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Chaos-Based Optical Communications:
Encryption Vs. Nonlinear Filtering

Adrian Jacobo, Miguel C. Soriano, Claudio R. Mirasso, and Pere Colet

Abstract—Several chaos encoding schemes codify the message
in such a way that the mean value of the transmitted signal
(carrier with the message) is different for bits “0” and “1”.
We present a nonlinear filtering method that is able to detect
very small changes in the mean value of a signal and therefore
recover this kind of messages if its amplitude is larger than the
chaotic fluctuations in the mean over the length of a bit. We also
introduce a new codification method in which the mean value of
the transmitted signal, over the length of each bit, is preserved
and we show how it is able to beat the decryption scheme.

Index Terms—Optical communications, semiconductor lasers,
dynamics, nonlinear optics, chaos.

I. INTRODUCTION

OPTICAL chaos-based communications have become
popular in the past decade; evolving from a theoretical

concept and an experimental demonstration [1] to an almost
ready-to-use technique where successful field experiments
have been reported [2]. Typically, the transmitted signal con-
sists of a chaotic carrier generated by a Semiconductor Laser
(SL) subject to feedback in which a message is encrypted.
Then, a system similar to the emitter is necessary at the
authorized receiver side to recover the message. Privacy relies
on the difficulty to recover the message without the appropriate
receiver. This depends not only on how strong the chaos is
but also on the codification method. One of the most popular
methods to encode information is Chaos Modulation (CM)
[1], [3], [4] in which the message is encoded as a (small)
modulation of the amplitude of the chaotic carrier.

Eventual eavesdroppers can attack in different ways. The
simplest one is just trying direct detection of the modulated
carrier. This attack usually fails except for messages codified
with an extremely large modulation amplitude. A more sophis-
ticated situation is such that the eavesdropper has a system
similar to the authorized receiver although he may not know
the parameters in which it operates. In this case the degradation
of the synchronization as a function of parameter mismatch
[5]–[8] plays a critical role in determining how similar the
eavesdropper system should be to succeed. Other possibilities
include the reconstruction of the chaotic attractor using the
chaotic time series. This is only practical in systems where
the local dynamics is low dimensional [9], [10]. Finally one
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can also use adaptive systems trained to synchronize to the
chaotic carrier, such as for example neural networks [11].

In this work we take a different approach exploiting eventual
pitfalls in the codification technique. We do not attempt to
match the receiver nor to reconstruct the chaotic carrier, rather
we study the possibility of using a nonlinear filtering technique
to break chaos encrypted messages in encoding schemes in
which the mean value of the chaotic carrier is not preserved.
The method that we apply to break the encryption is based in
previous work on noise filtering and contrast enhancement by
using nonlinear dynamics of extended systems [12] which can
be used to detect sudden jumps that are masked by noise.

In section II we introduce the model of two SL subject
to feedback, and the encoding scheme. Then, in section III
we show how the messages encoded with this scheme can be
recovered using a nonlinear filtering technique. Finally, we
propose an alternative encryption method which requires a
more sophisticated implementation but that avoids detection
by the nonlinear filter.

II. CHAOS ENCODING

We model the dynamics of the SL subject to optical
feedback in terms of the Lang-Kobayashi equations [4]. The
equations for the slowly varying amplitude of the electric field
E(t) and the carrier number N(t) (in single mode operation
and low to moderate feedback) are

ĖM,R(t) = (1+iα)
2 [GM,R(t)− γp]EM,R(t)

+ γEM,R(t− τ)e−iΦ + κr ET (t), (1)

ṄM,R(t) =
I

e
− NM,R(t)

τN
−GM,R(t)PM,R(t), (2)

where M (R) refers to the emitter (receiver) lasers and T to
the transmitted signal (carrier with embedded message). The
gain GM,R = g(NM,R −No)/(1 + s PM,R). P (t) = |E(t)|2
is the laser intensity. For simplicity, we have assumed iden-
tical internal laser parameters and operating conditions and
neglected noise effects in the lasers. Parameter α = 5 is the
linewidth enhancement factor, γp = 0.5 ps−1 is the photon
decay rate, τN = 2 ns is the carrier lifetime, g = 1.5 · 10−8

ps−1 is the differential gain coefficient, No = 1.5 · 108 is
the carrier number at transparency, s = 5 · 10−7 is the gain
compression coefficient, I = 2Ith is the injected current,
Ith = 14.7 mA is the solitary laser threshold current, τ = 1
ns is the feedback delay time, γ = 25 ns−1 is the feedback
strength and Φ = 0 is the optical feedback phase. The last
term in Eq. (1) only appears in the equation for the receiver
and it accounts for the injection of the emitter laser field into
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Fig. 1. (a) Time trace and (b) power spectrum of the chaotic carrier generated
by a SL subject to feedback.

the receiver. Without loss of generality, we consider that this
injection occurs instantaneously. An example of the generated
chaotic carrier time trace and power spectrum is given in Fig.
1.

A high degree of synchronization between emitter and
receiver is achieved by working in a closed loop configuration
and for κr > 60 ns−1 [6], [13].

We consider here a message encoded by modulating the
emitter’s chaotic carrier power

PT (t) =
(
1− εm(t)

)
PM (t), (3)

where PT (t) is the transmitted signal, ε is the message
modulation amplitude, m(t) is the message being transmitted,
taking values 0.5 and −0.5, and PM (t) is the chaotic carrier.
The message can be recovered by the authorized receiver as:

m′(t) =
PR(t)− PT (t)

εPR(t)
, (4)

where PR(t) is the power emitted by the receiver laser. The re-
covery strongly depends on the quality of the synchronization
between the emitter and receiver lasers. For PR(t) = PM (t)
(ideal synchronization) the message can be perfectly recov-
ered. In practise one applies a butterworth filter after detection
to further clean the message, as it is typically done in all-
optical chaos-based communications.

In some instances, it may not be straightforward to imple-
ment the division in Eq.4, then the message is recovered by
using

m′′(t) = PR(t)− PT (t). (5)

This is later filtered using a butterworth filter and then
normalized to the interval [-1/2,1/2]. In this work we will
compare both decoding techniques with the eavesdropper
attack introduced in Section III

To illustrate the quality of the recovered messages, we show
in Figure 2(a.1) a sample of a sequence of recovered bits using
Eq.4 and in Figure 2(a.2) the corresponding eye diagram of
this sequence. Figures 2(b.1) and (b.2) show the time trace and
eye diagram of a sequence recovered using Eq.5. To quantify
the performance of the recovery process we use the quality
factor:

Q =
µ1 − µ0

σ1 + σ0
, (6)

where µ1 and µ0 are the average optical power of bits “1” and
“0”, and σ1 and σ0 are the corresponding standard deviations.
A larger value of Q accounts for a better recovery of the
message since the bit error rate is a monotonically decreasing

Fig. 2. Recovered messages (left) and eye diagrams (right) for 256 bits
encoded with CM at 5 Gb/s (ε = 0.2). (a) Authorized receiver m′(t) (κr =
75 ns−1), (b) authorized receiver m′′(t), (c) GLE first pass (a = 1000, r =
0.5), and (d) GLE second pass (a = 2, r = 0.65).

function of Q [14]. For a 5Gb/s message the authorized
receiver shows a clean and open eye diagram with Q = 10.66
in the case of m′(t) and Q = 4.78 for m′′(t). Note that by
not making the division in Eq.5 the quality factor is largely
reduced, but the message recovery is still possible.

One property of CM is that the mean value of the trans-
mitted power during the length of a bit “1” (P̄T,1, where the
bar stands for average over time) is different from a bit “0”
(P̄T,0). This difference is:

P̄T,0 − P̄T,1 = εP̄M , (7)

This feature is shared by other encryption methods such as
Chaos Shift Keying [15] and Chaos Masking [4], [5], [16],
which makes this discussion also relevant for these cases. If
the message modulation amplitude ε is large these differences
on the mean value are easily detectable and the message can
be recovered by using a linear filter, such as a low pass filter.
One may also consider averaging the power over one bit. This
requires the eavesdropper to know the exact bit rate as well as
where the bit starts. As ε is reduced usual filtering techniques
fail to recover the message. Neither the average technique
works. The use of a nonlinear filter can improve the ability to
detect these deviations, and therefore push the range of secure
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Fig. 3. Message recovery with the forced GLE. (a) The full line corresponds
to the forcing term of Eq. 8 (chaotic carrier with the message) and the dashed
line is the normalized encoded message. The dotted-dashed line corresponds
to the reference level r. (b) Stationary state solution of Eq. 8 (recovered bits).

operation to smaller amplitudes. The chaotic properties of the
carrier set a limit for the message amplitudes that allow to
operate in a secure regime. The average value of the chaotic
carrier during a bit length fluctuates from one bit to another,
and these fluctuations increase with the bit rate. We measure
the standard deviation σ of these fluctuations and define ∆
as the ratio between σ and the mean value of the chaotic
carrier. For the chaotic carrier shown in Fig. 1(a) ∆ =0.02
at 1Gb/s, ∆ =0.05 at 2.5 Gb/s and ∆ =0.10 at 5 Gb/s.
Encoding a message with the CM method induces deviations
from the mean value of the carrier. If these deviations are of the
same order of magnitude or smaller than those of the chaotic
signal, a filtering technique will not be able to distinguish the
intrinsic variations from the ones produced by the message,
and therefore it will not be able to decrypt it. The drawback
of working in this regime is that, to recover the message
with enough quality, a very good synchronization between the
emitter and the receiver is needed.

As we said, the variations of the chaotic signal at 5Gb/s are
about 10%, and we will show how with a nonlinear filtering
technique based on the forced Ginzburg Landau Equation we
are able to decrypt signals up to these message modulation
amplitudes, which is much better than what a linear filter can
do.

III. BREAKING THE ENCRYPTION

To decrypt the message we map the time series with
the encoded message as the forcing of a nonlinear partial
differential equation that presents a bistable steady state. The
decoded message is recovered as the stationary state of the
equation. We use the prototypical Ginzburg Landau Equation
(GLE) [17] in 1d with a forcing term:

∂tψ(x, t) = a · ∂2
xψ(x, t) + ψ(x, t)− ψ(x, t)3 + b · h(x) (8)

Where ψ is the field, a is the diffusion constant, b is the
forcing strength and h(x) is a space dependent forcing. For
convenience we set b = 1.

Neglecting diffusion and h(x), Eq.8 has two stable sta-
tionary solutions, ψ+ = 1 and ψ− = −1 (plus an unstable

solution at ψ = 0). Starting from ψ(x, t = 0) = h(x) the
points where h(x) > 0 will evolve to ψ+ and those where
h(x) < 0 will evolve to ψ−. If we now consider the effect
of diffusion, areas of a size of the diffusion length (given
by 1/a) that in average are larger than zero will approach
to ψ+, and those areas that in average are lower than zero
will approach to ψ− as illustrated in Figure 3. The diffusion
will also wash out the fast frequencies of the chaotic signal.
Finally, the effect of the forcing term h(x) is to change the
basin of attraction of ψ+ and ψ−, favoring the separation
mechanism and balancing the effect of diffusion, making ψ
follow the variations of h(x). The GLE filtering method was
initially intended to detect sudden jumps hidden by noise in
ecological and biological experimental data [18] developing on
prior ideas of using nonlinear extended systems to filter noise
in images and selectively enhance the contrast [12], [19]. To
apply the GLE filtering method to our case, we identify

h(x) =
PT (t)

MAX(PT (t))
− r (9)

with h(x), where r is a threshold parameter (0 < r < 1).
Starting from ψ(x, t = 0) = h(x) we let the equation evolve
to the steady state, with a large value of a (a = 1000), this
filters the fast frequencies of the chaos in a similar way that a
low-pass filter would do. Once the field reaches the steady
state we set a = 2, with this value of the parameter the
nonlinear mechanism comes into play enhancing the contrast
of the signal from the reference level given by r, making the
encoded message visible. The total effect of the process is to
separate the zones (defined by the diffusion length) where the
average of the signal is larger than r (i.e. “1” bits) and the
zones where the average is less than r (i.e “0” bits).

To illustrate the procedure we start by processing the
message using an encoding amplitude of ε = 0.2. In Figs.
2(c.1) and 2(c.2) we show a part of the time trace of the
decoded message, and the eye diagram for the first pass with
the filter, using a = 1000 and r = 0.5, respectively. It can be
seen that in this case we are able to recover some features of
the message but the eye diagram is very closed (Q = 1.9).
This means that we would only be able to recover, at best,
some bits. As previously said, this performance is similar to
the one expected for a linear filter.

One should notice that the statistics of the message extracted
by the GLE in the nonlinear filtering process may not be
the same as for the authorized receiver. So the relationship
between Q-factor and bit error rate may be different. Still
the bit error rate will monotonically decrease function of Q
and therefore we will use it to characterize the accuracy of
the recovered message. We choose to use the quality factor
because it requires much less statistics and computation time
than computing the bit error rate.

In Fig.2(d.1) and 2(d.2) we show the effect of a second
pass using a = 2 and setting r to maximize the Q factor of
the recovered message. Here it can be seen that the message is
nearly recovered (10 errors over 256 bits of the message), and
the eye diagram is quite open (Q = 3.85). Considering these
results it would not be secure to encode messages with this
amplitude using CM. In Fig. 4 we show the quality factor as a
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Fig. 4. Quality factor Q as a function of the message amplitude ε using
CM at 5 Gb/s (a) and 1Gb/s (b). The solid lines correspond to the authorized
receiver (circles for m′(t) and squares for m′′(t)), the dotted dashed line to
the GLE first pass and the dashed line to the GLE second pass. The dotted
line is the quality factor obtained by taking the mean value of the time series
during the length of one bit.

function of the message modulation amplitude ε. We can see
that, applying the GLE twice, performs much better than with
a single pass with large diffusion (which is basically a linear
filter). While the performance is not as good as the authorized
receiver, it is still enough to decode the message if the value
of ε is not too small. Performance decreases with decreasing
ε. At 5 Gb/s (Fig. 4(a)) when ε approaches 0.1 (which is of
the order of ∆) the nonlinear filtering method recovers only
part of the message. However, it should be kept in mind, that
reproducing part of the message is already a security threat.

Decreasing the bit rate the performance of the GLE filter
improves. Fig. 5(a) shows the eye diagram for a message
encoded at 1Gbit/s with ε = 0.04 using CM and decoded
by an authorized receiver using Eq.5. Fig. 5(b) shows the
message decoded by an eavesdropper using the GLE filter with
a = 1 in the second pass. Fig. 4(b) shows the quality factor as
function of the message amplitude ε at 1Gb/s. Since for this
bit rate ∆ is smaller than for 5 Gb/s the GLE filter provides a
better performance for lower values of ε. In general, to prevent
decoding using a nonlinear filter like the one considered here,
the change in bit average power induced by message encoding
should be of the order or smaller than the chaos fluctuations
of the bit mean.

At this point a few remarks on noise effects are in order
since in practise the transmission scheme will always be
subject to noise. As stated before the GLE filtering method
was initially designed to detect sudden jumps hidden by noise

Fig. 5. Recovered messages (left) and eye diagrams (right) for 256 bits
encoded with CM at 1 Gb/s (ε = 0.04). (a) Authorized receiver m′′(t)
(κr = 75 ns−1), (b) GLE second pass (a = 1, r = 0.65).

in data. As for the method, the chaotic carrier is considered as
a kind of noise (whose origin is the deterministic chaos) that
hides the message. If some amount of noise is added to the
transmitted signal, within reasonable limits, the GLE will filter
this noise along with the chaotic variations and the message
will be recovered. The presence of noise in the system will
also affect the ability of the authorized receiver to synchronize.
The larger the noise, the worst the synchronization, requiring a
larger message amplitude to keep the same quality factor at the
authorized receiver. The larger the amplitude of the message,
the better the performance of the GLE.

One can also compare the nonlinear method with the much
simpler approach of taking the mean value of the time series
during the length of one bit. In order to compute the mean
value of one bit, we need to know both the transmission bit
rate and the bit starting time. This is already one advantage
of the GLE filtering method, for which this information is not
needed (only the order of magnitude of the bit rate is needed,
in order to adjust the value of a for the second pass). But
the main advantage of the nonlinear filtering can be seen in
Fig. 4, where the dotted line shows the quality factor obtained
by computing the average value over one bit. Here is clearly
seen that due to its contrast enhancement capabilities the GLE
filtering provides a much better quality factor than averaging
over the bit length, and therefore the message can be decoded
for smaller values of ε.

IV. NEW CODIFICATION SCHEME

The GLE filter acts by detecting changes in the mean value
of the signal, therefore it is useless if the message is encoded
in such a way that the mean value is the same for bits “1” and
“0”. As an example of an encoding method which cannot be
broken by the GLE filter, we introduce the Mean Preserving
Chaos Modulation (MPCM) as:

PT (t) = (1− εm(t))PM (t) + εm(t)P̄M , (10)

where P̄M is the mean of the chaotic carrier and m(t) is
now a binary message taking values 0 and 1. This method,
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Fig. 6. Recovered messages (left) and eye diagrams (right) of 256 bits
encoded with MPCM at 2 Gb/s for the authorized receiver (κr = 75 ns−1

and ε = 0.2) with (a) K = 0, (b) K = 0.05 , and (c) K = 0.1.

in which the message is encoded in the variations around
the mean value, is an extension of CM in which the average
power for bits one and zero is the same for any modulation
amplitude, albeit more difficult to implement experimentally.
As a possible implementation one could consider dividing the
output of the emitter in two beams. The power of one of the
beams is modulated as (1 − εm(t))PM (t). The other beam
goes through a low-pass frequency filter to obtain the power
average which then is modulated as εm(t)P̄M . Finally both
beams are recombined.

The recovery of the message at the authorized receiver side
needs to account for the mean of the transmitted signal:

m′(t) =
PR(t)− PT (t)
ε(PR(t)− P̄M )

. (11)

In order to recover the message with a good quality,
the authorized receiver must neglect the data points in
which the power of the receiver is close to the mean value
P̄M . Specifically, we discard the data points that satisfy
|PR(t)/P̄M − 1| < K, where K is an arbitrary number larger
than 0. Figure 6 shows samples of the recovered message for
different values of K and its corresponding eye diagrams for
ε = 0.2. In Figs. 6(a)-(c), the largest quality factor (Q = 5.21)
is obtained for K = 0.05. In the latter case, 9% of the points
are neglected. Notice that the neglected points do not imply
the loss of bits in the message since the discarded portion of
the time trace is much shorter than the length of one bit.

Figures 7(a.1) and 7(a.2) show the message recovered using
Eq. (11) and the eye diagram for ε = 0.2 and K = 0.05. The
eye diagram shown in Fig. 7(a.2) is clearly open. The eye
diagrams have been obtained with the same synchronization
degree between the emitter and receiver lasers than in the

Fig. 7. Recovered messages (left) and eye diagrams (right) of 256 bits
encoded with MPCM at 2 Gb/s (ε = 0.2). (a) Authorized receiver m′(t)
(κr = 75 ns−1 and K = 0.05), (b) authorized receiver m′′(t), and (c) GLE
second pass (a = 1 and r = 0.65).

CM case (κr = 75 ns−1). The MPCM method enhances the
security of the communications at the expense of sacrificing
part of the quality of the recovered message. In Fig. 8 we show
the quality factor of the recovered message by an authorized
receiver for different values of ε. We can see that while
the quality of the recovered message is lower compared to
Fig.4, even though we are modulating at a slower bit rate, the
message is still well recovered.

As stated in section II the division in Eq. (11) may not be
straightforward to implement experimentally, therefore we will
also consider a second message recovery method, given by:

m′′(t) = |PR(t)− PT (t)|. (12)

Figures 7(b.1) and 7(b.2) show the same message as Figures
7(a.1) and 7(a.2) but recovered using Eq. (12), when the
division is not available. In this case the eye diagram is barely
open and the quality factor is reduced, as shown in Fig. 8.
Given these results it is not clear that this method could be
implemented experimentally if the division is not feasible.

Now we apply the GLE method to a message encoded
using this scheme. The result of the decoding operation is
shown in Figure 7(c) for ε = 0.2. As can be seen, nothing
can be recovered from the encoded message but random bits.
Independently of the value of ε used to encode the message the
GLE method is unable to extract it. Due to the way in which
the GLE filter works in this case it creates bits given by the
variations of the chaotic signal only, and not by the variations
in the mean value produced by the encoded message. We do
not estimate the Q factor since in this situation its value is
basically meaningless.



6

Fig. 8. Quality factor Q as a function of the encrypted message modulation
amplitude ε using the Mean-Preserving Chaos Modulation (MPCM) scheme.
The solid lines correspond to the authorized receiver (circles for m′(t) and
squares for m′′(t)).

V. CONCLUSIONS

In this work we applied a nonlinear filtering method based
on the GLE. Since this method is able to detect changes
on the mean value of a data series, by properly tuning the
parameters of the GLE we were able to break communications
schemes in which the change in bit average power induced by
message encoding is larger than the one induced by the chaotic
fluctuations. This nonlinear filtering method outperforms linear
filters, due to the fact that besides filtering the fast frequencies
of the chaotic signal as the linear filter does, the nonlinear one
enhances the contrast of the bits “1” and “0”, improving the
quality factor of the recovered message.

Therefore if the codification is done without preserving the
average power for bits “1” and “0”, the codification amplitude
should be of the same order or smaller than the variations of
the mean value of the chaotic signal over the length of one
bit. Amplitude modulations larger than that pose a security
threat since the message could be eventually detected by an
eavesdropper using the method proposed here or a similar one.

Finally, we have introduced a new codification method
which, although its implementation is more cumbersome,
constitutes an example of encoding that preserves the average
power for bits “1” and “0”. In this way, the nonlinear filtering
method described here or similar methods aiming at detecting
variations in the mean become ineffective.
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