ is the one for which both system I and system II are
more sensitive. The effect of this mismatch is very asymmetric
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Fig. 13. Average synchronization error (left panels) and maximum cross-
correlation (right panels) given by Eqs. 16 and 17, respectively, as function of
the laser parameter mismatch (∆p = p′ − p) in N0, γe, γ and J1 (from top
to bottom). The solid line corresponds to J1 = 0 (no feedback in the laser),
(◦) to system I with J1 = 0.1J0 and (+) to system II also with J1 = 0.1J0.

being more pronounced for negative (γs > γ) than for
positive mistmatch. This asymmetry is already present when
the laser operates in CW (solid line) and is magnified by
the feedback in the laser. Furthermore, System II is slightly
more sensitive to the mismatch than System I, the difference
being more relevant for the cross-correlation. The mismatch
in J1 induces a synchronization error that grows asymmetri-
cally with the mismatch. For positive mismatch (J1s < J1)
the degradation grows linearly and faster than for negative
mismatch (where the synchronization error grows sublinearly).
The cross-correlation also shows this asymmetry.

As for the other parameters, the effect of mismatch in
the slow cut-off time θ is typically negligible in this kind
of systems [20], so we focus on the mismatch in the offset
phase φ and the fast cut-off time τ . Results are plotted in
Fig. 14. The synchronization quality is very sensitive to the
offset phase mismatch. When the laser operates in CW (solid
line) by changing the offset phase we move from perfect
synchronization (for zero or π mismatch) to perfect anti-
synchronization (for ±π/2 mismatch) in which y(t) = −x(t)
(σ = 2 and Γxy = −1). When the feedback is added to the
laser, perfect synchronization is still present for zero and π
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Fig. 14. Average synchronization error (left panels) and maximum cross-
correlation (right panels) given by Eqs. 16 and 17, respectively, as function
of the filter loop parameter mismatch in φ (top row) and τ (bottom row). The
solid line corresponds to J1 = 0 (no feedback in the laser), (◦) to System I
with J1 = 0.1J0 and (+) to System II also with J1 = 0.1J0.

mismatch but the perfect anti-synchronization is no longer
obtained. System II presents a better anti-synchronization than
system I. The fast cut-off time τ mismatch plays a very
different role in system I and II. In system I the effect of
mismatch in τ is slightly less important than that obtained
when the laser operates in CW while the degradation of the
synchronization for system I grows faster as the mismatch
increases. Nevertheless the effect of τ -mismatch is always less
important than the other mismatches discussed before.

V. ENCODED/DECODED MESSAGE

In all optical chaos communication systems, the message
to be encrypted should be small compared to the amplitude
of chaotic carrier to ensure the secrecy and to avoid large
distortions of the transmitter output which could prevent
the receiver to synchronize with the emitter. When the
message is encoded, the system performances can be
affected in different ways (dynamics, synchronization and
communication performance) depending on the encoding
scheme [21]. Numerical simulations have shown that the
additive chaos masking (ACM) scheme can increase the
complexity of the chaotic waveforms maintaining at the same
time the synchronization quality before and after a message
is encoded [22].

In the scheme shown in Fig. 1 c), we encode the message
using the ACM technique. We assume the message to be
encoded in the chaotic system as a sequence of a non-return-
to-zero (NRZ) pseudorandom digital bits at 1.0 Gbit/s rate.
The message is added to the emitter carrier by using another
semiconductor laser with a similar wavelength. In Fig. 1 c),
the output of the laser diode containing message is p1m(t)
where m(t) is 1 when an optical power p1 is transmitted and 0
when no optical power is transmitted. The mixing is performed
through an all-optical 2 × 2 fiber coupler which is also used
to send the output to the receiver.

When the message is embedded within the chaos, Eq. (1)
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Fig. 15. a) original message and b) recovered message, performed with
model II considering −0.5% and 0.1% mismatch in τ and γ respectively.
We have taken J0 = 1.5Jth, J1 = 0.1J0 and φ = 0.6

becomes

x + τ
dx

dt
+

1
θ
w = β1I(t − T ) cos2 [x(t − T ) + φ]

+αm(t − T ),
(18)

where α = πP1/2Vπ is the amplitude of the message. Here
we use α = 0.3 which is much smaller than the average gain
〈β1I〉 ≈ 3.08.

At the input of the receiver, the transmitted signal is split
in two parts, one is to drive the slave system and the other is
directly detected by the photodiode PD+. Taking into account
the message, the slave system dynamics is ruled by

y + τ
dy

dt
+

1
θ
ws = β1Is(t − T ) cos2 [x(t − T ) + φ]

+αm(t − T ).
(19)

The output of the slave system is detected by photodiode
PD−. Subtracting PD− from PD+ one gets

Sc(t) = k
′{

β1I cos2 [x(t) + φ] + αm(t)
}

−kβ1Is cos2 [y(t) + φs] , (20)

where k and k
′

are factors accounting for the PD− and PD+

sensitivities and fiber couplers, respectively. If the receiver and
emitter synchronize perfectly, x(t) = y(t), I(t) = Is(t), and
taking k = k

′
, φs = φ, we have from Eq. (20)

Sc(t) = kαm(t). (21)

For k = 1 and α = 0.3, the retrieved message performed con-
sidering −0.5% and 0.1% mismatch in τ and γ respectively,
is shown in Fig. 15 using system II. As it can be seen from
the figure, the message can be well recovered.

VI. CONCLUSIONS

In this paper, we have studied two electro-optical delay
feedback systems pumped by a semiconductor laser subject to
feedback. In particular we have introduced two new different
schemes in which this can be implemented.

The additional feedback in the laser makes the semicon-
ductor laser to operate in a chaotic regime instead of CW. As
a consequence the system becomes more chaotic as shown
by a shorter autocorrelation time. Furthermore the additional
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feedback induces chaos for parameters values in which the
system was not chaotic. These effects are already clearly
observed when the feedback in the semiconductor lasers is
only 10% of the DC pump current. Therefore this is a useful
mechanism to generate broader bandwidth chaos.

Despite the systems are more chaotic, high-quality synchro-
nization is still possible when the mismatch in parameters
is small allowing for message transmission. The additional
parameters to be tuned, in order to achieve synchronization,
increase the difficulties of an eventual eavesdropper to decode
the message without the adequate receiver system.
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