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Intfroduction

1.1 Motivation

Since light was quantized by Einstein when studying the photoelectric effect at the begin-
ning of the XXth century, the non classical nature of light, subject of Quantum Optics, has

been shown in many different experiments [Bachor & Ralph] and has been involved in the

most important fundamental tests of Quantum Physics [Zeilinger]. Moreover, technologies

based on quantum phenomena are beginning to enter domains having been dominated by
classical optics in two different scenarios. In the first one, a classical technology is pushed
until one reaches a point where the operation is limited by quantum noise effects, also
due to progressive device miniaturization. In the second scenario, quantum effects allow
for novel applications such as quantum communications and, most prominently quantum
cryptography. The basis for these innovations is the ability to control and manipulate
quantum states of light. This Master thesis is a theoretical work which participates of
both perspectives having as objectives the study of quantum fluctuations and fundamen-
tal quantum phenomena in optical devices.

Our interest is focused in a non linear optical device, an Optical Parametric Oscillator
(OPO), which offers the possibility of quantum phenomena generation and displays a rich
spatio-temporal dynamics. When Parametric Down Conversion takes place in this device,
the splitting of a beam of frequency w,, (pump) into two entangled beams of frequency w;
(signal) and w; (idler) occurs due to the quadratic non linearity of the medium. OPOs
have become a convenient source of tunable coherent light, especially in the mid-infrared
region covering the span of wavelengths from 2 pm to 10 wm, that is often unreachable

through other means [Brazhnyi].

Moreover, OPOs have been employed experimentally when testing quantum mechan-
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4 Chapter 1.

ics, since ‘unusual’ non classical correlations in the down converted beams were discov-

ered [Burnham & Weinberg] and have become the fundamental tool to achieve insight

into quantum optics. Besides, squeezed states (see section [[J) generated in OPOs are
important for technological applications, particularly in the detection of weak signals. A
relevant example is the gravitational wave detection with large scale interferometers whose
precision will be improved by using squeezed states [Godal.

Until the ’90s, temporal fluctuations of light beams emerging from non linear devices

were mostly investigated, neglecting any spatial effects in the transverse area of the light

beam. However, it was realized starting from the seminal paper of [Lugiato & Castelli]

that in some cases quantum correlations are present between portions of the beam. On the
other hand, it was studied under which conditions quantum properties of the whole beam
survive after detection of a part of it [Kolobov]. Following this research line on spatial
or multimode quantum optics, we include in our model the multimode description of the
transverse profile of a light beam emerging from an OPO. Interference between off-axis
down converted beams causes, for large Fresnel numbers, not only spatio-temporal insta-
bilities but also quantum correlations. In particular, in the last decade, several quantum
and classical phenomena have been studied in multimode OPOs.

Here we propose to investigate a prototype system, that is the Degenerate Optical Para-
metric Oscillator embedding a Photonic Crystal (PCOPO), in order to analyze if the

photonic crystal improves OPO performance. The use of photonic crystals in non linear

devices was first proposed by [Gomila & al. (03)] and two recent experiments !Terhalle
& all, [Marsal & all] have confirmed those theoretical predictions, as we will explain in
Chapter Bl

In the following we will introduce the main subjects of interest in this project, starting

from the devices we will consider, namely OPOs and photonic crystals. Later we will give
a brief overview of spontaneous pattern formation followed by an introduction about the

quantum phenomena we analyze in our study.

1.2 Physical Systems

1.2.1 Optical Parametric Oscillator (OPO)

An Optical Parametric Oscillator (OPO) is a cavity containing a quadratic crystal. The
non linear process taking place is the Parametric Down Conversion, described in the
following.

Parametric Down Conversion is a wave-mixing process in which the pump decays into
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two beams at lower frequencies, historically called signal and idler. Energy (given in terms
of the frequency F = fw) and momentum (given in terms of the wavenumber p'= hE) are
preserved, as it is expressed in the phase matching conditions:

(1.1) Wp = Ws + Wj; Ep = _‘s + k;

The special case we deal with is called Degenerate Parametric Down Conversion being
Ws = w; = w.

The Hamiltonian of this process expressed in terms of the creation operators dT,l;T, at

frequency w and w, respectively, and the corresponding annihilation operators a, 3, is

[Gerryl:
1.2 H = hwa'a + hw,bTb 4 ik @ (626" — al?b).
p

The second-order susceptibility X(2) characterizes the ‘quadratic’ medium, when, as usu-

ally, the response is given in terms of the polarization:
(1.3) pt) = xVE@W) +xPE®) : E(t) + XPE®) : E(t): E(t) + ...

We assume the simplest case, i.e. lossless and dispersionless media, for which the response
is instantaneous [Boyd]. x? is different from zero only in noncentrosymmetric crystals,
where there is not inversion symmetry, so the material must be anisotropic. The most
commonly used crystals are KDP (K D2 POy) and BBO (8 — BaB204). When the ma-
terial has not a preferred direction, for example a gas, X(Q) vanishes and the third-order
susceptibility is the important coefficient (as in Kerr media). In the case of low power
pump, only the linear polarization is taken into account.

Within the ‘parametric approximation’ the injected intense laser is assumed to remain
undepleted at relevant time scale. Such intense kind of light is well described by coherent
states (see section [[J) which, in the Schédinger picture, evolve in time as harmonic oscil-
lators. Then we can approximate the pump annihilation and creation operators l;(t) and
lA)T(t) by fe~“rt and B*e'“rt, respectively, and, within the Heisenberg picture, with oper-
ators time-evolution given by a(t) = a(0)e ™! the interaction part of the Hamiltonian

yields:

(1.4) Ay = i@ (5ra2e@r2)t _ ggi2e—ilwr—20)ty
Considering the degenerate relation between frequencies: w, = 2w we obtain:
(1.5) H; =iy (8*a® — pat?).

which is the simplified interaction Hamiltonian for the Degenerate Parametric Down Con-

version process we will consider in Chapter 21



6 Chapter 1.
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Figure 1.1. Optical Parametric Oscillator scheme. An incoming coherent laser beam E is injected
into the cavity containing a quadratic crystal (X(Q)). Three mirrors have total reflectivity R while
input and output beams pass through the mirror with non null transmittivy T.

As we mentioned, we consider the process of Parametric Down Conversion enhanced by
an optical cavity that is a Optical Parametric Oscillator. Resonant cavities act as
optical amplifiers that highly improves the efficiency of wave-mixing processes as Para-
metric Down Conversion when the natural frequency is near to wg, w; or both. For pump
intensity high enough to make second-order polarization important and to balance the
losses experienced at each round-trip, the non linear system reaches its threshold for down
conversion. Losses are due to outcoupling by one of the resonator mirrors (with 7' << 1),
which provides the desired output wave. The scheme of an Optical Parametric Oscillator
(OPO) is given in FigllTl

OPOs share many features with lasers, yet there exists a important difference between
them. Unlike lasers, which rely on population inversion in a gain material in the required
wavelength range, OPOs exploit optical frequency conversion in a non linear crystal with a
non resonant interaction (no population inversion, passive optical devices). Over the years,
OPOs have become the key element for the production of squeezed states and the real-
ization of fundamental quantum optics experiments with new records of squeezing almost

achieving the maximum possible value [Vahlbruch & al]. From the technological point of

view, OPOs are still subject of investigation in relation to their stability under tempera-
ture changes [C as& Pasis J or to their performance without mirrors [Khurgin].

Process of Parametric Down Conversion can be phase-matched in two different ways. This

gives rise to parametric oscillators of type I or type II depending on the polarization of the
down converted fields, as represented in Fig [L2A This is a consequence of birefringence,

i.e. the dependence on the direction of polarization of the index of refraction. Materials
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Figure 1.2. a) Type I Parametric Down Conversion. Photons from the pump beam are converted
into signal and idler photons that emerge from the non linear crystal. The down converted fields have
identical polarizations but orthogonal to the pump. In our case, as we deal with a type I degenerated
OPO, both signal and idler are at the same frequency. b) Type II Parametric Down Conversion.
The signal and the idler photons have orthogonal polarizations. Light in the intersections of the
cones for the extraordinary polarized beam and the ordinary one is in polarization entangled state.
(From ftp://ftp.cordis.europa.eu/pub/ist/docs/fet /qip2-eu-08.pdf).

displaying birefringence are phase-matchable [Boyd]. Then, two beams emerge linearly
polarized in different directions, the ordinary one, seeing a refractive index n = n, and
the extraordinary one, seeing a refractive index n = n./3(0), where 6 is the angle of inci-
dence [Hechf]. As we choose to work in a positive (i.e. ne > n,) and type I crystal (i.e. the
lower-frequency waves have the same polarization), the pump will be ordinary polarized
and signal and idler will be extraordinary polarized [Boyd].

1.2.2 Photonic Crystals

Photonic crystals (PC) consist of regularly alternate regions of high and low dielectric
constant € or refractive index (n ~ /e for most optical porpoises). Due to their periodicity,
photonic crystals display peculiar propagation properties.

Let us consider a periodic modulation of the refractive index with lattice constant a
(Fig. [C4h), and a propagating plane wave of wavelength A. For A of the same order
of a, the multiple reflections from the lattice causes light to interfere. Indeed, for A =
2a the multiple reflections from the scattering center cancel out, preventing light from
propagating into the medium. The continuous translational symmetry characteristic of a
uniform media is broken and becomes discrete. As usually, a symmetry breaking destroys

a degeneracy. In fact, the mode:

2 T

1. — 2, =
( 6) k )\‘)\—Qa a
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in a uniform medium would have frequency equal w = k¢/n, but in a photonic crystal of
lattice constant a it splits in two frequencies w(n1) and w(ng), one having its maximum in
the n; region and its nodes in the ny region and other having its maximum in the n; region

and its nodes in the ny region. In terms of the energy it can be proved [Joannopoulos &

L | |
al.] that the low-frequency modes concentrate their energy in the high-e regions, and the
high-frequency modes have a larger fraction of their energy (although not necessarily a
majority) in the low-e regions. This is the physical reason of the discontinuity at k = 7/a

in the dispersion diagram, called band gap (Fig. [[db).

band gap

Figure 1.3. Periodically modulated medium,
with periodicity a and two different refractive in-
dex n1 and n2 where n(x) = n(z +a). Two waves 0 n/a k
propagating within the medium with A = 2a and
a relative phase equals m see the two refraction
index separately, i.e. the upper one having its
nodes in the ng zone has always a frequency equals
wi = kc/ni when in the same region the lower
wave has its maximum thus always propagates at

w2 = ke/n2. For wavelengths submultiples, fulfill- e . : .
ing A = 2a/n (n = {2,4,..}) there is also band constant thus w = <% gives a straight line and for
c periodically modulated media angular frequency

becomes discontinuous at A\ = 2a. Therefore, no
wave propagate at those frequencies. The larger
the difference between the refractive indexes the
wider the band gap.

Figure 1.4. Dispersion diagram for a uniform
medium where an arbitrary periodicity with a lat-
tice constant has been chosen (in grey) and for a
periodically modulated medium with lattice con-
stant a (in red) for the first irreducible Brillouin
zone. For uniform media, the refraction index is a

gap. However, its width decreases as n increases
because the relative difference between nodes and
maxim values becomes neglectable. For A = 2an
(n ={2,4,..}) instead, there is not band gap be-
cause the photonic crystal can be considered as
homogeneous.

Therefore, photonic crystals prevent the propagation of a range of frequencies, as semi-
conductors prevent electrons from passing through. Band gaps always appear in a one-
dimensional photonic crystal for any refractive index contrast. The larger the contrast,
the larger the gaps.

It is possible to create energy levels in the photonic band gap by defecting the material.
This is the photonic equivalent to breaking the perfect periodicity of semiconductor lat-
tice. This has given rise distint optical phenomena like omni-directional high-reflectivity

and low-loss-waveguiding, amongst others, related to the control of the flow of light. This
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topic has increasing interest owing to the current explosion in optics communication and
information technology.

The construction of a three-dimensional photonic crystal with a complete photonic bandgap
in the optical wavelength region has been a challenge. In this case the periodicity of the
photonic crystal structure has to be of the same length-scale as half the wavelength of
the electromagnetic waves, meaning from 200 nm (blue) to 350 nm (red). Therefore the
fabrication of photonic crystals is cumbersome and complex, although there are various
important achievements [Sunl, [Blanco & all, [Noda & al], mostly using semiconductors

as GaAs, the best material for integration into optoelectronic devices |Yablonovitch (00)].

In our work we focus on the effect of photonic crystals to control light emission as it will
be shown in Chapters Bl and B, respectively, rather than in the characterization of specific
technical features of photonic crystals. Our theoretical model includes a one-dimension

photonic crystal as a medium with modulated refractive index:
(1.7) n = nsin(kpex)

being = orthogonal to the propagation axes. In other words, we will modulate the trans-
verse profile of the light beam.

Photonic crystals had been studied since long time ago. Lord Rayleigh in the 19th century
showed that such systems have a one-dimensional photonic band-gap, known as a stop-
band, a spectral range of large reflectivity when driving a beam in a certain angle to a
surface (Bragg mirror). One hundred years later the name ‘photonic crystal’ appeared for

first time in [Yablonovitch (87)], [Lohn] simultaneously. The main motivation of the first

work was to engineer the photonic density of states, in order to control the spontaneous
emission of materials embedded within the photonic crystal, while the idea contained in

the second one was to use photonic crystals to affect the localization and control of light.
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1.3 Phenomena

The question we address in this Master thesis is wether the implementation of an intracav-
ity photonic crystal affects the non linear and quantum phenomena occurring in OPOs.
We will then introduce Pattern Formation in the context of optics, as a non linear phe-
nomena arising in complex systems. Then we will define the quantum phenomena we are

interested, which are the Spatial Antibunching and the Quadrature Squeezing.

1.3.1 Pattern Formation

From the stripes of a zebra to a desert dune, regular patterns arise everywhere in nature.
Of course, there is an element of subjectivity in perceiving patterns. A pattern might be
regarded as a regularly repeating array of identical units. For a more open definition one
can include arrays of units that are similar but not necessary identical, and which can
repeat but not necessarily regularly or with a well-defined symmetry [Balll.

The appearance and evolution of patterns have been a focus of research activity across
several disciplines. In fact, in spite of the variety of systems in which patterns appear,
there is a fundamental universal character, allowing for a unified approach to the problem.
Characteristics such as the number of degrees of freedom, symmetries, the type of non lin-
earity and of coupling terms (gradients, diffusion, diffraction...) overcome the importance
of the specificity of the optical, chemical, acoustical or fluid system.

Spontaneous pattern formation phenomena are characterized by the existence of instabil-

ities in certain quantity arising when the system is brought sufficiently away from thermal

equilibrium by increasing a control parameter |[Cross & Hohenbergl. In other words, the

phenomenon does have a threshold.

Pattern formation in optics was predicted in 1987 by [Lugiato & Lefever]. Since then,

many theoretical studies and experimental realizations (see Fig. [LH) have been reported
in this area. We will focus in the transverse profile multimode interference. Optical pattern
formation is found pumping non linear devices with large Fresnel number and allowing for
losses. In our system, the spatial communication between different parts of the beam in
order to be coupled is achieved by diffraction and there is an additional condition over the
signal detuning (it must be negative), derived in Chapter Bl

In Fig. [ we show with a numerical simulation the optical pattern created by an
OPO above threshold in the transverse profile of the outgoing beam, in comparison to
what happens below threshold, Fig. [C8l The spatial modes composing the pattern can

be visualized in the far field which is the Fourier transform of the near field. Precisely, the
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Figure 1.5. The first four panels show examples of two dimensional optical patterns in a laser
beam obtained in an experiment with alkali metal vapors as non linear media (XS), and a feeback
mirror. It is worth to remark that it is not a structure formed by the molecules of the gas, but
the transverse profile of the outgoing light. Picture (b) corresponds to the pattern showed in (a) as
observed in the far field, which is obtained with a lens and corresponds to the Fourier transform of
the near field. (From http://www.photonics.phys.strath.ac.uk/NonlinearPhotonics/na.html)

0.6 " b)

9.9002x107" 0.4
9.9001x107" 0.2
9.9000x107" -0.0
9.8999x107" | —-0.2
9.8998x107" -0.4

-0.6 ‘

0.0 17.8 35.5 0.0 17.8 35.5
X X

Figure 1.6. Real part of pump (a) and signal (b) fields generated by numerical simulation of a
Type I Degenerate Optical Parametric Oscillator without photonic crystal, 1% below threshold, in
agreement with the theoretically predicted value given in Eq. [ZI) for the steady state in the case
of pump detuning equal zero (see Chapter Bl). In black it is plotted the noisy initial condition and in
red, the transverse profile of the fields after temporal transients. The noise amplitude for the pump
is 0.001 while the one for the signal is 0.2. As the pump is below threshold, the output at frequency
2w remains in the value provided by the injected laser beam (a) while the signal at frequency w field
just switches off (b). Imaginary parts of both fields also vanish.
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1.010
1.005
1.000
0.0 17.8 35.5 0.0 17.8 35.5
X X
e) I‘
Figure 1.7. Real part of pump (a) and signal (b) fields generated by numerical simulation of a

Type I Degenerate Optical Parametric Oscillator Wlthout photonic crystal 1% above its threshold.
In black the fields are plotted at ¢ = 0 (noisy initial condition with amplitude for the pump equal
0.001 and for the signal 0.2) and in red they are plotted after transient evolution. In pictures c) and
d) the horizontal axes is x (real space or near field) and the vertical one is time. After a transient
state, a stripe pattern is formed in both fields. In the pump near field (¢) we observe a pattern with
twice the wavelength of the pattern in the signal (d) owing to the phase matching conditions for
the Parametric Down Conversion, Eq. (). Pictures e) and f) show the far field, i.e. the Fourier
transform of the near field given in ¢) and d), here in logarithm scale. Thus, the horizontal axes is
k. and the vertical one is time. Far fields for a fixed time show a spot for the homogeneous pump
(k = 0) and two spots at k = +2k., while there are two spots for the signal at k = +k.. The
simulations are performed with periodical boundary conditions. Imaginary parts of both fields at
final ¢ are zero.
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pattern is given by a linear combination of plane waves exp(ik,x), where x is the position
for one transverse dimension considered here and k, is the wave vector. For our purposes
it will be enough to consider the case of one transverse dimension, as it can be obtained
by imposing a waveguide configuration. This leads to the formation of only stripe pat-

terns (in the near field). In the far field, in first approximation valid near threshold, this

stripe pattern corresponds to a 3-spot structure [Lugiatol,|Lugiato & al. (95)], in which

the central spot arises from the axial pump beams, while the other two spots arise from
signal beams with transverse non-vanishing wavevectors, +k and —k, generated by the
spatial instability and propagating symmetrically with respect to the axis of the system
(Fig. ). The wave-number k is linearly selected at threshold (see Chapter Bl), but the

shape of the spatial structure is determined by a non linear selection process [Cross &

Hohenberg]. In two dimensions this can give rise to hexagons |Grynberg & all, [Grynberg
1

& Lugiato], squares, quasipatterns, ...

The pattern our devices creates in the transverse profile of the signal outgoing beam are
stripes with a critical wave number k.. In order to control such spatial instabilities we fo-
cus our study in the case where the photonic crystal modulation wavenumber, introduced
in Eq. [C7 and the critical one are commensurable. The maximun effect of the photonic

crystal in terms of band gap creation occurs for k transverse momentum such that:
(1.8) kpe = 2k.

With this relation in mind we will study the role of a photonic crystal on the instabilities
in a OPO in Chapter

1.3.2 Quantum Phenomena

Quantum phenomena we are interested in are spatial antibunching and squeezing, and in
this section we will introduce them. We have to emphasize the fact that all the states of
light share quantum nature due to the discreteness of the photons. In practice however
non classical properties of light are difficult to observe and only with the development of

lasers, the study of quantum optics started, half a century ago.

First order coherence

Photon antibunching is significant for the quantum theory of light, as it cannot occur
neither in the classical nor in the semiclassical theory and its treatment requires the
quantum photocount theory. We first start with the classical detection of optical fields.

Considering a scalar classical electromagnetic field in a detector, as the superposition of two
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waves following the path s; and sy respectively, thus the path difference is As = |7} — 73|
(as in the Young’s double split). The averaged intensity of light at the detector contains
the crossing term 2Re(E*(7,t1)E(7,t2)) related to the interference, one of the most
important features of light considered as a wave. Averages are considered in an ensemble
and in most of the cases this is equivalent to perform temporal averages. The first-order
normalized mutual coherence function is defined as:
(E* (7, t1)E(7, t2))

VAETR, )P E(, t2)2)

Depending on the values of this function we have different degrees of first order coherence

(1.9) gézl(iss(ﬂ,tl;@,h) =

as summarized below:

]gdassl 1 — complete coherence

(1.10) 7, 7o, t1,ta such that | 0 < \g < 1 — partial coherence

class ‘

|9da58| = 0 — complete incoherence.

Physically, when a source has a bandwidth of Aw, interference will occur if As < x= and
the quantity As.o, = x5 is called the coherence length with the corresponding coherence
time A7, = Ascon/c = 1/Aw. In other words, for [t; — ta] < A7, gﬁlgss > 0. From
the conditions exposed in Eq. (L) one can analyze both the spatial and the temporal
coherence of a given light beam by calculating the corresponding, spatial or temporal,
first-order coherence function. For example, when we are interested in a monochromatic
light field propagating in the z direction at position z and times ¢ ant t+7, we calculate the

autocorrelation function (E*(z,t)E(z,t+7) and we obtain g( ) (z,2,t, t+7) = g(l) (r)=

class class
—iwT

e . Therefore | gﬁllcz +s(T)] = 1 and, as we expect, we have complete temporal coherence
for any 7.

The quantum analogous of the first-order degree of coherence criterion, given in Eq. (CJ),
is obtained from the expectation value of a product of field operators. In the following
we introduce its physical meaning within the theory of quantum photodetection. The
intensity of a beam is measured by the absorption of the photons in a medium, whose
ionization response is electrically detected. An ideal detector consists of a single atom
of dimension small compared to the wavelength of the light, i.e. it holds the dipolar
approximation (|E -7l << 1). The single-atom detector couples to the scalar quantized
field, in the direction given for the unitary vector i} [London:

(1 11)

_‘ t O( ZZ v/ hw uﬂ ake' 7 wit) _ ake—i(E'F—wkt)) ~ ZZ /hwkﬁl;(&kei(“’“t)—dLe_i(w’ft))
E

through the dipole interaction:

(1.12) Hy=—dE
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where d is the dipole moment operator. Absorption of a photon in the detector (named
‘ab’) is proportional to the annihilation operator, termed E(a®) while the emission (‘em’)
corresponds to the creation operator part, termed E(em), where Eem) = (E(ab))T, SO we

rewrite:
(1.13) E(t) = B(t)@ + B(r)eem™

The probability that the field undergoes a transition form an initial state |i) to a final
state |f) is proportional to |(f|E(@)|i)|? for a pure state. We are interested in the final
state of the detector thus we sum over all possible final states (reminding Fermi’s Golden

Rule):

(1.14) DOIFIE P = GEC|f)(FIE]i) = (6| B E i)
! !

considering {|f)} as a complete set. For a mixed state described by a density operator of
the form p = ), P;|i)(i|, this expectation value is replaced by the ensemble average, given

by the trace over initial states, named:
(115) G(l) — TT(ﬁEA’(em)E(ab)).

related to the number operator expection value. As in general, we are analyzing the

superposition of the fields with different path lengths. Then:
(1.16) GO(Fy, ty; 7, to) = Tr(pECE™ (7, 1) E@) (7, £5)).

The intensity of the light in the photo-detector depends on G (7, t1: 7, t1) and G (7, to; 7o, to)
and on a crossing term G(l)(f’l, t1;79,t2) which is a measure of interference. The normal-
ized first-order quantum coherence function analogous to EqILH is:

Q) (7 e 7
(1.17) 9(1)(771,751;7?2,@) - > ¢ _(,Tl,tl’m’ti) =
VGO (7, t15 71, t1) GO (7, to; 7, L)

discerning the three spatio-temporal intervals of coherence as in the classical case, EqILT0O

Second Order Coherence and Antibunching

First order coherence function is appropriated to determine the degree to which a light
source is monochromatic because is related to interference due to phase difference but
it says nothing about the statistical properties of the light. First-order coherence experi-
ments (as Young’s double slit) are unable to distinguish between light beams with identical
spectral distributions but in quite different states. Another kind of interferometry exper-

iment is necessary in order to characterize the quantum states of light. The measured
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quantities are now intensities instead of fields and the detector measures the number of

coincidences in the arrival of photons coming from the same source [Hanbury Brown &
|

Twiss]. Let us consider a detector registering up a count at time ¢ and also at ¢ + 7. If the

delay time 7 is smaller that the coherence time 7, = 1/Aw, information on the statistics
of the splitted light can be extracted.
Starting with the classical approach, the rate coincident counts should be proportional to
the two times intensity correlation, (I(t)I(t + 7)). If the average of the intensity at each
detector is (I(t)), then the probability of obtaining a coincidence count with time delay 7
is named the classical second-order coherence function:

(I)I(t+T)
T@ONIET )

We have seen that the magnitude of the degree of first order coherence takes values in

(1.18) Dt t+ 1) =

Iclass

the range 0 to 1. The allowed range of values of the degree of second order coherence is
controlled by Cauchy’s inequality, which applies to any pair of real numbers. Thus two

measurements of the intensity at times t; and t3 must satisfy:
(1.19) 21 (1)1 (ta) < I(t1)? + I(t2)?.

If we now consider the average ( ) taken over N measurements, by applying this inequality

to the cross terms, it is easy to show that:

(1.20) (I(tl) +I(f2)N+ +1T(75N)>2 ) +12(t2j)v+ ot Pty)
Thus:
(1.21) <I(t)>2 < <12(t)>

and the degree of second order coherence for zero time delay form Eq. ([CI) satisfies:
(1.22) 1< ¢@(0).

It is not possible to establish any upper limit, and the complete range of allowed values

is:

(1.23) 1< ¢?(0) < .

Our definition [CTY assumes a stationary light beam (i.e. only dependent on time delay 7)
but they also apply to a series of measurements on nonstationary light. For the extreme
example of a single optical pulse, it is clear that measurements at a fixed observation

point must produce quite different results that depends on the locations of the pulse at
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Figure 1.8. First line: photons arrive spaced in time for the quantum effect of temporal anti-
bunching (¢ () > ¢‘®(0)), as in the single-mode field. Second line: photons arrive randomly in
time independent complete coherence (9(2)(7') = g(2)(0) = 1), as in quantum coherent states. Third
line: photons arrive bunched in the classical effect of temporal bunching (¢ (7) < ¢‘?(0)), as ther-
mal (or chaotic) states of light. The statistical properties will be analyzed in the following section.
The coherence time of the emitted light, inversely proportional to the spectral width of the source,
Te = 1/Aw, is also represented. (Courtesy of http : //en.wikipedia.org/wiki/Degree_of_coherence)

the times of measurements. There is not equivalence between time and statistical averaging
in this case. However, the N measurements of the intensity envisaged in Eq. ([CZO) can
in principle be made at the same time but on members of an ensemble of N realizations
of the same optical pulse. The inequalities in Eqs. ([CZF) and ([CZ3) continue to apply
with this interpretation of the averaging, and they can be taken as general properties of
all kinds of classical light.

The above proof cannot be extended to nonzero time delays, and the only restriction on
the degree of second order coherence then results from the essentially positive nature of

the intensity, which gives
(1.24) 0<g?P(r) <o T#0.

There is, however, another important property that follows from the inequality
(1.25)
(Tt It +T) F e+ TN Tt +7)2 < ()2 + TN Tt +7)2 + o+ Ity + 7))

which is also established with the use of Cauchy’s inequality Eq. (CId). The two sum-
mations on the right are equal for sufficiently long and numerous series of measurements,

and the squared root of Eq. (LZH) then produces the result:

(1.26) IOt +7)) < (I2(1) — g7, (1) < ¢P(0).

class

If light incident on one of the detectors is independent of the light incident on the other,
there should be a uniform coincidence rate independent of ¢. For a source of thermal
light (also known as chaotic light which follows the Planck’s statistic distribution for the
blackbody radiation), at zero time delay it is found twice the detection rate compared

with the rate at long time delays. This means that

(1.27) 9?(0) ~ 29 (c0)
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i.e, photons arrive in pairs at zero time delay but independently at long time delays (when
generally g(?) (00) 1 as shown in the third line in Fig. [[X). That photons arrive in "bunched’
pairs is known as photon bunching or the Hanbury Brown and Twiss effect [Hanbury Brown
& Twiss]l. I

When focusing in the quantum derivation of the second-coherence function it will become

clear that there are instances where the predictions from quantum theory do not have
classical counterpart. Following the steps given for the first-order quantum coherence, the

transition probability for the absorption of two photons is proportional to
(1.28) (IO (Fy, ta) BCP (71, 11) 1)

After summation over all final states and generalizing to cases of nonpure field, the en-

semble average of I(7,t1)1(7,t2) is:
(1.29) GO (7, b1 7, ta) = Tr(pEC™ (7, 1) EC™) (7, t9) B (7, t9) B0 (7 11))

and the second-order quantum coherence function is expressed as:

(2) _ G(2)(F17t17f27t2;F27t277?17t1)
GO (7, t1, 71, t1) G (T, by, 7, t)

(1.30) g

which is the joint probability of detecting one photon at 7 at time #; and a second at 75
at time ¢5. When ¢ = 1 the probability of a delayed or shifted in space coincidence is
independent of either time or space respectively, so as we said before, the detection in one
screen is independent of the detection in the other screen. A quantum field is second-order
coherent if both, first and second order coherence function equals unity. For the case of
time coherence we fix position (r; = ry) and for stationary states ¢@ only depends on 7.
Then:

(1.31) fss (T) < G4iass (0)

Yelass class

characterizes photon bunching, a property exhibited by thermal light, as we explained
before. Eq. (L3) means that correlations between separated events are smaller than
correlations of an event with itself. Then, correlations of separated events decay with time
separation as generally found within classical optics. The left panel in Fig. [L3 shows ex-
perimental results when measuring photon bunching at ultrashort timescale by two-photon
absorption in semiconductors [Boifier & al]. Second-order coherence for blackbody radi-
ation (thermal or chaotic light with ¢(®) (1) < ¢(®(0)) is compared with the one measured
for a laser beam (coherent light with ¢ () = 1).

Nevertheless, some quantum states of light violate the inequality of Eq. [L3Tl given rise to
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Figure 1.9. i) Recent experimental results of temporal photon bunching for the blackbody radiation
showing ¢ (1) < ggiss (0). The horizontal axes is the delay time 7. Also the condition ¢/ (1) = 1

class

is obtained in the case of coherent laser beam [Boificr & all. ii) Experimental results for the
measure of the quantum second-order coherence function, for two different pump intensities a)
and c) from one-atom laser in the regime of strong coupling, as an example of temporal photon
antibunching [NcKeever & alll. Panels b) and ¢) are zooms. This picture shows the photon temporal
antibunching effect where the correlation at different times, g(2)(7')7 is higher than the correlation
between instantaneous photo-detections, g(2)(0). This phenomenon, meaningless for classical fields,
can only be described from the quantum theory of light. Complete second-order coherence g(2)(7') =
1 for every time is also plotted.

the photon antibunching effect, i.e. the photons tend to arrive evenly spaced in time (first

line in Fig. [[F), or in space if we are observing spatial antibunching:
(1.32) 9@ (7) > ¢?(0).

Fig. L3 shows the experimental realization of a one-atom laser in the regime of strong
coupling as an example of temporal photon antibunching [McKeever & all. Another
example, considered the pioneer work [Kimble & all, demonstrated how the resonance

fluorescence light was antibunched, where the atomic recovery between one emission and
the next introduces time delays between successive photons. Other examples are provided
by light-emitting devices driven by electron beams or currents, whose mutually repulsive
charges acquire characteristic spatial separation that are partly transferred to the emitted
photons [Teich & Salehl.

We are interested in the spatial quantum coherence in the far field of an optical beam
(obtained by passing the beam through a lens at the appropriate distance). This is equiv-

alent to look at the two point spatial coherence in Fourier space. Spatial antibunching was

predicted by [Le Berre & al.(79)] and experimentally proved in [Nogueira & al]. As our

study focus in the spatial transverse profile we will be interesting in the spatial quantum

coherence:

(1.33) 0D (e, —k) = <@T(’f)?TT(—/€ a(—k)a(k))
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as compared to ¢g@(k,—k) = ¢®(0). It is important to sign that the product of the
operators is normally ordered (i.e. with the annihilation operators standing to the right
of the creation operators, for example, the number operator N =alais already normally
ordered, meaning in common notation, N=N :). Then, we can rewrite:

(t N(k)N(=F) :)

@ (. k) —
(1.34) 9D (k, —k) N

which is one of the main quantities we will deal in our multimode treatment of the signal
field generated by the OPO (see section ETl), and the spatial antibunching criterion will
be:

A A

(1.35) (: N(k)N(=k) :) > (N(k))2.

Coherent states

Before introducing the squeezed states, we present a set of states, the coherent ones, which
give rise to a sensible classical limit, in fact, they set the boundary between classical and
quantum states.

We consider for simplicity the case of a single-mode electromagnetic field propagating in

the z direction and linearly polarized along the z axes:

[ 2w? )
(1.36) E.(z,t) = V—G()Q(t) sin(kz)
€ w?
(1.37) By(z,1) = & 0,/2V—60q'(t) cos(kz)

where V is the effective volume of the quantization cavity, €y the vacuum dielectric constant

and ¢(t) will act as a canonical position, having the dimensions of length. The energy of
this single-mode equals:

1 1 1
(1.38) H=3 /dV <60E§(z,t) + %Bg(z,t)> — 5@2 + wi¢?)

where as usual, p is the canonical linear momentum of a ‘particle’ of unit mass. The
quantum analogous is the Hamiltonian for the harmonic oscillator. It is obtained by
replacing ¢ and p with their corresponding quantum operators, satisfying the canonical

conmutation relation:

(1.39) [q,p] = ihl
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being I the identity operator. In the following, we will take the single-mode case, whose
quantum version is obtained substituting ¢ and p in Eq. ([L30) for the analogous quantum
operators in the Heisenberg picture. When we write ¢ and p as functions of the quantum

conjugated creation a! and annihilation @ operators:

(1.40) q(t) = %(d(t) +a(t)")
(1.41) p(t) = %(d(t) —a(1)")

where D = v/2hw and the time dependence of the creation and annihilation operators is
given by:

(1.42) — = = —iwa

(1.43) Ey(z,t) = \/;ZW(&(t) +af(t)) sin(kz)
(1.44) By(z,t) = % 60?/“’3 (a(t) — a' (t)) cos(kz).

We can express the Hamiltonian of the electromagnetic field by replacing Eqs. ([CZOMTZTI)

in Eq. ([3)) as:
~ A~ 1
(1.45) H:(N+§)ﬁw

which is the well known Hamiltonian of the quantum harmonic oscillator, in terms of the
number operator N = afa introduced in the previous section. The eigenstates {|n)}, such

that:
(1.46) N|n) = n|n)

are the number states and they have a well-defined energy as [I:I N | = 0. These states do

not have a well-defined electric field since:

(1.47) (n|Ey(z,t)|n) = \/iv sin(wt — kz)((nlan) + (nla’|n)) =0 Vn.

Still the squared field, related to the energy density, has an expectation value over a
number state different from zero:
(1.48)

2

. D 2 1
(n|E2(z,t)|n) = sin?(wt — k2)((n]a™? +a% +2ata+ 1n) = e sin?(wt — kz2)(n+ <).
2¢V eV 2

Therefore, it is worth to stress that while the mean of the electric field is zero for every

energy state, its intensity, proportional to |E|?, is different form zero even for the vacuum
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state.

Let us define the variance of a given quantity C’, time or ensemble averaged, as:
(1.49) (AC)?) = (C?) — (C)?

and the standard deviation, as usually, AC = 1/((AC)2). Tt is a general result that the

fluctuations of the measured quantity:
(1.50) 3C=C—-(C)

are related to the variance by:

(1.51) (AC)?) = ((6C)%).
For n = 0 we obtain the so-called vacuum fluctuations of the electric field:
. hw
(1.52) (A’E,) = — sin®(wt — kz)
eV

It is frequently suggested [Sakural] that the classical limit of the quantified electromag-
netic field is the limit in which the number of photons becomes very large such that the
number operator N becomes a continuous variable. However, there are macroscopic quan-
tum states where the intensities are continuous variables. Therefore, this cannot be the
whole story, since the mean given in Eq. () is (n|E|n) = 0, no matter how large the
value of n. Moreover, at a fixed point in space a classical field oscillates sinusoidally in
time, but clearly it does not happen for the expectation value of the field operator for a
number state, always null.

The set of states satisfying such correspondence between classical and quantum optics, in-
deed, are the coherent states {|«)}. They must be eigenstates of the annihilation operator,

ie.:

(1.53) ala)y = ofa)

in order to not vanish when calculating expectations values of quantities as the electric
field are of the form (a|(a+a')|a). The number states are a complet set so we can expand
the coherent states as:

(1.54) o) = elol’/2 EO: ﬁm

Coherent states are the classical limit of quantum states in several senses:

e the expectation value of the electric field has the form of the classical expression:

(| Ey(z,t)]a) = \/267((04&@) + (alat|a)) sin(wt — kz — ) =

D D
M sin(wt — kz — 0) = 2]|a|—
QEOV(Q + o) sin(w z ) || NoTNG

(1.55) = sin(wt — kz — 0)

;
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where we wrote a = |ale®.

e the fluctuations in the electric field are the same as for the vacuum. It means that
coherent states only contain the noise of the vacuum or shot noise. In order to obtain
the fluctuations we calculate the variance of the Ex(z, t) in a coherent state |«), as

defined in Eq. (CZ9). The expectation value of the squared field reads:

(1.56)
9 hw .2 ATQ ~2 ATA hw P02 )2
(o] BZ(2,t)|a) = — sin®(wt—kz)((a|a" +a"+2a"a+1|a) = — sin®(wt—kz)((a+a™)*+1).
eV eV
thus the mean of the squared fluctuations is:
fr 2 2 hw
(1.57) ((0E;)7) = ((AE,)") = — sin“(wt — k2)

eV

which coincides with the vacuum fluctuations, Eq. ([C52). They vanish for 7 — 0 and
they do not depend on time, meaning the wave packet of a coherent state bounces

back and forth without spreading in shape, as a classical oscillator does.

e the fluctuations in the fractional uncertainty for the photon number decrease with
the increasing average photon number:
AN 1
(1.58) - =
lNler\ Jtal N e

e the probability distribution of photons in a coherent state is a Poissonian distribution

[SWalls K Milbuiral:

(1.59) P(n) = |{njayf? = 127

n!

The mean number of photons and the variance coincides:
(1.60) (a|Nla) = (AN)?) = af

which is a characteristic of a Poissonian process. In Fig. [I0h the probability
distribution given in Eq. (LCZd) are plotted for three different values of the mean.
Then, the states become well localized in phase when increasing average photon
number, because for large mean number of photons the Poissonian distribution in

Eq. (CX3) may be approximate to a Gaussian becoming narrower when increasing

that mean .
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Figure 1.10. a) Representation of the Poissonian probability distribution given in Eq. ([LCXJ):

P(n) = |a|2”e_‘°“2/n! (valid only for integer numbers) for three different mean values (|a|N|a) =
|o|?. In each case, the mean coincides with the value of the variance (|aN|a) = ((AN)?), thus twice,
the squared root of the mean gives the 'width’ of the bell. b) Pictorial representation (valid only
for integer numbers) of Poissonian (dashed line), super-Poissonian (solid line) and sub-Poissonian
distributions (dot-dashed line). As we said, for states exhibiting Poissonian distribution the number
operator variance equals the mean, as in coherent states, and its fluctuations take the minimum
values, i.e. equals to those in vacuum. In the super-Poissonian case, the variance exceeds the
mean. By contrast, in the sub-Poissonian statistic, the variance is smaller than the mean, therefore
they fulfill the condition to be quantum states, as may occur to antibunched states (studied in the
previous section) and to squeezed states, described in the next section.

Sub-Poissonian states and Spatial Antibunching

Physically, Poisson distribution describes the number of photoncounts in a series of ex-
periments that observe a light beam with the same mean intensity (meaning the average
of the intensity over a cycle of the oscillation at a given frequency, termed (I)cycie) in the
case of time independent (I)cyce or when the integration time is much longer that the
characteristic time scale of the intensity fluctuations, ..

For thermal or chaotic states the fluctuations of N are larger than in coherent light (shot
noise). An example is shown in dashed line in Fig. [[T0b. Light whose photon-number
variance exceeds (a!N |a), as in thermal or chaotic light, is said to exhibit super-Poissonian
fluctuations, as the solid line in Fig. [LT0b shows. Remembering the former section, it
is easy to show that quantum coherent states are second-order coherent. Light
whose photon-number variance falls below the value (aN|a) is sub-Poissonian.

If normal ordered variance are considered, the sub-Poissonian condition:
(1.61) ((AN)?) < (N)
becomes:

(1.62) (: (AN):) <0
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that is a negative variance. This feature defines a new class of light state with non classical

behavior, called sub-Poissonian.

Squeezed states

We now introduce quadrature operators regarding the canonical position and momentum

introduced before in Eqs. ([CZOTAT):
(1.63) ;

The electric field operator becomes

~

(1.64) Bo(z,t) =2

\/2_‘/ sin(kz) (X cos(wt) + Xo sin(wt)).

For our further purposes it is convenient to introduce generic quadrature operator:

(1.65) X(@) = ae” +ale”™

where we recover Xl for 9 = 0 and Xg for ¥ = —7m/2. We can understand the operators Xl
and X5 as amplitude oscillating with a relative phase equals 7/2, so, in quadrature. They
fulfill the same commutation relation than the canonical position and momentum but
scaled to be dimensionless: [X;, Xo] = 2i. Appling the Heisenberg Uncertainty Principle

for the quadrature operators we draw:

(1.66) AKIAK, = J(AX)2(A%2)2) > S[((%, X)) = 1

1
2
(for a derivation, see [Gardinerd]). Knowing the variances of the quadrature operators for

coherent states:
(1.67) (AX1)?) = ((AXy)%) =1

we see that the uncertainties in both quadratures over the coherent states minimize the

uncertainty product:
(1.68) AXIAK, = 1.

Even if well known quadrature operators, X, and Xg, are related to the canonical posi-
tion an momentum, it is that quantum states cannot be represented by a point in phase
space, as it is in classical mechanics. Nevertheless, it is possible to introduce some quasi-
probability’ on the complex a-plane, as we will discussed later. Such plane plays the

role of phase space where, up to scale factors, the real an imaginary parts of « are the
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Figure 1.11. Quantum coherent state of amplitude |a| and phase angle 0 where Rea > Ima.
a) Time evolution of the fluctuations of both quadratures around the corresponding mean value
(a|X1]a) = 2Rea and (a|X1|a) = 2Rea. b) Remembering Eq. (AX1)?) = ((X2)?) =1 for
all |a), it is clear that the error circle is the same for all coherent states with radio equal 1. Phase
space portrait of the quantum vacuum state , as |a| = 0, has the circle centered in the coordinates
origin.

position and momentum variables respectively since 2Rear = (| X1|a) = (o 4 o*) and
2Ima = (a|Xs]a) = (o — a*)/i. Then, a coherent state |o) with o = |a|e?” may be
represented as in the right panel of Fig. [LTIl where the shaded area represents the area
of uncertainty resulting from the fluctuations in all directions of phase space. As they are
equal, this area is a circle. Moreover, they are independent of o and identical to those in
the vacuum. For the vacuum state |a| = 0, the circle is centered in the coordinates origin.

Now we introduce one of the most important example of non classical states, called
squeezed states. As for a coherent state |«) the variances of two quadratures fulfill:
((AX1)?) = ((AX3)?) = 1, coherent states minimize the Heisenberg Uncertainty Prin-
ciple, (as we already said they only contains the fluctuations of the vacuum). States for
which:

(1.69) (AX))?) <1 or ((AXy)?) <1

are known as squeezed states. They will have less noise in one or the quadratures than
for a coherent state, i.e. the fluctuations in that quadrature are squeezed (see Fig. [[T12)
and we say that the fluctuations are below the shot noise level [Sioler], that is the level
of fluctuations of a coherent state . Of course, the fluctuations in the other quadrature
must be enhanced so as to not violate the uncertainty relation. There are squeezed states
for which the inequality given Eq. ([CGO) becomes an equality, but in general they do not
need to be minimum uncertainty states.

When deriving the dynamics of the electromagnetic field it is not always possible to write
mode excitations as a linear superposition of basic coherent |«) or number |n) states, that

is a pure state. When we deal with a general electromagnetic field we should describe an
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Figure 1.12. Quadrature squeezed state. a) Time evolution of the fluctuations of both quadratures
around the corresponding mean value for Reaw > I'ma. As the fluctuations in the X quadrature are
reduced with respect to the coherent state case showed in Fig [LTIl this is an amplitude squeezed
state. b) Amplitude squeezed state represented in the phase-space of a-complex plane, where the
fluctuations in phase 0 , i.e. the angle substenting the arc limited by the dashed lines, become larger
than for a coherent state, in yellow. This kind of states, also known as photon-number squeezed
states, exhibit sub-Poissonian probability distribution because their photon number fluctuations,
related to (N) = |a|? are below the shot noise level. For values of the rotational angle such as
w/2 < ¥ < 3mw/2, we have a phase squeezed state, where now the number of photons is more
delocalized while the noise in the phase @ is reduced. These states are super-Poissonian distributed.
The error ellipse for a squeezed vacuum state would be center in the origin of coordinates.
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Figure 1.13. Pictorial representation the generic quadrature X(ﬂ) = ae"’ + ate ™ where X
corresponds to ¥ = 0 and Xotod =n /2. In dark blue is the average quadrature and the noise or
variance is represented in soft blue. In the picture (a) the quadrature is represented for a coherent
state. As the variance of both quadratures (for all coherent states) are ((AX1)?) = ((AX2)?) =1, the
fluctuation region has a constant width. The picture (b) is a squeezed state, where the fluctuations
decrease and increase within the interval given for Eq. ), —1 < (: (AX(9))? ;) < 0, as the
ellipse rotates in the a-plane by varying ¥ (see Fig. [[12).
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infinite number of modes, each one with (in principle) infinite number of possible quantum
states.

Our photons are thermally excited in the modes of a cavity. They are an example of
statistical mixture, because we only can achieve to calculate the probability of the field
to be found in a state, which is itself a linear combination of basic number states |n). We
will show how statistical distributions are introduced into quantum mechanics by means
of the density operator. A given electromagnetic field is in a cavity in the state |u) with
probability P, and ‘u’ labels enough states in order to completely describe the system (for
example, it runs over a finite set of coherent states {|a)}). If u’ labels number states, P, is
a probability distribution giving the probability of having n photons in the mode. Taking
the observable O that is represented by a quantum-mechanical operator O the expected
value of the observable for the state |u) is (u|O|u) and hence the ensemble average of the

observable for the statistical mixture specified by P, is:

(1.70) (O) = SuPu(ulOlu)

It will be assumed that P, is a normalized probability distribution
(1.71) Y, P, =1

The same expression can be written involving the density operator as follows. Let |S)
represent some complete set of states for the fields considered S being a label that can

take a series of values. Then according to the closure theorem:

(1.72) Yg|S)(S| =1

Insertion of this unit quantity immediately after the operator O in Eq. [CZ gives:
(1.73) (0) = 2S5 Pu(S|u) (u|0|S)

The density operator p is defined to be:

(1.74) b= 5P, u)ul

then the average value of O can be written:

(1.75) (0) = $(81701S)

The density operator contains exactly the same information as the probability distribution

P, and p is determined once the P, are specified for a given set of pure states |u) and it

can be shown that the general result of (O) is independent of the particular complete set
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of states |S) chosen for the evaluation, so we can chose those in which it is diagonal and

the trace is invariant under change of basis. Then the last equation can be written
(1.76) (0) = Tr(pO).

The density operator has Trp = ). p; = 1 and it allows as to calculate the expectation
value of an operator over mixed states.
The closure relation for the coherent states is given as an integral over the complex a-plane

according to:

(1.77) /ya><a\d270‘ —1

where d?a = dRe(a)dIm(a). Then we can express the density operator in terms of the

coherent states as:

(1.78) ﬁ:/P(a)|a>(a|d2a

where P(«) is a weight function known as the Glauber-Sudarshan P distribution
and is analogous to the phase-space representations of statistical mechanics. It is then
generally called quasiprobability distribution. As we would expect: Trp = [ Pla)d?a =1

and the P function is real since p is Hermitian. But the coherent states are not orthogonal:
(1.79) | < Bla>|? = e leo

equal unity only in the limit o — 3 >> 1, so the set is overcomplete. Then, the representa-
tion has rather exotic properties [Walls & Milburnl]. For instance, it can be shown by apply-
ing the definition of P to a pure coherent sate |3) where p = |3) (3] that P(a)5) = 6*(a—p).

Moreover, in the case of a pure number state |n) with p = |n)(n| it is found:

o2n)

> Dardarn (a).

(1.80) P(a)|n

Therefore, there are quantum states for which P(«) is highly singular (more singular than
a delta) and can even be negative. These states are called ‘non classical’. States in the
a-plane for which P(«) is positive or not more singular than a delta function are, in this
sense, classical. Coherent states, which are close to what we would expect for classical
oscillating fields as disused above, have P distributions given by delta functions. Thus they
are classical in the sense described here. Certain effects, as antibunching and squeezing we
have already described, can occur only for states for which the P distribution is negative
or highly singular.

It is worth to stress that a quasi-probability as here defined can be used as a not approx-

imated alternative to the density operator to describe the dynamics of an optical system,
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thanks to the Optical Equivalence Theorem we will describe in the next section. Let us

consider quadrature squeezing. We calculate:
A 1
(1.81) (AX)?) = {1+ / P(a)[(a +a*) = ((a) + (a'))]*d*a}

and

5 1 N e . . .
(1.82) (AXp)?) = {1+ /P(Oé)[(a —a")/i—((a) - (a") /i d*a}.
Because the term inside the square bracket is always positive, the squeezing condition

(Eq. [CE) requires that P(«) be nonpositive at least in some regions of phase space.
Remembering the definition of the generic quadrature operator (Eq. [LGH):

(1.83) X(@) = ae™ " +afe™
we can introduce the normally ordered variance (where the creation operators stand on

the left), (: (AX(9))?:) such that squeezing exists whenever:

A~

(1.84) — 1< (AX(0))*:) <o.

The effects of the losses of the cavity have been extensively studied also in relation to
squeezed states and twin beams phenomena. Generally, the cavity losses decrease the

quantum effects present inside the cavity [Grahaml]. The important point is how to link

the intracavity results with the observable external cavity elds. In [Collett & Gardiner]
there is developed an input/output formalism for optical cavities in order to obtain the
behavior of the fields outside the cavity, given the fields inside the cavity. It is shown
that correlations in normal ordering calculated inside the cavity are reduced with respect
to their value outside in a factor 2. Then, the quadrature squeezing occurs for normal

ordering variances in the interval:
(1.85) —0.5 < (: (AX(9))?:) <0.

About how to build squeezed states, the most common scheme involves the Optical Para-
metric Oscillator (introduced in section [CZI), which produces squeezed states of light
through the non linear process of down conversion in which photon pairs are created. The
simplest squeezing operator (squeezed states may be also produced by four-wave-mixing
processes) is:

(1.86) S(€) = ezl€a—ga?)

and it generates a squeezed state when acting on a coherent or vacuum state, with squeez-
ing parameter £. The relation with squeezing is evident by recovering the Parametric

Down Conversion Hamiltonian Eq. (CH):

Hy =i (3%6* — Ba’?)
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The temporal evolution operator U = e# 1t for the Parametric Down Conversion shows
exactly the quadratic dependence leading to squeezing for squeezing parameter & = 2Pt
Let us now focus on the measurement of squeezed states. Because there are certain values
of the phase where the electric field uncertainty becomes small, a phase-sensitive form

of detection (homodyning) is used for the detection of quadrature-squeezed light [Teich

& Saleh]. Homodyne detection is used to extract the quadrature of the eld with reiiuced
fluctuations. In the single-ended conguration, the squeezed light is combined at an unequal
beam-splitter with coherent light from a laser local oscillator (LO). If the LO phase is
chosen properly the superposition eld will be photon-number squeezed, resulting in a sub-
shot-noise spectrum. The first observation of squeezing was achieved in 1985 by [Slusher &

I
al.] in an experiment of parametric generation involving four-wave mixing in sodium vapor

(Kerr media). Recent experiments have achieved even 90% squeezed light !Vahlbruch &

al.]. As we have already pointed, due to the reduced level of noise in proper observables

(quadratures) of squeezed states, their use has been proposed for technological applications
[Giovannetti & all. It has been proposed many years ago and this is now implemented

for gravitational waves detection with large scale interferometers [Godal, which deal with

such a weak signal that are in the range of quantum fluctuations.

1.4 Phase space description in Quantum Optics and Optical

Equivalence Theorem

Equations of motion for the expectation values of system operators may directly be de-
rived from the operator Master equation discussed in the next chapter. Using the quasi-
probability representations for the density operator the Master equation for operators may
be converted to a differential equation for the distribution. In some cases this will be a
Fokker-Planck equation that using methods familiar in stochastic processes may be con-
verted into an equivalent set of stochastic differential equations. Hereby we introduce such

quasi-probability distributions and we leave the derivation of the equations for Chapter 2

Quasi-probability distributions

The P quasi-probability distribution function was introduced in section We can, under
suitable conditions, represent other operators beside p in the 'diagonal’ coherent state form

sometimes called the P-representation, For operator E, the P-representation is:

(1.87) B = /B(a,a*)pla>(a\d2a.
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The average of B is given by (Eq. [CT0):

L5 (B) = Tr(pB) = X, (nl( ] pBp(e.a") ) (ald?a ) n) =
= | Bpla, o) (0lpla)d.
Then the expectation value of the density operator with respect to the coherent state also

plays the role of a phase- provability distribution, This is usually called the Q, or Husimi,

function:

(1.89) Q(a) = (alp|a)/m.

According to the properties of the density operator and the product of coherent states
(Eq @) Q is clearly a non-negative and bounded distribution: 0 < Q(«) > 1/7. The
most important property of this representation is that it satisfies the requirements for
a true probability distribution. The evolution of a physical state, corresponding to an
hermitian density operator, in the Q representation will always be positive and well-
behaved [Gardinerd unlike the P representation that may be negative and highly singular,

meaningless from a classical point of view.

Characteristic Functions

Let us consider a classical random variable z distributed according to p(x), a classical

distribution: p(z) > 0 and [ p(z)dx = 1 with moments defined as:

(1.90) (x) = /dmx"p(w).

If all moments are known p is completely defined as can be see by introducing the char-

acteristic function:

(1.91) C(k) = (e**) = /dmeikmp(x) = Z (ik)" (x™).

n!

n

The probability density is just the Fourier transform of the characteristic function:

(1.92) p= %/dke‘i’m(}’(k:).

And the other way around, once we know the characteristic function, we can calculate the

moments:
1 d"C(k)
1.93 " == = 0.
(1.93) R
Now we introduce the two quantum mechanical characteristic functions we are interested
in:
(1.94) Cn(A) = Tr([)e)‘&Te_)‘*&) Normally ordered

Ca(N) = Tr(ﬁe*)‘&fe)‘*d) Antinormally ordered
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also described in terms of the s-parametrized function ( [Cal Hanber] ):

(1.95) C(\, 5) = Tr(pe' —A atsia?/2)

where s = +1 corresponds to normally ordered characteristic function and s = —1 to the
antinormal.

We remind that normal ordering, noted as ::, has annihilation operators standing to the

right of the creation operators, while it is the opposite for antinormal ordering, noted as

Then, by extending the moments calculations to correlations:
A A AlA N (m+n)
(ah)ma") = Tr(p(ah)"a") = gxogzmmOn(W)x =0

ylm+n)

(1.96) (
(@)@ = Tr(p(@)™ (@) = g2 5w CalN)ly = 0.

the antinormally ordered characteristic function may be written as:
PS * A 1 P * * *
(1.97)  Ca(N) = Tr(ﬁefmfe)‘ Y == /d2a(a|6)‘aT[)e>‘ Ya) = /d2aQ(0z)e>‘°‘ Ao
0

which is just a two-dimensional Fourier transform of the Q function, so the inversion

transform yields:

(1.98) Qo) = = / PACA(N) (@) oA

T2

Writing p in the P-representation in the normally ordered characteristic function we obtain:

a) = /dzaP(a)e)‘a*_)‘*a

(1.99) Cn(\) = Tr(,ée)“ﬂe_)‘*d) = /dzaP(a)(a|e)‘&Te_)‘*&

giving:

(1.100) P(a) = %/dﬁ(}N(A)(a)emm*.

From operators to functions in the phase-space

As we said in the beginning of this section, a standard method to describe the dynamics
of a quantum system is through differential equations for stochastic fields (suitable for
numerical computing) rather than using the Master equation for the density operator.
Essentially, it means that instead of performing calculations in quantum operator formal-
ism, it is possible to map such operators into the quasi-probabilities distributions. That
is basis of the Optical Equivalence Theorem [Sudarshanl] that reads:

Theorem 1.4.1. The expectation value of a normally ordered operator is just the P quasi-
probability function weighted average of the function obtained from the operator by the

replacements & — o and a' — o*.
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Equivalent statement can be done for the Q representation (used in the following
chapters) with antinormally ordered operators. Then, a representation or quasi-probability
function is a tool which allows us to pass from the dynamics of operators to the dynamics

of functions «;, af in the phase space.Summarizing;:

)

(1.101) <dila> «—— <a‘a>p

(1.102) <ad' > —— <a*a>g

In the next chapter, when we discuss the mathematical model of our prototype system,

we will apply this formalism.
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The PCOPO model

2.1 OPO with Photonic Crystal (PCOPO)

Our prototype system is an Optical Parametric Oscillator (OPO) with an intracavity
Photonic Crystal (photonic crystal), in the following PCOPO, and it is represented in
Fig. Bl We are interested in a photonic crystal periodically modulated in the transverse
profile, thus preventing certain transverse wavelengths to exist. In the previous chapter
we have reviewed some the non linear and quantum phenomena taking place in OPO.
The model introduced here will be used to study the action of photonic crystal on such
phenomena by controlling spatial instabilities threshold as well as quantum phenomena.
In this Master thesis we focus not only on the classical dynamics of the electromagnetic
field in PCOPO but also the quantum correlations between spatial modes. Therefore,
we consider a full multimode Hamiltonian. Moreover, previous works have been done
in singly-resonant cavities (where only the signal field was considered) while hereby we
consider the doubly-resonant cavity, leading to a cubic Hamiltonian in the field operators.
Even if the results presented in this work are mostly related to a regime (below threshold)
that would be also appropriately described by an approximated quadratic Hamiltonian,
we stress that the model here introduced is valid to describe also full non linear dynamics
of the PCOPO and this is in fact our ongoing research activity.
As we deal with a general electromagnetic field we should describe an infinite number
of modes, each one with (in principle) infinite number of possible quantum states. To
describe the intracavity dynamics in a Degenerate OPO we introduce the boson spatial
modes flo(x, t) and Ay (x,t), respectively at the pump frequency 2w, and signal frequency
w, where x denotes the transverse coordinate while the z direction dependence is averaged

out within a mean field approximation. Standard equal-time commutation relations for

35



36 Chapter 2.

‘lIE! |
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Figure 2.1. Optical Parametric Oscillator with Photonic Crystal (PCOPO) modulated in the
transverse profile scheme. We call z the longitudinal coordinate and x,y the transverse coordinates.
As reported in the introduction, we consider a cavity formed by four mirrors, two orthogonal to the
axis z with a distance L and transmission coefficient 7' << 1, and two orthogonal to the axis z with
the distance b and 100% reflectivity. The cavity is filled with a non linear medium (X(2)) and as
novelty, an intracavity photonic crystal with refractive index n = n(z) is embedded. A coherent,
stationary, plane-wave laser beam F is longitudinally injected into the cavity, and it is strong enough
to be considered undepleted when the energy is transferred from the pump beam to the signal and
idler fields in the Degenerated Parametric Down Conversion 2w — w +w. We assume that the input
and the internal cavity fields are linearly polarized.

the intracavity fields are then:

(2.1) Ay(x,t), Al t)| = 60(x — '), i,j=0,1
Now let us consider the total system (cavity + environment): generally we have only
statistical information about the state of the environment, so that, instead of the total
wave-function, the total density operator pi is introduced [Huang]. In the Schrodinger
picture the evolution of piy is described by the von Neumann equation:

ot _ 1 p
(22) T = ._[Htot7ptot]

ot ih

where H,, is the Hamiltonian describing the cavity, the environment and their interac-

tions. We are interested in the properties of the system alone, so we need only the evolution
equation for the reduced density operator p of the intracavity fields, obtained by taking

the trace over the degrees of freedom of the environment:

(23) ﬁ(t) = Trenv(ﬁtot)-

For a detailed derivation of the dynamical- equation for the reduced density matrix in pres-
ence of dissipation see, for instance, [Carmichael]l. The intracavity dynamics is described

by a Master equation for the reduced density operator p:
op 1

2.4 S
(24) ot ih

[H,p]+ Ap
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being H the Hamiltonian of the intracavity fields. The Liouvillian Ais a super-operator

accounting for dissipation (with strength ) through the partially reecting cavity mirror:

(2.5) Bp= 3 w0 [ {{Aite). pAl @) + LAsta)p. Al(@)]}.
i=0,1

The Master equation has two terms: a strong coupling term describing the intracavity
modes couplings, having the same form as in the absence of dissipation, and the dissipative
term having the same form it would have in the absence of the strong Hamiltonian coupling.
The most important assumption done to obtain Eq. (4 is the Markov approximation. In
this approximation we assume that there are two different time scales in the total system
respectively given by the decay time of the (intracavity) system and of the environment.
When the environment and the system evolve in the same time scales, the Markovian
approximation is not valid and we cannot obtain a Master equation. When there is a fast
evolution of the environment, we can neglect the time needed for the equilibration of the
environment and we then obtain Eqs. (Z3 E4)).

The Hamiltonian operator for our system is a function of fields operators Ag(z,t) and

A (z,t), as given, for instance, in [Zambrini & al. (03)]:

(26) fl = FIO + ﬁint + ﬁe:}:t-

For our purposes it is important to explicitly consider the spatial dependence. The first

part of the Hamiltonian is:
(2.7) Hy = ih / dr Y [fyiA}(f)(Ai — V) Ai(x)
i=0,1

and describes the free propagation of the fields inside the cavity, where ~; are the cavity

decay rates, A; the cavity detunings, a; the diffraction constants. Then:
(2.8) Heoye = ih / dzE [Ag(x) - Ao(az)}
is due to the interaction with the external pump E at frequency 2w, which we choose to

be real, and

2.9 Hipy = it | da |Ao(z) AP (z) — Al (2) A2

(29) e = 02 [ du [Ao(@) AP (x) - Af(2) A3 (2)

with ¢ the non linear coefficient, is the interaction term between first and second harmonic
due to the non linearity of the system, which is the multimode version of the one introduced
in the Chapter 0l when describing the Degenerate Parametric Down Conversion process
Eq. (C3).

It is worth to remark that with respect to introductory OPO treatments in Quantum
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Optics books [Loudonl, [Walls & Milburn] here we deal with a full multimode model, even
in the simplest case of homogeneous classical pump field, i.e. A (x) — Ay, under Fourier

transformation we find:
Iflmt == iﬁ% ﬁd’ﬁ)[flg/dk‘fﬁ(kz)e_ik”ﬁ/dk;’;q(k;’)e—ik/w _A(’;/dk;h(k)eikx/dk/jl(k/)eik’m] _
— i | dk [AgAT () AT (—k) — AZAL (k) Ay (—k
22 01()1() 01()1()

in which we recognize a sum of terms (a L ', + h.c) as in a Non Degenerated Parametric

Down Conversion.

2.2 From the Master equation to Langevin equations

Some problems are studied expanding the density operator p in the Fock space
(2.11) p=> comln)(m
n,m

but there are important disvantages. The coefficients ¢,, ,,, are c-numbers and there is an
infinite number of them. It could be possible to truncate the infinite sum at some given
order but many times we need phase-dependence properties of the electromagnetic field
and the full expansion is required. More suitable for our work are expansions in terms
of the quasi-probability distributions introduced in section [C4 In the following, we will
describe the procedure to obtain the Langevin equations, which are stochastic differential
equations that can be simulated numerically, when starting from the Master equation for
p. A scheme with a summary of the procedure we will describe in this section is shown in
Fig.

An operator Master equation, Eq. (), is transformed into a complex equation for a
quasi-probability representation for the density operator. For the sake of clarity, here we

are considering a generic Hamiltonian for one field operator a, such as:
(2.12) H = f(a,a").

It is necessary to first establish the rules for converting products of operators @ and a'

with the density p into an equivalent functional form [Zambrinil:

atp— (a* — %%)Fs(a)
PPN * 1-s 0

o) il o (o 4 I R
ap < ( + Ts = )Fs(a)
pa > (o — 152 50) Fy(a)
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Von Neuman's Equation

OProt 1

*_ﬁoa,\o
It m[ttﬂtt]

for open systems

Master Equation

% 1. . .
o5 = P+ Ap

quasi-probability distributions

OF (@)= ...

If Fokker-Planck

Langevin Equations in the Q representation :
Stochastic Differential Equations

%: = By + Caafa(t) F Caa*f;(t)
%Lt* = BZ —|— OCI:*(}:* f;(t) -I_ O(}:*Ct* fﬂf(t)

Figure 2.2: Brief description of the steps to obtain Langevin equations from a Master equation.
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where, as we did for the characteristic function (Eq. [C3H), s = 41 corresponds to the P
representation (thus Fyq(a) = P(a)) and s = —1 corresponds to the Q representation (so
thus F_1(a) = Q(«)).

As an example of how the correspondences between quantum operators and functions in
the phase-space are obtained, we develop the steps to achieve the first one of the Eqgs.
ZI13). When applying the creation operator on a coherent state multiplied by the factor

2 .
el/2lal® one realizes:

0 (eM20F )

Q

(2.14) ate!/2oPja) = 3 j—_'\/n Fijn+1)
n mn.

and similarly:
12y = 9 /2l
(2.15) (ale a=o= (e (a).
Using the P representation for p (Eq. [CTR):
o= [ @ar(@a)al
we find:
0 2
st 2 * v ||
(2.16) a'p /d ozP(oz)(oz + aa)|a>(a|e
and integrating by parts:
= [ & af? (o — 2
(2.17) a'p /d ala)(ale (a 8a>P(a).

By inspection of the equation for p, we can thus make a correspondence between &' and
ot — 8% and, similar formulas hold for the Q representation.
To obtain a complex equation we substitute the Fy representation for p into the Master
equation (Eq. B and use the operator correspondences, leading an equation of the form:
(2.18)

SF,=—ZAF — 35 Ag-Fot

102 1.9*2 fo Foki 93
+3 9.7 Dact’s + 5552 Darar Fs + 50557 Do Fs + 53 Janats + 550507 Jacar Fs + -

where A;, D;; and J;j;, functions of a and . Hereby we consider the case in which, for

some s, the former equation reduces to:

0 0 0 1 02 1 02 0?
o' T Taa e g Ao it g gaa Panti by g Para a1 Doar B

(2.19)
with a positive definite matrix D. This is a Fokker-Planck equation where the first deriva-
tive terms are called drift terms and A is the drift vector while the second derivative terms

are the diffusion terms and D is the diffusion matrix. The main property of Fokker-Planck
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equation is its relation with stochastic differential equations, because any Fokker-Planck

equation can be mapped into a set of equivalent Langevin equations ( [Zambrini):

?9_? — Ba + Caafa(t) + Caa*f;(t)

(2.20) P
5@ - BZ + Corar f;(t) + Coz*oc*foc(t)

with f; white Gaussian noise. The importance of the Langevin equations lies in the
possibility of performing numerical simulation of these stochastic equations for general

complicated drift and diffusion terms. In fact this method is used in this Master thesis.

2.2.1 PCOPO Langevin equations in the Q representation

The methodology summarized in Fig. applies successfully in the linear regimes but
the presence of non-linearities leads to a functional differential equation for the quasi-
probability that generally is not Fokker-Planck like. In a OPO described by the (multi-
mode) Hamiltonian, Eq. () the offending term is the interaction term (Eq. EXd) such
that:

2 1-s* 5 o o
i o? — 2apaf— +c.c.)F,.

Ag(z) Al hc.,p st —— st
[Ao(z)Ay (2) + hoc., p] = (Saoéa% 4 dadda - dayg ooy

In the Q representation (s=-1) this equation suffers of negative diffusion, although Q is

always positive and well-behaved. It can be shown ( [Zambrini & al. (03)]) that the

evolution equation of the functional Q for an OPO is:

M:/fx{_( g Vo + 0 Vl—i-c.c.>

ot dag(x) daq ()
2 2
—|—/d2:c' 20—~ + 27 5—+
W Sao@)dag @) Moo (x)dal ()

1 52
2.21 —| - —_— .
220 s (00 o) | f 2w
where the drift terms are
(2.22) Vo = —l(1+ilAg) —iagViag(x,t) — ga%(x,t) +FE
(2.23) Vi = —ml(1+iAy) —iaVay(x,t) + gag(z, t)a(z,t).

If the diffusion term is positive, then our evolution equation is a well-defined Fokker-Planck
equation. In the other case this equation does not describe an ordinary diffusion process.

For equation (ZZZ]I) the diffusion term is positive if

2
(2.24) low (7, 1) < %.
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The modulus of the stationary field at threshold takes the value |AY""| = ~1 /g (see section
E3). This means that the condition given in the inequality 24l corresponds to pump
trajectories taking values that are less than twice the threshold value. Staying in a region
far from the limit (Z24)) an extremely large fluctuation in a trajectory would be necessary
in order to lose the positiveness of the diffusion. Clearly these trajectories have a negligible

probability to appear, and never appeared in our simulations. For these reasons, the ap-

proximation we use, following |[Zambrini & al. (03)] is to study Langevin equations related

to the Fokker-Planck equation given by ([ZZl) and (ZZ4), neglecting any trajectories that

would make negative the diffusion term. Clearly the condition ([ZZ4) does not depend on
the frequency at which the system is pumped. For this reason the method is suitable, and
has been already successfully used, to describe non-linear fluctuations in stripe patterns

in Second Harmonic Generation in a regime of pump values limited by Eq. ([24)) [Bache

& al.].
From Eqs.(ZZIHZZ4), with the scaling

(2.25) Yo=mn=7, a=a/2=qa,
t =t 2 = =z
) \/a?
g g

we obtain the equations for the pump g and the signal o fields:

(2.27) Bao(z,t) = — [1+iAg —iV?] ao(@t) + F — %a%(x,t) + %%go(x,t)
(2.28) B (T,1) = — [1+iA; — 20V%] an (%, ) + aola, t)o (e, ) + %%gl (2.1).

The first term on the right side represent the losses and the following one the detuning
(i.e. the difference between the frequency of the corresponding field and the closest natural
one of the cavity). The effect of the modulation of the refractive index in the transverse
profile due to the photonic crystal, n = n(z), lead to detuning of the pump and signal also

modulated:

Ay — Ag + Mysin kpc(L'

(2.29)
A1 — A1 + M sin kpc.%'.

The Laplacian models the diffraction term. The parameter a is defined as a = 1/27TF,
where F' = % is the Fresnel number. In the pump equation appears the injected laser
field £. Then, in both, pump and signal equation appears the coupling terms due to the
multimode treatment and the non linearities of our system, Eq. (). Finally, due to the

presence of diagonal terms in the diffusion matrix of Eq. ZZII), we have a phase sensitive
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white noise:

_ | __zou(@,t) i ] - oGP
(2:30) &i(a,1) = 2m+2m] o)\ T (e V)

with ag = agr + iag; and ¢, and with non-vanishing moments:

(2.31) (ole. DG (@, 1)) = 8z —F)(t—1)
(2.32) (G(x,0)0" (1)) = d(x—a')(t—1)
(2.33) (e, )" (@, 1)) = S(e—a')(t—1).

We observe that the noise is multiplicative, with moments of the signal noise depending
on the value of the pump field. However due to the form of H (quadratic in Aq and
linear in flo), these equations have the same formal expression in the Ito or Stratonovich
interpretations [Gardiner. The moments [Z32) and Z33J) fix only three of the four
degrees of freedom in the choice of the real and imaginary parts of the noise term &1;
this depends on the multiplicity of Langevin processes associated with the same Fokker-
Planck equation [Gardiner]. We solve these Langevin equations by numerical simulation.
Trajectories that do not satisfy the condition ZZ4) never appeared in the regimes we

consider.

2.3 PCOPO deterministic classical equations

The Eqs. [ZZ20Z2Y) describe the time evolution of the pump «q(z,t) and signal oy (z,t)
fields treated as complex functions and giving exactly the moments of the bosonic op-
erators Ag(z,t) and Aj(z,t). There are analogous equations for the classical fields and
are deterministic, in the sense that they do not have noise terms so, there are not fluc-
tuations. The model can be derived in a rigorous way from the classical Maxwell-Bloch
for the intracavity electromagnetic field equations by the introduction of some standard
conditions as the mean field ans the slowly varying envelopes [Lugiato & al]. The mean
field limit, which implies 7' << 1, reduces the dynamics to a single mode propagating
in z with wavelength w (the closest possible to the natural frequency of the cavity), and
make suitable the adiabatic elimination of the atomic variables. About the slowly varying
envelope, the injected laser can be consider a coherent monochromatic light. However, we
are interested in the transverse profile of the pump and signal fields so we assume they

are quasi-monochromatic beams of the form:

(2.34) f(z,y,z, t)ei(kzz*“’ot)
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where the exponential term accounts for a plane wave moving along the z direction, thus

we assume the dependence of f on z and t is slow:

(2.35) 0. f] << E.|f]
(2.36) 0 f| << wol f|

so we neglect the terms involving the derivatives of the amplitude. Because T << 1 we
want a to be of order of unity, we assume large Fresnel numbers, F' >> 1. It is also
assumed small diffraction angles, valid whenever the transverse wave vectors components
k 1 = (kg, ky) of the propagating fields are small with respect to the longitudinal component
k.. This is called the paraxial approximation.

The deterministic equations for classical pump Ag(x,t) and signal A (z,t) are then:

(2.37)0pAo(z,t) = —[1+i(Ag + Mysinkyex) —iV?] Ag(Z,t) + E — %A%(x, t)
(2.38)0pA1(Z,t) = —[1+i(A1+ Misinkpez) — 2iV?] A1(Z,t) + Ag(z, t) A (2, t).

Then these equations can be obtained averaging Eqs. ZZAEZ2Y), where Ay = (ap) and
A; = (a1), one we assume that higher order moments factorize ((a?) = (a1)? for instance).
Now we consider the OPO without photonic crystal in order to show where the critical
wave number comes from and to establish the procedure we perform for the study of the
bifurcation diagram in the OPO with photonic crystal (Chapter B). Following [Oppo &

al. (94)], we look for stationary solutions (independent on t) and uniform (independent

on z) of Eqs. (Z30Z3Y):

(2.39) 0= [(1+ihg) — V2] A§ +E - %Ait 2
(2.40) 0=—[(1+iA1) — 2iV?] AS" + A5AT

There is a trivial solution:

st E

(241) ./40 = m;

A =0

and another:

E(i+A1) E‘AlstP

2.42 st _ . St:ﬂ:
@42 A = TR+ Ay + Az A \/ (4 B0 + Do) 1 AP 2

In order to study the stability of these solutions linearization around them is performed.

Hereby we just present the trivial solution case, linearizing around the stationary state

I

(2.43) Ao(z,t) = AS +6A0(2,t);  Ai(z,t) = 6 A1 (2, 1)
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We rewrite the equations for these fluctuations and by neglecting the non linear terms in
the fluctuations we find that the equations for the pump and the signal fields are decoupled.

The eigenvalues for the Fourier modes are:

(2.44) Moo= —1—i(k+80)  Arz =1 /|AF2 — (A + 282)2

It is well known that a negative (real part of an) eigenvalue means the state is stable while
a positive (real part) means instability. By observing our eigenvalues, it is clear that the
detuning of the pump Aj does not play any role and that only A\; may change sign, giving
us the stability threshold for the driving laser field E at pump frequency (substituting

Eq 22T)):

(2.45) B = (L AL+ (A +2k2)2).

We see that:

e when A; > 0 the minimum is £ = 0 and it means the signal arises as a plane wave.

These values of the signal detuning give place to a multistabilty regime.

e when A; < 0 because the minimum energy is obtained at:

—Aq

(2.46) k==

and the signal forms a stripe pattern with k& = k.. Therefore with negative signal

detuning there is spontaneous pattern formation.

Bifurcation diagrams are plotted in Chapter Blshowing the stability of the solutions. Here it
is important to stress that pattern formation threshold and parametric threshold coincide
for negative signal detuning.

In the following chapter we will consider the case of the PCOPO. At difference to the case
reviewed here (in absence of photonic crystal), the stationary state will be generally not

homogeneous ans semi-classical results have been obtained by Dr. D. Gomila.
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3

Spatial Instabilities in PCOPO

We have seen in the introduction that pattern formation has been intensively studied in the

last decades, also in OPOs. The possibility of optical pattern inhibition using photonic

crystals has been recently proposed by considering a Kerr cavity and a singly-resonant

OPO |Gomila & al. (03)], [Gomila & al. (04)]. In these works it was shown the spatial

instability thresholds move to larger values of the pump for appropriate modulation of the

photonic crystal. This theoretical prediction has been recently confirmed in two experi-
ments in vertical-cavity surface emitting laser [Marsal & all] (this result is reproduced in

Fig. Bl) and with a photorefractive medium in single-mirror feedback configuration [Ter-

halle & al.

I
. The inhibition of spatial instability arises because the modes of the pattern

falls within the band gap of the photonic crystal.

-
&

Figure 3.1. Experimental results confirming the spatial instabilities inhibition by using photonic
crystals [Marsal & all]. a) A horizontal stripes pattern is formed in the real space (near field)
in the transverse profile (z,y). b) The Fourier transform of the pattern is represented in the far
field (kz, ky), where the spatial modes k and —k are shown (with some distorsion due to the lens
geometry) and in the center the homogeneous component (k = 0) appears. ¢) When a modulation
in the transverse profile is included in the system the pattern in the near field does not appear

anymore.

d) In the far field, only the homogeneous component is found.

47
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Figure 3.2. Instability thresholds in singly-resonant degenerate OPO for parameters such that the
pump threshold in absence of the photonic crystal is 1. These results are the representation of the
analytical solutions given in [Gomila & al. (04)]. a) Threshold inhibition for modulation of the signal
refractive index with amplitude M; and wavenumber twice the critical one. b) Pump threshold as
a function of the averaged detuning.

Apart from the interest from the fundamental point of view, the use of photonic crystal
allows to control the transverse properties of emitted light avoiding unwanted spatial
instabilities that often spoil the quality of the beam in broad are non linear optical devices.
In this chapter we show the role of photonic crystals in a type I Degenerate Optical
Parametric Oscillator with photonic crystal (PCOPO) focusing on the classical equations.
The intracavity photonic crystal is modelled by spatial dependent detunings that can have
different contrast or amplitudes for pump and signal fields My and M, respectively. We

remind here the deterministic equations for the pump Ay and for the signal A; introduced

in the Chapter B Eqs. (31) and Z33):

(3.1) O Ao(z,t) = — [1+i(Ag+ Mosinkpex) —iV?] Ag(z,t) + E — %A%(m, t)
(32) O Ai(z,t) = — [1+i(Ar + Mysinkpex) — 2iV?] Ay (z,t) + Ag(z, t) Al (,1).

The spatial modulation of the detuning, modeling the photonic crystal, in general forbids
the existence of homogeneous trivial stationary solutions, like Eq. (ZZI) in section
Still, the vanishing signal solution is always present and some analytical results can be

obtained restricting the stability analysis to the most intense spatial harmonics. This

method was used in [Gomila & al. (04)] in the case of a singly-resonant degenerate OPO

and the analytically obtained threshold is shown in Fig.

The mentioned pattern inhibition takes place and the threshold in this case is always
increased with respect to the well known case without photonic crystal, whose value is
FEyp, = 1. The photonic crystal has, therefore, the effect of inhibiting the spatial instability

as well as the parametric emission. Inhibition was also observed in the case of a cubic
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instead of a quadratic non-linearity, suggesting that this is a general effect of photonic
crystals. We find, however, that this is not always the case, as discussed in the following

sections.

3.1 Stationary solutions and linear stability analysis

As anticipated before, even in presence of spatial modulation due to the photonic crystal

(Mo # 0 and/or M; # 0) the vanishing stationary solution for the signal field:
(3.3) At =

always exists. However, there is not homogeneous stationary solution for the pump field
whenever the photonic crystal influence the pump detuning My # 0.

The stationary pump solution fulfills the equation:
(3.4) (1 +iDo(x) — iV AS(x) = E.

If My # 0, that is, in absence of photonic crystal influencing the pump mode, Dy = Ay
ans we still have the spatially homogeneous steady solution, as Eq. (EZZ1):

E
(35) A 1 + ’LAO
On the other hand for My # 0 we have:
(3.6) Dy(x) = Ag + My sin(kpex)

and there is not homogeneous solution for the equation:
(3.7 (1 4+ iAo + iMosin(kyer) — iV?) Al (x) = E.

By defining the Fourier transform as:

(3.8) Ao 1(z,t) /@ \/ﬂ k=t Ao (K, w)
3.9 t z(ka: wt) g% k. —
( ) AOl €T, /\/ﬂ \/ﬂ 'A ( ’ w)

Eq. (B) becomes:

M,
(3.10) (1 + iAo + k) A5 (k) + 70 (Agt(k — k) — (At (k + k) = ES(K).
We see that each mode k is coupled to the shifted ones +k. Considering;:

(3.11) k = nkpe
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with n integer, we obtain a chain of equations:

M,
(3.12) (1-+i80 + i) Af (nkye) + =0 (A5 (0 = Dhye) — (A5 (0 + Dhye)) = B,
Equations for n, n + 1 and n — 1 are coupled. We truncate the hierarchy by introducing
the approximation to neglect spatial harmonics higher than the first in the expansion of

the steady state. In other words, we consider only k& = 0, +k,.:

(3.13) Ast(z) = Z Agn)eikpcnm ZASO) _i_Agl)eikpc:v_i_A(()*l)efikpcm
n=+o00

Then we obtain a hierarchy of 3 coupled equations for n = {0, £1}:
n=0 — (1+ Z'AO)-A(SJI(O) + %(-Agt(_km) - Agt(km) =E
(3.14) n=1 — (14 +ik2) A5 (kpe) + 22 ASH0) = 0

n=-1 — (1+ilg+ ik2) A (—kpe) — 24245 (0) = 0.

Here we present the solution under the assumption:
(3.15) Ag=0

leading to the algebraically simpler expressions:

S E(l + Z‘k2c) S S _%E
(316) AF(0) = ——— P A (pe) = —AF (—hpe) = ——2——.
(1+ Zk‘pc) + = (1+ kac) + 3

Linearized equations for signal perturbations around the steady state are decoupled from
the linearized pump equations, similarly to the case of the OPO without photonic crystal

(section Z3)). The linear stability analysis, however, is modified not only by the presence

of the detuning modulation (like in [Gomila & al. (03)]) but also by the spatial coupling

between modes due to the modulation of the reference state, as discussed in the next
section. The photonic crystal enters as modulation of the detuning A;(x) and also for
the modulation in the steady solution (A = A§f(z)). When we linearize the signal field

around the steady solution the following equation for the signal fluctuations is obtained:
(3.17) 90 A1(z,t) = — [L+i(Ay + My sinkpex) — 2iV?] 0 A (z, 1) + A (2)6 A (2, t)

In the following we will keep the assumption of vanished pump detuning, Eq. BI3, and

negative signal detuning.
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Figure 3.3. a) Pump threshold Ey, as a function of the amplitude of the modulation in the pump
My and in the signal M; for the case kp. = 2k.. Throughout this section we take Ag = 0 and
A; = —1. For these parameter values k,. = V2. b) Projection over the My, M; plane with the same
color scale.

3.1.1 Case with critical signal mode in the center of the band gap

The most promising case, inspired by |[Gomila & al. (03)], is obtained for photonic crystal

bandgap at the wavelength that would become unstable at threshold in absence of photonic

crystal. Then, we start considering Eq. (). for k = k., that is:
(3.18) kpe = 2ke.

We stress that k. is the wave number that would be unstable without photonic crystal.
The predicted instability threshold is represented in Fig. and B4 We see that,
depending on the contrast My and M; introduced by the photonic crystal, the threshold
value for the pump to give rise down conversion moves to values different from 1. In
Fig. B4l we see that the effect of the photonic crystal is not the same in the pump and
in the signal fields. The case of modulation only in the signal, (My = 0), has stability

analysis identical to what presented in |Gomila & al. (04)]. Only inhibition of pattern

formation and of the associated down-conversion is found, Fig Bdb. The photonic crystal
fast modulation inhibits the instability at the critical wavelength. The pump mode remains
homogeneous below threshold and its fluctuations are linearly decoupled from the signal.
The main novelty is for My # 0: the photonic crystal changes the spatial profile of the
pump, introducing a modulation similar to the one appearing in an OPO above threshold
without any photonic crystal. In fact all the harmonics of k,. are present. Looking at
the linearized equation for the signal fluctuations Eq. BI7 we see that the effect of the
photonic crystal is similar to inject the device with a spatially modulated pump. This
induces instability for pump F lower than without photonic crystal. The pattern seems to

be stimulated by this modulation in the pump and this allow to lower the OPO threshold
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Figure 3.4. Pump threshold Ep, for the case kp. = 2k. as a function of the amplitude of the
modulation in the pump Mo with M; = 0, (a), and in the signal M; with My = 0, (b), resulting
from two cuts of the Fig. B3h. The case of modulation only in the pump gives rise to an unexpected
lowering of the threshold.

below the standard operation value £ = 1. Until now we have found that the threshold

can be decreased a 10% by the use of a photonic crystal.

3.1.2 Case with signal critical mode out of the band gap

‘We consider now:
(3.19) kpe = ke.

where, as usually, k. is the critical wavenumber that would become unstable at threshold
without photonic crystal. In this case, only inhibition of pattern formation and of the
associated down-conversion is found but is stronger than in the case considered in the
previous section. For modulation only in the signal detuning at the critical wave-length
we see that the stability of the system is almost unchanged, Fig. B8b. Looking at the
dispersion relation, we could actually say that its expression is almost unchanged because
now the photonic crystal introduces only intramodal couplings between different transverse
k (for instance Aj$'(k.) due to the photonic crystal is coupled with A$(2k.) and A5*(0))
that have no gain (the coupled mode with gain is A5*(—k.)). The fact that, for My = 0
for photonic crystal periodicity similar to k., the effect of pattern inhibition whose very

weak was already reported in [Gomila & al. (04)] (see also Fig. B2b). We consider now

what happens if also the pump is influenced by the photonic crystal (My # 0). Then the
modulation is at the k. so all the spatial harmonics are present into the pump solution and
not only the even ones. The inhibition is really strong with respect to the case of k,. = 2k,
even for photonic crystal modulations not too high. This is quite sparingly, as we actually
see that now the instability inhibition is even larger that in Fig. Bdb. Looking at the

linearized equation for the signal we see that in this case the instability at k. = k,. can
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Figure 3.5. a) Pump threshold Eyp, as a function of the amplitude of the modulation in the pump
My and in the signal M; for the case kp. = k.. Throughout this section we take Ag = 0 and

A; = —1. For these parameter values k,. = V2. b) Projection over the My, M; plane with the same
color scale.
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Figure 3.6. Pump threshold E:p, for the case kpc = k. as a function of the amplitude of the
modulation in the pump Mo with M; = 0, (a), and in the signal M; with My = 0, (b), resulting
from two cuts of the Fig. BBh. Throughout this section we take Ay = 0 and A; = —1. The case of
modulation only in the pump mode reproduce the results given in |[Gomila & al. (04)], where only
inhibition of the pattern formation was achieved.

be described by an equation similar to the one obtained without photonic crystal because
the higher harmonics in the pump do not couple significantly to the signal. We can say
that the most important spatial harmonics of the pump (A§'(Nky.)) do not couple with
the signal most unstable wave-number A5 (k,.). We will see the only important effect
of the pump modulation is the introduction of an effective detuning, that increases the
threshold.

3.2 Efficiency

We consider now the intensity of the arbitrary state in different spatial modes in order to

see how energy is transferred between them and also the efficiency of the down conversion
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Figure 3.7. Bifurcation diagrams of pump and signal field with the injected field threshold as
control parameter for kpc = 2kc. a) [Ao(0)], b)|Ao(2ke)], ¢) |Ai(ke)|, and d) |A1(3kc)]| for different
configurations of the photonic crystal. Black: without photonic crystal, i.e. My = M; = 0 with
threshold at F = 1; green: My = 0, M; = 0.5 with threshold at £ = 1.029; red: My = 0.5, M; =0
with threshold at £ = 0.932 and orange: My = M; = 0.5 with threshold at £ = 0.957. Modulation of
refractive index in the transverse profile does not change the efficiency of the Degenerate Parametric
Down Conversion process 2w — w + w. The instabilities of the solution for the pump at k = 0 and
for the signal at k = k. give rise to a bifurcation for the next harmonics, odd for the signal and even
for the pump as wp = 2wsigna Mmeans kp = 2k..

process. By plotting the pump and signal fields as functions of the input field E it is
possible to visualize a bifurcation diagram, that depends on the presence and the different
configurations of the photonic crystal. In FiglB the pump and the signal intensities are
presented in different modes k. These curves are obtained by numerical simulation of
Egs. 30) and [Z38), and reaching the stationary solution. In fig. BZh the pump field
is plotted for k = 0,corresponding to the homogeneous near field component receiving
energy from the input E. It is seen that the stationary A5 (0) is almost unchanged when
introducing the photonic crystal, being the most evident difference only the position of
the instability threshold. In Fig. Blb we see that the pump |A5'(2k.)| is intense in the
cases in which the photonic crystal is inducing the modulation (that is for My # 0), as
expected. Comparing Fig. Bl and b below threshold we see that these cases (orange
curve, for instance) the 2k. mode is gaining momentum while the homogeneous of the
pump is losing it. The efficiency in the signal generation represented in Fig. B does

only depend on the effective distace from the threshold in each device configuration.
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Figure 3.8. Intracavity energy numerically calculated as the sum of the complete set of squared
absolute value of harmonics of the pump for the case: a) kp = 2k. and b) kp = ke.

In other words, as a consequence of the change in the threshold described above,
there is the expected change of efficiency in the signal production. For a fixed value of
the pump E, say E = 1.05 (remember that without photonic crystal Ey,, = 1) we obtain
that the larger signal intensity appears for the PCOPO in which the instability threshold
is most lowered (red curve in FiglBTh). All the signal curves in FigBBk can be overlapped
by a simple translation and we do not find qualitative changes in the bifurcation diagrams
after introduction of photonic crystal.

Here we show numerical results corresponding to the case k,. = 2k, but qualitative similar
results are also found for k,. = k., where the instabilities occurs for Fy, > 1 in all the
photonic crystal configurations.

In order to clarify, if the modulation of the photonic crystal acts as an effective pump
detuning that decreases the intracavity energy less input energy enters into the cavity
explaining why the thresholds rise so much in this case giving the strongest pattern inhi-

bition. We look now at the total energy entering into the system. That is:

(3.20) U:/|A0(:c)|2dm.

In Fig. B8a we see that for k,. = 2k., and focusing below threshold, in all the cases there
is almost the same energy in the system. This would be different for homogeneous pump
detuning that would actually have the effect to reduce the energy coupling with the cavity
(as clear from Eq. B) which is in fact what occurs for k,. = k., My # 0, as it is shown
in Fig (red and orange curves).

3.3 Summary

In the case of optical parametric oscillators the inhibition of the instability also imply the

possibility to control the parametric threshold (as they coincide). Due to the mixing of
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two different frequencies in OPOs (2w,w)we find a diffrent scenario than in previously
considered devices [Gomila & al. (04)]. The analysis of the PCOPOs in which the mod-

ulation appears in the pump detuning instead of the signal, or in both fields, shows a

complex scenario. The threshold, for some parameters values, is found to be lowered by
the presence of the photonic crystal, instead of being raised. It follows that threshold
can be largely ‘tuned’, depending on the spatial modulation introduced by the photonic
crystal. If the rise of the threshold is explained in terms of band gad inhibition or effective
pump detuning (depending on the cases), its lowering is a novel effect and seems to be
associated to a mechanism of stimulation of the pattern.

Besides, we analyzed the multimode character and efficiency of the process. The effect
of the photonic crystal is just to shift the threshold but the efficiency for fixed distances
from the threshold in the different cases is unchanged, at least until values of the injected

pump 50% above the corresponding threshold.
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Spatial Quantum Correlations in
OPO with photonic crystal

The main body of the results presented in this chapter concerns the direct analysis of
quantum fluctuations around the stationary state below threshold, within a linear approx-
imation, as we described in Chapter B Numerical simulations of Eqs. ZZAZ2]) allow
to characterize the spatio-temporal dynamics of the quantum light fields. In Fig. Bl we
present a set of results of the near fields evolution and we see when the photonic crystal
changes the shape of the stationary solution, in particular, below threshold. We notice
that the stripe pattern spontaneously created above threshold is -in first approximation-

unchanged with or without photonic crystal.

The quantum correlations of the quantum fields represented in Fig. EIl are cal-
culated numerically. In particular, we focus here on the spatial distribution of quantum
fluctuations and on correlations between opposite spatial modes. A previous work in an
OPO without photonic crystal showed that these quantum correlations and squeezing

where present not only below threshold (in quantum images), but also in presence of an

intense signal field, above threshold [Zambrini & al. (03)]. Here we study their robustness

or improvement in presence of a photonic crystal, and in this Master Thesis we focus on

the below threshold regime.

4.1 Spatial Antibunching

Here we discuss the effect of the photonic crystal on quantum fluctuations both in the
pump and in the signal light states. Non-classical features in the twin beams correlations

are displayed for negative values of the normal-ordered variance of the difference of the

57
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Figure 4.1. Near field of pump and signal field below and above the corresponding threshold for
the case without photonic crystal and for different configuration of the photonic crystal (Mo, M1 =
{0.0,0.5}). Simulations are performed 1% below (uppest row) and 1% above (lowest row) the
corresponding threshold.

two intensities [Zambrini & al. (03)f

(@) Vi — (D) = Nl

S.N.(N;)
normalized to the corresponding shot noise value S.NV. ( ;) for each k. This value represents
the level of fluctuations found in a coherent state and can be obtained by subtracting to
an operator variances its value in normal ordering. For the variance V;(k) the shot noise is
proportional to the average of the sum of the intensities of the two beams with wavevectors

+k. Negative values of V;(k) indicate sub-Poissonian statistics (as we described in the

introduction) for the intensity difference of the two beams at £k [Zambrini & al. (02)].
This is actually also equivalent to Spatial Antibunching (see Eqs. 33 and [30).

For our system we have reflection symmetry in the far field, that is:

(4.2) (Ni(k)) = (Ni(=k)) and (NP(k)) = (NP (k).

(4.3) Vilk) = 20: N2(k) ) — 20 Nu(k)Ni(—F) 2.
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Remembering the spatial second-order coherent function and the spatial antibunching

condition Eq.

~

(4.4) (: Ni(k)Ni(=k) ) > (Ni(k)?)

we can determine that there will be spatial antibunching in our system, PCOPO, when
Vi(k) < 0.

Even if both the variance V;(k) and the shot noise are functions of &, in some cases the
normalized quantity (1) is uniform. In a linear analytical treatment below threshold, for
homogeneous pump and detunings, V;(k) = —0.5, independently of the pump intensity
and of the wave-vector |Gatti & al. (97)1[Zambrini & al. (02)]. In the following we

study how this variance is modified by the presence of the photonic crystal. As our
stochastic equations provide average of antinormal ordered quantities, we present the

relations between the antinormal and normal ordered expression of interest here.

From antinormal to normal ordering

The operators averages obtained from our numerical analysis correspond to antinormal
order because are associated with the Q representation (introduced in Section [4]). This
can be related to expectation values in normal ordering by resting the proper quantities.
We consider, as an example, the normal ordered variance of the number operator N (k) =
at(k)a(k)

(45) (AN = (NP ) = (N )P = (@] (k)af (k) (k)i (k) — (a] (k)as (k)

(2 (2 3

where we omit the index 7, being the formulation equivalent for pump and signal fields

operators. We write the commutator as:
(4.6) Crr = [as(k), al (k)] = co(k — k).

where c is equal to one, before of field scaling (ZZ5). Normal (: :) and antinormal (: :)

ordered quantities are related by:
(4.7) . Ni(k) := Ny(k) = iNi(k)} — Cha,

The shot noise when measuring the variances of N; can also be expressed in terms of

antinormally ordered operators giving:

(4.9) S.N.(N;) = (Ni)Cyp — C2y..
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Figure 4.2. Logarithm of the pump (black) and signal (green) in the far field. Significant cases
are represented, all of them 1% below the respective thresholds: a) Mo = M; = 0.0 and My = 0.0,
M, = 0.5 (qualitative same result), b) My = 0.5, M1 = 0.0 and My = M; = 0.5 (qualitative
same result). The integration method used in the numerical simulation is described in previous
papers [Zambrini & al. (00)f[Zambrini & al. (03)j[Bache & all.

These relations are used to get normal ordered averages, like Eq. ([Bl), from the antinormal
ones obtained by numerical simulation of the stochastic spatio-temporal field dynamics in
the Q representation. Notice that discretization in space due to numerical simulation needs
to be taken into account in order to properly evaluate the commutator. Numerical results
can indeed be compared with analytical expression when possible, as for the twin beams

correlations in a OPO below threshold, without photonic crystal |[Gatti & al. (97)1].

Numerical results
In the following we consider the PCOPO below threshold and with parameters:
(410) AO = 0; Al = —1; kipc = 2]{30 Mo, M1 = {00, 05}

We consider Eqs. BEZAP2Y given in Chapter Bl, with phase sensitive multiplicative noise
&1(x,t) fulfilling Z3TZ3A and and numerically generated considering Eq.

- oo ()|
—apr(z,t) i 1 - =3
1) = o2+ t )+ A (¢
st 2\/2+ agr(z,t) 2 oR(@ )] Pat) 2+Q0R($,t)¢(x )

[Zambrini & al. (03)], with ag = agr + iagr and ¢, 1 uncorrelated real white noises in

space and time, with variances one. In Fig. we show the average far field intensities
for the pump and the signal light fields, just below threshold, in three different cases.
Pump modulation in this regime appears only when the pump detuning is modulated
and, in this case, the even spatial harmonics of k. are excited. Notice that, in absence
of photonic crystals, these spatial modes would be intense only above threshold. The

modulation of the photonic crystal has the wave-number of the spatial pattern that would



4.1. Spatial Antibunching 61

2'5""|""|""|""|
2.0

1.5
1.0
0.5

0.0

_0-5 L 1 L L L L 1 L L L L 1 L L L L 1
00 05 1.0 1.5 20

Figure 4.3. Normalized variance given by Eq.@Jl) 1% below the corresponding threshold for
three different cases, like in Fig. for Moy = M; = 0.5 with E = 0.95 (orange), for My = 0.0 and
My = 0.5 with E = 1.02 (green) and for My = 0.5 and M1 = 0.0 with E = 0.93 (red). The analytical
value without photonic crystal yields the black line represented at —0.5 for £ = 0.99. Quantum
correlations correspond to negative values. We obtain significant loss of quantum correlations in
ke = 0.7 and 3k. = 2.1 for our choice of parameters.

arise above threshold, for an homogeneous OPO, k,. = 2k.. Other cases, k,. = nk,, are
under investigation.

The average signal field vanishes because we consider pump values E just below threshold.
As Fig. show, however, modes with the critical wave-number (k = k. ~ 0.7 for our
choice of parameters) are weakly damped and have a non vanishing average intensity. This
is the regime of quantum images, extensively studied in the last decade and characterized

by the ‘spatial structures manifested by the correlation functions’ between the field at

different points, and also by ‘noisy images’ of the spatial fluctuations [Lugiato & al. (96).

In the following, we consider twin beams correlations below threshold, where it is well

known the analytical expression for the intensity correlations without photonic crystal,

within linear approximation for the fluctuations dynamics [Gatti & al. (97)1, Zambrini

& al. (03)]. In particular, the normalized variance Eq. () is homogeneous in k and
is equal to —0.5 (black line in Fig. E3), as mentioned before. Any negative value of
Eq. (EI) corresponds to a non classical behavior. On the other hand, purely classical
correlations appear in the pump. In particular, the average intensity of opposite modes
+k is the same (see symmetric plots in Fig. EE2h), but the normal order variance vanishes,
Vo(k) = 0 In Fig. we represent the normalized variance Vj(k) corresponding to the
signal field, for the three cases discussed above, whose mean intensities are represented

in Fig. E2b. The signal correlations are still non classical and around —0.5 for most of
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Figure 4.4. Primary Parametric Down Conversion processes are in the upper schemes, where
k =0 — k + (—k) is the most likely. Down, secondary processes as 2k — 3k + (—k) and 2k —
(—3k)+E contribute to the correlations between opposite modes but their are not twin beams because
they come from different depletions. Photons represented in magenta come from parallel primary
processes. Such secondary processes are particularly relevant in the cases with modulation in the
signal M1 # 0 because photons at frequency w are in the band gap so there are more incoherent
deplected photons than twin ones (see Fig. E3).

the k values but they tend to deteriorate around critical points, namely k. and 3k.. This
can be interpreted in the following way. For k,. = 2k., the photonic crystal favors the
fluctuations in spatial harmonics in the fields, even below threshold. The presence of these

modes is associated to secondary processes of photon creation and destruction [Zambrini

& al. (02)]I. These secondary processes, Fig. B4l give rise to the incoherent gleneration
of photons with opposite wave-numbers and reduce the degree of correlation of photons
generated in pairs. Interestingly, these correlations are quite robust crossing the instability
threshold, and plots similar to Fig. are found increasing the pump strength above the

threshold for signal generation.

4.2 Translational Symmetry Breaking

For homogeneous detunings our system present translational symmetry in the transverse
plane

(4.11) T — X+ T

for arbitrary values of xy. In the presence of the intracavity photonic crystal the situation

changes, because the transverse modulation of the refractive index represent a constraint
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Figure 4.5. Spatio-temporal diagram of the near field quantum fluctuations in the real part
of the signal field for parameters where the horizontal axis is x and the vertical one is time: a)
Moy = My = 0.0, kpe = 2k. and E = 0.99 like in Fig. EZh and b) My = 0.5, M1 = 0, kpe = 2k. and
E = 0.923 like in Fig. EE2b.

that fixes the spatial origin. Then, the equations of the fields are not invariant under
translations anymore. Above threshold this gives rise to a lock of the pattern position with
respect to the photonic crystal. In some cases this translational symmetry break is also
observed below threshold. In Fig. EBh we show the case without photonic crystal and in
ETb is represented the case with My = 0.5, M7 = 0.0. Diffuse spatial structures are formed
even below threshold, called noisy precursors, whose most intense spatial components can
be seen in Fig. (green lines). Such wave vectors are the least damped and they will
be the selected in the spontaneous pattern formation above threshold. Without photonic
crystals, these noisy precursors fluctuate in position EEbh, while with photonic crystal, in
some cases, they stand still EEBb. Moreover, in Fig. EEOb there are two different weakly
damped modes that are in anti-phase. When increasing time in a fixed location (i.e.
vertical line in E0b) we see that light and dark points are alternated within the stripe
structure that can be recognized. Breaking of the translational symmetry is a fundamental
property of the new modulated system with respect to OPO without photonic crystals and

in the following we will study this effect through the variance of the transverse momentum.

4.2.1 Poynting Vector variance

Systems displaying translational symmetry are known to conserve linear momentum. We
remind that, in optics, the momentum is proportional to the Poynting vector S [Hechi].
In order to characterize this translational symmetry breaking we numerically calculate the

transverse momentum
(4.12) g, = / dkk(No (k) + N1 (k).

In the case without photonic crystal and below threshold, the average transverse momen-
tum does vanish, <§ 1) = 0, because of the symmetric generation of photons with opposite

momentum. Here we will focus in the momentum variance.
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PUMP Mo=M, =00 | My=05M; =0.0 | Myg=0.0M; =05 | My=M; =0.5
E=0.9 —0.49 0.00 —0.36 0.00
E=1.1 —0.49 —0.32 —2.9 —0.14

~ 1% below thr —0.49 0.00 1.78 0.00

~ 1% above thr —0.49 —0.06 9.51 —0.04

Table 4.1. Numerical results for the variance of the Poynting vector, proportional to the linear
momentum. In the case without photonic crystal (first results column) the values reproduce the
result V = —0.5 given in [Gatti & al. (97)1] below threshold (even analytically) and in [Zambrini
& al. (03)] above. When introducing the photonic crystal in its different configurations, we observe
the momentum it is not constant anymore.

For the few modes cases, where only few intense modes contribute, the transverse Poynting

vector can be approximated

~

(4.13) Sy ~ ke(Ny(ke) — Ni(—Fke)) 4+ ONp(0).

The normally ordered variance of S| is proportional to the variance of the twin beams

correlations (see Eq. ET):

(4.14) (: A28 2) o< Vi(ke) o< (2 [N1(ke) — Ny(—Fke)]%2)

As we reported in the previous section the degenerate OPO without photonic crystal below

threshold allows for analytical solution, giving V4, = —0.5, and the same value holds above

threshold as was numerically calculated in [Zambrini & al. (03)]. It is interesting to prove

that the momentum is not conserved when introducing the photonic crystal, by calculating
the variance of the Poynting vector for the different configurations of the photonic crystal.
Outcomes obtained in the calculations of the total transverse momentum variance, for
different values of pump and photonic crystal transverse modulations, suggest that the

linear momentum in the PCOPO is not longer preserved, indeed it is more noisy, see

TabE2Tl

4.3 Quadrature Squeezing

As it was presented in the introduction, it is possible to reduce the fluctuations of one
quadrature field below the vacuum level, called shot noise. This is the squeezing phe-

nomenon. Normal ordering allows us to immediately identify non classical features asso-
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ciated with squeezing, as these lead to negative variances for the quadrature
(4.15) X(0) = ae™" +ate?

which it is said to be squeezed in the interval given by Eq. [CZ5k

(4.16) —05 < (: (AX(0))%:) <0.

Hereby we are interested in the quadrature of the opposite signal modes superposition,

defined as:

A~

(4.17) Xpg(k, —k) = (A1 (k) + A1 (—k)e™)e? 4 h.c.

In OPOs without photonic crystal, the values 8 = 0 and ¢ = 0 give noise amplification,

while fluctuations are damped for # = 0 and ¢ = 7, [Zambrini & al. (03)]. The quadrature

variance at the critical wave number )A(g7¢(k:c,—kc) reaches the minimum value just at

threshold
(4.18) (: (AXox)?(ke, —ke) :) = —0.5.

In this work we characterize this variance as a function of the superposition angle ¢ and the
quadrature phase 6. The normal ordered variance is expressed in terms of the antinormally

ordered correlations

(: (AXp,)*(k, —k) :) = 2Re((A] (K))e™) + 2(A(K) AT()) +
+2Re((AF(—k))e* ) + 2(A(~k) AT (=k)) +
+4Re((A1 (k) A1 (=k)) e’ +9)) + ARe((A] (k) A1 (<k))e™?) — 4C) 1

where first order moments are neglected because they are vanishing below threshold. Re-
member that we simulate the equations BE27 228 in the Q representation, giving anti-
normal ordered moments, as explained in Chapter @ and C}, _j is the commutator as in
Section EJl In Fig. EEH the quadrature variance is represented for k& = k. for the case
without photonic crystal and for different configurations of the photonic crystal. In order
to analyze the minimum and the maximum of the quadratures superposition variance we
represent (: (AXp )2 (w, ke, —ke) @) as a function of @ for the value of ¢ that minimizes the
variances, Fig. Ellh. Below threshold and in absence of photonic crystal there is maxi-
mum squeezing. Due to the presence of the photonic crystal the correspondent variance

increases as can be seen comparing black and colored curves in Fig. ETb.
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Figure 4.6. Variance of the quadrature for value of the superposition angle ¢ and the total phase
0 for different configurations of the photonic crystal 1% below the corresponding threshold. a) and
b) without photonic crystal; ¢) and d) with My = 0 and M; = 0.5;
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Figure 4.7. a) Variance of the quadrature X9¢ (kc, —kc) in as a function of the total phase 6 with
the superposition angle ¢ where the variance reaches its minimum for different configurations of the
photonic crystal 1% below the corresponding threshold. As usual, the amplitude of the modulations
of the refractive index are, in black for the homogeneous case, i.e. My = M; = 0, in green for
Mo = 0,M; = 0.5, in red for My = 0.5, M1 = 0.0 and in orange Mo = M; = 0.5. The classical level
is plotted in dashed line. b) Zoom at the minim values. c¢) Same in dB scale.

4.4 Summary

We are interested in how the photonic crystals act on the quantum phenomena taking
place in OPOs. Firstly, by calculating the twin beam correlations variance V;(k), we have
analyzed the Spatial Antibunching effect. We found that the presence of the intracavity
photonic crystal modifies the twin beams correlations below threshold, generally degrading
them. The most robust quantum correlations appear in the case in which the photonic
crystal is only influencing the pump (red curve in Fig. E3)). The lost of quantum corre-
lations between most intense modes (signal at k. and 3k, ) is due to secondary processes.

Modes with few photons preserve their quantum correlations (plateau at —0.5 in Fig. E3).

Below threshold we have shown noisy structures, called noisy precursors, and their
change due to the transverse translational symmetry break (spatial locking of the noise
pattern). Calculations are in progress in order to characterize this symmetry breaking in
terms of the transverse linear momentum.

Finally, we have calculated the quadrature variance in PCOPO below threshold, drawing
the conclusion that -at the same distance from the threshold- the squeezing generally
decreases with respect to the case without photonic crystal. We advance that preliminary

results above threshold show a positive effect of the use of photonic crystals.
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Conclusions and Outlook

Interaction between light and matter allows to transform coherent laser states in non-
classical ones, showing squeezing and entanglement. In particular, non-linear optical cav-
ities as Optical Parametric Oscillators emit light with non-classical correlations between
opposite Fourier spatial modes (twin beams). We considered here a PCOPO, that is an
OPO in presence of an intracavity Photonic Crystal, described by a spatial modulation of
the refractive index.

The introduction of photonic crystals in OPOs allows to control not only the instabilities
of these devices but also its quantum fluctuations.

We have shown some preliminary results on the PCOPO below threshold. In general,
we find that the spatial modulation of the detuning influences the spatial profile of the
intensity fluctuations. Our main findings are that: (i) thresholds are raised or reduced
by the photonic crystal depending on modulation strength; (ii) twin beams correlations
showing antibunching persist below threshold but can deteriorate in correspondence of
some wave-vectors, due to the incoherent excitation of secondary processes; (iii) squeezing

below threshold is worsened in presence of photonic crystal.

In spite of the reported negative effect of the photonic crystal for squeezing, preliminary
results of the squeezing above threshold show the possibility to actually increase the phase
ranges for squeezing in PCOPO with respect to OPO, see Figlhdl The physical reason
for this phenomenon can be attributed to the translational symmetry breaking due to the
modulation of the space the photonic crystal creates, as we evaluated through the Poynt-
ing vector variance. This is the main part of this work and is in progress.

Moreover, new configurations, varying the spatial periodicity and strength of the photonic

crystal, are under study, both from the classical (instability thresholds) and quantum
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Figure 5.1. Normalized variance of the quadrature )A(w(kic, —k.) as a function of the quadrature
angle 6 and the superposition angle ¢, on the left is the case without photonic crystal My = M; =0
and on the right the case in which the photonic crystal is affecting both pump and signal My =
My = 0.5, 2% above the corresponding threshold. The darkest regions show quadrature squeezing,
limited by the shot noise level in green. We see how photonic crystal allows to widen the squeezed
quadrature range without worsening the degree of squeezing.

(non-classical correlations) points of view.
From one side, our objective is a general description of instability and creation of mul-
tistability offered by photonic crystals. On the other side, we plan to characterize the

effect of the photonic crystal on squeezing and FPR entanglement from below to above

threshold.
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