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A mechanism is proposed for the appearance of power-law distributions in various complex systems. It

is shown that in a conservative mechanical system composed of subsystems with different numbers of

degrees of freedom a robust power-law tail can appear in the equilibrium distribution of energy as a result

of certain superpositions of the canonical equilibrium energy densities of the subsystems. The derivation

only uses a variational principle based on the Boltzmann entropy, without assumptions outside the

framework of canonical equilibrium statistical mechanics. Two examples are discussed, free diffusion on a

complex network and a kinetic model of wealth exchange. The mechanism is illustrated in the general

case through an exactly solvable mechanical model of a dimensionally heterogeneous system.
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Introduction.—The study of plausible mechanisms re-
sponsible for the appearance of power-law distributions,
observed so frequently in Nature, represents an active
research field. Power laws were first met in fields far
from traditional physics, e.g., Pareto’s power law of in-
come distribution in economics and the Zipf law for the
occurrence rate of words in linguistics [1], suggesting the
existence of general characteristics for the underlying dy-
namics. Power-law distributions are also found in systems
out of equilibrium, e.g., with avalanche dynamics [2] or in
multiplicative stochastic processes [3]. Their peculiar char-
acter, strikingly different respect to the exponential tails of
canonical distributions predicted by equilibrium statistical
mechanics, challenges our intuition.

A first-principles derivation of equilibrium distributions
with a power-law tail is possible at the price of additional
hypotheses on the foundations of canonical equilibrium
theory, e.g., in nonextensive generalizations of the
Boltzmann entropy [4], or modifying the basic form of
the Gibbs distribution [5]. Power laws are also obtained
within the framework of superstatistics [6], if some pa-
rameter, typically the temperature, is considered as a ran-
dom variable.

The present Letter introduces a novel mechanism based
on the heterogeneity of the system dimensionality, charac-
terizing systems composed of subsystems with different
numbers N of degrees of freedom distributed according to
a dimension densityPðNÞ. The derivation uses a variational
approach based on the Boltzmann entropy, with no addi-
tional assumptions outside canonical statistical mechanics.
A robust power-law tail appears due to the superposition of
the canonical equilibrium distributions of subsystems with
high dimensions N � 1.

The phenomenon investigated here resembles how in the
gene-regulation network model of Balcan and Erzan [7] a

scale-free network results from the superposition of
Poissonian out-degree distributions. Also, a high phase
space dimensionality is known to play a role in the anoma-
lous dynamics of some spin-glass models [8].
The mechanism proposed here for the generation of

power-law tails is best illustrated for systems which can
be clearly defined as dimensionally heterogeneous, on the
basis of a mechanical analogy or a geometrical interpreta-
tion. For this reason, two explicit examples of such systems
are presented. Then the mechanism is formalized in terms
of a simple yet general dimensionally heterogeneous me-
chanical model.
Diffusion on networks.—As a first example we compare

a free diffusion process on a homogeneous network and
that on a scale-free network. We first consider a homoge-
neous lattice ofM sites, in which each site i (i ¼ 1; . . . ;M)
is connected to the same number ki ¼ k of first neighbors.
Such a lattice is an example of a dimensionally homoge-
neous network providing a discrete representation of a
N-dimensional space. In the case of the square lattice
structure, the dimensionN is related to the degree k asN ¼
k=2. An unbiased uniform diffusion process of X walkers
hopping between theM sites of the lattice relaxes toward a
uniform load distribution fðxÞ ¼ const, with the same
average load at each node i given by xi ¼ X=M. On the
other hand, a heterogeneous network with degree distribu-
tion gðkÞ cannot be given a straightforward geometrical
interpretation and in general represents a space with a
highly complex topology. In particular, no unique dimen-
sion can be assigned, so that it can be regarded as a
dimensionally heterogeneous space. One can estimate a
local dimensionality from the connectivity, in analogy with
the homogeneous square lattice, by introducing for each
node i the local dimension Ni ¼ ki=2 [9]. At equilibrium,
free diffusion of X walkers on such a network is known to
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relax to an average load xi proportional to the degree [10],
xi ¼ �xki, where the average flux per link and direction �x is
fixed by normalization, �x ¼ X=K, with X ¼ P

ixi and K ¼P
jkj. It follows from probability conservation that the load

distribution at equilibrium is directly determined by the
degree distribution,

fðxÞ ¼ gðkÞdk=dx ¼ gðx= �xÞ= �x: (1)

In the important case of a scale-free network with gðk �
1Þ � 1=kp, one has a power-law tail in the load distribu-
tion, fðxÞ � 1=xp, with the same exponent p. A close
relation between degree distribution and equilibrium den-
sity, analogous to Eq. (1) valid for the case of free diffu-
sion, can be expected for any quantity x diffusing through a
network. For instance, in the case of the Zipf law, such a
relations is known to hold approximately. In this case
written language is regarded as a random walk across the
complex network with nodes given by words and links
between words which are neighbors in a text [11].

Kinetic exchange models.—A second example of dimen-
sionally heterogeneous system is suggested by kinetic
exchange models of wealth (KWEM) [12]. In KWEMs,
M agents exchange wealth through pairwise interactions.
At each time step two agents i, j are extracted randomly
and their wealths xi, xj updated depending on the saving

parameters �i, �j, representing the minimum fractions of

wealth saved [13],

x0i ¼ �ixi þ �½ð1� �iÞxi þ ð1� �jÞxj�;
x0j ¼ �jxj � ð1� �Þ½ð1� �iÞxi þ ð1� �jÞxj�:

(2)

Here x0i, x0j are the wealths after a trade and � a uniform

random number in (0, 1). Notice that x is conserved during
each transactions, xi þ xj ¼ x0i þ x0j. This dynamics

closely recalls energy exchange in molecular collisions,
an analogy noticed by Mandelbrot [14] which becomes
closer introducing an effective dimension associated to the
system: in the homogeneous version of KWEMs, i.e., all
�k � �, the equilibrium wealth distribution fðxÞ is well
fitted by the energy distribution of a perfect gas in a
number N of dimensions defined by Nð�Þ=2 ¼
1þ 3�=ð1� �Þ, i.e., a � distribution �N=2ðxÞ of order

Nð�Þ=2 [15]. In fact, inverting Nð�Þ, one obtains an aver-
age fraction of wealth exchanged during one trade 1� � /
1=N (N � 1), similarly to the energy exchanges during
molecular collisions of an N-dimensional gas [16]. Then a
heterogeneous system composed of agents with different
�i is analogous to a dimensionally heterogeneous system.
The relevance of heterogeneous versions of KWEMs with
�i distributed in the interval (0, 1) is in the fact that they
relax toward realistic wealth distributions fðxÞ with a
Pareto tail, as shown numerically and analytically [12].
In the case of a uniform distribution for the saving parame-
ters, �ð�Þ ¼ 1 if � 2 ð0; 1Þ and �ð�Þ ¼ 0 otherwise, set-
ting n ¼ N=2, the dimension density has a power law
�1=n2, PðnÞ ¼ �ð�Þd�=dn ¼ 3=ðnþ 2Þ2 (n � 1Þ.

A dimensionally heterogeneous mechanical model.—
The power-law tails of the equilibrium distributions in
the examples presented above are particular cases of a
more general mechanism which takes place in dimension-
ally heterogeneous systems. We illustrate it through a
simplified yet general exactly solvable mechanical model,
which can be interpreted as an assembly of polymers with
different numbers of harmonic degrees of freedom, repre-
senting, e.g., small displacements of its normal modes
respect to the equilibrium configuration. For simplicity
no interaction term between polymers is included in the
total energy function, analogously to the statistical me-
chanical treatment of the molecules of a perfect gas. The
absence of interactions between units implies that each
subsystem undergoes independent statistical fluctuations,
while a more rigorous treatment of, e.g., diffusion on a
complex network or wealth exchange in the KWEMs
considered above should take into account the correlations
between nodes or agents. However, the mechanical model
studied below preserves the basic features of the heteroge-
neous dimensionality and statistical character due to inter-
nal random fluctuations.
First, we recall the results for a dimensionally homoge-

neous systems, e.g., an assembly of identical polymers
with N degrees of freedom [15]. For a quadratic energy
function xðqÞ ¼ ðq21 þ � � � þ q2NÞ=2, where the qi’s are the
N variables of the polymer, the equilibrium density is
obtained varying respect to fnðxÞ the functional Sn½fn�,
obtained from the Boltzmann entropy [15],

Sn½fn� ¼
Z þ1

0
dxfnðxÞ

�
ln

�
fðxÞ

�2nx
n�1

�
þ�þ �x

�
: (3)

Here we have introduced the dimension variable

n ¼ N=2; (4)

�N is the hypersurface of a unitary N-dimensional sphere,
and �, � are Lagrange multipliers determined by the
constraints on the conservation of the total number of
subsystems and energy, respectively. The result is a
� distribution of order n,

fnðxÞ ¼ ��nð�xÞ � �

�ðnÞ ð�xÞ
n�1 expð��xÞ; (5)

where ��1 ¼ 2hxi=N ¼ hxi=n, according to the equiparti-
tion theorem, is the temperature [17].
A heterogeneous system is composed of polymers with

different numbers of degrees of freedom N1; N2; . . . in
constant proportions P1; P2; . . . , with

P
iPi ¼ 1, or, con-

sidering a continuous dimension variable n ¼ N=2, ac-
cording to a distribution PðnÞ, with

R
dnPðnÞ ¼ 1. At

equilibrium, each subsystem with dimension variable n
will have its probability density fnðxÞ. We are interested
in the shape of the aggregate equilibrium energy distribu-
tion, i.e., the relative probability to find a subsystem with
energy x independently of its dimension n. The equilib-
rium problem for the heterogeneous system is solved anal-
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ogously, from the functional S½ffng� obtained summing the
homogeneous functionals with different n,

S½ffng� ¼
Z

dnPðnÞ
Z þ1

0
dxfnðxÞ

�
ln

�
fnðxÞ

�2nx
n�1

�

þ�n þ �x

�
:

(6)

Notice that there is a different Lagrange multiplier �n for
each n, since the fractions PðnÞ’s are conserved separately,
but a single � related to the total conserved energy. The
equilibrium probability density fnðxÞ for the subsystem n
is obtained by varying S½ffng� respect to fnðxÞ and is again
given by Eq. (5), with � determined by the total energy,

hxi ¼
Z

dn
Z 1

0
dxfnðxÞx ¼ hNi

2�
; (7)

where we have introduced the average dimension

hNi ¼ 2hni ¼ 2
Z

dnPðnÞn: (8)

Equation (7) represents a generalized equipartition theo-
rem for dimensionally heterogeneous systems. To ensure a
finite hNi (and therefore a finite average energy hxi) the
dimension density PðnÞ has to have a finite cutoff or
decrease faster than 1=n2 for n � 1. Using Eq. (5), the
aggregate distribution is finally

fðxÞ ¼
Z

dnPðnÞfnðxÞ

¼
Z

dn
PðnÞ�
�ðnÞ ð�xÞn�1 expð��xÞ: (9)

While the distributions fnðxÞ have an exponential tail, the
function fðxÞ may exhibit a slower decay and possibly a
power-law tail, if the dimension density PðnÞ decreases
slow enough. In the example of the power-law density
P�ðnÞ ¼ �=n1þ� (n � 1, �> 0), P�ðnÞ ¼ 0 otherwise, a
power-law tail appears in fðxÞ; see the continuous curves in
Fig. 1 obtained by numerical integration.

In fact, a general result holds, namely, an actual equiva-
lence between the asymptotic form of the aggregate distri-
bution fðxÞ and the dimension densityPðnÞ, whenever PðnÞ
decreases at large n faster than 1=n, expressed by fðx �
��1Þ ¼ �Pð�xÞ. This asymptotic relation can be com-
pared with the equality between the average load and the
degree distribution, fðxÞ ¼ gðx= �xÞ= �x, obtained for the ex-
ample of free diffusion on a network with degree distribu-
tion gðkÞ.

To demonstrate this relation, we start considering a value
�x � 1 in Eq. (9). The main contributions to the integral
come from values n � �x � 1, since �nð�xÞ has its
maximum at x � n=�, while it goes to zero for small as
well as larger x. Introducing the variable m ¼ n� 1,
Eq. (9) can be rewritten as

fðxÞ ¼ � expð��xÞ
Z

dm exp½��ðmÞ�; (10)

�ðmÞ ¼ � ln½Pðmþ 1Þ� �m lnð�xÞ þ ln½�ðmþ 1Þ�:
(11)

This integral can be estimated through the saddle-point
approximation expanding �ðmÞ to the second order in � ¼
m�m0, where m0 ¼ m0ðxÞ locates the maximum of
�ðmÞ, defined by �0ðm0Þ ¼ 0 and �00ðm0Þ> 0, and inte-
grating over the whole range of m,

fðxÞ � � exp½��x��ðm0Þ�
	

Z þ1

�1
d� exp½��00ðm0Þ�2=2�

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	

�00ðm0Þ

s
exp½��x��ðm0Þ�: (12)

In order to find m0 we use the Stirling approximation [18]

in Eq. (11), �ðmþ 1Þ � ffiffiffiffiffiffiffiffiffiffiffi
2	m

p ðm=eÞm, so that

�ðmÞ � � ln½Pðmþ 1Þ� �m lnð�xÞ þ lnð ffiffiffiffiffiffiffi
2	

p Þ
þ ðmþ 1

2Þ lnðmÞ �m; (13)

�0ðnÞ � �P0ðmþ 1Þ
Pðmþ 1Þ � lnð�xÞ þ 1

2m
þ lnðmÞ; (14)

�00ðnÞ � P02ðmþ 1Þ
P2ðmþ 1Þ �

P00ðmþ 1Þ
Pðmþ 1Þ � 1

2m2
þ 1

m
: (15)

From Eq. (15) the condition�00ðmÞ> 0 for the existence of
a maximum is fulfilled for large m, if one can neglect the
terms containing P respect to 1=m; this can be done for
general shapes of PðnÞ which decrease fast enough.
From Eq. (14) in the same limit one can neglect P0=P

and 1=m respect to lnðmÞ and the approximate solution of
�0ðm0Þ ¼ 0 is m0ðxÞ � �x. It can be checked that even
keeping higher orders in 1=m in Eq. (14) the asymptotic
solution reduces to m0ðxÞ ¼ �x for �x � 1. Finally,
setting m ¼ m0ðxÞ ¼ �x and using Eqs. (13) and (15) in
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) 
/β

β x
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f (x)
f1(x)
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FIG. 1 (color online). Aggregate distribution fðxÞ, Eq. (9),
with PðnÞ ¼ �=n1þ� (n � 1), PðnÞ ¼ 0 otherwise, for � ¼ 1
(red, dark gray), � ¼ 2 (green, light gray). Continuous lines:
numerical integration of Eq. (9). Triangles: saddle-point approxi-
mation f2ðxÞ, Eq. (16). Circles: small-x limit, f1ðxÞ, Eq. (17).
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Eq. (12), one finds

fðx � ��1Þ � f2ðxÞ ¼ �Pð1þ �xÞ: (16)

This relation provides the asymptotic form of the density
fðxÞ directly in terms of the dimension density PðnÞ, in the
hypothesis that PðnÞ decreases with n at least as 1=n.

The approximate form of fðxÞ at x 
 ��1 depends on
the details of PðnÞ at small n. For the same form PðnÞ ¼
P�ðnÞ considered above and setting �ðnÞ � �ð1Þ þ
�0ð1Þðn� 1Þ in (10) and (11), one has

fðx 
 ��1Þ � f1ðxÞ
¼ �

Z þ1

0
dm exp½��ð0Þ ��0ð0Þm� �x�

¼ �Pð1Þ expð��xÞ
� lnð�xÞ � �� P0ð1Þ=Pð1Þ : (17)

Here, from Eq. (11), we set �ð0Þ ¼ ln½Pð1Þ� and �0ð0Þ ¼
��� lnð�xÞ � P0ð1Þ=Pð1Þ, with � ¼ c ð1Þ �
ðd ln½�ðmÞ�=dmÞm¼1 � 0:577 21 the Euler � constant [18].

In Fig. 1 the function f2ðxÞ (triangles), given by Eq. (16),
is compared at large x with the exact distribution fðxÞ
obtained by numerical integration of Eq. (9) (continuous
lines) for the values � ¼ 1, 2 for the power-law density
P�ðnÞ. Also the corresponding density f1ðxÞ (circles),
given by Eq. (17), is shown at small �x.

Conclusion.—Canonical statistical mechanics predicts
that the equilibrium distribution fðxÞ of a conserved quan-
tity x flowing through a system composed of subsystems
with different (possibly continuous) dimensions n, distrib-
uted according to a dimension density PðnÞ, can exhibit a
robust power-law tail. In fact, a general yet simple formula
holds at large x, which directly relates the equilibrium
probability density fðxÞ to the dimension density PðnÞ,

fðxÞ � �Pð�xÞ; ðx � ��1Þ; (18)

where � represents the system temperature. In particular, it
follows that a dimension densityPðnÞwith a power-law tail
will produce a corresponding power-law tail in the equi-
librium distribution fðxÞ. The mechanism discussed in this
Letter may represent a prototype model of the effect of a
high heterogeneous dimensionality on the equilibrium
properties of many complex systems, such as gene-
regulation network models, network-based model of lan-
guage, and kinetic wealth exchange models of economy.
We have discussed how such a mechanism is relevant for
diffusion processes across complex networks; in the spe-
cial case of free diffusion on a nonweighted network the
relation (18) becomes an identity, if fðxÞ is identified with
the load distribution, PðnÞ with the degree distribution, and
the temperature ��1 with the average flux �x. Also, the
same mechanism is probably in action in systems which
can be modeled in terms of kinetic exchange models,
where a set of basic units exchange randomly a conserved

quantity x. In the latter case, the inverse of the dimension
1=n represents an effective interaction strength, since the
fraction of quantity x exchanged in a pairwise interaction
in a kinetic exchange model is of the order of 1=n, as in the
case of an energy exchange during binary collisions in a
fluid in n dimensions.
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