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Abstract. We review the basic kinetic wealth-exchange models of Angle [J. Angle, Social Forces 65, 293
(1986); J. Math. Sociol. 26, 217 (2002)], Bennati [E. Bennati, Rivista Internazionale di Scienze Economiche
e Commerciali 35, 735 (1988)], Chakraborti and Chakrabarti [A. Chakraborti, B. K. Chakrabarti, Eur.
Phys. J. B 17, 167 (2000)], and of Dragulescu and Yakovenko [A. Dragulescu, V.M. Yakovenko, Eur. Phys.
J. B 17, 723 (2000)]. Analytical fitting forms for the equilibrium wealth distributions are proposed. The
influence of heterogeneity is investigated, the appearance of the fat tail in the wealth distribution and the
relaxation to equilibrium are discussed. A unified reformulation of the models considered is suggested.

PACS. 89.75.-k Complex systems – 89.65.Gh Economics; econophysics, financial markets, business and
management – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

Many scientists have underlined the importance of a quan-
titative approach in social sciences [1–8]. In fact, statisti-
cal mechanics and social sciences have been always linked
to each other in a constructive way, due to the statistical
character of the objects of study [9,10]. On one hand, var-
ious discoveries, first made in the field of social sciences,
introduced new concepts which turned out to be relevant
for the development of statistical mechanics and later of
the science of complex systems. For instance, fat tails were
found by Pareto in the distribution of wealth [11,12]; the
first description of financial time series through statistical
mechanics, made by Bachelier in his PhD thesis [13–15],
also represents the first formalization of a stochastic pro-
cess in terms of the random walk model; large fluctuations
were observed by Mandelbrot in the time series of cotton
price [16]. On the other hand, physics has often repre-
sented a prototype for modelling economic systems. For
example, many works of Paul Samuelson were inspired by
thermodynamics; the analogies between physics and eco-
nomics were studied by Jan Tinbergen in his PhD thesis
entitled “Minimum Problems in Physics and Economics”.
Recent developments of economics rely more and more
on the theory of stochastic processes and the science of
complex systems [17].

The present paper considers some models of wealth
exchange between individuals or economical entities, in-
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troduced independently in different fields such as social
sciences, economics, and physics. We refer to them as
kinetic wealth-exchange models (KWEM), since they pro-
vide a description of wealth flow in terms of stochas-
tic wealth exchange between agents, resembling the en-
ergy transfer between the molecules of a fluid [2,18,19].
In order to maintain the discussion at a fundamen-
tal level, we limit ourselves to the following simple
KWEMs: those introduced by Angle (A-models) [20–23],
Bennati (B-model) [24–26], Chakraborti and Chakrabarti
(C-model) [27], and by Dragulescu and Yakovenko
(D-model) [28]. The goal of the paper is to discuss their
general common features, formulation, and stationary so-
lutions for the wealth distribution. We consider a heteroge-
neous KWEM, in order to illustrate how a simple KWEM
can generate realistic wealth distributions. We also clarify
some relevant issues, recently discussed in the literature,
concerning the relaxation to equilibrium and the appear-
ance of a power law tail of the equilibrium distribution in
heterogeneous models.

A noteworthy difficulty in the study of wealth or
money exchanges based on a kinetic approach had been
pointed out by Mandelbrot [29]:

... there is a great temptation to consider the ex-
changes of money which occur in economic interac-
tion as analogous to the exchanges of energy which
occur in physical shocks between gas molecules...
Unfortunately the Pareto distribution decreases
much more slowly than any of the usual laws of
physics...
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The problem referred to in this quotation is that the
asymptotic shape of the energy distributions of gases pre-
dicted by statistical mechanics usually have the Gibbs
form or a form with an exponential tail. The real
wealth distributions, instead, exhibit a Pareto power law
tail [11,12,30–32],

f(x) ∼ 1/x1+α, (1)

with 1 < α < 2. However, it has become clear that (a) the
actual shapes of wealth distribution at intermediate values
of wealth are well fitted by a Γ- or an exponential distri-
bution [21,33–35], so that they can be reproduced also by
simple KWEMs with homogeneous agents (see Sect. 3);
(b) KWEMs with suitably diversified agents can generate
also the power law tail of the wealth distribution [2,19,36]
(see Sect. 4). This has opened the way to a simple, quan-
titative approach in modelling real wealth distributions as
arising from wealth exchanges among economical units.

The paper is structured as follows: in Section 2 a gen-
eral description of a KWEM is given. In Section 3 the
homogeneous A-, B-, C, and D-models are discussed. Ex-
plicit analytical fitting forms for the equilibrium wealth
distributions are given. In Section 4 we discuss the influ-
ence of heterogeneity, taking the heterogeneous C-model
as a representative example. In this respect, we analyze
the mechanism leading to a robust power law tail. Some
issues concerning the convergence time scale of the model
and the related finite cut-off of the power law are dis-
cussed. In Section 5 a unified reformulation of the A-, C-,
and D-models is suggested, which in turn naturally lends
itself to further generalizations. An example of generalized
model is worked out in detail. Conclusions are drawn in
Section 6.

2 General structure

In the models under consideration the system is assumed
to be made up of N agents with wealths {xi ≥ 0} (i =
1, 2, . . . , N). At every iteration an agent j exchanges a
quantity Δx with another agent k chosen randomly. The
total wealth X =

∑
i xi is constant as well as the average

wealth 〈x〉 = X/N . After the exchange the new values x′
j

and x′
k are (x′

j , x
′
k ≥ 0)

x′
j = xj − Δx,

x′
k = xk + Δx. (2)

Here, without loss of generality, the minus (plus) sign has
been chosen in the equation for the agent j (k). The form
of the function Δx = Δx(xj , xk) defines the underlying
dynamics of the model.

In KWEMs, agents can be characterized by an ex-
change parameter ω ∈ (0, 1] which defines the maximum
fraction of the wealth x that enters the exchange pro-
cess. Equivalently, one can introduce the saving param-
eter λ = 1 − ω, with value in the interval [0, 1), repre-
senting the minimum fraction of x preserved during the
exchange. The parameter ω (λ) also determines the time

scale of the relaxation process as well as the mean value
〈x〉 at equilibrium [37]. If the value of ω (λ) is the same
for all the agents, the model is referred to as homoge-
neous (see Sect. 3). If the agents assume different val-
ues ωi (λi) then the model is called heterogeneous (see
Sect. 4). Homogeneous models can reproduce the shape
of the Γ-distribution observed in real data at small and
intermediate values of the wealth. For ω < 1 (λ > 0), they
have the self-organizing property to converge toward a sta-
ble state with a wealth distribution which has a non-zero
mode, differently from a purely exponential distribution.
Models with suitably diversified agents can reproduce also
the power law tail (1) found in real wealth distributions.

In actual economic systems the total wealth is not con-
served and a more faithful description should be used. It
is therefore interesting to observe how the closed economy
models considered here, in which

∑
i xi is constant, pro-

vide realistic shapes of wealth distributions. This suggests
that the main factor determining the wealth distribution
is the wealth exchange.

When the variation of wealths is not due to an actual
exchange between the two agents but the quantity Δx is
entirely lost by one agent and gained by the other one, the
model is called unidirectional. Furthermore, it is possible
to conceive multi-agent interaction models, not considered
here, in which a number M > 2 of agents enter each trade.
Then the evolution law has the more general form x′

i =
xi + Δxi, with i = 1, . . . , M ,

∑M
i=1 Δxi = 0, and the Δxi

depending somehow on the wealths xi of the M interacting
agents.

3 Homogeneous models

3.1 A1-model

Here we consider the model introduced by Angle in 1983
in references [20,21], referred to as A1-model (a different
model of Angle, the One-Parameter Inequality Process,
referred to as A2-model, is consider in Sect. 3.2 below).
The A-models are inspired by the surplus theory of so-
cial stratification and describe how a non-uniform wealth
distribution arises from wealth exchanges between indi-
viduals.

The A1-model is unidirectional and its dynamics is
highly nonlinear. The dynamical evolution is determined
by equations (2) with Δx given as

Δx = εω [ηj,kxj − (1 − ηj,k)xk] . (3)

Here ε and ηj,k are random variables. The first one is a
random number in the interval (0, 1), which can be dis-
tributed either uniformly or with a certain probability
distribution g(ε), as in some generalizations of the basic
A1-model [20]. The second one is a random dichotomous
variable responsible for the unidirectionality of the wealth
flow as well as for the nonlinear character of the dynamics.
It is a function of the difference between the wealths of the
interacting agents j and k, ηj,k ≡ φ(xk − xj), assuming
the value ηj,k = 1 with probability p0 for xj > xk or the
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Fig. 1. (Color online) Equilibrium wealth distribution for the
basic version of the A1-model defined by equations (3), for the
case p0 = 1/2: results of numerical simulations (symbols) and
fitting functions equationqs (4) (curves) for different values of
the saving parameter λ = 1−ω in linear (above) and semi-log
(below) scale. The value of n is governed by equation (5). In
this simulation the average wealth is 〈x〉 = 1.

value ηj,k = 0 with probability 1 − p0 for xk > xj . The
value ηj,k = 1 produces a wealth transfer |Δx| = ε ω xj

from agent j to k, while the value ηj,k = 0 corresponds to
a wealth transfer |Δx| = ε ω xk from k to j.

A special case of the A1-model is that with symmet-
rical interaction, obtained for p0 = 1/2. Notice that for
this value of p0 the random variable ηj,k ≡ η becomes in-
dependent of xj and xk. We have studied this particular
case through numerical simulations for various values of
the saving parameter λ. The system considered was made
up of N = 105 agents with equal initial wealths x0i = 1
and the transactions were performed until equilibrium was
reached. The equilibrium distributions in Figure 1 were
obtained by averaging over 105 different runs. They are
well fitted by the Γ-distribution

f(x) = βγn(βx) =
β

Γ (n)
(βx)n−1 exp(−βx), (4)

where

β−1 = 〈x〉/n, (5)

n ≡ D

2
=

1 + 2λ

2(1 − λ)
=

3
2ω

− 1. (6)

Since λ = 1 − ω ∈ [0, 1), the parameter n is a real
number in the interval [1/2,∞). Notice that from equa-
tions (4) and (5) it follows that for n < 1, i.e., for λ < 1/4
(ω > 3/4), the Γ-distribution diverges for x → 0, as visi-
ble in Figure 1 for the cases λ = 0, λ = 0.1, and λ = 0.2.
For the critical value λ = 1/4 (ω = 3/4), separating the
distributions which diverge from those which go to zero
for x → 0, an exponential distribution is obtained,

f(x) = βγ1(βx) = β exp(−βx). (7)

The A1-model has a simple mechanical analogue if the
quantity D = 2n defined in equation (5) is interpreted
as an effective dimension for the system and β−1 as a
temperature. It is easy to check that the distribution
γn(βx) ≡ γD/2(βx) given by equation (4) is the equilib-
rium distribution for the kinetic energy of a perfect gas
in D dimensions as well as for the potential energy of a
D-dimensional harmonic oscillator or a general harmonic
system with D degrees of freedom. This definition of ef-
fective dimension is consistent with the equipartition the-
orem, since

〈x〉 = nβ−1 = Dβ−1/2, (8)

see reference [38] for details.

3.2 A2-model

The One-Parameter Inequality Process model, here re-
ferred to as A2, is another model introduced by Angle and
is described in detail in references [22,23]. It differs from
the A1-model considered above in that it only employs a
stochastic dichotomic variable ηjk, which can assume ran-
domly the values ηjk = 0 or ηjk = 1. The model is defined
by equations (2) with

Δx = −ηjkωxk + (1 − ηjk)ωxj . (9)

The model describes a unidirectional flow of wealth from
agent k toward agent j for ηjk = 1 or vice versa for
ηjk = 0. For the particular case in which the two val-
ues of ηjk are always equiprobable, one can rewrite the
process, without loss of generality, with a Δx = ωxk in
equations (2). Numerical simulations of this model confirm
the findings of references [22,23], that for small enough ω
the stationary wealth distribution is well fitted by a Γ-
distribution γn(x), with n ≈ 1/ω−1 = λ/(1−λ). We find
that this fitting (not shown) is very good at least up to
λ ≈ 0.7.

3.3 B-model

Another KWEM was introduced in 1988 by Bennati [24,
25]. Its basic version, that we discuss here, is a simple uni-
directional model where units exchange constant amounts
Δx0 of wealth [24–26]. In principle, in the B-model a situ-
ation where the wealths of the agents would become neg-
ative could occur. This is prevented allowing the trans-
action to take place only if the condition x′

j , x
′
k ≥ 0 is
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Fig. 2. (Color online) In the B-model the quantity x can only
vary by a constant amount Δx = Δx0, which can e.g. be lost
by a unit j and then absorbed by a unit k, analogously to
the emission-absorption process of light quanta of constant fre-
quency.

fulfilled, i.e., the process is described by equation (2) with
Δx = Δx0 if x′

j , x
′
k ≥ 0 and with Δx = 0 otherwise.

Since the wealth can vary only by a constant amount Δx0,
the model reminds a set of particles exchanging energy by
emitting and re-absorbing light quanta, as illustrated sym-
bolically in Figure 2. Analytically the equilibrium state of
the B-model is well described by the exponential distri-
bution (7). A main difference respect to the other mod-
els considered here is that in the B-model the amount of
wealth exchanged between the two agents is independent
of xi, while in the other models represents a multiplicative
random process, since Δx ∝ xi.

3.4 C-model

In the model introduced in 2000 by Chakraborti and
Chakrabarti [27] the general exchange rule reads,

x′
j = λxj + ε(1 − λ) (xj + xk) ,

x′
k = λxk + ε̄(1 − λ) (xj + xk) , (10)

where ε̄ = 1− ε. Here the new wealth x′
j (x′

k) is expressed
as a sum of the saved fraction λx′

j (λx′
k) of the initial

wealth and a random fraction ε (ε̄) of the total remaining
wealth, obtained summing the respective contributions of
agents j and k. Equations (10) are equivalent to equa-
tions (2), with

Δx = ω (ε̄xj − εxk) = (1 − λ) (ε̄xj − εxk) . (11)

Like in the A1-model, at equilibrium the system is well
described by a Γ-distribution (4). For the parameter n we
find now [38,39]

n ≡ D

2
=

1 + 2λ

1 − λ
=

3
ω
− 2, (12)

which is twice the value of the corresponding parameter
of the A1-model with p0 = 1/2, discussed in Section 3.1.

In Figure 3 numerical results are compared with the
fitting based on equation (12). In this case the probability
density is always finite for x → 0, since for λ = 0 (ω = 1)
one has n = 1 and the distribution does not diverge, being
equal to the exponential function (7).
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Fig. 3. (Color online) Equilibrium wealth distributions in
linear and semi-log scale for different values of the saving
parameter λ in the closed economy model defined by equa-
tions (10). The continuous curves are the fitting functions,
i.e. a Γ-distribution of the form equation (4) just as for the
A1-model, but the value of n(λ) is given by equation (12).

3.5 D-model

The models introduced in 2000 by Dragulescu and
Yakovenko [28] were conceived to describe flow and distri-
bution of money. They have a sound interpretation both
of the conservation law x′

j + x′
k = xj + xk, since money

is measured in the same unit and conserved during trans-
actions, and of the stochasticity of the update rule, rep-
resenting a randomly chosen realization of trade. Various
models were considered in reference [28], with a Δx either
constant (similarly to the B-model discussed above) or de-
pendent on the values xi of the agents; also more realistic
models, in which e.g. firms were introduced or debts were
allowed. For simplicity, we consider among them the model
which probably best represents the random character of
KWEMs, referred to as the D-model below, in which the
total initial amount xj+xk is reshuffled randomly between
the two interacting units,

x′
j = ε (xj + xk) ,

x′
k = ε̄ (xj + xk) . (13)

Equivalently, the dynamics can be described by equa-
tions (2), with

Δx = ε̄xj − εxk. (14)
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Fig. 4. (Color online) The D-model as well as the C-model pre-
scribe a microscopic interaction between two units analogously
to a kinetic model of gas in which, during an elastic collision,
two generic particles j and k exchange an energy amount Δx.

Table 1. Comparison of dependence of the fitting parameter n
in the Γ-distribution (4) on λ or ω, for the basic homogeneous
versions of the A-, C-, and D-models.

Model n(ω) n(λ)
A1 3/2ω − 1 (1 + 2λ)/2(1 − λ)
A2 1/ω − 1 λ/(1 − λ)
C 3/ω − 2 (1 + 2λ)/(1 − λ)
D 1 1

The D-model is formally recovered from the C-model for
λ = 0 (ω = 1).

The equilibrium distribution of the D-model is well fit-
ted by the exponential distribution (7). A mechanical ana-
logue of the D-model is a gas, in which particles undergo
pair collisions in which some energy is exchanged [40], as
symbolically illustrated in Figure 4.

3.6 Stationary wealth distributions

The parameters of the Γ-distribution, obtained from the
fitting of the wealth distributions of the stationary so-
lutions for the models considered, are summarized in
Table 1. The analytical forms of the respective parame-
ters n, given as a function of ω or λ, provide a good fitting:
for the model A2, the fitting is good only up to λ ≈ 0.7.
The close analogies among the various models are evident,
however the existence of a general solution has not been
demonstrated, see e.g. references [23,41].

4 Influence of heterogeneity

Here we discuss the influence of heterogeneity, considering
as an example the generalization of the C-model. Hetero-
geneity is introduced by assigning a different parameter
ωi (λi) to each agent i. The formulation of the hetero-
geneous models can be straightforwardly obtained from
those of the corresponding homogeneous ones by replac-
ing the generic term ω xi (λxi) with ωixi (λixi) in the
evolution law. In the case of the C-model equations (10)

become

x′
j = λjxj + ε [(1 − λj)xj + (1 − λk)xk] ,

x′
k = λkxk + ε̄ [(1 − λj)xj + (1 − λk)xk] , (15)

and the exchanged amount of wealth in equations (2) is
now

Δx = ε̄ωjxj − εωkxk = ε̄ (1 − λj)xj − ε (1 − λk)xk. (16)

The set of parameters {ωi} ({λi}) is constant in time
and specifies the profiles of the agents. The values {ωi}
({λi}) are assumed to be distributed in the interval be-
tween 0 and 1 with probabilities hi (gi) and

∑
i hi = 1

(
∑

i gi = 1). In the limit of an infinite number of agents,
one can introduce a probability distribution h(ω) [g(λ)],
with

∫ 1

0
dωh(ω) = 1 [

∫ 1

0
dλg(λ) = 1].

Various analytical and numerical studies of this model
have been carried out [2,19,22,36,41–48] and as a main re-
sult it has been found that the exponential law remains
limited to intermediate x-values, while a Pareto power law
appears at larger values of x. Such a shape is prototyp-
ical for real wealth distributions. Numerical simulations
and theoretical considerations suggest that the power law
exponent is quite insensitive to the details of the sys-
tem parameters, i.e., to the distribution h(ω). In fact,
the Pareto exponent depends on the limit g(λ → 1). If
g(λ) ∼ (1 − λ)α−1 with λ → 1 and α ≤ 1, then the cor-
responding power law has an exponent α [44]. Thus, in
general, agents with λi close to 1 are responsible for the
appearance of the power law tail [44,47,49].

Probably the most interesting feature of the equilib-
rium state is that while the shape of the wealth distribu-
tion fi(x) of agent i is a Γ-distribution, the sum of the
wealth distributions of the single agents, f(x) =

∑
i fi(x),

produces a power law tail. Vice versa, one could say that
the global wealth distribution f(x) can be resolved as a
mixture of partial wealth probability densities fi(x) with
exponential tail, with different parameters. For instance,
the corresponding average wealth depends on the sav-
ing parameter as 〈x〉i ∝ 1/(1 − λi) = 1/ωi; see refer-
ences [47,49,50] for details.

Importantly, all real distributions have a finite cut-
off; no real wealth distribution has an infinitely extended
power law tail. The Pareto law is always observed be-
tween a minimum wealth value xmin and a cutoff xmax,
representing the wealth of the richest agent. This can be
well reproduced by the heterogeneous model using an up-
per cutoff λmax < 1 for the saving parameter distribution
g(λ): the closer to one is λmax, the larger is xmax and wider
the interval in which the power law is observed [49].

The role of the λ-cutoff is closely related to and rele-
vant for understanding the relaxation process. The relax-
ation time scales of single agents in a heterogeneous model
are proportional to 1/(1 − λi) [37]. This means that the
slowest convergence rate is determined by 1−λmax. In nu-
merical simulations of heterogeneous KWEMs, one neces-
sarily employes a finite λ-cutoff. However, this should not
be regarded as a limit of numerical simulations but a fea-
ture suited to describe real wealth distributions. Simula-
tions confirm the fast convergence to equilibrium for each
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agent with the above mentioned time scale [37]. Gupta
has demonstrated numerically that the convergence is ex-
ponentially fast [51].

In reference [52] it has been claimed that heteroge-
neous KWEMs with randomly distributed λi (0 ≤ λi < 1)
cannot undergo a fast relaxation toward an equilibrium
wealth distribution, but the relaxation should instead take
place on algebraic time scale. This in turn means that
there cannot exists any power law tail. Such claims are
probably correct for systems with a λ-distribution g(λ)
rigorously extending as far as λ = 1, corresponding to a
power law tail extending as far as x = ∞. However, this
does not apply to KWEMs with a saving parameter cutoff
λmax < 1, which is the natural choice in describing real
systems, as well as in numerical simulations, employing a
finite λ-cutoff: in this case the largest time scale is finite
and relaxation is fast.

5 Generalizations

In this section a unified reformulation of the exchange laws
of the A-, C-, and D-models is suggested and as an exam-
ple an application to the C-model is made.

5.1 Reformulation

It is possible to reformulate the evolution law either
through a single stochastic saving variable λ̃ or an equiv-
alent stochastic exchange variable ω̃ = 1 − λ̃. This for-
mal rearrangement of the equations maintains the form of
the evolution law very simple and has at the same time
the advantage to be particularly suitable to make further
generalizations. For the sake of generality, we consider the
case of a heterogeneous system characterized by a parame-
ter set {ωi}. The models discussed above (apart from the
B-model) can be rewritten according to the basic equa-
tions (2), where the wealth exchange term is now given by

Δx = ω̃jxj − ω̃kxk. (17)

The meaning of the new stochastic variables ω̃j and ω̃k

introduced is simple: ω̃j represents the fraction of wealth
given by agent j to k during the transaction, and vice
versa for ω̃k. Comparison with the equations defining the
A-, C-, and D-models provides the following definitions
for ω̃j and ω̃k:

– In the A1-model, ω̃j and ω̃k are independent nonlinear
stochastic functions of the agent wealths xj and xk,

ω̃j = ηj,kεωj,

ω̃k = (1 − ηj,k) εωk, (18)

where ηj,k = φ(xk − xj) = 1 with probability p0 for
xk − xj > 0 and ηj,k = 0 with probability 1 − p0 for
xk − xj < 0, while ε is a random number in (0, 1). For
ηj,k = 0 one has ω̃j = 0 and ω̃k ∈ (0, ωk), whereas
for ηj,k = 1 one has ω̃k = 0 and ω̃j ∈ (0, ωj).

Table 2. Comparison of the A-, C-, and D-models: explicit
forms of the random variables ω̃j and ω̃k in the unified refor-
mulation (17). See text for details.

Model ω̃j ω̃k

A1 ε η ωj (1 − η) ε ωk

A2 η ωj (1 − η) ωk

C ε ωj (1 − ε) ωk

D ε (1 − ε)

– In the A2-model, ω̃j and ω̃k only contain the dicho-
tomic variable,

ω̃j = ηj,kωj,

ω̃k = (1 − ηj,k)ωk. (19)

– For the C-model,

ω̃j = εωj , ω̃j ∈ (0, ωj) ,

ω̃k = (1 − ε)ωk, ω̃k ∈ (0, ωk) , (20)

where ε is a random number in (0, 1).
– The D-model is recovered from equations (20) of the

C-model when ωi = 1 for each agent i.

The reformulation is summarized in Table 2 with refer-
ence to equation (17). Different generalizations can now
be done changing only the properties of the stochastic
variables ω̃i, while maintaining the same formulation (17)
of the exchange law.

5.2 An example

As an example which can be represented through equa-
tion (17), we consider a generalization of the homogeneous
C-model. In the original version there is a constraint on
the maximum fraction of invested wealth, given by a value
0 < ω ≤ 1 of the exchange parameter, or equivalently on
the minimum saved fraction, given by a value 0 ≤ λ < 1 of
the saving parameter. Now an additional constraint on the
minimum fraction of the invested wealth is assumed. This
may describe e.g. trades which always have a minimum
risk for an agent. It can be represented by an analogous
parameter ω′, with 0 < ω′ < ω, representing the minimum
fraction of wealth invested in a single trade. One can also
define a parameter λ′ = 1−ω′, with λ < λ′ < 1, represent-
ing the maximum fraction of saved wealth (i.e. it is not
possible to go through a trade without losing a non-zero
amount of wealth). Then the stochastic variables ω̃i in
equation (17) become uniform random numbers in inter-
vals defined by the parameters ω′ and ω (or by λ′ and λ),

ω̃i ∈ (ω′, ω) = (1 − λ′, 1 − λ). (21)

We have performed numerical simulations for a set of com-
binations of parameters (λ, λ′) and found that the equi-
librium distributions are always well fitted by the same
Γ-distribution (5). However, we have not found a simple
analytical formula for fitting the dependence of the param-
eter n on the saving parameters λ and λ′. The behavior of
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Fig. 5. (Color online) Fitting parameter n(λ, λ′) of the
Γ-distribution γn(x) for the generalized model with λ< λ̃i <λ′.
Dotted and dashed lines: n as a function of λ (≤ λ′ by defini-
tion) for fixed values of λ′ shown on the right side. These lines
stop at λ = λ′ since by definition λ ≤ λ′. Continuous lines: n
as a function of λ′ (≥ λ) for the same fixed values of λ shown
on the right side.

n versus λ (λ′) is represented graphically in Figure 5. Dot-
ted/dashed curves (different colors) represent n versus λ
for the different fixed values of λ′ shown on the right side
These curves stop at λ = λ′, since by definition λ < λ′.
From there the continuous (red) curves start, which rep-
resent n versus λ′ for the same fixed values of λ listed
in the legend on the right. The first (dashed green) curve
from the top extending on the whole interval λ = (0, 1)
represents n as a function of λ f or λ′ = 1 and corresponds
to the original homogeneous C-model. For this particular
case n(λ) is known to diverge as n ∼ 1/(1 − λ) ∼ 1/ω for
λ → 1 (see Tab. 1), while in all the other cases n is finite.

6 Conclusions and discussion

We have reviewed some basic KWEMs of closed econ-
omy systems, introduced by scientists working in different
fields, allowing us to point out analogies and differences
between them. We have first considered the homogeneous
models and then discussed the influence of heterogeneity.
The heterogeneous KWEMs are particularly relevant in
the study of real wealth distributions, since they can re-
produce both the exponential shape at intermediate values
of wealth as well as the power law tail.

In all the models discussed, including the heteroge-
neous one, the equilibrium wealth distribution of a single
agent is well fitted by a Γ-distribution, known to be the
canonical distribution of a general harmonic system with
a suitable number of degrees of freedom. This suggests a
simple mechanism underlying the (approach to) equilib-
rium of these systems, similar to the energy redistribution
in a mechanical system. However, a general demonstra-
tion that the Γ-distribution is the stationary solution of
KWEMs and an understanding of how it arises is still
missing (see Refs. [23,41,53,54] for theoretical considera-
tions on and the microeconomic formulation of this issue).

Furthermore, we have discussed how in a heteroge-
neous KWEM the sum of the single agent wealth distri-
butions can produce a power law tail. In particular, we

have clarified some issues concerning the relaxation pro-
cess and the existence of power law tails: whenever there
is a finite cutoff in the saving parameter distribution, the
largest time scale of the system is finite and one observes
a fast (exponential) relaxation toward a power law, which
extends over a finite interval of wealth. The width of such
interval depends on the saving parameter cutoff.

Due to the similarity of the structures of the mod-
els discussed, we have proposed a novel unified reformula-
tion based on the introduction of suitable stochastic vari-
ables ω̃i, representing the actual fraction of wealth lost by
the i-th agent during a single transaction. This unified
formulation lends itself easily to further generalizations,
which can be obtained by modifying the stochastic prop-
erties of the variable ω̃i only, while leaving the general
evolution law unchanged. We have illustrated the new for-
mulation by working out in detail an example, in which
the fraction of wealth lost ω̃i is characterized by a lower
as well as an upper limit.

Besides the KWEMs considered in the present pa-
per, originally formulated through finite time differ-
ence stochastic equations, other relevant (versions of)
KWEMs have been introduced in the literature; see refer-
ences [10,19,55] for an overview. Their mathematical for-
mulation can be similar to the one of the present pa-
per [21–23,36,56], or different approaches can be used,
such as matrix theory [57], the master equation [35,58,59],
the Boltzmann equation [41,52,60–63], the Lotka-Volterra
equation [64,65], or Markov chains models [66–68]. All
these models share a description of wealth flow as due to
exchanges between basic units. In this respect, they are all
very different from the class of models formulated in terms
of a Langevin equation for a single wealth variable sub-
jected to multiplicative noise [29,69–72]. The latter mod-
els can lead to wealth distributions with a power law tail.
In fact, they converge toward a log-normal distribution,
which, however, does not fit real wealth distributions as
well as a Γ-distribution or a β-distribution and is asymp-
totically characterized by too large variances [21].

Finally, we would like to point out that even though
KWEMs have been the subject of intensive investigations,
their economical interpretation is still an open problem.
It is important to keep in mind that in the framework of
a KWEM the agents should not be related to the rational
agents of neoclassical economics: an interaction between
two agents does not represent the effect of decisions taken
by two economic agents who have full information about
the market and behave rationally in order to maximize
their utility. The description of wealth flow provided by
KWEMs takes into account the stochastic element, which
does not respond by definition to any rational criterion.
Also some terms employed in the study of KWEMs, such
as saving propensity (replaced here by saving parameter),
risk aversion, etc., can be misleading since they seem to
imply a decisional aspect behind the behavior of agents.
Trying to interpret the dynamics of KWEMs through con-
cepts taken from the neoclassical theory leads to obvious
misunderstandings [73]. However, it is interesting to note
that very recently, Chakrabarti and Chakrabarti have put
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forward a microeconomic formulation of the above mod-
els, using the utility function as a guide to the behavior
of agents in the economy [54]. Instead, KWEMs provide
a description at a coarse grained level, as in the case of
many statistical mechanical models, where the connection
with the microscopic mechanisms is not visible; however,
the equivalence is maintained.
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