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Abstract

In this paper we analyse the flow of a family of three dimensional Lotka-Volterra systems restricted to an

invariant and bounded region. We conclude that the behaviour of the flow in the interior of this region is

very simple: either every orbit is a periodic orbit or they move from one boundary to another. We also

characterise some of the bifurcations taking place at the boundary of the invariant region.
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1 Introduction

Consider a closed chemical system formed by four coexisting macromolecular species denoted by X, Y, Z and V.
A macromolecule works in a reaction network far from equilibrium. As discussed by Wyman [19] such reaction
can be modeled as a “turning wheel” of one–step transitions of the macromolecule, which circulate in a closed
reaction path involving the four possibles states. The turning wheels have been proposed by Di Cera et al. [5]
as a generic model for macromolecular autocatalytic interactions.

While Di Cera’s model considers unidirectional first order interactions, Murza et al. in [6] consider a closed
sequence of chemical equilibria. In their approach the reaction rates were defined as functions of the time
dependent product concentrations, multiplied by their reaction rate constants. This type of reaction rates had
been introduced in the original Wyman’s paper [19].

Following the closed sequence of chemical equilibria in [6], the autocatalytic chemical reactions between
X, Y, Z and V

ZV

YX

k11y

k12x

k32z

k31v

k41x k42v k22y k21z

is governed by the following 4–parameter family of nonlinear differential equations

ẋ = x(k1y − k4v),
ẏ = y(k2z − k1x),
ż = z(k3v − k2y),
v̇ = v(k4x − k3z).

(1)

1



Functions x(t), y(t), z(t) and v(t) are concentrations at time t of the chemical species X, Y, Z, V respectively.
The parameters ki = ki2 − ki1 for i = 1, 2, 3, 4 are differences of pairs of reaction rate constants corresponding
to each chemical equilibrium. It can be easily seen that system (1) is identical to the Di Cera’s model restricted
to n = 4, see equation (7) in [5]. In that work, Di Cera claims that this family exhibits self sustained and
conservative oscillations only when the parameter k = (k1, k2, k3, k4) is in the three dimensional manifold
S =

{
k ∈ R

4 \ {0} : k1k3 − k2k4 = 0
}
.

Assuming that the conservation of mass x + y + z + v = 1 applies to the macromolecular system (1), its
kinetic behaviour is described by the three–dimensional differential system






ẋ = x(k1y − k4(1 − x − y − z)),
ẏ = y(k2z − k1x),
ż = z(−k2y + k3(1 − x − y − z)),

(2)

restricted to the invariant by the flow bounded region T = {x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1}.
Polynomial system (2) is a particular case of the three–dimensional Lotka–Volterra systems (LVS)

ẋi = xi

(
ai +

3∑

i=1

bijxj

)
, i = 1, 2, 3,

which has been extensively studied starting with the pioneer works of Lotka [9] and Volterra [11]. These systems
have multiple applications in biochemistry. For instance, enzyme kinetics [19] , circadian clocks [7] and genetic
networks [13, 12] often produce sustained oscillations modeled with LVS.

Solutions of LVS cannot, in general, be written in terms of elementary functions. So that the search for
invariant manifolds, first integrals or/and integrability conditions can be useful to the analysis of the flow. This
approach has experimented an increasing popularity over the last few years after the works of Christopher and
Llibre [2, 3, 4], which are based on the Darboux’s theory of integrability, see for instance [1, 14, 10] and references
therein. Unfortunately for systems of dimension greather that 2 the behaviour of the flow is not entirely known,
even when the system is integrable. Of course in the case of non–integrable LVS the lack of knowledge is higher
and other tools are required. Nevertheless and for special families of parameters, some results concerning to the
existence of limit cycles can be found in [15, 16, 17, 18]. Additional results about the number of limit cycles
which can appear after perturbation are presented in [8].

In this paper we deal with the global analysis of the flow of system (2) restricted to the region T . Note that
the boundary ∂T of the region is a three dimensional simplex which is invariant by the flow. This boundary is
formed by the union of the following invariant subsets: the invariant faces X = {(x, 0, z) : x > 0, z > 0, x+z < 1},
Y = {(0, y, z) : y > 0, z > 0, y + z < 1}, Z = {(x, y, 0) : x > 0, y > 0, x + y < 1} and Σ = {(x, y, z) : x > 0, y >
0, z > 0, x + y + z < 1}; and the invariant edges Rxz = {(x, 0, 0) : 0 < x < 1}, Rxy = {(0, 0, z) : 0 < z < 1},
Ryz = {(0, y, 0) : 0 ≤ y ≤ 1}, Rpx = {(x, 0, 1 − x) : 0 ≤ x ≤ 1}, Rpy = {(0, y, 1 − y) : 0 < y < 1} and
Rpz = {(x, 1 − x, 0) : 0 < x < 1}. We remark that the edges Ryz and Rpx are closed segments formed by
singular points.

In order to make easier the analysis we consider the following subsets in the parameter space: S− =
{k ∈ R

4 : k1k3 − k2k4 < 0}, S+ = {k ∈ R
4 : k1k3 − k2k4 > 0}, NZ = {k ∈ R

4 : k1k2k3k4 6= 0} and
PS = {k ∈ R

4 : k1k2 > 0, k1k3 > 0, k1k4 > 0}. We note that S− and S+ together with S (defined above) form
a partition of the parameter space R

4. We also note that the parameter set PS is a subset of NZ.
The main result of the paper is summarised in the following theorem.

Theorem 1 (a) Suppose that k ∈ PS ∩ S.

(a-1) The open segment

R =

{(
k3

k4
z,

k4 − (k4 + k3)z

k4 + k1
, z

)
: 0 < z <

k4

k3 + k4

}

is contained in the interior of T and every point in R is a singular point.

(a-2) Let p be a point contained in the interior of T but not in R. Then the orbit γp through the point p

is a periodic orbit.

(a-3) Each of the two limit sets of every orbit in X ∪ Σ is a singular point contained in the edge Rpx.
Moreover, given two orbits γ1 ⊂ X and γ2 ⊂ Σ such that ω(γ1) = α(γ2), then ω(γ2) = α(γ1).
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(a-4) Each of the two limit sets of every orbit in Y ∪ Z is a singular point contained in the edge Ryz .
Moreover, given two orbits γ1 ⊂ Y and γ2 ⊂ Z such that ω(γ1) = α(γ2), then ω(γ2) = α(γ1).

(a-5) The behaviour of the flow in T is topologically equivalent to the one draw in Figure 1.

(b) Suppose that k 6∈ PS ∩ S and k 6= 0. The limit sets of every orbit in T are contained in the boundary of
T . Thus the flow goes from one face to another.

(a)

Rpx

Ryz

Rpx

��	

Ryz

��	

(b)

X Σ

(c)

Z Y

R
�

��	

Figure 1: Behaviour of the flow of system (2) for k ∈ PS ∩ S : (a) in the interior of T ; (b) at the edges X ∪ Σ
and (c) at the edges Y ∪ Z.

We remark that Theorem 1 completely characterises the region in the parameter space where the corre-
sponding system (2) exhibits self sustained oscillations. Thus the necessary conditions k ∈ S for the existence
of such behaviour, given by Di Cera et al. [5], are here completed with the necessary and sufficient condition
k ∈ PS ∩ S. Futhermore this oscillating behaviour in the interior of T extends to a heteroclinic behaviour at
the boundary. Therefore the period function defined in the interior of T is a non–constant function; it grows
by approaching the boundary.

In dimension greather than two, differential systems usually present chaotic motion in the sense that the
difference between the initial conditions grows exponentially with time. This is not our case. The dynamic
behaviour of family (2) is very simple and non-strange attractors appear. In fact, as showed in Theorem 1(b),
in absence of periodic orbits every orbit goes from one side of the boundary of T to another. Nevertheless, we
can remark certain singular situations related to the form and location of the limit sets. One of these limit set
configurations is described in the next result. Before stating it we consider the following singular points in the
edges Rpx and Ryz , respectively

ppx =
(

k2

k1+k2

, 0, k1

k1+k2

)
, qpx =

(
k3

k3+k4

, 0, k4

k3+k4

)
,

pyz =
(
0, k4

k1+k4

, 0
)

, qyz =
(
0, k3

k3+k2

, 0
)

.

(3)

When k is in the manifold PS ∩ S, the points ppx and qpx are equal and they coincide with one of the
endpoints of the segment R defined in Theorem 1(a-1). Similarly, the points pyz and qyz are also equal and they
coincide with the other endpoint of R. On the other hand, when k ∈ PS \ S, we define the following segments
contained in the edges Rpx and Ryz, respectively

spx = {ppx + r(qpx − ppx) : r ∈ [0, 1]} , syz = {pyz + r(qyz − pyz) : r ∈ [0, 1]} . (4)

To clarify the exposition of the next result we introduce the subsets PS+ = {k ∈ R
4 : ki > 0} and

PS− = {k ∈ R
4 : ki < 0} which form a partition of PS.

Theorem 2 Suppose that k ∈ PS \ S.
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(a) Each of the two limit sets of every orbit in the interior of T is formed by a singular point contained
in the segments spx and syz. In particular, given a point p in the interior of T , if k ∈ PS+ ∩ S+ or
k ∈ PS− ∩ S−, then α(γp) ∈ syz and ω(γp) ∈ spx; and if k ∈ PS+ ∩ S− or k ∈ PS− ∩ S+ then
α(γp) ∈ spx and ω(γp) ∈ syz.

(b) Each of the two limit sets of every orbit in X ∪Σ is a singular point contained in the edge Rpx. Moreover,
given two orbits γ1 ⊂ X and γ2 ⊂ Σ such that ω(γ1) = α(γ2), then ω(γ2) 6= α(γ1).

(c) Each of the two limit sets of every orbit in Y ∪Z is a singular point contained in the edge Ryz. Moreover,
given two orbits γ1 ⊂ Y and γ2 ⊂ Z such that ω(γ1) = α(γ2), then ω(γ2) 6= α(γ1).

(d) The behaviour of the flow in T is topologically equivalent to the one drawn in Figure 1.

(a)

spx

syz

�
��

spx

�
�

�

syz

�
�

�

(b)

X Σ

(c)

Z Y

Figure 2: Behaviour of the flow of system (2) for k ∈ PS \ S : (a) in the interior of T ; (b) at the edges X ∪ Σ
and (c) at the edges Y ∪ Z.

From Theorem 2 we conclude that the bifurcation taking place at the manifold S is not only characterised
by the behaviour of the flow in the interior of T . In addition it must be described by taking into account the
changes of the limit sets syz and spx at the boundary of T . Hence when k ∈ PS+ ∩ S+ the orbits in the faces
Y ∪ Z are organised in spirals around the segment syz moving away from it; and the orbits in the faces X ∪ Σ
are organised in spirals around the segment spx approaching it. When k ∈ PS ∩ S, the segment syz reduces to
the singular point pyz and the segment spx reduce to the singular point ppx; futhermore the flow in the faces
Y ∪ Z and X ∪ Σ describes heteroclinic orbits around them. Finally, when k ∈ PS+ ∩ S− the orbits in Y ∪ Z
are organised in spiral around the segment syz approaching it; and the orbits in the faces X ∪ Σ are organised
in spirals around the segment spx moving away from it. The bifurcation set of system (2) is drawn in Figure 1.
From this we conclude that the bifurcation at the boundary is similar to a focus–center–focus bifurcation.

The paper is organised as follows. In Section 2 we analyse the existence and the local behaviour of the
singular points both in the interior and in the boundary of T . In Section 3 we deal with the first integrals of
the flow and we characterise the integrability of the flow. Using these first integrals, in Section 4 we analyse
the flow at the boundary of T . In Section 5 and by using again the first integrals we analyse the flow in the
interior of T and we prove the main results of the paper.

2 Singular points

In the following proposition we summarise the results about the existence, location and stability of the singular
points of system (2).

Proposition 1 The half straight lines Rpx and Ryz are formed by singular points.

(a) If k ∈ NZ there are no other singular points in the boundary of the simplex.
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PS+ ∩ S+

PS+ ∩ S−

PS− ∩ S−

PS− ∩ S+

PS+ ∩ S
@@R

PS− ∩ S@@I

k = 0

Figure 3: Representation of the bifurcation set in a two dimensional parameter space.

(a-1) Suppose that k ∈ PS ∩ S. The open segment

R =

{(
k3

k4
z,

k4 − (k4 + k3)z

k4 + k1
, z

)
: 0 < z <

k4

k3 + k4

}

is formed by all the singular points in the interior of the region T . Moreover the jacobian matrix of
the vector field evaluated at each of these points has one real eigenvalue equal to zero and two purely
imaginary eigenvalues.

(a-2) Suppose that k ∈ NZ \ {PS ∩ S} . There are no singular points in the interior of region T .

(b) Suppose that k 6∈ NZ and k 6= 0. There are no singular points in the interior of region T .

Proof. Straight forward computations show that the half straight lines Rpx and Ryz are formed by singular
points.

Suppose now that k ∈ NZ. Hence none of the components of the parameter k is zero. In this case the
singular points are given by the solutions to the following systems

x = 0
yz = 0

z(−k2y + k3(1 − y − z)) = 0






−x(1 − x − z) = 0
y = 0

z(1 − x − z) = 0






x(k1y − k4(1 − x − y)) = 0
−yx = 0

z = 0





k4x + (k1 + k4)y + k4z = k4

(k1 + k4)y + (k3 + k4)z = k4

(k2k4 − k1k3)(y + z) = k2k4 − k1k3





where in the last one we impose xyz 6= 0 to avoid repetitions. From the three first systems it is easy to conclude
that there are no other singular points that those in the half straight lines Rpx and Ryz. With respect to the
last one we distinguish two situations.

First let us suppose that k 6∈ S, that is k2k4 − k1k3 6= 0. From the third equation it follows that y + z = 1,
and therefore x = 0. Since k1k4 6= 0 from the first equation we conclude that y = 0 and z = 1. Hence the
singular point is one of the endpoints of the edge Ryz; i.e. it does not belong to the interior of T .

Suppose now that k ∈ S, that is k2k4 − k1k3 = 0. Thus the linear system is equivalent to the following one

k4x + (k1 + k4)y + k4z = k4,
(k1 + k4)y + (k3 + k4)z = k4.

}

If k1 + k4 = 0, then from the first equation we obtain x + z = 1. Therefore y = 0 and the singular point belongs
to Rpx. On the contrary, if k1 +k4 6= 0, then there exists a straight line of singular points parametrically defined
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by x = zk3/k4 and y = (k4 − (k3 + k4)z)/(k1 + k4). Since the singular points in the interior of T must satisfy
that x > 0, y > 0, z > 0 and x + y + z < 1, then there exist singular points in the interior of T if and only if

k3

k4
> 0,

k3 + k4

k1 + k4
z <

k4

k1 + k4
,

k1

k4

(
k3 + k4

k1 + k4
z

)
<

k1

k1 + k4
, z > 0.

It is easy to check that the previous inequalities are equivalent to

k3

k4
> 0,

k3 + k4

k1 + k4
z <

k4

k1 + k4
,

k1

k4
> 0, z > 0.

Since k ∈ S we have k1/k4 = k2/k3. Therefore we conclude that there exist singular points in the interior of T
if and only if all the components of k have the same sign; that is k ∈ PS. In such case these singular points are
given by

x =
k3

k4
z, y =

k4 − (k3 + k4)z

k1 + k4
, 0 < z <

k4

k1 + k4
, (5)

which proves statement (a-1).
The jacobian matrix of the vector field defined by the differential equation (2) and evaluated at the singular

points (5) is given by 


k3z (k2 + k3)z k3z
−k1y 0 k2y
−k3z −(k2 + k3)z −k3z





The characteristic polynomial is equal to λ(λ2 + b) = 0, where b = zy(k1 + k2)(k2 + k3). Since k ∈ PS the
coefficient b is positive. Then we get one zero eigenvalue and a pair of complex conjugated eigenvalues with
zero real part. From this we conclude the statement (a-2).

If k 6∈ NZ and k 6= 0, then at least one of the coordinates of k is equal to zero and at least one is different
from zero. Without lost of generality we suppose that k1 = 0 and k2 6= 0. From the second equations in (2) we
conclude that the singular points are contained in the boundary of T . This proves the statement (b).

Proposition 2 If k ∈ PS \ S, then none singular point in either Rpx \ spx or Ryz \ syz is the limit set of an
orbit in the interior of the region T .

Proof. Let p be a point in the set Rpx \ spx, that is p = (x0, 0, 1 − x0) where either

x0 > max

{
k2

k1 + k2
,

k3

k3 + k4

}
or x0 < min

{
k2

k1 + k2
,

k3

k3 + k4

}
, (6)

see expression (3). If we consider a point p in the set Ryz \ syz, the following arguments can be applied in a
similar way.

Through the change of variables x̄ = x− x0, ȳ = y and z̄ = z − 1 + x0, system (2) can be written as system
˙̄x = Ax̄ + Q(x̄) where x̄ = (x̄, ȳ, z̄)T ,

A =




k4x0 (k1 + k4)x0 k4x0

0 k2 − (k1 + k2)x0 0
k3(x0 − 1) (k2 + k3)(x0 − 1) k3(x0 − 1)


 and Q(x̄) =




x̄(k4x̄ + (k1 + k4)ȳ + k4z̄)
ȳ(k2z̄ − k1x̄)

z̄(−k3x̄ − (k2 + k3)ȳ − k3z̄)


 .

The eigenvalues of the matrix A are λ1 = 0, λ2 = (k3 + k4)x0 − k3 and λ3 = k2 − x0(k1 + k2). From (6) it is
easy to conclude that λ2λ3 < 0. Therefore there exists a regular matrix P such that PAP−1 = diag{0, λ2, λ3}.

Going through the change of coordinates xp = P x̄ the system can be rewritten as






ẋp =
k2zp−k3yp

k1k4x0
(k4k1xp + k1(x0 − 1)(k3 + k4)yp + k4(x0 − 1)(k2 + k4)zp)

ẏp =
yp

k1k4x0

(
(λ2 − (k3 + k4)xp)k1k4x0 + k1(k

2
3(1 − x0) + k2

4x0)yp + k4(k1k4x0 + k2k3(1 − x0))zp

)

żp =
zp

k1k4x0

(
(λ3 + (k2 + k1)xp)k1k4x0 − k1(k1k4x0 + k2k3(1 − x0))yp − k2(k

2
2(1 − x0) + k2

1x0)zp

)
(7)
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System (7) have two invariant planes {yp = 0} and {zp = 0} intersecting at a straight line formed by singu-
lar points, which corresponds with the segment Rpx. The direction of the vector field in a sufficiently small
neighbourhood of the origin satisfies that

sign(ẏp) = sign(yp)sign(λ2)

sign(żp) = sign(zp)sign(λ3).

We conclude that the origin is neither the α–limit set nor the ω–limit set of any orbit in the interior of the
regions {yp > 0, zp > 0}, {yp > 0, zp < 0}, {yp < 0, zp > 0} and {yp < 0, zp < 0}. From this we conclude the
proposition.

3 Invariant algebraic surfaces and first integrals

In 1878 Darboux showed how to construct first integrals of a planar polynomial vector field possessing sufficient
invariant algebraic curves. Recent works improved the Darboux’s exposition taking into account other dynamical
objects like exponential factors and independent singular points, see [2], [3] and [4] for more details. The
extension of the Darboux theory to n–dimensional polynomial differential systems can be found in the work by
Llibre and Rodŕıguez [10]. A brief introduction to the three dimensional case can be found in [1]

Following [1] a first integral of system (2) is a real function F non–constant over the region T and such that
the level surfaces FC = {(x, y, z) ∈ T : F (x, y, z) = C} are invariants by the flow; that is

XF =
∂F

∂x
ẋ +

∂F

∂y
ẏ +

∂F

∂z
ż = 0

where (ẋ, ẏ, ż) is the vector field associated to the differential system. Thus the existence of a first integral
allows the reduction of the dimension of the problem by one. Moreover, the existence of two independent first
integrals allows the integrability of the flow.

Let f ∈ R[x, y, z] be a polynomial function. The algebraic surface f = 0 is called an invariant algebraic
surface of the system (2) if there exists a polynomial K ∈ R[x, y, z] such that Xf = Kf. The polynomial K is
called the cofactor of f. The following result is a corollary of the Theorem 2 in [1].

Theorem 3 Suppose that the polynomial vector field (2) admits p invariant algebraic surfaces fi = 0 with
cofactor Ki for i = 1, 2, . . . , p. If there exist λi ∈ R not all zero such that

∑p

i=1 λiKi = 0, then the function

fλ1

1 fλ2

2 . . . f
λp
p is a first integral of the vector field (2).

The next result summarises the first integrals and the conditions for their existence. Sufficient conditions
for the integrability of system (2) are also given.

Proposition 3 Consider the functions H(x, y, z) = xk2zk1 , H̃(x, y, z) = xk3zk4 , V (x, y, z) = yk3(1−x−y−z)k2

and Ṽ (x, y, z) = yk4(1 − x − y − z)k1 .

(a) If k ∈ S ∩ NZ, then H, V, H̃ and Ṽ are first integrals which satisfy that H̃k1 = Hk4 and Ṽ k3 = V k4 .
Moreover H and V are independent.

(b) If k ∈ S \ NZ , then two of the previous functions are first integrals and they are independent.

(c) If k 6∈ S, then none of the previous functions is a first integral in T .

Proof. Consider the algebraic surfaces f1(x, y, z) = x, f2(x, y, z) = y, f3(x, y, z) = z and f4(x, y, z) =
x+y+z−1. It is easy to check that Xfi = fiKi, with i = 1, 2, 3, 4, where K1(x, y, z) = k4x+(k1+k4)y+k4z−k4,
K2(x, y, z) = −k1x + k2z, K3(x, y, z) = −k3x − (k2 + k3)y − k3z + k3 and K4(x, y, z) = k4x − k3z. Therefore
fi = 0 is an invariant surface with cofactor Ki, with i = 1, 2, 3, 4.

From Theorem 3, if there exist λi not all zero and such that
∑4

i=1 λiKi = 0, then F = fλ1

1 fλ2

2 fλ3

3 fλ4

4 is a
first integral of system (2). Since

4∑

i=1

λiKi = (λ4k4 − λ2k1)x + (λ1k1 − λ3k2)y + (λ2k2 − λ4k3)z + (λ3k3 − λ1k4)(1 − x − y − z)
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the existence of such λi is equivalent to the existence of non–trivial solutions of the homogeneous linear systems

(
k1 −k2

−k4 k3

)(
λ1

λ3

)
=

(
0
0

)
and

(
k2 −k3

−k1 k4

)(
λ2

λ4

)
=

(
0
0

)
. (8)

Note that the determinant of both previous systems is equal to k1k3 − k2k4. Therefore when k belongs to the
set S there exist Darboux type first integrals of system (2).

Under the assumption k ∈ S linear system (8) has the following non–trivial solutions (λ1, λ2, λ3, λ4) →
(k2, 0, k1, 0), (0, k3, 0, k2), (k3, 0, k4, 0) and (0, k4, 0, k1). Therefore the functions H(x, y, z) = xk2zk1 , V (x, y, z) =

yk3(1 − x − y − z)k2 , H̃(x, y, z) = xk3zk4 and Ṽ = yk4(1 − x − y − z)k1 are first integrals. In fact

XH = xk2zk1(1 − x − y − z)(k1k3 − k2k4) XV = yk3(1 − x − y − z)k2x(k2k4 − k1k3),

XH̃ = xk3zk4(k1k3 − k2k4)y XṼ = yk4(1 − x − y − z)k1(k2k4 − k1k3)z

(9)

which vanish in the whole region T only when k ∈ S.
Consider that k ∈ S ∩ NZ. Since every coordinate of k is different from zero it follows that H, V, H̃

and Ṽ are not constant in T . Therefore all of these functions are first integrals. It is easy to check that
H̃k1 = Hk4 and Ṽ k3 = V k4 . Moreover since ∇H(x, y, z) = x(k2−1)z(k1−1) (k2z, 0, k1x) and ∇V (x, y, z) =
y(k3−1)(1 − x − y − z)(k2−1) (−k2y, k3(1 − x − y − z) − k2y,−k2y) , both integrals are dependent only at the
points satisfying that k3(1 − x − y − z) = k2y and k2z = k1x. Taking into account that k2 6= 0 it follows that
this set has zero Lebesgue measure. Then H and V are two independent first integrals.

Consider now that k ∈ S \ NZ. Hence k has one coordinate which is different from zero. Without lost of

generality we assume that k1 6= 0, the remainder cases follows in a similar way. It is easy to check that H and Ṽ
are not constant in T , and therefore they are first integrals. Since ∇H(x, y, z) = x(k2−1)z(k1−1) (k2z, 0, k1x) and

∇Ṽ (x, y, z) = y(k4−1)(1 − x − y − z)(k1−1) (−k1y, k4(1 − x − y − z) − k1y,−k1y) , both integrals are dependent

only at the points satisfying that k4(1 − x − y − z) = k1y and k2z = k1x. Therefore H and Ṽ are independent.

4 Behaviour at the boundary

As we have proved in Proposition 3 some of the functions H, H̃, V and Ṽ are first integrals over the whole
region T only when k ∈ S. Nevertheless the restriction of these functions to a particular face of T results in
a first integral even when k 6∈ S. In fact, denoting by H̃ |X the restriction of the function H̃ to the face X ,

from expression (9) it follows that XH̃|X = 0. Therefore the level curves H̃|X = Ck4 are invariant by the flow.
Under the assumption k3k4 > 0, these level curves define a foliation of X whose leaves are given by the arcs of

hyperbola
{
z = Cx

−
k3

k4

}

0<C<C∗

where

C∗ =
k4

k4 + k3

(
k3

k4 + k3

) k3

k4

. (10)

Furthermore, every leaf with 0 < C < C∗ intersects the segment Rpx at exactly two points, see Figure 4(a).
The value C = C∗ leads to a unique intersection point with coordinates x = k3/(k3 + k4) and z = k4/(k3 + k4).
Since in the face X we have y = 0, it follows that the point corresponding to C∗ is the point qpx defined in (3).

Similarly, the restriction of V, Ṽ and H to the faces Y, Z and Σ respectively, are first integrals even when
k 6∈ S, see expression (9). Consider the changes of variables (u, v, α, β) → (y, z, k2, k3), (y, x,−k1,−k4) or
(x, y, k1, k2), depending on the face Y, Z or Σ we are looking at. Under the assumption αβ > 0, the level curves

V |Y = Ck2 , Ṽ |Z = Ck1 and H |Σ = Ck1 define a foliation on the corresponding face, whose leaves are given by

the unimodal curves
{
v = 1 − u − Cu−

β

α

}

0<C<C∗

where

C∗ =
α

α + β

(
β

α + β

) β

α

.
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Every leaf with 0 < C < C∗ intersects the segment {v = 0, 0 < u < 1} at exactly two points, see Figure
4(b). The value C = C∗ leads to a unique intersection point (β/(α + β), 0) . Going back through the change of
variables and adding the variable which does not appear in such change, that intersection point coincides with
qyz, pyz or ppx depending on the change of variables.

(a)
x

z

C1

C2

C3

C∗

(b)

v

u

C1���C2

@@R
C3���C∗

@@R

Figure 4: (a) Foliation over the face X defined by the level curves H̃|X = Ck4 where 0 < C1 < C2 < C3 < C∗

and k in PS\S. (b) Foliation over the corresponding face of the level curves HΣ = Ck1 or VY = Ck2 or ṼZ = Ck1

where 0 < C1 < C2 < C3 < C∗ and k in PS \ S. Note that figure (b) is represented in (u, v)–coordinates.

Using the geometric information of the aforementioned foliations, in the next result we summarise the
behaviour of the flow of system (2) at the boundary ∂T for k ∈ PS.

Lemma 1 (a) If k ∈ PS, then each of the two limit sets of every orbit contained in X ∪ Σ (respectively,
Y ∪ Z) is formed by a singular point contained in the edge Rpx (respectively, Ryz).

(b) If k ∈ PS ∩ S, then for every pair of orbits γ1 ⊂ X and γ2 ⊂ Σ (respectively, γ1 ⊂ Y and γ2 ⊂ Z)
satisfying that ω(γ1) = α(γ2), it follows that α(γ1) = ω(γ2).

(c) If k ∈ PS \ S, then for every pair of orbits γ1 ⊂ X and γ2 ⊂ Σ (respectively, γ1 ⊂ Y and γ2 ⊂ Z)
satisfying that ω(γ1) = α(γ2), it follows that α(γ1) 6= ω(γ2).

Proof. We restrict ourselves to consider orbits in the faces X ∪ Σ. The study of the orbits in the faces Y ∪ Z
follows in a similar way.

Suppose that k ∈ PS. Hence k3k4 > 0. Therefore every orbit γ1 in X is contained in a leaf of the foliation

z = Cx
−

k3

k4 with 0 < C < C∗, which is an arc of hyperbola intersecting the edge Rpx at exactly two points.
Since there are not other singular points in X , see Proposition 1(a), we conclude that each of the two limit sets
of γ1 is one of these intersection points.

On the other hand we have k2k1 > 0. Therefore every orbit γ2 in Σ is contained in a leaf of the foliation

y = 1 − x − Cx−
k2

k1 , which is an unimodal curve intersecting the edge Rpx at exactly two points. We conclude
again that each of the limit sets of γ2 is one of these intersection points. From this we conclude the statement
(a).

Taking into account that Σ is given by the relation z = 1 − x − y, we express the leaves in Σ as a function

z(x) in the following way z = Cx−
k2

k1 .
Let p = (x0, 0, 1− x0) be a point in the edge Rpx. There exist two positive values C1 and C2 such that both

the leaf z = C1x
−

k3

k4 in the face X and the leaf z = C2x
−

k2

k1 in the face Σ contain the point p. On the other
hand the leaf in the face X intersects Rpx at a new point (x1, 0, 1−x1) and the leaf in the face Σ intersects Rpx

at a new point (x2, 0, 1−x2). Since two arcs of hyperbola either intersect at most at one point or they coincide,
we conclude that k3k1 = k4k2 if and only if x1 = x2. This proves the statements (b) and (c).

5 Behaviour in the interior

In this last section we deal with the proof of the main theorems of the paper.
We start by setting the parameter k in the condition of the Theorem 1(a); that is, k ∈ PS ∩ S. Under

this assumption system (2) is integrable and the functions H and V are two independent first integrals, see
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Proposition 3(a). Since any level surface HC is invariant by the flow, we can consider the restriction of the flow
to each of these surfaces. Of course this restricted flow is also integrable because the restriction of the function
V to HC is a first integral.

On the other hand there exists exactly one singular point in the interior of HC , which comes from the
intersection of the manifold HC and the segment R defined in the Proposition 1(a-1). These singular points
have a zero eigenvalue and a pair of purely imaginary eigenvalues. We conclude that every orbit in the interior
of HC , but the singular points, is a periodic orbit. Since this result is independent on the level surface we are
working at, it follows that every orbit in the interior of the region T , but the singular points, is a periodic orbit.
The behaviour of the flow at the boundary of T when k ∈ PS ∩ S can be obtained from Lemma 1(b). This
completes the proof of Theorem 1(a).

To prove Theorem 1(b) we consider that k 6∈ PS ∩ S and k 6= 0. We distinguish two situations: first we
suppose that k ∈ S \ PS. In such case k belongs to the manifold S. From Proposition 3 it follows that at least

one of the functions H, V, H̃ or Ṽ is a first integral. Without loss of generality we can assume that H is a first
integral. Hence any level surface HC is invariant by the flow and we can consider the restriction of the flow to
HC . From Proposition 1 there are not singular points in the interior of HC . Applying the Poincaré–Bendixson
Theorem to the flow in the level surface HC , we conclude that the flow goes from the boundary of HC to the
boundary of HC . Since these arguments are independent on the level surface, it follows that the flow goes from
the boundary of T to the boundary of T .

Suppose now that k 6∈ S and k 6= 0. Since one of the coordinates of k is different from zero, the level surfaces
of at least one of the functions H, V, H̃ and Ṽ can be expressed as the graph of an explicit differentiable function.

For instance if k4 6= 0, then H̃Ck4 is the graph of the function z = Cx−
k3

k4 defined over the face Z. Each of these
level surfaces split the interior of T into two disjoint connected components. On the other hand since k 6∈ S
these level surfaces are not invariant by the flow, see Proposition 3(c). In fact the flow is transversal to them
and the direction of the flow through them depends on k ∈ S+ or k ∈ S−, see expression (9). Since as C tends

to 0 or to C∗ the level surfaces H̃Ck4 tend to the boundary of T , we conclude that the flow in the interior of
T goes from one part of the boundary to another part of the boundary. That is the limit sets of every orbit in
the interior of T are contained in ∂T . From this we conclude the Theorem 1(b).

Note that in the previous proof we have only used that the flow crosses through the level surfaces of some of
the functions H, V, H̃ or Ṽ , always in the same direction. This argumentation results enough to conclude that
the limit sets of the orbits in T are contained in the boundary. To prove Theorem 2 we need to be more precise
in the location of these limit sets. To reach this goal we will control the geometry of the level surfaces.

Figure 5: Representation when k ∈ PS+ ∩S+ of the positive invariant regions limited by the level surfaces HC

and H̃C ; the negative invariant regions limited by the level surfaces VC and ṼC ; the attractor set spx and the
repelor set syz of any given orbit in the interior of the region T .

spx

HC∗ = ppx

H̃C∗ = qpx

x

z

H̃C

HC
z

y

VC

ṼC

VC∗ = qyz ṼC∗ = pyz

Suppose that k ∈ PS+ ∩ S+. Since k 6∈ S the functions H and H̃ are not first integrals and each level

surface HC and H̃C splits the region T into two disjoint regions in such a way that the flow goes from one to
the other. In fact since k3k4 > 0 the intersection of H̃C with any plane {y = y0 : 0 < y0 < 1} is an arc of
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hyperbola in the (x, z)–plane, see Figure 4(a). Similarly, since k1k2 > 0 the intersection of HC with any plane

{y = y0 : 0 < y0 < 1} is an arc of hyperbola in the (x, z)–plane. The flow through HC and through H̃C has

the same direction as the vectors ∇H and ∇H̃ respectively, see expression (9). Since k1 > 0 the gradient ∇H
points to the region containing the point ppx, see the shadowed region in Figure 5. Moreover, since k4 > 0 the

gradient ∇H̃ points to the region containing the point qpx, see Figure 5. Therefore, in Figure 5 the flow moves
from the region containing the origin to the shadowed region. On the other hand points in Rpx \ spx are not
limit set of orbits in the interior of T , see Proposition 2. We conclude that the ω–limit set of anygiven orbit in
the interior of T is a singular point contained in the segment spx.

On the other hand, since k 6∈ S the functions V and Ṽ are not first integrals. Moreover any of the level
surfaces VC and ṼC splits the region T into two disjoint regions in such a way that the flow goes from one to
the other. The flow through these surfaces has opposite direction to that of the gradients ∇V and ∇Ṽ , see
expression (9). Since k2 > 0 the gradient ∇V points to the region containing the point qyz. Similarly, since

k1 > 0 the gradient ∇Ṽ points to the region containing the point pyz. Therefore the flow in the interior of
T cames from the shadowed region in the Figure 5 to the region containing the point (0, 0, 1). Since points in
Ryz \ syz are not limit set of orbits in the interior of T , see Proposition 2, we conclude that the α–limit set of
anygiven orbit in the interior of T is a singular point contained in the segment syz, see Figure 5.

As we have just proved when k ∈ PS+ ∩ S+ the ω–limit set and the α–limit set of anygiven orbit in the
interior of T is contained in the segments spx and syz, respectively. Similar arguments apply when k ∈ PS−∩S

−.
In both cases the behaviour of the flow at the boundary can be obtained from Lemma 1(c). This completes the
proof of Theorem 2(a).

Theorem 2(b) follows by noting that a change of the sign of the parameter k is equivalent to a change in
the sign of time in the differential system (2).
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